forked from akash13singh/lstm_anomaly_thesis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdbn_1svm.py
112 lines (90 loc) · 4.49 KB
/
dbn_1svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from data_utils import read_GAS_data,iterate_mini_batches
from data_utils import generate_uniform_anomalies
import numpy as np
from autoencoder import SimpleAutoencoder
import tensorflow as tf
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import confusion_matrix
from sklearn import svm
from sklearn import metrics
hidden_dimensions = [56,10,56]
learning_rate = 0.001
n_epochs = 40
batch_size = 512
display_step = 1
tf.set_random_seed(29)
np.random.seed(29)
def create_anomaly_dataset():
X_train, X_test = read_GAS_data()
Y_train = np.ones(shape= (X_train.shape[0],1))
Y_test = np.ones(shape=(X_test.shape[0], 1))
num_anomalies = int(.08 * (X_train.shape[0] + X_test.shape[0]))
anomalies = generate_uniform_anomalies(0,1,num_anomalies,d = X_train.shape[1])
X_train_anomalies = anomalies[:int(num_anomalies)/2,:]
X_test_anomalies = anomalies[int(num_anomalies)/2:,:]
Y_train_anomalies = np.full((int(num_anomalies)/2,1),-1)
Y_test_anomalies = np.full((int(num_anomalies)/2,1),-1)
X_train = np.concatenate((X_train, X_train_anomalies), axis=0)
X_test = np.concatenate((X_test, X_test_anomalies), axis=0)
Y_train = np.concatenate((Y_train,Y_train_anomalies),axis =0)
Y_test = np.concatenate((Y_test, Y_test_anomalies), axis=0)
shuffle_train,shuffle_test = np.random.permutation(X_train.shape[0]),np.random.permutation(X_test.shape[0])
X_train, Y_train = X_train[shuffle_train, :], Y_train[shuffle_train]
X_test, Y_test = X_test[shuffle_test, :], Y_test[shuffle_test]
return X_train,Y_train,X_test,Y_test
def train_autoencoder(X_train,Y_train):
ae = SimpleAutoencoder(X_train.shape[1],hidden_dimensions,learning_rate)
ae.construct_model()
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
print ("number of examples: %d" % (len(X_train)))
print (" batch size: %d" % (batch_size))
n_batches = int(len(X_train) / batch_size)
print ("num batches: %d" % (n_batches))
for epoch in range(n_epochs):
# Loop over all batches
for Xi, Yi in iterate_mini_batches(X_train, Y_train, batch_size):
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([ae.optimizer,ae.loss], feed_dict={ae.input_placeholder: Xi})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%02d' % (epoch + 1),
"cost=", "{:.9f}".format(c))
print("Optimization Finished!")
encoded_X_train, reconstructed_X_train = sess.run([ae.fc2, ae.reconstuction], feed_dict={ae.input_placeholder: X_train})
encoded_X_test = sess.run(ae.fc2, feed_dict={ae.input_placeholder: X_test})
np.save("resources/files/encoded_X_train", encoded_X_train)
np.save("resources/files/reconstructed_X_train", reconstructed_X_train)
np.save("resources/files/encoded_X_test", encoded_X_test)
def detect_anomalies():
encoded_X_train = np.load("resources/files/encoded_X_train.npy")
encoded_X_test = np.load("resources/files/encoded_X_test.npy")
print(encoded_X_train.shape)
print(encoded_X_test.shape)
clf = svm.OneClassSVM(nu=0.1, kernel="linear")
clf.fit(encoded_X_train)
y_pred_train = clf.predict(encoded_X_train)
y_pred_test = clf.predict(encoded_X_test)
y_pred_outliers = clf.predict(np.full((100,hidden_dimensions[1]),4))
# print y_pred_train[y_pred_train == -1].size
# print y_pred_test[y_pred_test == -1].size
# print y_pred_outliers[y_pred_outliers == -1].size
# n_normal_points_test = X_test[y_pred_test == 1]
# n_anomalies_test = X_test[y_pred_test == -1]
# print(n_normal_points_test.shape)
# print(n_anomalies_test.shape)
print("Train Accuracy: %f"%(accuracy_score(Y_train, y_pred_train)))
print("Test Accuracy: %f"%( accuracy_score(Y_test, y_pred_test)))
print("Precision: %f" % (precision_score(Y_test, y_pred_test,pos_label=1)))
#print("Recall: %f" % (precision_score(Y_test, y_pred_test, pos_label=-1)))
print "Confusion Matrix: (Anomalies, Normal)"
print confusion_matrix(Y_test,y_pred_test,labels=[-1,1])
fpr, tpr, thresholds = metrics.roc_curve(Y_test, y_pred_test, pos_label=1)
print "AUC: %f"%metrics.auc(fpr, tpr)
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = create_anomaly_dataset()
#train_autoencoder(X_train,Y_train)
detect_anomalies()