forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex13p.cpp
273 lines (241 loc) · 9.54 KB
/
ex13p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// MFEM Example 13 - Parallel Version
//
// Compile with: make ex13p
//
// Sample runs: mpirun -np 4 ex13p -m ../data/star.mesh
// mpirun -np 4 ex13p -m ../data/square-disc.mesh -o 2 -n 4
// mpirun -np 4 ex13p -m ../data/beam-tet.mesh
// mpirun -np 4 ex13p -m ../data/beam-hex.mesh
// mpirun -np 4 ex13p -m ../data/escher.mesh
// mpirun -np 4 ex13p -m ../data/fichera.mesh
// mpirun -np 4 ex13p -m ../data/fichera-q2.vtk
// mpirun -np 4 ex13p -m ../data/fichera-q3.mesh
// mpirun -np 4 ex13p -m ../data/square-disc-nurbs.mesh
// mpirun -np 4 ex13p -m ../data/beam-hex-nurbs.mesh
// mpirun -np 4 ex13p -m ../data/amr-quad.mesh -o 2
// mpirun -np 4 ex13p -m ../data/amr-hex.mesh
// mpirun -np 4 ex13p -m ../data/mobius-strip.mesh -n 8 -o 2
// mpirun -np 4 ex13p -m ../data/klein-bottle.mesh -n 10 -o 2
//
// Description: This example code solves the Maxwell (electromagnetic)
// eigenvalue problem curl curl E = lambda E with homogeneous
// Dirichlet boundary conditions E x n = 0.
//
// We compute a number of the lowest nonzero eigenmodes by
// discretizing the curl curl operator using a Nedelec FE space of
// the specified order in 2D or 3D.
//
// The example highlights the use of the AME subspace eigenvalue
// solver from HYPRE, which uses LOBPCG and AMS internally.
// Reusing a single GLVis visualization window for multiple
// eigenfunctions is also illustrated.
//
// We recommend viewing examples 3 and 11 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-tet.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
int nev = 5;
bool visualization = 1;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&nev, "-n", "--num-eigs",
"Number of desired eigenmodes.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement (2 by default, or
// specified on the command line with -rs).
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution (1 time by
// default, or specified on the command line with -rp). Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh->UniformRefinement();
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use the Nedelec finite elements of the specified order.
FiniteElementCollection *fec = new ND_FECollection(order, dim);
ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of unknowns: " << size << endl;
}
// 8. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
// element space. The first corresponds to the curl curl, while the second
// is a simple mass matrix needed on the right hand side of the
// generalized eigenvalue problem below. The boundary conditions are
// implemented by marking all the boundary attributes from the mesh as
// essential. The corresponding degrees of freedom are eliminated with
// special values on the diagonal to shift the Dirichlet eigenvalues out
// of the computational range. After serial and parallel assembly we
// extract the corresponding parallel matrices A and M.
ConstantCoefficient one(1.0);
Array<int> ess_bdr;
if (pmesh->bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh->bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm *a = new ParBilinearForm(fespace);
a->AddDomainIntegrator(new CurlCurlIntegrator(one));
if (pmesh->bdr_attributes.Size() == 0)
{
// Add a mass term if the mesh has no boundary, e.g. periodic mesh or
// closed surface.
a->AddDomainIntegrator(new VectorFEMassIntegrator(one));
}
a->Assemble();
a->EliminateEssentialBCDiag(ess_bdr, 1.0);
a->Finalize();
ParBilinearForm *m = new ParBilinearForm(fespace);
m->AddDomainIntegrator(new VectorFEMassIntegrator(one));
m->Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<double>::min());
m->Finalize();
HypreParMatrix *A = a->ParallelAssemble();
HypreParMatrix *M = m->ParallelAssemble();
delete a;
delete m;
// 9. Define and configure the AME eigensolver and the AMS preconditioner for
// A to be used within the solver. Set the matrices which define the
// generalized eigenproblem A x = lambda M x.
HypreAMS *ams = new HypreAMS(*A,fespace);
ams->SetPrintLevel(0);
ams->SetSingularProblem();
HypreAME *ame = new HypreAME(MPI_COMM_WORLD);
ame->SetNumModes(nev);
ame->SetPreconditioner(*ams);
ame->SetMaxIter(100);
ame->SetTol(1e-8);
ame->SetPrintLevel(1);
ame->SetMassMatrix(*M);
ame->SetOperator(*A);
// 10. Compute the eigenmodes and extract the array of eigenvalues. Define a
// parallel grid function to represent each of the eigenmodes returned by
// the solver.
Array<double> eigenvalues;
ame->Solve();
ame->GetEigenvalues(eigenvalues);
ParGridFunction x(fespace);
// 11. Save the refined mesh and the modes in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
{
ostringstream mesh_name, mode_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
for (int i=0; i<nev; i++)
{
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
mode_name << "mode_" << setfill('0') << setw(2) << i << "."
<< setfill('0') << setw(6) << myid;
ofstream mode_ofs(mode_name.str().c_str());
mode_ofs.precision(8);
x.Save(mode_ofs);
mode_name.str("");
}
}
// 12. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream mode_sock(vishost, visport);
mode_sock.precision(8);
for (int i=0; i<nev; i++)
{
if ( myid == 0 )
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
mode_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << *pmesh << x << flush
<< "window_title 'Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << "'" << endl;
char c;
if (myid == 0)
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_sock.close();
}
// 13. Free the used memory.
delete ame;
delete ams;
delete M;
delete A;
delete fespace;
delete fec;
delete pmesh;
return 0;
}