-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
520 lines (413 loc) · 18.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os.path as osp
import numpy as np
import scipy.sparse as sp
import torch
import torch_geometric.transforms as T
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from deeprobust.graph.data import Dataset
from deeprobust.graph.utils import get_train_val_test
from torch_geometric.utils import train_test_split_edges
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np
import torch.nn.functional as F
from sklearn.preprocessing import StandardScaler
from deeprobust.graph.utils import *
from torch_geometric.data import NeighborSampler
from torch_geometric.utils import add_remaining_self_loops, to_undirected
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import degree
import math
import torch.nn.functional as F
from torch_geometric.utils import add_self_loops
from torch_geometric.data import Data
import torch
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# torch.cuda.device_count()
import logging
def get_dataset(name, normalize_features=True, transform=None, if_dpr=True):
path = osp.join(osp.dirname(osp.realpath(__file__)), 'data', name)
if name in ['cora', 'citeseer', 'pubmed']:
dataset = Planetoid(path, name)
elif name in ['ogbn-arxiv']:
dataset = PygNodePropPredDataset(name='ogbn-arxiv')
else:
raise NotImplementedError
if transform is not None and normalize_features:
dataset.transform = T.Compose([T.NormalizeFeatures(), transform])
elif normalize_features:
dataset.transform = T.NormalizeFeatures()
elif transform is not None:
dataset.transform = transform
dpr_data = Pyg2Dpr(dataset)
if name in ['ogbn-arxiv']:
# the features are different from the features provided by GraphSAINT
# normalize features, following graphsaint
feat, idx_train = dpr_data.features, dpr_data.idx_train
feat_train = feat[idx_train]
scaler = StandardScaler()
scaler.fit(feat_train)
feat = scaler.transform(feat)
dpr_data.features = feat
return dpr_data
class Pyg2Dpr(Dataset):
def __init__(self, pyg_data, **kwargs):
try:
splits = pyg_data.get_idx_split()
except:
pass
dataset_name = pyg_data.name
pyg_data = pyg_data[0]
n = pyg_data.num_nodes
if dataset_name == 'ogbn-arxiv': # symmetrization
pyg_data.edge_index = to_undirected(pyg_data.edge_index, pyg_data.num_nodes)
self.adj = sp.csr_matrix((np.ones(pyg_data.edge_index.shape[1]),
(pyg_data.edge_index[0], pyg_data.edge_index[1])), shape=(n, n))
self.features = pyg_data.x.numpy()
self.labels = pyg_data.y.numpy()
if len(self.labels.shape) == 2 and self.labels.shape[1] == 1:
self.labels = self.labels.reshape(-1) # ogb-arxiv needs to reshape
if hasattr(pyg_data, 'train_mask'):
# for fixed split
self.idx_train = mask_to_index(pyg_data.train_mask, n)
self.idx_val = mask_to_index(pyg_data.val_mask, n)
self.idx_test = mask_to_index(pyg_data.test_mask, n)
self.name = 'Pyg2Dpr'
else:
try:
# for ogb
self.idx_train = splits['train']
self.idx_val = splits['valid']
self.idx_test = splits['test']
self.name = 'Pyg2Dpr'
except:
# for other datasets
self.idx_train, self.idx_val, self.idx_test = get_train_val_test(
nnodes=n, val_size=0.1, test_size=0.8, stratify=self.labels)
def mask_to_index(index, size):
all_idx = np.arange(size)
return all_idx[index]
def index_to_mask(index, size):
mask = torch.zeros((size, ), dtype=torch.bool)
mask[index] = 1
return mask
class Transd2Ind:
# transductive setting to inductive setting
def __init__(self, dpr_data, keep_ratio=1.0):
idx_train, idx_val, idx_test = dpr_data.idx_train, dpr_data.idx_val, dpr_data.idx_test
adj, features, labels = dpr_data.adj, dpr_data.features, dpr_data.labels
self.nclass = labels.max()+1
self.adj_full, self.feat_full, self.labels_full = adj, features, labels
self.idx_train = np.array(idx_train)
self.idx_val = np.array(idx_val)
self.idx_test = np.array(idx_test)
if keep_ratio < 1:
idx_train, _ = train_test_split(idx_train,
