Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TFT] TFT.feature_importances() returns error when there is no futr_exog_list #1169

Closed
jeanboy44 opened this issue Oct 1, 2024 · 1 comment · Fixed by #1174
Closed

[TFT] TFT.feature_importances() returns error when there is no futr_exog_list #1169

jeanboy44 opened this issue Oct 1, 2024 · 1 comment · Fixed by #1174
Labels

Comments

@jeanboy44
Copy link

What happened + What you expected to happen

What happened:

  • When I call feature_importances(), this error occurs.
  • It happens when futr_exog_list is None or []
image

What I expected.
.feature_importances() method returns expected features

I assume that this error occurs because of line 504 in tft module.

image

Versions / Dependencies

neuralforecast==1.7.5

Reproduction script

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from neuralforecast import NeuralForecast
from neuralforecast.models import TFT
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic

AirPassengersPanel['month']=AirPassengersPanel.ds.dt.month
Y_train_df = AirPassengersPanel[
    AirPassengersPanel.ds < AirPassengersPanel["ds"].values[-24]
]  # 120 train
Y_test_df = AirPassengersPanel[
    (AirPassengersPanel.ds >= AirPassengersPanel["ds"].values[-24])
    & (AirPassengersPanel.ds < AirPassengersPanel["ds"].values[-12])
].reset_index(
    drop=True
)  # 12 test
nf = NeuralForecast(
    models=[
        TFT(
            h=12,
            input_size=48,
            hidden_size=20,
            loss=DistributionLoss(distribution="StudentT", level=[80, 90]),
            learning_rate=0.005,
            stat_exog_list=[],
            futr_exog_list=[],
            hist_exog_list=['trend'],
            max_steps=300,
            val_check_steps=10,
            early_stop_patience_steps=10,
            scaler_type="robust",
            windows_batch_size=None,
            enable_progress_bar=True,
        ),
    ],
    freq="M",
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
Y_hat_df = nf.predict(futr_df=Y_test_df)

# Plot quantile predictions
Y_hat_df = Y_hat_df.reset_index(drop=False).drop(columns=["unique_id", "ds"])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

plot_df = plot_df[plot_df.unique_id == "Airline1"].drop("unique_id", axis=1)
plt.plot(plot_df["ds"], plot_df["y"], c="black", label="True")
plt.plot(plot_df["ds"], plot_df["TFT"], c="purple", label="mean")
plt.plot(plot_df["ds"], plot_df["TFT-median"], c="blue", label="median")
plt.fill_between(
    x=plot_df["ds"][-12:],
    y1=plot_df["TFT-lo-90"][-12:].values,
    y2=plot_df["TFT-hi-90"][-12:].values,
    alpha=0.4,
    label="level 90",
)
plt.legend()
plt.grid()
plt.plot()

Y_hat_df = nf.predict(futr_df=Y_test_df)
feature_importances = nf.models[0].feature_importances()

Issue Severity

High: It blocks me from completing my task.

@elephaint
Copy link
Contributor

Thanks, I've fixed the error and filed a PR for it

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants