Dataset preparation for ODISE follows Detectron2 and Mask2Former.
A dataset can be used by accessing DatasetCatalog
for its data, or MetadataCatalog for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
Use Custom Datasets gives a deeper dive on how to use DatasetCatalog
and MetadataCatalog
,
and how to add new datasets to them.
ODISE has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable DETECTRON2_DATASETS
.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
$DETECTRON2_DATASETS/
ade/
coco/
VOCdevkit/
pascal_ctx_d2/
pascal_voc_d2/
You can set the location for builtin datasets by export DETECTRON2_DATASETS=/path/to/datasets
.
If left unset, the default is ./datasets
under the ODISE project directory.
The model zoo contains configs and models that use these builtin datasets.
Expected dataset structure for COCO:
coco/
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
captions_{train,val}2017.json
# below are prepare_coco_caption.py
panoptic_caption_{train,val}2017.json
{train,val}2017/
panoptic_{train,val}2017/
# below are generated by prepare_coco_semantic_annos_from_panoptic_annos.py
panoptic_semseg_{train,val}2017/ #
Download the dataset from http://cocodataset.org/#download:
cd $DETECTRON2_DATASETS
wget http://images.cocodataset.org/zips/train2017.zip
unzip train2017.zip -d coco/
wget http://images.cocodataset.org/zips/val2017.zip
unzip val2017.zip -d coco/
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip -d coco/
wget http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
unzip panoptic_annotations_trainval2017.zip -d coco/
unzip coco/annotations/panoptic_train2017.zip -d coco/
unzip coco/annotations/panoptic_val2017.zip -d coco/
Install the panopticapi (also automatically done by installing ODISE) by:
pip install git+https://github.com/cocodataset/panopticapi.git
Generate the semantic segmentation annotations coco/panoptic_semseg_{train,val}2017/
by running:
python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py
to extract the semantic annotations from the panoptic ones (only used for evaluation).
Generate the panoptic annotations with COCO captions panoptic_caption_{train,val}2017.json
by running:
python datasets/prepare_coco_caption.py
Expected dataset structure for ADE20k (A-150) and ADE20k-Full (A-847):
ade/
ADEChallengeData2016/
images/
annotations/
objectInfo150.txt
# downloaded instance annotation
annotations_instance/
# generated by prepare_ade20k_sem_seg.py
annotations_detectron2/
# generated by prepare_ade20k_ins_seg.py
ade20k_instance_{train,val}.json
# generated by prepare_ade20k_pan_seg.py
ade20k_panoptic_{train,val}.json
ade20k_panoptic_{train,val}/
ADE20K_2021_17_01/
images/
index_ade20k.pkl
objects.txt
# generated by prepare_ade20k_full_sem_seg.py
images_detectron2/
annotations_detectron2/
Download the dataset from http://sceneparsing.csail.mit.edu/:
cd $DETECTRON2_DATASETS
wget http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip
# generate folder ade/ADEChallengeData2016/
unzip ADEChallengeData2016.zip -d ade/
Download the instance annotations from http://sceneparsing.csail.mit.edu/:
cd $DETECTRON2_DATASETS
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
# generate folder ade/ADEChallengeData2016/annotations_instance/
tar -xvf annotations_instance.tar -C ade/ADEChallengeData2016/
Generate the directory ade/ADEChallengeData2016/annotations_detectron2
by running:
python datasets/prepare_ade20k_sem_seg.py
Generate instance annotations ade/ADEChallengeData2016/ade20k_instance_{train,val}.json
by running:
python datasets/prepare_ade20k_ins_seg.py
Generate panoptic annotations ade/ADEChallengeData2016/ade20k_panoptic_{train,val}.json
and ade/ADEChallengeData2016/ade20k_panoptic_{train,val}
by running:
python datasets/prepare_ade20k_pan_seg.py
Register and download the dataset from https://groups.csail.mit.edu/vision/datasets/ADE20K/:
cd $DETECTRON2_DATASETS
wget your/personal/download/link/{username}_{hash}.zip
unzip {username}_{hash}.zip -d ade/
Generate the directories ade/ADE20K_2021_17_01/images_detectron2
and ade/ADE20K_2021_17_01/annotations_detectron2
by running:
python datasets/prepare_ade20k_full_sem_seg.py
Expected dataset structure for PASCAL Context (PC-59), PASCAL Context Full (PC-459) and PASCAL VOC (PAS-21):
VOCdevkit/
VOC2012/
Annotations/
JPEGImages/
ImageSets/
Segmentation/
VOC2010/
JPEGImages/
trainval/
trainval_merged.json
# generated by prepare_pascal_voc_sem_seg.py
pascal_voc_d2/
images/
annotations_pascal21/
# generated by prepare_pascal_ctx_sem_seg.py
pascal_ctx_d2/
images/
annotations_ctx59/
# generated by prepare_pascal_ctx_full_sem_seg.py
annotations_ctx459/
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
# generate folder VOCdevkit/VOC2012
tar -xvf VOCtrainval_11-May-2012.tar
Generate directory pascal_voc_d2
running:
python datasets/prepare_pascal_voc_sem_seg.py
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/ and annotation from https://www.cs.stanford.edu/~roozbeh/pascal-context/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar
# generate folder VOCdevkit/VOC2010
tar -xvf VOCtrainval_03-May-2010.tar
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz
# generate folder VOCdevkit/VOC2010/trainval
tar -xvzf trainval.tar.gz -C VOCdevkit/VOC2010
wget https://codalabuser.blob.core.windows.net/public/trainval_merged.json -P VOCdevkit/VOC2010/
Install Detail API by:
git clone https://github.com/zhanghang1989/detail-api.git
rm detail-api/PythonAPI/detail/_mask.c
pip install -e detail-api/PythonAPI/
Generate directory pascal_ctx_d2/images
and pascal_ctx_d2/annotations_ctx59
running:
python datasets/prepare_pascal_ctx_sem_seg.py
Generate directory pascal_ctx_d2/annotations_ctx459
running:
python datasets/prepare_pascal_ctx_full_sem_seg.py