-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtrain.py
770 lines (644 loc) · 29.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from __future__ import absolute_import
from __future__ import print_function
import argparse
import random
import copy
import json
import math
import yaml
import signal
import threading
import os
import sys
import time
import numpy as np
# import cv2
import tensorflow as tf
from tqdm import tqdm
import trimesh
try:
from IPython import embed
except:
pass
try:
# mayavi is not set up in docker.
from visualization_utils import draw_scene
HEADLESS = False
except:
import horovod.tensorflow as hvd
HEADLESS = True
import models.model
from tf_utils import get_shape
import tf_utils
import trimesh.transformations as tra
import grasp_data_reader
import sample
from easydict import EasyDict as edict
from tensorflow.python.training.summary_io import SummaryWriterCache
from grasp_data_reader import evaluate_grasps
from utils import get_files, set_seed, make_parser
tf.logging.set_verbosity(tf.logging.INFO)
CONFIDENCES = [0.2, 0.4, 0.6, 0.7, 0.8, 0.9]
current_index = 0
epoch_count = 0
lock = threading.Lock()
def get_vae_data_dict(first_dimension, args, files, pcreader, scope='vae'):
"""
Returns the dictionary of input tensors that is used for training VAE.
Args:
first_dimension: int, it is equal to
num_objects_per_batch x num_grasps_per_object.
args: arguments that are used for training.
files: list of str, list of training files.
pcreader: PointCloudReader.
"""
OUTPUT_SHAPES = {
'pc': [first_dimension, args.npoints, 4],
'grasp_rt': [first_dimension, 4, 4],
'pc_pose': [first_dimension, 4, 4],
'cad_path': [first_dimension],
'cad_scale': [first_dimension],
'quality': [first_dimension],
}
OUTPUT_KEYS = sorted(list(OUTPUT_SHAPES.keys()))
OUTPUT_TYPES = []
for k in OUTPUT_KEYS:
if k == 'cad_path':
OUTPUT_TYPES.append(tf.string)
else:
OUTPUT_TYPES.append(tf.float32)
def get_grasping_data_func():
global current_index, epoch_count, lock, all_poses
with lock:
output_dict = {k: [] for k in OUTPUT_SHAPES}
for _ in range(args.num_objects_per_batch):
while True:
file_name = files[current_index]
no_positive_grasps = False
try:
output = pcreader.get_vae_data(file_name)
except grasp_data_reader.NoPositiveGraspsException:
no_positive_grasps = True
current_index += 1
if current_index == len(files):
random.shuffle(files)
epoch_count += 1
current_index = 0
if no_positive_grasps:
print('skipping {} because no positive grasps'.format(file_name))
continue
else:
break
output_dict['pc'].append(output[0])
output_dict['grasp_rt'].append(output[1])
output_dict['pc_pose'].append(output[2])
output_dict['cad_path'].append(output[3])
output_dict['cad_scale'].append(output[4])
output_dict['quality'].append(output[5])
for k in output_dict:
output_dict[k] = np.asarray(output_dict[k])
try:
output_dict[k] = np.reshape(output_dict[k], OUTPUT_SHAPES[k])
except Exception as e:
print('{} ===> {} {}'.format(k, output_dict[k].shape, OUTPUT_SHAPES[k]))
print(e)
output_list = []
for k in OUTPUT_KEYS:
output_list.append(output_dict[k])
return output_list
data_list = tf.py_func(
get_grasping_data_func,
[],
OUTPUT_TYPES,
stateful=True,
name='vae_data_reader'
)
data_dict = {'{}_'.format(scope)+k: v for k, v in zip(OUTPUT_KEYS, data_list)}
for k, shape in OUTPUT_SHAPES.items():
data_dict['{}_'.format(scope)+k].set_shape(shape)
return data_dict
def get_evaluator_data_dict(first_dimension, args, files, pcreader, scope='evaluator'):
"""
Returns dictionary for training evaluator.
Args:
first_dimension: int, num_objects_per_batch x num_grasps_per_object.
args: arguments used for training.
files: list of string, contains path for the training.
pcreader: PointCloudReader.
"""
global current_index, epoch_count, lock, all_poses
OUTPUT_SHAPES = {
'pc': [first_dimension, args.npoints, 4],
'grasp_rt': [first_dimension, 4, 4],
'label': [first_dimension], # Binary, success or not
'grasp_quality': [first_dimension], # For debugging only
'pc_pose': [first_dimension, 4, 4],
'cad_path': [first_dimension],
'cad_scale': [first_dimension],
}
OUTPUT_KEYS = sorted(list(OUTPUT_SHAPES.keys()))
OUTPUT_TYPES = []
for k in OUTPUT_KEYS:
if k == 'cad_path':
OUTPUT_TYPES.append(tf.string)
elif k == 'label':
OUTPUT_TYPES.append(tf.int32)
else:
OUTPUT_TYPES.append(tf.float32)
def get_evaluator_data_func():
global current_index, epoch_count, lock, all_poses
with lock:
output_dict = {k: [] for k in OUTPUT_SHAPES}
for _ in range(args.num_objects_per_batch):
while True:
file_name = files[current_index]
no_positive_grasps = False
try:
output = pcreader.get_evaluator_data(file_name)
except grasp_data_reader.NoPositiveGraspsException:
no_positive_grasps = True
current_index += 1
if current_index == len(files):
random.shuffle(files)
epoch_count += 1
current_index = 0
if no_positive_grasps:
print('skipping {} because no positive grasps'.format(file_name))
continue
else:
break
output_dict['pc'].append(output[0])
output_dict['grasp_rt'].append(output[1])
output_dict['label'].append(output[2])
output_dict['grasp_quality'].append(output[3])
output_dict['pc_pose'].append(output[4])
output_dict['cad_path'].append(output[5])
output_dict['cad_scale'].append(output[6])
for k in output_dict:
output_dict[k] = np.asarray(output_dict[k])
try:
output_dict[k] = np.reshape(output_dict[k], OUTPUT_SHAPES[k])
except Exception as e:
print('{} =====> {} {}'.format(k, output_dict[k].shape, OUTPUT_SHAPES[k]))
print(e)
#raise ValueError("asd")
output_list = []
for k in OUTPUT_KEYS:
output_list.append(output_dict[k])
return output_list
# Takes in the function that generate the data dict and converts it to a tf operation
data_list = tf.py_func(
get_evaluator_data_func,
[],
OUTPUT_TYPES,
stateful=True,
name='evaluator_data_reader'
)
data_dict = {'{}_'.format(scope)+k: v for k, v in zip(OUTPUT_KEYS, data_list)}
for k, shape in OUTPUT_SHAPES.items():
data_dict['{}_'.format(scope)+k].set_shape(shape)
data_dict['{}_gt_control_points'.format(scope)] = tf_utils.transform_control_points(
data_dict['{}_grasp_rt'.format(scope)], first_dimension, mode='rt'
)
return data_dict
def verify_tensor_size(t, expected_shape):
"""
Checks whether input tensor t, has the expected_shape.
Args:
t: input tensor
expected_shape: list of int indicating the expected shape.
"""
shape = get_shape(t)
if len(shape) != len(expected_shape):
raise ValueError('shape do not match : {} != {}'.format(shape, expected_shape))
if np.any(np.asarray(shape) != np.asarray(expected_shape)):
raise ValueError('shape do not match : {} != {}'.format(shape, expected_shape))
def build_evaluator_ops(data_dict, args, scope='evaluator', npoints=-1):
"""
Builds all the tf ops necessary for training/evaluating the evaluator
network.
Args:
data_dict: dict, contains all the tensors for input and will be populated
with more intermeddiate tensors.
args: arguments that are set for training.
Returns:
train_op, summary_op, data_dict, logger_dict, global_step
train_op: tf op for running training.
summary_op: tf summary op that needs to be run for populating the
summaries.
data_dict: dictionary of tensors. Keys are tensor names and values
are tensors. New keys and tensors will be added to the input
data_dict.
logger_dict: dictionary of tensors for printing.
global_step: tf.Step that keeps the step number of the training.
"""
logger_dict = {}
summary_dict = {}
global_step = None
pc = data_dict['{}_pc'.format(scope)]
gripper_pc_latent = None
pc_latent = None
gt_cps = tf_utils.get_control_point_tensor(get_shape(pc)[0])
ones = tf.ones((get_shape(gt_cps)[0], get_shape(gt_cps)[1], 1), dtype=tf.float32)
gt_cps = tf.concat((gt_cps, ones), -1) # B x N x 4
data_dict['{}_gt_cps'.format(scope)] = gt_cps
if args.gripper_pc_npoints == -1: # Use a pre-defined set of points on the gripper. 5 points. Used in the paper
grasp_pc_o = gt_cps
else:
grasp_pc_o = tf_utils.get_gripper_pc(get_shape(pc)[0], args.gripper_pc_npoints)
if '{}_grasp_eulers'.format(scope) in data_dict: # Refinement
assert args.is_training == False
assert '{}_grasp_translations'.format(scope) in data_dict
assert isinstance(data_dict['{}_grasp_eulers'.format(scope)], list)
assert len(data_dict['{}_grasp_eulers'.format(scope)]) == 3
sample_batch_size = get_shape(pc)[0]
sample_rotation = data_dict['{}_grasp_eulers'.format(scope)]
sample_translation = data_dict['{}_grasp_translations'.format(scope)]
verify_tensor_size(pc, [sample_batch_size, npoints if npoints > 0 else args.npoints, 3])
for i in range(3):
verify_tensor_size(sample_rotation[i], [sample_batch_size])
verify_tensor_size(sample_translation, [sample_batch_size, 3])
rot = tf_utils.tf_rotation_matrix(*sample_rotation, batched=True)
grasp_pc = tf_utils.get_control_point_tensor(sample_batch_size)
grasp_pc = tf.matmul(grasp_pc, rot, transpose_a=False, transpose_b=True)
grasp_pc += tf.expand_dims(sample_translation, 1)
else: # Training grasp generation
assert args.is_training
gt_cps = tf_utils.get_control_point_tensor(get_shape(pc)[0]) # Samples of the 3d points on the gripper
ones = tf.ones((get_shape(gt_cps)[0], get_shape(gt_cps)[1], 1), dtype=tf.float32)
gt_cps = tf.concat((gt_cps, ones), -1) # B x N x 4
data_dict['{}_gt_cps'.format(scope)] = gt_cps
if args.gripper_pc_npoints == -1: # Use a pre-defined set of points on the gripper. 5 points. Used in the paper
grasp_pc_o = gt_cps
else:
grasp_pc_o = tf_utils.get_gripper_pc(get_shape(pc)[0], args.gripper_pc_npoints)
grasp_pc = tf.matmul(grasp_pc_o, data_dict['{}_grasp_rt'.format(scope)], transpose_a=False, transpose_b=True) # apply the transformation to the gripper pc
grasp_pc = tf.slice(grasp_pc, [0, 0, 0], [-1, -1, 3]) # remove last dimension; B x N x 3
data_dict['{}_grasp_pc'.format(scope)] = grasp_pc
label = data_dict['{}_label'.format(scope)]
with tf.variable_scope(scope):
pc_input = tf.slice(pc, [0, 0, 0], [-1, -1, 3])
success_logit, confidence = models.model.evaluator_model(
# Confidence of the prediction; Not used now, i.e. confidence==1 (by setting the weight of the confidence loss to a large number)
pc_input,
grasp_pc,
is_training=tf.constant(False), # May be buggy with the batchnorm with evaluator. Disabled.
# right now the evaluator model does not work with batch norm, and I don't know why. VAE is fine with batch norm.
bn_decay=None,
scale=1,
pc_latent=pc_latent,
gripper_pc_latent=gripper_pc_latent)
data_dict['{}_pred/evaluator'.format(scope)] = tf.nn.softmax(success_logit) # Predicted success
data_dict['{}_pred/confidence'.format(scope)] = confidence
if args.is_training:
global_step = tf.train.get_or_create_global_step()
loss, confidence_term = models.model.classification_with_confidence_loss(success_logit, label, confidence,
args.confidence_weight)
total_loss = loss + confidence_term
learning_rate = tf.constant(args.lr, tf.float32)
if args.ngpus == 1:
optimizer = tf.train.AdamOptimizer(learning_rate)
else:
optimizer = tf.train.AdamOptimizer(learning_rate * hvd.size())
optimizer = hvd.DistributedOptimizer(optimizer)
# with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(total_loss, global_step=global_step, var_list=tf.global_variables())
confidences = [0.2, 0.4, 0.6, 0.8]
for c in confidences:
acc_at_confidence, ratio_at_confidence = models.model.accuracy_better_than_threshold(success_logit,
label, confidence,
c)
summary_dict['ratio_at_each_confidence/' + str(c)] = ratio_at_confidence
summary_dict['acc_at_Each_confidence/' + str(c)] = acc_at_confidence
summary_dict['losses/classification_loss'] = loss
summary_dict['losses/confidence_loss'] = confidence_term
summary_dict['losses/total_loss'] = total_loss
summary_dict['step'] = global_step
logger_dict['predictions'] = tf.math.argmax(success_logit, -1)
for k in summary_dict:
logger_dict[k] = summary_dict[k]
summary_dict[k] = tf.summary.scalar(k, summary_dict[k])
summary_op = tf.summary.merge(list(summary_dict.values()))
else:
train_op = None
summary_op = None
logger_dict = None
tf_success = tf.slice(data_dict['{}_pred/evaluator'.format(scope)], [0, 1], [-1, 1]) # Got the success column
data_dict['{}_pred/success'.format(scope)] = tf_success
data_dict['{}_gradient'.format(scope)] = tf.gradients(
tf_success,
[data_dict['{}_grasp_translations'.format(scope)], data_dict['{}_grasp_eulers'.format(scope)][0], data_dict['{}_grasp_eulers'.format(scope)][1],
data_dict['{}_grasp_eulers'.format(scope)][2]]
)
return train_op, summary_op, data_dict, logger_dict, global_step
def build_vae_ops(data_dict, args, scope='vae'):
"""
builds vae operations that are required for training/inference of vae.
Args:
data_dict: dict, contains the tensors for the input to the model.
args: arguments that are set for training.
scope: string.
Returns:
train_op, summary_op, data_dict, logger_dict, global_step
train_op: tf op for running training.
summary_op: tf summary op that needs to be run for populating the
summaries.
data_dict: dictionary of tensors. Keys are tensor names and values
are tensors. New keys and tensors will be added to the input
data_dict.
logger_dict: dictionary of tensors for printing.
global_step: tf.Step that keeps the step number of the training.
"""
losses = None
summaries = None
train_op = None
logger_dict = None
summary_op = None
global_step = None
first_dimension = args.num_objects_per_batch * args.num_grasps_per_object
is_training = args.is_training
with tf.variable_scope(scope):
if is_training:
assert '{}_pred/samples' not in data_dict
input_pcs = data_dict['{}_pc'.format(scope)]
losses = {}
summaries = {}
gt_control_points = tf_utils.transform_control_points(data_dict['{}_grasp_rt'.format(scope)], first_dimension, mode='rt')
gt_control_points = tf.slice(gt_control_points, [0, 0, 0], [-1, -1, 3])
data_dict['{}_gt_control_point'.format(scope)] = gt_control_points
pc_input = tf.slice(input_pcs, [0, 0, 0], [-1, -1, 3])
if not args.gan: # Create Encoder.
latent_input = data_dict['{}_grasp_rt'.format(scope)]
batch_size = get_shape(pc_input)[0]
npoints = get_shape(pc_input)[1]
latent_input = tf.tile(tf.reshape(latent_input, [batch_size, 1, -1]), [1, npoints, 1])
with tf.variable_scope('encoder'):
latent_mean_std = models.model.model_with_confidence(
pc_input,
latent_input,
is_training=tf.constant(is_training),
bn_decay=None,
is_encoder=True,
latent_size=args.latent_size,
scale=args.model_scale,
merge_pcs=args.merge_pcs_in_vae_encoder,
pointnet_radius=args.pointnet_radius,
pointnet_nclusters=args.pointnet_nclusters
)
latent_mean = tf.slice(
latent_mean_std,
[0, 0],
[-1, args.latent_size]
)
latent_std = tf.slice(
latent_mean_std,
[0, args.latent_size],
[-1, args.latent_size]
)
with tf.variable_scope('sample_from_latent'):
samples = latent_mean + tf.exp(latent_std / 2.0) * tf.random_normal(
latent_mean.shape, 0, 1, dtype=tf.float32)
data_dict['{}_pred/samples'.format(scope)] = samples
kl_loss = models.model.kl_divergence(latent_mean, latent_std)
kl_loss = tf.reduce_mean(kl_loss)
losses['kl_loss'] = kl_loss * args.kl_loss_weight
summaries['unscaled_kl_loss'] = kl_loss
else: # For gan just sample random latents.
samples = tf.random.uniform(
[first_dimension, args.latent_size],
name='gan_latents'
)
else:
input_pcs = data_dict['{}_pc'.format(scope)]
samples = data_dict['{}_pred/samples'.format(scope)]
with tf.variable_scope('decoder'):
pc_input = tf.slice(input_pcs, [0, 0, 0], [-1, -1, 3])
latent_input = samples
batch_size = get_shape(pc_input)[0]
npoints = get_shape(pc_input)[1]
latent_input = tf.tile(tf.reshape(latent_input, [batch_size, 1, -1]), [1, npoints, 1])
q, t, confidence = models.model.model_with_confidence(
pc_input,
latent_input,
tf.constant(is_training),
bn_decay=None,
is_encoder=False,
latent_size=None,
scale=args.model_scale,
pointnet_radius=args.pointnet_radius,
pointnet_nclusters=args.pointnet_nclusters
)
predicted_qt = tf.concat((q, t), -1)
data_dict['{}_pred/grasp_qt'.format(scope)] = predicted_qt
data_dict['{}_pred/confidence'.format(scope)] = confidence
cp = tf_utils.transform_control_points(predicted_qt,
get_shape(data_dict['{}_pc'.format(scope)])[0],
scope='transform_predicted_qt')
data_dict['{}_pred/cps'.format(scope)] = cp
if is_training:
loss_fn = None
if args.gan:
loss_fn = models.model.min_distance_loss
else:
loss_fn = models.model.control_point_l1_loss
loss_term, confidence_term = loss_fn(
cp,
gt_control_points,
confidence=confidence,
confidence_weight=args.confidence_weight
)
data_dict['{}_loss'.format(scope)] = loss_term
losses['gan_min_dist' if args.gan else 'L1_grasp_reconstruction'] = loss_term
losses['confidence'] = confidence_term
for c in CONFIDENCES:
qkey = 'quality_at_confidence/{}'.format(c)
rkey = 'ratio_at_confidence/{}'.format(c)
summary_fn = models.model.control_point_l1_loss_better_than_threshold
if args.gan:
summary_fn = models.model.min_distance_better_than_threshold
summaries[qkey], summaries[rkey] = summary_fn(
cp,
gt_control_points,
confidence,
c
)
global_step = tf.train.get_or_create_global_step()
total_loss = tf.reduce_sum(tf.stack(list(losses.values())))
summaries['total_loss'] = total_loss
learning_rate = tf.constant(args.lr, dtype=tf.float32)
if args.ngpus > 1:
optimizer = tf.train.AdamOptimizer(learning_rate * hvd.size())
optimizer = hvd.DistributedOptimizer(optimizer)
else:
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(total_loss, global_step=global_step)
summaries['global_step'] = global_step
for k in losses:
summaries['loss/{}'.format(k)] = losses[k]
logger_dict = {}
for k, v in summaries.items():
logger_dict[k] = summaries[k]
summaries[k] = tf.summary.scalar(k, v)
summary_op = tf.summary.merge(list(summaries.values()))
return train_op, summary_op, data_dict, logger_dict, global_step
def build_tf_ops(args, files, data_dict):
"""Builds tf ops for evaluator model and vae."""
pcreader = None
if args.is_training:
pcreader = grasp_data_reader.PointCloudReader(
root_folder=args.dataset_root_folder,
batch_size=args.num_grasps_per_object,
num_grasp_clusters=args.num_grasp_clusters,
npoints=args.npoints,
min_difference_allowed=(0, 0, 0),
max_difference_allowed=(3, 3, 0),
occlusion_nclusters=0,
occlusion_dropout_rate=0.,
use_uniform_quaternions=args.use_uniform_quaternions,
ratio_of_grasps_used=args.grasps_ratio,
)
first_dimension = args.num_objects_per_batch * args.num_grasps_per_object
if args.train_evaluator:
if data_dict is None:
data_dict = get_evaluator_data_dict(first_dimension, args, files, pcreader)
return build_evaluator_ops(data_dict, args), pcreader
else:
if data_dict is None:
data_dict = get_vae_data_dict(first_dimension, args, files, pcreader)
return build_vae_ops(data_dict, args), pcreader
def main():
parser = make_parser()
args = parser.parse_args(sys.argv[1:])
if args.model_scale < 1:
raise ValueError('model_scale should be >= 1.')
if args.seed != -1:
set_seed(args.seed)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
if args.ngpus > 1:
hvd.init()
config.gpu_options.visible_device_list = str(hvd.local_rank())
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.is_training:
files = get_files(args.dataset_root_folder, args.allowed_categories, args.blacklisted_categories, args.training_splits, args.splits_folder_name, args.grasps_folder_name)
random.shuffle(files)
print('files ====>', files)
print(len(files))
main_train(args, files, config)
else:
raise NotImplementedError('This is the train script. is_training should be 1')
def main_train(args, files, tf_config):
assert args.logdir != '', 'logdir cannot be empty'
logdir = os.path.join(args.logdir, 'tf_output')
if os.path.isdir(logdir):
do_not_delete = True
if args.ngpus > 1:
if hvd.rank() == 0:
if args.force_continue:
do_not_delete = True
else:
do_not_delete = False
else:
do_not_delete = True
elif HEADLESS:
if args.force_continue:
do_not_delete = True
else:
raise ValueError('{} exists'.format(logdir))
else:
while True:
try:
key = input('{} \n do you want to continue?'.format(logdir))
except NameError:
key = 'y'
if key == 'y':
break
elif key == 'n':
do_not_delete = False
break
else:
print('invalid key')
if not do_not_delete:
print('******* Deleting {} *******'.format(logdir))
os.system('rm -r {}'.format(logdir))
else:
print('continuing')
elif args.ngpus == 1 or hvd.rank() == 0:
os.makedirs(logdir)
print('logdir is {}'.format(logdir))
tf_output, pc_reader = build_tf_ops(
args=args, data_dict=None, files=files,
)
train_op, summary_op, tf_data_dict, logger_dict, tf_step = tf_output
summary_hook = tf.train.SummarySaverHook(
summary_op=summary_op,
output_dir=logdir,
save_steps=args.save_steps,
)
logging_hook = tf.train.LoggingTensorHook(
tensors=logger_dict,
every_n_iter=args.log_steps,
)
hooks = []
if args.ngpus > 1:
hooks.append(hvd.BroadcastGlobalVariablesHook(0))
if hvd.rank() == 0:
checkpoint_dir = logdir
save_checkpoint_secs = 300
hooks += [logging_hook, summary_hook]
else:
checkpoint_dir = None
save_checkpoint_secs = 0
hooks += [logging_hook]
else:
hooks = [logging_hook, summary_hook]
checkpoint_dir = logdir
save_checkpoint_secs = 300
if args.init_checkpoint_folder != '':
checkpoint = tf.train.latest_checkpoint(args.init_checkpoint_folder)
tf.train.init_from_checkpoint(checkpoint, {'/': '/'})
yaml_path = os.path.join(args.logdir, 'args.yaml')
with open(yaml_path, 'w') as yaml_file:
yaml.dump(args, yaml_file)
with tf.train.MonitoredTrainingSession(
checkpoint_dir=checkpoint_dir,
hooks=hooks,
save_summaries_secs=0,
save_checkpoint_secs=save_checkpoint_secs,
config=tf_config,
) as mon_sess:
start_time = time.time()
print(time.time() - start_time)
writer = SummaryWriterCache.get(logdir)
while not mon_sess.should_stop():
# print('hvd rank = {}, current_index = {}, nfiles = {}'.format(current_index, hvd.rank(), len(my_files)))
tensor_list = [tf_step, tf_data_dict]
if args.training_splits == 'train':
tensor_list += [train_op] + tensor_list
# _, step, data_dict = mon_sess.run(tensor_list)
mon_sess.run(tensor_list)
def copy_weights(source_scope, destination_scope):
# Copies tensorflow variables from source_scope to destination_scope.
source_variables = {v.name[len(source_scope) + 1:]: v for v in tf.global_variables(source_scope)}
destination_variables = {v.name[len(destination_scope) + 1:]: v for v in tf.global_variables(destination_scope)}
assert (set(source_variables.keys()) == set(destination_variables.keys())), '{} {}'.format(source_scope,
destination_scope)
copy_ops = [tf.assign(destination_variables[s], source_variables[s]) for s in source_variables]
return copy_ops
def normalize_pc_size(input_pc, size):
index = np.random.choice(range(input_pc.shape[0]), size=size, replace=input_pc.shape[0] < size)
return input_pc[index, :]
def normalize_pc_size_selection(input_pc, size):
selection = np.random.choice(range(input_pc.shape[0]), size=size, replace=input_pc.shape[0] < size)
return input_pc[selection, :], selection
if __name__ == '__main__':
main()