-
Notifications
You must be signed in to change notification settings - Fork 52
/
main.lua
449 lines (363 loc) · 14.7 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
require 'nn'
require 'optim'
require 'nngraph'
require 'ClusteringEvaluations'
local gnuplot = require 'gnuplot'
local cjson = require 'cjson'
local image = require 'image'
local cmd = torch.CmdLine()
cmd:option('-dataSet', 'mnist', 'Dataset used')
cmd:option('-seed', 1, 'random seed')
cmd:option('-learningRate', 0.0001, 'Learning rate')
cmd:option('-batchSize', 50, 'Batch Size')
cmd:option('-optimiser', 'adam', 'Optimser')
cmd:option('-gpu', 0, 'Using Cuda, 1 to enable')
cmd:option('-epoch', 100, 'Number of Epoch')
cmd:option('-visualise2D', 0, 'Save data for visualisation, 1 to enable')
cmd:option('-xSize', 200, 'Size of x variable')
cmd:option('-wSize', 150, 'Size of w variable')
cmd:option('-K', 15, 'Number of clusters')
cmd:option('-hiddenSize', 500, 'Size of the hidden layer')
cmd:option('-zPriorWeight', 1, 'Weight on the z prior term')
cmd:option('-ACC', 0, 'Report Clustering accuracy')
cmd:option('-visualGen', 0, 'Visualise the generation samples at every [input] epochs (0 to disable)')
cmd:option('-continuous', 0, 'Data is continous use Gaussian Criterion (1), Data is discrete use BCE Criterion (0)')
cmd:option('-inputDimension', 1, 'Dimension of the input vector into the network (e.g. 2 for height x width)')
cmd:option('-network', 'fc', 'Network architecture use: fc (FullyConnected)/ conv (Convolutional AE) .. ')
cmd:option('-nChannels', 1, 'Number of Input channels')
cmd:option('-nFilters', 16, 'Number of Convolutional Filters in first layer')
cmd:option('-nMC', 1, 'Number of monte-carlo sample')
cmd:option('-gpuID', 1, 'Set GPU id to use')
cmd:option('-cvWeight', 1, 'Weight of the information theoretic cost term')
cmd:option('-_id', '', 'Experiment Path')
cmd:option('-saveModel',0, 'Save model in experiments folder after finish training')
cmd:option('-reportLowerBound', 1, 'Save lowerbound while training')
local opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor')
-- Set save directory
if not paths.dirp('experiments') then
paths.mkdir('experiments')
end
if not paths.dirp('save') then
paths.mkdir('save')
end
paths.mkdir(paths.concat('experiments', opt._id))
-- Save option for reference
local file = torch.DiskFile(paths.concat('experiments', opt._id, 'opts.json'),'w')
file:writeString(cjson.encode(opt))
file:close()
-- Preparing Data --
local dataSet = opt.dataSet-- 'spiral'
local data, label_data, width, height
local y_size
if dataSet == 'mnist' then
print('Load MNIST')
local mnist = require 'mnist'
data = mnist.traindataset().data:float():div(255) -- normalised [0, 1]
test_data = mnist.testdataset().data:float():div(255)
test_data_label = mnist.testdataset().label:float()
test_data_label:add(1)
width = data:size(3)
height = data:size(2)
if opt.inputDimension == 1 then
data = data:resize(data:size(1), data:size(2)*data:size(3)) -- resize into 1D
test_data = test_data:resize(test_data:size(1), test_data:size(2)*test_data:size(3))
y_size = data:size(2)
else
y_size = {data:size(2), data:size(3)}
data = data:resize(data:size(1), 1, data:size(2), data:size(3))
test_data = test_data:resize(test_data:size(1), 1, test_data:size(2), test_data:size(3))
end
-- prepare label for measuring training accuracy
label_data = mnist.traindataset().label:float()
label_data:add(1) -- from [0,9] -> [1, 10]
elseif dataSet == 'spiral' then
print('Load Spiral')
data = torch.load('datasets/spiral.t7'):float()
y_size = data:size(2)
end
local N = data:size(1)
local x_size = opt.xSize
local z_size = opt.K
local w_size = opt.wSize
