You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
cd /home/
wget https://github.com/NVIDIA/caffe/archive/refs/tags/v0.17.4.tar.gz
tar -xvf v0.17.4.tar.gz
cd caffe-0.17.4
forreqin$(cat python/requirements.txt);do pip install $req;done
pip install --upgrade google-api-python-client
cp Makefile.config.example Makefile.config
Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html# Contributions simplifying and improving our build system are welcome!# cuDNN acceleration switch (uncomment to build with cuDNN).# cuDNN version 6 or higher is required.
USE_CUDNN := 1
# NCCL acceleration switch (uncomment to build with NCCL)# See https://github.com/NVIDIA/nccl
USE_NCCL := 1
# Builds tests with 16 bit float support in addition to 32 and 64 bit.# TEST_FP16 := 1# uncomment to disable IO dependencies and corresponding data layers# USE_OPENCV := 0# USE_LEVELDB := 0# USE_LMDB := 0# Uncomment and set accordingly if you're using OpenCV 3/4
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.# N.B. the default for Linux is g++ and the default for OSX is clang++# CUSTOM_CXX := g++# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:# CUDA_DIR := /usr# CUDA architecture setting: going with all of them.
CUDA_ARCH := -gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_70,code=sm_70 \
-gencode arch=compute_75,code=sm_75 \
-gencode arch=compute_75,code=compute_75
# BLAS choice:# atlas for ATLAS# mkl for MKL# open for OpenBlas - default, see https://github.com/xianyi/OpenBLAS
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
BLAS_INCLUDE := /opt/OpenBLAS/include/
BLAS_LIB := /opt/OpenBLAS/lib/
# Homebrew puts openblas in a directory that is not on the standard search path# BLAS_INCLUDE := $(shell brew --prefix openblas)/include# BLAS_LIB := $(shell brew --prefix openblas)/lib# This is required only if you will compile the matlab interface.# MATLAB directory should contain the mex binary in /bin.# MATLAB_DIR := /usr/local# MATLAB_DIR := /Applications/MATLAB_R2012b.app# NOTE: this is required only if you will compile the python interface.# We need to be able to find Python.h and numpy/arrayobject.h.#PYTHON_INCLUDE := /usr/include/python2.7 \# /usr/lib/python2.7/dist-packages/numpy/core/include# Anaconda Python distribution is quite popular. Include path:# Verify anaconda location, sometimes it's in root.# ANACONDA_HOME := $(HOME)/anaconda# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \# $(ANACONDA_HOME)/include/python2.7 \# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.6m
PYTHON_INCLUDE := /root/miniconda3/envs/py36/include/python3.6m \
/root/miniconda3/envs/py36/lib/python3.6/site-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /root/miniconda3/envs/py36/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib# Homebrew installs numpy in a non standard path (keg only)# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include# PYTHON_LIB += $(shell brew --prefix numpy)/lib# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies# INCLUDE_DIRS += $(shell brew --prefix)/include# LIBRARY_DIRS += $(shell brew --prefix)/lib# Uncomment to use `pkg-config` to specify OpenCV library paths.# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)# USE_PKG_CONFIG := 1
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171# DEBUG := 1# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
# shared object suffix name to differentiate branches
LIBRARY_NAME_SUFFIX := -nv
Platform:matpool.com
GPU:NVIDIA Tesla P100-16GB
CUDA:11.1
environment
Packages
NVCaffe
Makefile.config
export
make
test
import caffe caffe.set_mode_gpu() caffe.__version__
Training LeNet on MNIST with Caffe
https://caffe.berkeleyvision.org/gathered/examples/mnist.html
Reference
https://stackoverflow.com/questions/36183486/importerror-no-module-named-google
https://stackoverflow.com/questions/28190534/windows-scipy-install-no-lapack-blas-resources-found/29860484#29860484
OpenMathLib/OpenBLAS#1114
https://pypi.org/project/scipy/0.17.0/
https://github.com/NVIDIA/caffe/releases/tag/v0.17.4
The text was updated successfully, but these errors were encountered: