-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathdataset.py
56 lines (48 loc) · 1.34 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import itertools
from collections import defaultdict
from trainset import Trainset
import os
class Dataset(object):
"""
"""
def __init__(self, reader):
self.reader = reader
@classmethod
def load_from_file(self,file_path,reader):
Dataset.__init__(self,reader)
with open(os.path.expanduser(file_path)) as f:
self.raw_ratings = [self.reader.parse_line(line) for line in itertools.islice(f, self.reader.skip_lines, None)]
raw2inner_id_users = {}
raw2inner_id_items = {}
current_u_index = 0
current_i_index = 0
ur = defaultdict(list)
ir = defaultdict(list)
for urid, irid, r in self.raw_ratings:
try:
uid = raw2inner_id_users[urid]
except KeyError:
uid = current_u_index
raw2inner_id_users[urid] = current_u_index
current_u_index += 1
try:
iid = raw2inner_id_items[irid]
except KeyError:
iid = current_i_index
raw2inner_id_items[irid] = current_i_index
current_i_index += 1
ur[uid].append((iid, r))
ir[iid].append((uid, r))
n_users = len(ur) # number of users
n_items = len(ir) # number of items
n_ratings = len(self.raw_ratings)
trainset = Trainset(ur,
ir,
n_users,
n_items,
n_ratings,
self.reader.rating_scale,
self.reader.offset,
raw2inner_id_users,
raw2inner_id_items)
return trainset