local batch_size = opt.batchSize
local learning_rate = opt.learningRate
local optimiser = opt.optimiser
local max_epoch = opt.epoch
local hidden_size = opt.hiddenSize
local cuda = opt.gpu
local visualise2D = opt.visualise2D
local visualGen = opt.visualGen
local zPriorWeight = opt.zPriorWeight
local reportACC = opt.ACC
local continuous = opt.continuous
require 'UtilsNetwork'
local model
if opt.network == 'fc' then
model = require 'models/FullyConnected'
elseif opt.network == 'conv' then
model = require 'models/ConvAE'
model.nChannels = opt.nChannels
model.nFilters = opt.nFilters
end
-- Network parts --
local zxw_recogniser = model:CreateRecogniser(y_size, hidden_size, x_size, w_size, z_size)
local y_generator = model:CreateYGenerator(x_size, hidden_size, y_size, continuous)
local prior_generator = model:CreatePriorGenerator(w_size, hidden_size, x_size, z_size)
-- Connect parts together --
local input = - nn.Identity()
local noise1 = - nn.Identity()
local noise2 = - nn.Identity()
local zxw = input - zxw_recogniser
local q_z = zxw - nn.SelectTable(1)
local q_x = zxw - nn.SelectTable(2)
local q_w = zxw - nn.SelectTable(3)
local x_sample = {q_x, noise1} - GaussianSampler(opt.nMC, x_size)
local w_sample = {q_w, noise2} - GaussianSampler(opt.nMC, w_size)
local y_recon = x_sample - y_generator
local p_xz = w_sample - prior_generator
local GMVAE = nn.gModule({input, noise1, noise2},{q_z, q_x, q_w, p_xz, y_recon, x_sample})
-- Additional layers to facilitate more than one monte-carlo sample
local MC_replicate = nn.Replicate(opt.nMC)
-- Layers for calculating Likelihood used in calculating CV
local Likelihood = Likelihood(z_size, x_size, opt.nMC)
--
require 'criteria/GaussianCriterion'
require 'criteria/VAE_KLDCriterion'
require 'criteria/DiscreteKLDCriterion'
require 'criteria/EntropyCriterion'
-- Criteria --
local ReconCriterion
if continuous == 1 then
ReconCriterion = nn.GaussianCriterion()
else
ReconCriterion = nn.BCECriterion()
ReconCriterion.sizeAverage = false
end
local ExpectedKLDivergence = ExpectedKLDivergence(z_size, x_size, opt.nMC)
local VAE_KLDCriterion = nn.VAE_KLDCriterion()
local DiscreteKLDCriterion = nn.DiscreteKLDCriterion(zPriorWeight)
local EntropyCriterion = nn.EntropyCriterion(opt.cvWeight, opt.nMC)
-- Set up Cuda
if cuda == 1 then
require 'cutorch'
require 'cunn'
print('Using Cuda')
local hasCudnn, cudnn = pcall(require, 'cudnn') -- Use cuDNN if available
cutorch.setDevice(opt.gpuID)
data = data:cuda() -- load data into GPU
GMVAE:cuda()
ReconCriterion:cuda()
ExpectedKLDivergence:cuda()
VAE_KLDCriterion:cuda()
DiscreteKLDCriterion:cuda()
MC_replicate:cuda()
EntropyCriterion:cuda()
Likelihood:cuda()
if hasCudnn then
print('Using cudnn')
cudnn.convert(GMVAE, cudnn)
end
test_data = test_data:cuda()
end
local params, gradParams = GMVAE:getParameters()
function feval(params)
GMVAE:zeroGradParameters()
local qZ, qX, qW, p_xz, y_recon, x_sample = table.unpack( GMVAE:forward({y, n1, n2}) )
-- CALCULATE LOSS AND GRADIENT
local y_replicated = MC_replicate:forward(y)
-- 1.) Reconstruction Cost = -E[logP(y|x)]
local reconLoss = ReconCriterion:forward(y_recon, y_replicated ) * (1/opt.nMC)
local dRecon_dy = ReconCriterion:backward(y_recon, y_replicated )
if continuous == 1 then
dRecon_dy[1]:div(opt.nMC)
dRecon_dy[2]:div(opt.nMC)
else
dRecon_dy:div(opt.nMC)
end
local xLoss, oneTensor, gradQz, gradMean_x, gradLogVar_x, gradMean_k, gradLogVar_k
local gradQz, mean_k, logVar_k
-- 2.) E_z_w[KL(q(x)|| p(x|z,w))]
local mean_x, logVar_x = table.unpack(qX)
mean_k, logVar_k = table.unpack(p_xz)
local KL_out = ExpectedKLDivergence:forward({qZ, mean_x, logVar_x, mean_k, logVar_k})
