Note: Generating or updating documents requires the dependent environment of the API service.
export DOCAPI_MODEL=openai:gpt-4o-mini
export OPENAI_API_KEY=your_api_key
# Generate documentation for Flask
docapi generate server.py
# Generate documentation for Django
# docapi generate manage.py
# Update documentation for Flask
docapi update server.py
# Update documentation for Django
# docapi update manage.py
# Launch the web server to display the documentation
docapi serve
export DOCAPI_MODEL=azure-openai:gpt-4o-mini
export AZURE_OPENAI_API_KEY=your_api_key
export AZURE_OPENAI_ENDPOINT=your_endpoint
export OPENAI_API_VERSION=api_version
# Generate documentation with a custom template
docapi generate server.py --template <template_path>
# Update documentation with a custom template
docapi update server.py --template <template_path>
# Launch the web service on a custom IP and port
docapi serve docs --ip 0.0.0.0 --port 9000
export DOCAPI_MODEL=xai:grok-beta
export XAI_API_KEY=your_api_key
# Generate documentation
docapi generate manage.py
# Update documentation
docapi update manage.py
# Launch the web service
docapi serve
export DOCAPI_MODEL=open-source:model_name
export OPENAI_API_KEY=your_api_key
export OPENAI_API_BASE=api_base_url
# Generate documentation
docapi generate server.py
# Update documentation
docapi update server.py
# Launch the web service
docapi serve
export DOCAPI_MODEL=baidu:ERNIE-4.0-Turbo-8K
export QIANFAN_ACCESS_KEY=your_access_key
export QIANFAN_SECRET_KEY=your_secret_key
# Generate documentation
docapi generate server.py
# Update documentation
docapi update server.py
# Launch the web service
docapi serve
export DOCAPI_MODEL=aliyun:qwen-turbo
export DASHSCOPE_API_KEY=your_api_key
# Generate documentation with parallel processing
docapi generate manage.py --workers 6
# Update documentation with parallel processing
docapi update manage.py --workers 6
# Launch the web service
docapi serve
export DOCAPI_MODEL=zhipu:glm-4-flash
export ZHIPUAI_API_KEY=your_api_key
# Generate documentation
docapi generate server.py
# Update documentation
docapi update server.py
# Launch the web service
docapi serve
To use a configuration file, create and edit a .env
file:
DOCAPI_MODEL = openai:gpt-4o-mini
OPENAI_API_KEY = your_api_key
DASHSCOPE_API_KEY = your_api_key
Run commands with the .env
file:
# Generate documentation
docapi generate server.py --env .env
# Update documentation
docapi update server.py --env .env
# Launch the web service
docapi serve
Example with a specific model and custom settings:
# Generate documentation
docapi generate server.py docs --env .env --model aliyun:qwen-turbo
# Update documentation
docapi update server.py docs --env .env --model aliyun:qwen-turbo
# Launch the web service on a specific IP and port
docapi serve docs --ip 0.0.0.0 --port 9000
import os
from docapi import DocAPI
# Configure API key
os.environ['OPENAI_API_KEY'] = "your_api_key"
# Initialize DocAPI with a specific model
docapi = DocAPI.build(lang="zh", model="openai:gpt-4o-mini")
# Generate documentation
docapi.generate("flask_project/server.py", "docs")
# Update documentation (uncomment to use)
# docapi.update("flask_project/server.py", "docs")
# Serve documentation locally
# docapi.serve("docs", ip="127.0.0.1", port=8080)