-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSparkKMeans.py
56 lines (44 loc) · 1.79 KB
/
SparkKMeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from pyspark.mllib.clustering import KMeans
from numpy import array, random
from math import sqrt
from pyspark import SparkConf, SparkContext
from sklearn.preprocessing import scale
K = 5
# Boilerplate Spark stuff:
conf = SparkConf().setMaster("local").setAppName("SparkKMeans")
sc = SparkContext(conf = conf)
#Create fake income/age clusters for N people in k clusters
def createClusteredData(N, k):
random.seed(10)
pointsPerCluster = float(N)/k
X = []
for i in range (k):
incomeCentroid = random.uniform(20000.0, 200000.0)
ageCentroid = random.uniform(20.0, 70.0)
for j in range(int(pointsPerCluster)):
X.append([random.normal(incomeCentroid, 10000.0), random.normal(ageCentroid, 2.0)])
X = array(X)
return X
# Load the data; note I am normalizing it with scale() - very important!
data = sc.parallelize(scale(createClusteredData(100, K)))
# Build the model (cluster the data)
clusters = KMeans.train(data, K, maxIterations=10,
runs=10, initializationMode="random")
# Print out the cluster assignments
resultRDD = data.map(lambda point: clusters.predict(point)).cache()
print "Counts by value:"
counts = resultRDD.countByValue()
print counts
print "Cluster assignments:"
results = resultRDD.collect()
print results
# Evaluate clustering by computing Within Set Sum of Squared Errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)]))
WSSSE = data.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE))
# Things to try:
# What happens to WSSSE as you increase or decrease K? Why?
# What happens if you don't normalize the input data before clustering?
# What happens if you change the maxIterations or runs parameters?