+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/Automated Financial Reporting with Deep Learning/financial_report.csv b/Automated Financial Reporting with Deep Learning/financial_report.csv
new file mode 100644
index 0000000000..17d100484a
--- /dev/null
+++ b/Automated Financial Reporting with Deep Learning/financial_report.csv
@@ -0,0 +1,49 @@
+Date,Revenue,Expenses,Profit,Assets,Liabilities,Equity,Predicted_Equity
+2020-01-31,24981.6047538945,13200.654190149196,11780.950563745304,309093.13175279764,106968.09887549352,202125.03287730413,68825.34615765153
+2020-02-29,48028.57225639665,7772.816832882905,40255.75542351374,271016.40734341985,57377.38947090656,213639.0178725133,155089.9978153562
+2020-03-31,39279.7576724562,19543.769416468374,19735.988255987824,110167.65069763808,171912.86679597938,-61745.216098341305,34224.57171260366
+2020-04-30,33946.33936788146,16626.992350416716,17319.347017464745,143156.5707973218,150535.8046457723,-7379.233848450502,33442.48438773654
+2020-05-31,16240.74561769746,19092.48412346284,-2851.7385057653755,112571.6742746937,60295.75024999787,52275.92402469582,-9813.170596191005
+2020-06-30,16239.780813448106,18422.41025641473,-2182.629442966627,354564.16450551216,105729.29284732229,248834.87165818983,65928.8808532161
+2020-07-31,12323.34448672798,13968.499682166275,-1645.1551954382976,225742.3924305307,231653.17719333075,-5910.78476280006,6045.587645266148
+2020-08-31,44647.045830997406,18828.11352534675,25818.93230565065,303428.27646588115,97912.3781333945,205515.89833248663,90091.20992465467
+2020-09-30,34044.60046972835,6327.387530778793,27717.21293894956,463026.5895704372,78978.97441824462,384047.6151521926,153608.5649266106
+2020-10-31,38322.90311184182,7939.742936287178,30383.160175554644,199716.89165955,147890.5520555126,51826.33960403735,90830.6532036149
+2020-11-30,10823.379771832098,5678.409333658071,5144.970438174028,264153.1692142519,247130.0908221201,17023.078392131778,50947.47348930979
+2020-12-31,48796.39408647977,9879.954961448966,38916.4391250308,402220.4554172195,98411.05430230008,303809.4011149194,172204.61481427395
+2021-01-31,43297.70563201687,10830.15934534223,32467.54628667464,191519.266196649,184427.1094811757,7092.156715473277,96594.09114556591
+2021-02-28,18493.564427131045,9070.23547660844,9423.328950522606,130791.9639315172,202323.92306574355,-71531.95913422633,-3798.765168847041
+2021-03-31,17272.998688284024,17431.06263727894,-158.06394899491715,215900.5811655072,97527.50879847992,118373.07236702729,20404.116319606324
+2021-04-30,17336.18039413735,10351.29990040384,6984.880493733512,164488.51490160177,195643.26972237192,-31154.754820770147,3233.3121525907877
+2021-05-31,22169.68971838151,9214.017645310712,12955.672073070797,471879.06093702925,123556.62654385064,348322.4343931786,134062.00611807386
+2021-06-30,30990.257265289518,13140.441247373728,17849.816017915786,423248.1518257668,176461.1661187159,246786.9857070509,139728.403672095
+2021-07-31,27277.80074568463,7113.86337462144,20163.93737106319,353361.5026041694,176705.94215217893,176655.5604519905,122052.41866203291
+2021-08-31,21649.16560792168,17032.954711310595,4616.210896611083,448584.2360750871,157154.9368149517,291429.2992601354,112845.78181133242
+2021-09-30,34474.11578889518,6118.259655196563,28355.856133698617,421468.8307596458,68057.95401088166,353410.87674876413,140617.94056145192
+2021-10-31,15579.754426081672,19803.30404900776,-4223.54962292609,174628.02355441434,217060.4991178476,-42432.47556343325,13758.395732984338
+2021-11-30,21685.78594140873,16583.67153944986,5102.114401958868,457023.5993959911,114156.01299434715,342867.586401644,111240.50210684934
+2021-12-31,24654.47373174767,7980.735223012586,16673.73850873508,315736.89676626027,87303.70207997086,228433.1946862894,73528.39121004388
+2022-01-31,28242.79936868144,5082.831756854036,23159.9676118274,422976.062065625,58155.02831095278,364821.0337546723,130507.07645124939
+2022-02-28,41407.03845572054,17231.92142682251,24175.11702889803,458436.5199693973,168178.58863764838,290257.9313317489,162627.16503945398
+2022-03-31,17986.95128633439,15602.860157714256,2384.091128620136,227201.3899887456,185512.87236845648,41688.51762028909,24356.056737308983
+2022-04-30,30569.377536544464,15935.107520614809,14634.270015929656,144020.7698110707,53317.56578557123,90703.20402549946,24995.99724248648
+2022-05-31,33696.5827544817,16569.055200289185,17127.527554192515,191174.06501677667,152418.6116598562,38755.45335692048,45241.593816670116
+2022-06-30,11858.016508799908,6110.669776011356,5747.346732788553,270843.1154505025,95299.15503958758,175543.9604109149,37155.42647400731
+2022-07-31,34301.79407605753,10376.98592816409,23924.80814789344,427205.9063689973,179034.55808189,248171.34828710725,152057.56963752082
+2022-08-31,16820.964947491662,6738.035892876946,10082.929054614717,444292.23330253735,84873.28580099829,359418.9475015391,105886.0160880802
