diff --git a/nbs/docs/tutorials/20_conformal_prediction.ipynb b/nbs/docs/tutorials/20_conformal_prediction.ipynb index d64424743..105cfc03b 100644 --- a/nbs/docs/tutorials/20_conformal_prediction.ipynb +++ b/nbs/docs/tutorials/20_conformal_prediction.ipynb @@ -28,18 +28,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\ospra\\miniconda3\\envs\\neuralforecast\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n", - "2024-10-15 10:35:57,968\tINFO util.py:154 -- Missing packages: ['ipywidgets']. Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output.\n", - "2024-10-15 10:35:58,090\tINFO util.py:154 -- Missing packages: ['ipywidgets']. Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output.\n" - ] - } - ], + "outputs": [], "source": [ "import logging\n", "import os\n", @@ -105,28 +94,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Seed set to 1\n", - "Seed set to 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 99: 100%|██████████| 1/1 [00:00<00:00, 44.93it/s, v_num=508, train_loss_step=0.138, train_loss_epoch=0.138] \n", - "Predicting DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 150.75it/s]\n", - "Epoch 99: 100%|██████████| 1/1 [00:00<00:00, 48.70it/s, v_num=510, train_loss_step=2.930, train_loss_epoch=2.930] \n", - "Predicting DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 32.97it/s]\n", - "Epoch 99: 100%|██████████| 1/1 [00:00<00:00, 49.39it/s, v_num=512, train_loss_step=0.106, train_loss_epoch=0.106] \n", - "Epoch 99: 100%|██████████| 1/1 [00:00<00:00, 48.55it/s, v_num=513, train_loss_step=3.220, train_loss_epoch=3.220] \n" - ] - } - ], + "outputs": [], "source": [ "horizon = 12\n", "input_size = 24\n", @@ -152,16 +120,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predicting DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 197.24it/s]\n", - "Predicting DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 194.88it/s]\n" - ] - } - ], + "outputs": [], "source": [ "preds = nf.predict(futr_df=AirPassengersPanel_test, level=[90])" ]