xLoss = KL_out:sum()
oneTensor = oneTensor or torch.Tensor():typeAs(KL_out):resizeAs(KL_out):fill(1)
gradQz, gradMean_x, gradLogVar_x, gradMean_k, gradLogVar_k =
table.unpack( ExpectedKLDivergence:backward({qZ, mean_x, logVar_x, mean_k, logVar_k}, oneTensor ) )
-- 3.) KL( q(w) || P(w) )
local mean_w, logVar_w = table.unpack(qW)
local wLoss = VAE_KLDCriterion:forward( mean_w, logVar_w)
local gradW = VAE_KLDCriterion:backward( mean_w, logVar_w)
-- 4.) KL( q(z) || P(z) )
local zLoss = DiscreteKLDCriterion:forward(qZ)
gradQz:add( DiscreteKLDCriterion:backward(qZ) )
-- 5.) CV = H(Z|X, W) = E_q(x,w) [ E_p(z|x,w)[ - log P(z|x,w)] ]
local lh = Likelihood:forward({x_sample, mean_k, logVar_k})
local CV = EntropyCriterion:forward(lh)
local gradLh = EntropyCriterion:backward(lh)
local gradX, gradM_k, gradLv = table.unpack(Likelihood:backward({x_sample, mean_k, logVar_k}, gradLh))
for k =1, z_size do
gradMean_k[k]:add(gradM_k[k])
gradLogVar_k[k]:add(gradLv[k])
end
-- Put all the gradient of the cost into a table
local gradLoss = { gradQz,
{ gradMean_x, gradLogVar_x},
gradW,
{ gradMean_k, gradLogVar_k },
dRecon_dy,
gradX
}
-- Backprop all the gradient together
GMVAE:backward({y, n1, n2}, gradLoss)
local loss = reconLoss + xLoss + wLoss + zLoss
return {loss, CV}, gradParams
end
local ACC_evaluation = torch.Tensor(max_epoch):zero()
local Class_evaluation = torch.Tensor(max_epoch):zero()
local Train_Class_evaluation = torch.Tensor(max_epoch):zero()
local Train_ACC_evaluation = torch.Tensor(max_epoch):zero()
local Lowerbound = torch.Tensor(max_epoch):zero()
local CV_Cost = torch.Tensor(max_epoch):zero()
for epoch = 1, max_epoch do
local Noise1 = torch.randn(opt.nMC, N, x_size)
local Noise2 = torch.randn(opt.nMC, N, w_size)
if cuda == 1 then
Noise1 = torch.CudaTensor():resize(opt.nMC, N, x_size):copy(Noise1)
Noise2 = torch.CudaTensor():resize(opt.nMC, N, w_size):copy(Noise2)
end
local indices_all = torch.randperm(N):long()
local indices = indices_all:split(batch_size)
local recon, latent, w_latent, labels
if visualise2D == 1 then
recon = torch.Tensor():resizeAs(data):zero()
latent = torch.Tensor():resize(N, x_size):zero()
w_latent = torch.Tensor():resize(N, w_size):zero()
labels = torch.Tensor():resize(N):zero()
end
if reportACC == 1 then
labels = torch.Tensor():resize(N,z_size):zero()
end
local Loss = 0.0
local CVLoss = 0.0
for t,v in ipairs(indices) do
GMVAE:training()
xlua.progress(t, #indices)
y = data:index(1,v)
n1 = Noise1:index(2,v)
n2 = Noise2:index(2,v)
__, loss = optim[optimiser](feval, params, {learningRate = learning_rate })
if visualise2D == 1 then
recon[{ { batch_size*(t-1) + 1, batch_size*t },{}}] = y_generator.output[1]:view(-1,batch_size,y_size)[1]:float()
latent[{ { batch_size*(t-1) + 1, batch_size*t },{}}] = zxw_recogniser.output[2][1]:float()
w_latent[{ { batch_size*(t-1) + 1, batch_size*t },{}}] = zxw_recogniser.output[3][1]:float()
__, labels[{{ batch_size*(t-1) + 1, batch_size*t }}] = zxw_recogniser.output[1]:max(2)
end
if reportACC == 1 then
-- Collect report label
labels[{{ batch_size*(t-1) + 1, batch_size*t },{}}] = zxw_recogniser.output[1]:float()
end
Loss = Loss + loss[1][1]
CVLoss = CVLoss + loss[1][2]
end
print("Epoch: " .. epoch .. " Loss: " .. Loss/N )
if opt.reportLowerBound == 1 then
Lowerbound[epoch] = -1 * Loss/N
torch.save(paths.concat('experiments', opt._id, 'lowerbound.t7'), Lowerbound)
gnuplot.pngfigure(paths.concat('experiments', opt._id, 'lowerbound.png'))
gnuplot.plot({'Lowerbound', torch.linspace(1,epoch,epoch), Lowerbound[{{1,epoch}}] ,'-'})
gnuplot.xlabel('Epoch')
gnuplot.ylabel('Lowerbound')
gnuplot.plotflush()
CV_Cost[epoch] = CVLoss/N