random_state=None,
train_size=keep_ratio,
test_size=1-keep_ratio,
stratify=labels[idx_train])
self.adj_train = adj[np.ix_(idx_train, idx_train)]
self.adj_val = adj[np.ix_(idx_val, idx_val)]
self.adj_test = adj[np.ix_(idx_test, idx_test)]
logging.info('size of adj_train: {}'.format(self.adj_train.shape))
logging.info('#edges in adj_train: {}'.format(self.adj_train.sum()))
self.labels_train = labels[idx_train]
self.labels_val = labels[idx_val]
self.labels_test = labels[idx_test]
self.feat_train = features[idx_train]
self.feat_val = features[idx_val]
self.feat_test = features[idx_test]
self.class_dict = None
self.samplers = None
self.class_dict2 = None
def retrieve_class(self, c, num=256):
if self.class_dict is None:
self.class_dict = {}
for i in range(self.nclass):
self.class_dict['class_%s'%i] = (self.labels_train == i)
idx = np.arange(len(self.labels_train))
idx = idx[self.class_dict['class_%s'%c]]
return np.random.permutation(idx)[:num]
def retrieve_class_sampler(self, c, adj, transductive, num=256, args=None):
if self.class_dict2 is None:
self.class_dict2 = {}
for i in range(self.nclass):
if transductive:
idx = self.idx_train[self.labels_train == i]
else:
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
if args.nlayers == 1:
sizes = [15]
if args.nlayers == 2:
sizes = [10, 5]
# sizes = [-1, -1]
if args.nlayers == 3:
sizes = [15, 10, 5]
if args.nlayers == 4:
sizes = [15, 10, 5, 5]
if args.nlayers == 5:
sizes = [15, 10, 5, 5, 5]
if self.samplers is None:
self.samplers = []
for i in range(self.nclass):
node_idx = torch.LongTensor(self.class_dict2[i])
self.samplers.append(NeighborSampler(adj,
node_idx=node_idx,
sizes=sizes, batch_size=num,
num_workers=4, return_e_id=False,
num_nodes=adj.size(0),
shuffle=True))
batch = np.random.permutation(self.class_dict2[c])[:num]
out = self.samplers[c].sample(batch)
return out
def retrieve_class_multi_sampler(self, c, adj, transductive, num=256, args=None):
if self.class_dict2 is None:
self.class_dict2 = {}
for i in range(self.nclass):
if transductive:
idx = self.idx_train[self.labels_train == i]
else:
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
if self.samplers is None:
self.samplers = []
for l in range(2):
layer_samplers = []
sizes = [15] if l == 0 else [10, 5]
for i in range(self.nclass):
node_idx = torch.LongTensor(self.class_dict2[i])
layer_samplers.append(NeighborSampler(adj,
node_idx=node_idx,
sizes=sizes, batch_size=num,
num_workers=12, return_e_id=False,
num_nodes=adj.size(0),
shuffle=True))
self.samplers.append(layer_samplers)
batch = np.random.permutation(self.class_dict2[c])[:num]
out = self.samplers[args.nlayers-1][c].sample(batch)
return out
def retrieve_class_sampler_val(self,transductive, num_per_class=64):
#num = num_per_class*self.nclass
if self.class_dict2 is None:
self.class_dict2 = {}
node_idx = []
for i in range(self.nclass):
if transductive:
idx_val = np.array(self.idx_val)
idx = idx_val[self.labels_val == i]
else:
idx = np.arange(len(self.labels_val))[self.labels_val==i]
self.class_dict2[i] = idx
#node_idx.append(np.random.permutation(self.class_dict2[i])[:num_per_class])
node_idx += np.random.permutation(self.class_dict2[i])[:num_per_class].tolist()
self.class_dict2 = None
return np.array(node_idx).reshape(-1)
def match_loss(gw_syn, gw_real, args, device):
dis = torch.tensor(0.0).to(device)
if args.dis_metric == 'ours':
for ig in range(len(gw_real)):
gwr = gw_real[ig]
gws = gw_syn[ig]
dis += distance_wb(gwr, gws)
elif args.dis_metric == 'mse':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = torch.sum((gw_syn_vec - gw_real_vec)**2)
elif args.dis_metric == 'cos':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = 1 - torch.sum(gw_real_vec * gw_syn_vec, dim=-1) / (torch.norm(gw_real_vec, dim=-1) * torch.norm(gw_syn_vec, dim=-1) + 0.000001)
else:
exit('DC error: unknown distance function')
return dis
def distance_wb(gwr, gws):