+2022-09-30,12602.06371941118,17946.551388133903,-5344.487668722722,102780.85221247628,188187.5476204932,-85406.69540801691,-6540.4149581962965
+2022-10-31,47955.42149013333,14349.471902413368,33605.949587719966,304298.9210310263,127347.06926010748,176951.85177091882,123034.96658065131
+2022-11-30,48625.28132298237,9963.470372789738,38661.81095019264,266964.4012595116,237345.9977473469,29618.40351216469,141863.40413318126
+2022-12-31,42335.89392465845,5953.375254290355,36382.518670368096,188843.1241882921,77504.18882919865,111338.93535909343,122339.84624704311
+2023-01-31,22184.55076693483,9664.734825734931,12519.815941199897,147946.14693347312,118213.2702100517,29732.876723421417,13397.684187193208
+2023-02-28,13906.884560255356,9877.749830401206,4029.1347298541496,235046.0685614512,72694.7042481178,162351.36431333338,17816.37264147712
+2023-03-31,37369.32106048628,15944.09267507096,21425.228385415317,477163.8815650077,234938.72365571256,242225.1579092951,185564.37320410696
+2023-04-30,27606.099749584053,14563.362070328198,13042.737679255855,229281.1728083021,225467.8706761962,3813.3021321058914,55753.882784208734
+2023-05-31,14881.529393791152,18308.1911386449,-3426.661744853747,307516.2486973464,101588.32554303113,205927.9231543153,48652.47391110044
+2023-06-30,29807.076404450807,12083.223877429238,17723.85252702157,381207.5835580711,181996.8092068358,199210.7743512353,126011.48740696312
+2023-07-31,11375.540844608737,6793.913689074526,4581.627155534209,245451.8409517176,213444.4400402432,32007.400911474426,37880.51516271149
+2023-08-31,46372.81608315128,15698.671808344923,30674.14427480636,488712.8330883842,161040.16231989246,327672.6707684918,182176.21421550104
+2023-09-30,20351.19926400068,16411.775729253462,3939.4235347472168,484978.9179768445,155930.11567120132,329048.8023056432,125047.93903373237
+2023-10-31,36500.89137415928,13419.157963542444,23081.73341061684,200712.91833014565,98370.45818009034,102342.46015005533,60401.63608154071
+2023-11-30,22468.44304357644,16564.507699318416,5903.935344258021,298899.4023569542,68620.55356117984,230278.84879577436,44330.98673927653
+2023-12-31,30802.720847112432,12406.933945465862,18395.78690164657,220351.32392670785,229443.1515906653,-9091.82766395749,68183.33500982501
diff --git a/Automated Financial Reporting with Deep Learning/financial_summary.csv b/Automated Financial Reporting with Deep Learning/financial_summary.csv
new file mode 100644
index 0000000000..27a0729111
--- /dev/null
+++ b/Automated Financial Reporting with Deep Learning/financial_summary.csv
@@ -0,0 +1,9 @@
+,Revenue,Expenses,Profit,Assets,Liabilities,Equity,Predicted_Equity
+count,48.0,48.0,48.0,48.0,48.0,48.0,48.0
+mean,27970.52540395354,12615.581078624606,15354.944325328936,293620.7021179637,142168.69030742114,151452.01181054255,81342.38359427034
+std,11684.317642560598,4552.29525882751,12722.1875860061,119731.38501451364,57834.78672426573,138729.4317754825,56935.44935264
+min,10823.379771832098,5082.831756854036,-5344.487668722722,102780.85221247628,53317.56578557123,-85406.69540801691,-9813.170596191005
+25%,17320.38496767402,8797.860413209477,4980.638525621922,197667.48529382475,96970.42035875683,29704.258420607235,34029.04988138688
+50%,27441.95024763434,13170.547718761463,15654.004262332368,270929.76139696117,149213.17835064244,176099.7604314527,71176.8686838477
+75%,36717.99879574103,16572.709285079356,23987.385368144587,421845.6385861406,184698.5502029959,248337.2291298779,127135.38466803469
+max,48796.39408647977,19803.30404900776,40255.75542351374,488712.8330883842,247130.0908221201,384047.6151521926,185564.37320410696
diff --git a/Automated Financial Reporting with Deep Learning/readme.md b/Automated Financial Reporting with Deep Learning/readme.md
new file mode 100644
index 0000000000..1df0f53b78
--- /dev/null
+++ b/Automated Financial Reporting with Deep Learning/readme.md
@@ -0,0 +1,26 @@
+# Automated Financial Reporting with Deep Learning
+
+## Overview
+This project aims to automate the generation of financial reports using deep learning, reducing manual effort and errors. The project involves creating a synthetic dataset, training a deep learning model, and generating financial reports.
+
+## Dataset
+The dataset contains the following columns:
+- `Date`: The date of the observation.
+- `Revenue`: The revenue for the period.
+- `Expenses`: The expenses for the period.
+- `Profit`: The profit for the period.
+- `Assets`: The total assets value.
+- `Liabilities`: The total liabilities value.
+- `Equity`: The total equity value.
+
+## Project Structure
+- `financial_data.csv`: The synthetic dataset file.
+- `generate_dataset.py`: Script to generate the synthetic dataset.
+- `train_model.py`: Script to train the deep learning model.
+- `evaluate_model.py`: Script to evaluate the trained model.
+- `generate_report.py`: Script to generate financial reports.
+
+## Setup
+1. Install the required packages:
+ ```bash
+ pip install pandas numpy scikit-learn tensorflow