From a64f897da70d9987916e1fb3fc13588f0e7f4e7f Mon Sep 17 00:00:00 2001 From: Radonirinaunimi Date: Tue, 12 Nov 2024 19:12:09 +0100 Subject: [PATCH] Various minor improvements for Python API --- pineappl_py/src/interpolation.rs | 12 ++-- pineappl_py/tests/conftest.py | 9 ++- pineappl_py/tests/test_grid.py | 109 +++++++++++++++++++++++-------- 3 files changed, 98 insertions(+), 32 deletions(-) diff --git a/pineappl_py/src/interpolation.rs b/pineappl_py/src/interpolation.rs index a0b4e3b6..fb4e9060 100644 --- a/pineappl_py/src/interpolation.rs +++ b/pineappl_py/src/interpolation.rs @@ -92,16 +92,18 @@ impl PyInterp { /// the type of interpolation to be used #[new] #[must_use] - #[pyo3(signature = (min, max, nodes, order, reweight_meth = None, map = None, interpolation_meth = None))] + #[pyo3(signature = (min, max, nodes = None, order = None, reweight_meth = None, map = None, interpolation_meth = None))] pub fn new_interp( min: f64, max: f64, - nodes: usize, - order: usize, + nodes: Option, + order: Option, reweight_meth: Option, map: Option, interpolation_meth: Option, ) -> Self { + let default_nodes: usize = 50; + let default_order: usize = 3; let reweight = reweight_meth.unwrap_or(PyReweightingMethod::NoReweight); let mapping = map.unwrap_or(PyMappingMethod::ApplGridF2); let interp_method = interpolation_meth.unwrap_or(PyInterpolationMethod::Lagrange); @@ -109,8 +111,8 @@ impl PyInterp { Self::new(Interp::new( min, max, - nodes, - order, + nodes.unwrap_or(default_nodes), + order.unwrap_or(default_order), reweight.into(), mapping.into(), interp_method.into(), diff --git a/pineappl_py/tests/conftest.py b/pineappl_py/tests/conftest.py index 25f081d2..6b7a0335 100644 --- a/pineappl_py/tests/conftest.py +++ b/pineappl_py/tests/conftest.py @@ -42,6 +42,8 @@ def unpolarized_pdf(self, pid, x, q2): class FakeGrid: """Class that mocks a PineAPPL grid. This should contain functions that return all the possible number of convolutions. + + TODO: Expose the index that defines the `ScaleFuncForm`. """ def grid_with_generic_convolution( @@ -106,10 +108,15 @@ def grid_with_generic_convolution( ) # Construct the `Scales` object + fragmentation_scale = ( + ScaleFuncForm.Scale(0) + if nb_convolutions >= 3 + else ScaleFuncForm.NoScale(0) + ) scale_funcs = Scales( ren=ScaleFuncForm.Scale(0), fac=ScaleFuncForm.Scale(0), - frg=ScaleFuncForm.NoScale(0), + frg=fragmentation_scale, ) return Grid( diff --git a/pineappl_py/tests/test_grid.py b/pineappl_py/tests/test_grid.py index 7bee1dc1..5e3c63aa 100644 --- a/pineappl_py/tests/test_grid.py +++ b/pineappl_py/tests/test_grid.py @@ -121,6 +121,10 @@ 4.09227318e3, ] +# Define some default kinematics +XGRID = np.geomspace(1e-5, 1, 20) +Q2GRID = np.geomspace(1e3, 1e5, 10) + class TestGrid: def test_init(self, fake_grids): @@ -158,29 +162,27 @@ def test_write(self, fake_grids): g.write_lz4(f"{tmpdir}/toy_grid.pineappl.lz4") def test_set_subgrid(self, fake_grids): + # Test a proper DIS-case g = fake_grids.grid_with_generic_convolution( - nb_convolutions=2, - channels=CHANNELS, + nb_convolutions=1, + channels=[Channel([([2], 0.1)])], orders=ORDERS, - convolutions=[CONVOBJECT, CONVOBJECT], + convolutions=[CONVOBJECT], ) - # DIS grid xs = np.linspace(0.1, 1.0, 5) vs = np.random.rand(len(xs)) subgrid = ImportSubgridV1( - array=vs[np.newaxis, :, np.newaxis], - node_values=[np.array([90.0]), xs, np.array([1.0])], + array=vs[np.newaxis, :], + node_values=[np.array([90.0]), xs], ) g.set_subgrid(0, 0, 0, subgrid.into()) - # let's mix it for fun with an hadronic one - x1s = np.linspace(0.1, 1, 2) - x2s = np.linspace(0.5, 1, 2) + xs = np.linspace(0.1, 1, 2) Q2s = np.linspace(10, 20, 2) subgrid = ImportSubgridV1( - array=np.random.rand(len(Q2s), len(x1s), len(x2s)), - node_values=[Q2s, x1s, x2s], + array=np.random.rand(len(Q2s), len(xs)), + node_values=[Q2s, xs], ) g.set_subgrid(0, 1, 0, subgrid.into()) g.optimize() @@ -228,7 +230,7 @@ def test_grid( g.scale_by_bin(factors=[10.0, 20.0]) g.delete_bins(bin_indices=[0, 1, 2]) - def test_incosistent_convs( + def test_incosistent_convolutions( self, pdf, download_objects, @@ -293,7 +295,7 @@ def test_unpolarized_convolution( -1.83941398e3, +3.22728612e3, +5.45646897e4, - ] + ] # Numbers computed using `v0.8.6` grid = download_objects(f"{gridname}") g = Grid.read(grid) @@ -326,7 +328,7 @@ def test_polarized_convolution( -2.65602464e5, -1.04664085e6, -5.19002089e6, - ] + ] # Numbers computed using `v0.8.6` grid = download_objects(f"{gridname}") g = Grid.read(grid) @@ -360,11 +362,9 @@ def test_convolve_subgrid(self, fake_grids): # Fill the grid with `fill_array` rndgen = Generator(PCG64(seed=1234)) - q2s = np.geomspace(1e3, 1e5, 10) - xxs = np.geomspace(1e-5, 1, 20) ntuples = [ np.array([q2, x1, x2]) - for q2, x1, x2 in itertools.product(q2s, xxs, xxs) + for q2, x1, x2 in itertools.product(Q2GRID, XGRID, XGRID) ] obs = [rndgen.uniform(binning[0], binning[-1]) for _ in ntuples] for pto in range(len(ORDERS)): @@ -396,6 +396,61 @@ def test_convolve_subgrid(self, fake_grids): np.testing.assert_allclose(ptos_res, [FILL_CONV_RESUTLS]) + def test_many_convolutions(self, fake_grids, pdf, nb_convolutions: int = 3): + """Test for fun many convolutions.""" + expected_results = [ + 5.87361800e0, + 4.35570600e1, + 4.94878400e1, + ] + binning = [1e-2, 1e-1, 0.5, 1] + rndgen = Generator(PCG64(seed=1234)) + rbools = rndgen.choice(a=[True, False], size=(nb_convolutions, 2)) + + # Define the convolutions + convtypes = [ConvType(polarized=p, time_like=t) for p, t in rbools] + convolutions = [Conv(conv_type=c, pid=2212) for c in convtypes] + + # Define the channel combinations + pids = rndgen.choice( + a=[i for i in range(-5, 5) if i != 0], size=nb_convolutions + ) + channels = [Channel([(pids.tolist(), 1.0)])] + + g = fake_grids.grid_with_generic_convolution( + nb_convolutions=nb_convolutions, + channels=channels, + orders=ORDERS, + convolutions=convolutions, + bins=binning, + ) + + # Fill the grid with `fill_array` + _q2grid = np.geomspace(1e3, 1e5, 5) + _xgrid = np.geomspace(1e-5, 1, 4) + comb_nodes = [_q2grid] + [_xgrid for _ in range(nb_convolutions)] + ntuples = [ + np.array(list(kins)) for kins in itertools.product(*comb_nodes) + ] + obs = [rndgen.uniform(binning[0], binning[-1]) for _ in ntuples] + for pto in range(len(ORDERS)): + for channel_id in range(len(channels)): + g.fill_array( + order=pto, + observables=obs, + channel=channel_id, + ntuples=ntuples, + weights=np.repeat(1, len(obs)), + ) + + results = g.convolve( + pdg_convs=convolutions, + xfxs=[pdf.polarized_pdf for _ in range(nb_convolutions)], + alphas=pdf.alphasQ, + ) + + np.testing.assert_allclose(results / 1e15, expected_results) + def test_evolve_with_two_ekos( self, pdf, @@ -404,6 +459,8 @@ def test_evolve_with_two_ekos( ): """Test the evolution on a grid that contains two different convolutions, ie. requires two different EKOs. + + TODO: Test again convolved numerical values. """ grid = download_objects(f"{gridname}") g = Grid.read(grid) @@ -511,11 +568,9 @@ def test_fill(self, fake_grids): # Fill the Grid with some values rndgen = Generator(PCG64(seed=1234)) - q2s = np.geomspace(1e3, 1e5, 10) - xxs = np.geomspace(1e-5, 1, 20) for pto in range(len(ORDERS)): for channel_id in range(len(CHANNELS)): - for q2, x1, x2 in itertools.product(q2s, xxs, xxs): + for q2, x1, x2 in itertools.product(Q2GRID, XGRID, XGRID): n_tuple = [q2, x1, x2] obs = rndgen.uniform(binning[0], binning[-1]) g.fill( @@ -535,6 +590,9 @@ def test_fill(self, fake_grids): np.testing.assert_allclose(res, FILL_CONV_RESUTLS) def test_fill_array(self, fake_grids): + """Test filling the Grid using array, should yield the same result as + `Grid.fill` above. + """ binning = [1e-2, 1e-1, 0.5, 1] g = fake_grids.grid_with_generic_convolution( nb_convolutions=2, @@ -546,11 +604,9 @@ def test_fill_array(self, fake_grids): # Fill the grid with arrays instead of looping on them rndgen = Generator(PCG64(seed=1234)) - q2s = np.geomspace(1e3, 1e5, 10) - xxs = np.geomspace(1e-5, 1, 20) ntuples = [ np.array([q2, x1, x2]) - for q2, x1, x2 in itertools.product(q2s, xxs, xxs) + for q2, x1, x2 in itertools.product(Q2GRID, XGRID, XGRID) ] obs = [rndgen.uniform(binning[0], binning[-1]) for _ in ntuples] for pto in range(len(ORDERS)): @@ -572,6 +628,9 @@ def test_fill_array(self, fake_grids): np.testing.assert_allclose(res, FILL_CONV_RESUTLS) def test_fill_all(self, fake_grids): + """Test filling the Grid by filling at once the kinematics and the observable, + should yield the same result as `Grid.fill` above. + """ binning = [1e-2, 1e-1, 0.5, 1] g = fake_grids.grid_with_generic_convolution( nb_convolutions=2, @@ -583,10 +642,8 @@ def test_fill_all(self, fake_grids): # Add a point to the grid for all channels (and loop over the points) rndgen = Generator(PCG64(seed=1234)) - q2s = np.geomspace(1e3, 1e5, 10) - xxs = np.geomspace(1e-5, 1, 20) for pto in range(len(ORDERS)): - for q2, x1, x2 in itertools.product(q2s, xxs, xxs): + for q2, x1, x2 in itertools.product(Q2GRID, XGRID, XGRID): n_tuple = [q2, x1, x2] obs = rndgen.uniform(binning[0], binning[-1]) g.fill_all(