forked from numenta/NAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·212 lines (172 loc) · 7.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# ----------------------------------------------------------------------
# Copyright (C) 2014-2015, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
import argparse
import os
try:
import simplejson as json
except ImportError:
import json
from nab.runner import Runner
from nab.util import (detectorNameToClass, checkInputs)
def getDetectorClassConstructors(detectors):
"""
Takes in names of detectors. Collects class names that correspond to those
detectors and returns them in a dict. The dict maps detector name to class
names. Assumes the detectors have been imported.
"""
detectorConstructors = {
d : globals()[detectorNameToClass(d)] for d in detectors}
return detectorConstructors
def main(args):
root = os.path.dirname(os.path.realpath(__file__))
numCPUs = int(args.numCPUs) if args.numCPUs is not None else None
dataDir = os.path.join(root, args.dataDir)
windowsFile = os.path.join(root, args.windowsFile)
resultsDir = os.path.join(root, args.resultsDir)
profilesFile = os.path.join(root, args.profilesFile)
thresholdsFile = os.path.join(root, args.thresholdsFile)
runner = Runner(dataDir=dataDir,
labelPath=windowsFile,
resultsDir=resultsDir,
profilesPath=profilesFile,
thresholdPath=thresholdsFile,
numCPUs=numCPUs)
runner.initialize()
if args.detect:
detectorConstructors = getDetectorClassConstructors(args.detectors)
runner.detect(detectorConstructors)
if args.optimize:
runner.optimize(args.detectors)
if args.score:
with open(args.thresholdsFile) as thresholdConfigFile:
detectorThresholds = json.load(thresholdConfigFile)
runner.score(args.detectors, detectorThresholds)
if args.normalize:
try:
runner.normalize()
except AttributeError("Error: you must run the scoring step with the "
"normalization step."):
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--detect",
help="Generate detector results but do not analyze results "
"files.",
default=False,
action="store_true")
parser.add_argument("--optimize",
help="Optimize the thresholds for each detector and user "
"profile combination",
default=False,
action="store_true")
parser.add_argument("--score",
help="Analyze results in the results directory",
default=False,
action="store_true")
parser.add_argument("--normalize",
help="Normalize the final scores",
default=False,
action="store_true")
parser.add_argument("--skipConfirmation",
help="If specified will skip the user confirmation step",
default=False,
action="store_true")
parser.add_argument("--dataDir",
default="data",
help="This holds all the label windows for the corpus.")
parser.add_argument("--resultsDir",
default="results",
help="This will hold the results after running detectors "
"on the data")
parser.add_argument("--windowsFile",
default=os.path.join("labels", "combined_windows.json"),
help="JSON file containing ground truth labels for the "
"corpus.")
parser.add_argument("-d", "--detectors",
nargs="*",
type=str,
default=["null", "numenta", "random", "skyline",
"bayesChangePt", "windowedGaussian", "expose",
"relativeEntropy", "earthgeckoSkyline"],
help="Comma separated list of detector(s) to use, e.g. "
"null,numenta")
parser.add_argument("-p", "--profilesFile",
default=os.path.join("config", "profiles.json"),
help="The configuration file to use while running the "
"benchmark.")
parser.add_argument("-t", "--thresholdsFile",
default=os.path.join("config", "thresholds.json"),
help="The configuration file that stores thresholds for "
"each combination of detector and username")
parser.add_argument("-n", "--numCPUs",
default=None,
help="The number of CPUs to use to run the "
"benchmark. If not specified all CPUs will be used.")
args = parser.parse_args()
if (not args.detect
and not args.optimize
and not args.score
and not args.normalize):
args.detect = True
args.optimize = True
args.score = True
args.normalize = True
if len(args.detectors) == 1:
# Handle comma-seperated list argument.
args.detectors = args.detectors[0].split(",")
# The following imports are necessary for getDetectorClassConstructors to
# automatically figure out the detector classes.
# Only import detectors if used so as to avoid unnecessary dependency.
if "bayesChangePt" in args.detectors:
from nab.detectors.bayes_changept.bayes_changept_detector import (
BayesChangePtDetector)
if "numenta" in args.detectors:
from nab.detectors.numenta.numenta_detector import NumentaDetector
if "htmjava" in args.detectors:
from nab.detectors.htmjava.htmjava_detector import HtmjavaDetector
if "numentaTM" in args.detectors:
from nab.detectors.numenta.numentaTM_detector import NumentaTMDetector
if "null" in args.detectors:
from nab.detectors.null.null_detector import NullDetector
if "random" in args.detectors:
from nab.detectors.random.random_detector import RandomDetector
if "skyline" in args.detectors:
from nab.detectors.skyline.skyline_detector import SkylineDetector
if "windowedGaussian" in args.detectors:
from nab.detectors.gaussian.windowedGaussian_detector import (
WindowedGaussianDetector)
if "knncad" in args.detectors:
from nab.detectors.knncad.knncad_detector import KnncadDetector
if "relativeEntropy" in args.detectors:
from nab.detectors.relative_entropy.relative_entropy_detector import (
RelativeEntropyDetector)
# To run expose detector, you must have sklearn version 0.16.1 installed.
# Higher versions of sklearn may not be compatible with numpy version 1.9.2
# required to run nupic.
if "expose" in args.detectors:
from nab.detectors.expose.expose_detector import ExposeDetector
if "contextOSE" in args.detectors:
from nab.detectors.context_ose.context_ose_detector import (
ContextOSEDetector )
if "earthgeckoSkyline" in args.detectors:
from nab.detectors.earthgecko_skyline.earthgecko_skyline_detector import EarthgeckoSkylineDetector
if args.skipConfirmation or checkInputs(args):
main(args)