-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
152 lines (107 loc) · 3.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.utils.data
import torchvision
import torch.optim as optim
from model import ConvNet
import time
# Use GPU
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device:',device)
# Create Batches
def get_data_loader(img_fname,lbl_fname,bats):
imgt=torch.load(img_fname)
lblt=torch.load(lbl_fname)
dataset=torch.utils.data.TensorDataset(imgt,lblt)
loader=torch.utils.data.DataLoader(dataset,batch_size=bats)
return loader
# Create Model Instance
Net=ConvNet().to(device=device)
# Get loss funtion
lossfunc=torch.nn.BCELoss(reduction='mean')
# Get optimizer
optimizer=optim.Adam(Net.parameters())
# Open log file
log = open("train_log.txt","w")
# Training
batch_size=64
train_loader=get_data_loader('Tensors/train_img.pt','Tensors/train_lbl.pt',batch_size)
valid_loader=get_data_loader('Tensors/val_img.pt','Tensors/val_lbl.pt',batch_size)
test_loader=get_data_loader('Tensors/test_img.pt','Tensors/test_lbl.pt',batch_size)
epochs=20
printfreq=50
log.write("Device : %s\n\n"%(device))
log.write("Batch Size : %d\n\n"%(batch_size))
log.write(str(Net)+'\n\n')
log.write("Optimizer : ADAM\n\n")
log.write("Epochs : %d\n\n"%(epochs))
start_time=time.time()
for ep in range(epochs):
train_loss=0.0
running_loss=0.0
valid_loss=0.0
for i,data in enumerate(train_loader):
x,y = data
x,y = x.to(device=device),y.to(device=device)
optimizer.zero_grad()
output = Net(x)
output = output.view(-1,1)
loss = lossfunc(output,y)
running_loss+=loss.item()
train_loss+=loss.item()
loss.backward()
optimizer.step()
if (i+1)%printfreq==0:
log.write("Epoch: %d\tBatch: %d\nRunning Loss: %.4f\n"%(ep+1,i+1,running_loss/printfreq))
running_loss=0.0
log.write("\nEpoch %d Train Loss: %.4f\n"%((ep+1),train_loss/len(train_loader)))
for data in valid_loader:
x,y=data
x,y = x.to(device=device),y.to(device=device)
output = Net(x)
output=output.view(-1,1)
loss = lossfunc(output,y)
running_loss+=loss.item()
valid_loss+=loss.item()
log.write("Epoch %d Valid Loss: %.4f\n\n"%((ep+1),valid_loss/len(valid_loader)))
end_time=time.time()
log.write("Training Complete. Time Taken: %.4f\n"%(end_time-start_time))
# Training Accuracy
Accuracy=0.0
ipsize=0
for data in train_loader:
x,y=data
x,y=x.to(device=device),y.to(device=device)
output=Net(x)
output = output.view(-1,1)
output=output.round()
comp=torch.eq(output,y).type(torch.FloatTensor)
Accuracy+=comp.sum().item()
ipsize+=len(y)
log.write("Training Accuracy: %.4f\n"%(Accuracy/ipsize*100))
# Validation Accuracy
Accuracy=0.0
ipsize=0
for data in valid_loader:
x,y=data
x,y=x.to(device=device),y.to(device=device)
output=Net(x)
output = output.view(-1,1)
output=output.round()
comp=torch.eq(output,y).type(torch.FloatTensor)
Accuracy+=comp.sum().item()
ipsize+=len(y)
log.write("Validation Accuracy: %.4f\n"%(Accuracy/ipsize*100))
# Testing Accuracy
Accuracy=0.0
ipsize=0
for data in test_loader:
x,y=data
x,y=x.to(device=device),y.to(device=device)
output=Net(x)
output = output.view(-1,1)
output=output.round()
comp=torch.eq(output,y).type(torch.FloatTensor)
Accuracy+=comp.sum().item()
ipsize+=len(y)
log.write("Testing Accuracy: %.4f\n"%(Accuracy/ipsize*100))
torch.save(Net,'cnn.pt')