shape = gwr.shape
# TODO: output node!!!!
if len(gwr.shape) == 2:
gwr = gwr.T
gws = gws.T
if len(shape) == 4: # conv, out*in*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2] * shape[3])
gws = gws.reshape(shape[0], shape[1] * shape[2] * shape[3])
elif len(shape) == 3: # layernorm, C*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2])
gws = gws.reshape(shape[0], shape[1] * shape[2])
elif len(shape) == 2: # linear, out*in
tmp = 'do nothing'
elif len(shape) == 1: # batchnorm/instancenorm, C; groupnorm x, bias
gwr = gwr.reshape(1, shape[0])
gws = gws.reshape(1, shape[0])
return 0
dis_weight = torch.sum(1 - torch.sum(gwr * gws, dim=-1) / (torch.norm(gwr, dim=-1) * torch.norm(gws, dim=-1) + 0.000001))
dis = dis_weight
return dis
def calc_f1(y_true, y_pred,is_sigmoid):
if not is_sigmoid:
y_pred = np.argmax(y_pred, axis=1)
else:
y_pred[y_pred > 0.5] = 1
y_pred[y_pred <= 0.5] = 0
return metrics.f1_score(y_true, y_pred, average="micro"), metrics.f1_score(y_true, y_pred, average="macro")
def evaluate(output, labels, args):
data_graphsaint = ['yelp', 'ppi', 'ppi-large', 'flickr', 'reddit', 'amazon']
if args.dataset in data_graphsaint:
labels = labels.cpu().numpy()
output = output.cpu().numpy()
if len(labels.shape) > 1:
micro, macro = calc_f1(labels, output, is_sigmoid=True)
else:
micro, macro = calc_f1(labels, output, is_sigmoid=False)
logging.info("Test set results:", "F1-micro= {:.4f}".format(micro),
"F1-macro= {:.4f}".format(macro))
else:
loss_test = F.nll_loss(output, labels)
acc_test = accuracy(output, labels)
logging.info("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
return
from torchvision import datasets, transforms
def get_mnist(data_path):
channel = 1
im_size = (28, 28)
num_classes = 10
mean = [0.1307]
std = [0.3081]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.MNIST(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.MNIST(data_path, train=False, download=True, transform=transform)
class_names = [str(c) for c in range(num_classes)]
labels = []
feat = []
for x, y in dst_train:
feat.append(x.view(1, -1))
labels.append(y)
feat = torch.cat(feat, axis=0).numpy()
from utils_graphsaint import GraphData
adj = sp.eye(len(feat))
idx = np.arange(len(feat))
dpr_data = GraphData(adj-adj, feat, labels, idx, idx, idx)
from deeprobust.graph.data import Dpr2Pyg
return Dpr2Pyg(dpr_data)
def regularization(adj, x, eig_real=None):
# fLf
loss = 0
# loss += torch.norm(adj, p=1)
loss += feature_smoothing(adj, x)
return loss
def maxdegree(adj):
n = adj.shape[0]
return F.relu(max(adj.sum(1))/n - 0.5)
def sparsity2(adj):
n = adj.shape[0]
loss_degree = - torch.log(adj.sum(1)).sum() / n
loss_fro = torch.norm(adj) / n
return 0 * loss_degree + loss_fro
def sparsity(adj):
n = adj.shape[0]
thresh = n * n * 0.01
return F.relu(adj.sum()-thresh)
# return F.relu(adj.sum()-thresh) / n**2
def feature_smoothing(adj, X):
adj = (adj.t() + adj)/2
rowsum = adj.sum(1)
r_inv = rowsum.flatten()
D = torch.diag(r_inv)
L = D - adj
r_inv = r_inv + 1e-8
r_inv = r_inv.pow(-1/2).flatten()
r_inv[torch.isinf(r_inv)] = 0.
