It's convenient to implement auto model compression with NNI compression and NNI tuners
You can easily compress a model with NNI compression. Take pruning for example, you can prune a pretrained model with LevelPruner like this
from nni.compression.torch import LevelPruner
config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }]
pruner = LevelPruner(model, config_list)
pruner.compress()
The 'default' op_type stands for the module types defined in default_layers.py for pytorch.
Therefore { 'sparsity': 0.8, 'op_types': ['default'] }
means that all layers with specified op_types will be compressed with the same 0.8 sparsity. When pruner.compress()
called, the model is compressed with masks and after that you can normally fine tune this model and pruned weights won't be updated which have been masked.
The previous example manually choosed LevelPruner and pruned all layers with the same sparsity, this is obviously sub-optimal because different layers may have different redundancy. Layer sparsity should be carefully tuned to achieve least model performance degradation and this can be done with NNI tuners.
The first thing we need to do is to design a search space, here we use a nested search space which contains choosing pruning algorithm and optimizing layer sparsity.
{
"prune_method": {
"_type": "choice",
"_value": [
{
"_name": "agp",
"conv0_sparsity": {
"_type": "uniform",
"_value": [
0.1,
0.9
]
},
"conv1_sparsity": {
"_type": "uniform",
"_value": [
0.1,
0.9
]
},
},
{
"_name": "level",
"conv0_sparsity": {
"_type": "uniform",
"_value": [
0.1,
0.9
]
},
"conv1_sparsity": {
"_type": "uniform",
"_value": [
0.01,
0.9
]
},
}
]
}
}
Then we need to modify our codes for few lines
import nni
from nni.compression.torch import *
params = nni.get_parameters()
conv0_sparsity = params['prune_method']['conv0_sparsity']
conv1_sparsity = params['prune_method']['conv1_sparsity']
# these raw sparsity should be scaled if you need total sparsity constrained
config_list_level = [{ 'sparsity': conv0_sparsity, 'op_name': 'conv0' },
{ 'sparsity': conv1_sparsity, 'op_name': 'conv1' }]
config_list_agp = [{'initial_sparsity': 0, 'final_sparsity': conv0_sparsity,
'start_epoch': 0, 'end_epoch': 3,
'frequency': 1,'op_name': 'conv0' },
{'initial_sparsity': 0, 'final_sparsity': conv1_sparsity,
'start_epoch': 0, 'end_epoch': 3,
'frequency': 1,'op_name': 'conv1' },]
PRUNERS = {'level':LevelPruner(model, config_list_level), 'agp':AGP_Pruner(model, config_list_agp)}
pruner = PRUNERS(params['prune_method']['_name'])
pruner.compress()
... # fine tuning
acc = evaluate(model) # evaluation
nni.report_final_results(acc)
Last, define our task and automatically tuning pruning methods with layers sparsity
authorName: default
experimentName: Auto_Compression
trialConcurrency: 2
maxExecDuration: 100h
maxTrialNum: 500
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: False
searchSpacePath: search_space.json
tuner:
#choice: TPE, Random, Anneal...
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: bash run_prune.sh
codeDir: .
gpuNum: 1