diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index b23badb1019c1..99f71f0a1aa29 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -661,6 +661,9 @@ class GGMLQuantizationType(IntEnum): IQ3_S = 21 IQ2_S = 22 IQ4_XS = 23 + I8 = 24 + I16 = 25 + I32 = 26 class GGUFEndian(IntEnum): @@ -727,6 +730,9 @@ def get_type(val: Any) -> GGUFValueType: GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4), GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16), GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64), + GGMLQuantizationType.I8: (1, 1), + GGMLQuantizationType.I16: (1, 2), + GGMLQuantizationType.I32: (1, 4), } diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index 5b6d4ba6bcce9..1c10f57538992 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -248,6 +248,15 @@ def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None: elif ggml_type == GGMLQuantizationType.F16: item_count = n_elems item_type = np.float16 + elif ggml_type == GGMLQuantizationType.I8: + item_count = n_elems + item_type = np.int8 + elif ggml_type == GGMLQuantizationType.I16: + item_count = n_elems + item_type = np.int16 + elif ggml_type == GGMLQuantizationType.I32: + item_count = n_elems + item_type = np.int32 else: item_count = n_bytes item_type = np.uint8 diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index e49c5db6866a2..9c1eeac318c7d 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -196,9 +196,6 @@ def add_tensor_info( if self.state is not WriterState.EMPTY: raise ValueError(f'Expected output file to be empty, got {self.state}') - if raw_dtype is None and tensor_dtype not in (np.float32, np.float16): - raise ValueError("Only F32 and F16 tensors are supported for now") - encoded_name = name.encode("utf8") self.ti_data += self._pack("Q", len(encoded_name)) self.ti_data += encoded_name @@ -207,7 +204,18 @@ def add_tensor_info( for i in range(n_dims): self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i]) if raw_dtype is None: - dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 + if tensor_shape == np.float32: + dtype = GGMLQuantizationType.F32 + elif tensor_dtype == np.float16: + dtype = GGMLQuantizationType.F16 + elif tensor_dtype == np.int8: + dtype = GGMLQuantizationType.I8 + elif tensor_dtype == np.int16: + dtype = GGMLQuantizationType.I16 + elif tensor_dtype == np.int32: + dtype = GGMLQuantizationType.I32 + else: + raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now") else: dtype = raw_dtype self.ti_data += self._pack("I", dtype)