r_mat_inv = torch.diag(r_inv)
# L = r_mat_inv @ L
L = r_mat_inv @ L @ r_mat_inv
XLXT = torch.matmul(torch.matmul(X.t(), L), X)
loss_smooth_feat = torch.trace(XLXT)
# loss_smooth_feat = loss_smooth_feat / (adj.shape[0]**2)
return loss_smooth_feat
def row_normalize_tensor(mx):
rowsum = mx.sum(1)
r_inv = rowsum.pow(-1).flatten()
# r_inv[torch.isinf(r_inv)] = 0.
r_mat_inv = torch.diag(r_inv)
mx = r_mat_inv @ mx
return mx
def get_eval_pool(eval_mode, model, model_eval):
if eval_mode == 'M': # multiple architectures
model_eval_pool = [model, 'GAT', 'MLP', 'APPNP', 'GraphSage', 'Cheby','GCN']
elif eval_mode == 'S': # itself
model_eval_pool = [model[:model.index('BN')]] if 'BN' in model else [model] # 去掉BN
else:
model_eval_pool = [model_eval]
return model_eval_pool
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# neighborhood-based difficulty measurer
def neighborhood_difficulty_measurer(data, adj, label):
edge_index = adj.coalesce().indices()
edge_value = adj.coalesce().values()
neighbor_label, _ = add_self_loops(edge_index) #[[1, 1, 1, 1],[2, 3, 4, 5]]
neighbor_label[1] = label[neighbor_label[1]] #[[1, 1, 1, 1],[40, 20, 19, 21]]
neighbor_label = torch.transpose(neighbor_label, 0, 1) # [[1, 40], [1, 20], [1, 19], [1, 21]]
index, count = torch.unique(neighbor_label, sorted=True, return_counts=True, dim=0)
neighbor_class = torch.sparse_coo_tensor(index.T, count)
neighbor_class = neighbor_class.to_dense().float()
neighbor_class = neighbor_class[data.idx_train]
neighbor_class = F.normalize(neighbor_class, 1.0, 1)
neighbor_entropy = -1 * neighbor_class * torch.log(neighbor_class + torch.exp(torch.tensor(-20))) # 防止log里面是0出现异常
local_difficulty = neighbor_entropy.sum(1)
print('done')
return local_difficulty.to(device)
def neighborhood_difficulty_measurer_in(data, adj, label):
edge_index = adj.coalesce().indices()
edge_value = adj.coalesce().values()
neighbor_label, _ = add_self_loops(edge_index) #[[1, 1, 1, 1],[2, 3, 4, 5]]
neighbor_label[1] = label[neighbor_label[1]] #[[1, 1, 1, 1],[40, 20, 19, 21]]
neighbor_label = torch.transpose(neighbor_label, 0, 1) # [[1, 40], [1, 20], [1, 19], [1, 21]]
index, count = torch.unique(neighbor_label, sorted=True, return_counts=True, dim=0)
neighbor_class = torch.sparse_coo_tensor(index.T, count)
neighbor_class = neighbor_class.to_dense().float()
neighbor_class = F.normalize(neighbor_class, 1.0, 1)
neighbor_entropy = -1 * neighbor_class * torch.log(neighbor_class + torch.exp(torch.tensor(-20))) # 防止log里面是0出现异常
local_difficulty = neighbor_entropy.sum(1)
print('done')
return local_difficulty.to(device)
def difficulty_measurer(data, adj, label):
local_difficulty = neighborhood_difficulty_measurer(data, adj, label)
# global_difficulty = feature_difficulty_measurer(data, label, embedding)
node_difficulty = local_difficulty
return node_difficulty
def sort_training_nodes(data, adj, label):
node_difficulty = difficulty_measurer(data, adj, label)
_, indices = torch.sort(node_difficulty)
indices = indices.cpu().numpy()
sorted_trainset = data.idx_train[indices]
return sorted_trainset
def difficulty_measurer_in(data, adj, label):
local_difficulty = neighborhood_difficulty_measurer_in(data, adj, label)
# global_difficulty = feature_difficulty_measurer(data, label, embedding)
node_difficulty = local_difficulty
return node_difficulty
def sort_training_nodes_in(data, adj, label):
node_difficulty = difficulty_measurer_in(data, adj, label)
_, indices = torch.sort(node_difficulty)
indices = indices.cpu().numpy()
return indices
def training_scheduler(lam, t, T, scheduler='geom'):
if scheduler == 'linear':
return min(1, lam + (1 - lam) * t / T)
elif scheduler == 'root':
return min(1, math.sqrt(lam ** 2 + (1 - lam ** 2) * t / T))
elif scheduler == 'geom':
return min(1, 2 ** (math.log2(lam) - math.log2(lam) * t / T))