torch.save(paths.concat('experiments', opt._id, 'CV.t7'), CV_Cost)
gnuplot.pngfigure(paths.concat('experiments', opt._id, 'CV.png'))
gnuplot.plot({'CV', torch.linspace(1,epoch,epoch), CV_Cost[{{1,epoch}}] ,'-'})
gnuplot.xlabel('Epoch')
gnuplot.ylabel('CV')
gnuplot.plotflush()
if not( dataSet == 'spiral') then
local labels_statistics = labels:sum(1)
labels_statistics = labels_statistics/( labels_statistics:sum() + 1e-10 )
torch.save(paths.concat('experiments', opt._id, 'labels_stats.t7'), labels_statistics)
gnuplot.pngfigure(paths.concat('experiments', opt._id, 'labels_stats.png'))
gnuplot.plot({'Label', torch.linspace(1,z_size,z_size), labels_statistics[1] ,'-'})
gnuplot.xlabel('K')
gnuplot.ylabel('Percentage')
gnuplot.plotflush()
end
end
if reportACC == 1 then
local true_label_all = label_data:index(1, indices_all)
local training_score = AAE_Clustering_Criteria(labels, true_label_all) --ACC(labels, true_label_all)
print('Training ACC score: '.. training_score)
GMVAE:evaluate()
-- split batchSize for cudnn --
local N_test = test_data:size(1)
test_data_set = test_data:split(1000)
local predict_label_cpu = torch.Tensor():resize(N_test,z_size)
for t,data in ipairs(test_data_set) do
local predict_label = zxw_recogniser:forward(data)[1]
predict_label_cpu[{{ 1000*(t-1) + 1, 1000*t },{}}] = predict_label:float()
end
local testing_acc_score = AAE_Clustering_Criteria(predict_label_cpu, test_data_label)
-- Testing ACC score
print('Testing ACC score: '.. testing_acc_score)
ACC_evaluation[epoch] = testing_acc_score
Train_ACC_evaluation[epoch] = training_score
torch.save(paths.concat('experiments', opt._id, 'acc_score.t7'), ACC_evaluation)
torch.save(paths.concat('experiments', opt._id, 'train_ACC_score.t7'), Train_ACC_evaluation)
gnuplot.pngfigure(paths.concat('experiments', opt._id, 'Scores.png'))
gnuplot.plot({'Unsupervised Clustering ACC', torch.linspace(1,epoch,epoch), ACC_evaluation[{{1,epoch}}] ,'-'},
{'Training ACC', torch.linspace(1,epoch,epoch), Train_ACC_evaluation[{{1,epoch}}], '-' }
)
gnuplot.xlabel('Epoch')
gnuplot.ylabel('Scores')
gnuplot.plotflush()
end
if visualise2D == 1 then
torch.save('save/ws.t7', w_latent)
torch.save('save/label.t7', labels)
torch.save('save/recon.t7', recon)
torch.save('save/xs.t7', latent)
GMVAE:evaluate()
local mean, logVar = table.unpack( prior_generator:forward(torch.Tensor(1, w_size):typeAs(data):zero()) )
local cov = torch.Tensor(z_size, x_size, x_size)
local m = torch.Tensor(z_size, x_size)
for k=1, z_size do
local var = logVar[k][1]:exp()
cov[k] = torch.diag( var )
m[k] = mean[k][1]
end
torch.save('save/m.t7', m)
torch.save('save/cov.t7', cov)
end
if visualGen > 0 then
-- Generate data condition on the code every 'visualGen' epoch
if epoch%visualGen == 0 then
GMVAE:evaluate()
-- : Fix w = 0 and vary z from 1 to K,
-- : Samples 10 x
local gaussianSampler = GaussianSampler(1, x_size)
if cuda == 1 then
gaussianSampler:cuda()
end
local samples = torch.Tensor(opt.nChannels, z_size * height, 10 * width):typeAs(data)
local mean, logVar = table.unpack( prior_generator:forward(torch.Tensor(10, w_size):typeAs(data):zero() ))
for k=1, z_size do
local eps = torch.randn(1, mean[k]:size(1), mean[k]:size(2)):typeAs(mean[k])
local sample_x = gaussianSampler:forward({ {mean[k], logVar[k]}, eps})
local samples_temp = y_generator:forward(sample_x):view(-1, opt.nChannels, width, height)
for j = 1, 10 do
samples[{{}, {(k-1) * height + 1, k * height},{(j-1)*width + 1, j*width}}] = samples_temp[j]
end
end
image.save(paths.concat('experiments', opt._id, 'samples.png'), samples)
end
end
end
if opt.saveModel == 1 then
torch.save(paths.concat('experiments',opt._id,'params.t7'), params)
end