forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex27p.cpp
764 lines (667 loc) · 25.6 KB
/
ex27p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// MFEM Example 27 - Parallel Version
//
// Compile with: make ex27p
//
// Sample runs: mpirun -np 4 ex27p
// mpirun -np 4 ex27p -dg
// mpirun -np 4 ex27p -dg -dbc 8 -nbc -2
// mpirun -np 4 ex27p -rbc-a 1 -rbc-b 8
//
// Description: This example code demonstrates the use of MFEM to define a
// simple finite element discretization of the Laplace problem
// -Delta u = 0 with a variety of boundary conditions.
//
// Specifically, we discretize using a FE space of the specified
// order using a continuous or discontinuous space. We then apply
// Dirichlet, Neumann (both homogeneous and inhomogeneous), Robin,
// and Periodic boundary conditions on different portions of a
// predefined mesh.
//
// The predefined mesh consists of a rectangle with two holes
// removed (see below). The narrow ends of the mesh are connected
// to form a Periodic boundary condition. The lower edge (tagged
// with attribute 1) receives an inhomogeneous Neumann boundary
// condition. A Robin boundary condition is applied to upper edge
// (attribute 2). The circular hole on the left (attribute 3)
// enforces a Dirichlet boundary condition. Finally, a natural
// boundary condition, or homogeneous Neumann BC, is applied to
// the circular hole on the right (attribute 4).
//
// Attribute 3 ^ y Attribute 2
// \ | /
// +-----------+-----------+
// | \_ | _ |
// | / \ | / \ |
// <--+---+---+---+---+---+---+--> x
// | \_/ | \_/ |
// | | \ |
// +-----------+-----------+ (hole radii are
// / | \ adjustable)
// Attribute 1 v Attribute 4
//
// The boundary conditions are defined as (where u is the solution
// field):
//
// Dirichlet: u = d
// Neumann: n.Grad(u) = g
// Robin: n.Grad(u) + a u = b
//
// The user can adjust the values of 'd', 'g', 'a', and 'b' with
// command line options.
//
// This example highlights the differing implementations of
// boundary conditions with continuous and discontinuous Galerkin
// formulations of the Laplace problem.
//
// We recommend viewing Examples 1 and 14 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
static double a_ = 0.2;
// Normal to hole with boundary attribute 4
void n4Vec(const Vector &x, Vector &n) { n = x; n[0] -= 0.5; n /= -n.Norml2(); }
Mesh * GenerateSerialMesh(int ref);
// Compute the average value of alpha*n.Grad(sol) + beta*sol over the boundary
// attributes marked in bdr_marker. Also computes the L2 norm of
// alpha*n.Grad(sol) + beta*sol - gamma over the same boundary.
double IntegrateBC(const ParGridFunction &sol, const Array<int> &bdr_marker,
double alpha, double beta, double gamma,
double &error);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init();
if (!Mpi::Root()) { mfem::out.Disable(); mfem::err.Disable(); }
Hypre::Init();
// 2. Parse command-line options.
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
double sigma = -1.0;
double kappa = -1.0;
bool h1 = true;
bool visualization = true;
double mat_val = 1.0;
double dbc_val = 0.0;
double nbc_val = 1.0;
double rbc_a_val = 1.0; // du/dn + a * u = b
double rbc_b_val = 1.0;
OptionsParser args(argc, argv);
args.AddOption(&h1, "-h1", "--continuous", "-dg", "--discontinuous",
"Select continuous \"H1\" or discontinuous \"DG\" basis.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&sigma, "-s", "--sigma",
"One of the two DG penalty parameters, typically +1/-1."
" See the documentation of class DGDiffusionIntegrator.");
args.AddOption(&kappa, "-k", "--kappa",
"One of the two DG penalty parameters, should be positive."
" Negative values are replaced with (order+1)^2.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&mat_val, "-mat", "--material-value",
"Constant value for material coefficient "
"in the Laplace operator.");
args.AddOption(&dbc_val, "-dbc", "--dirichlet-value",
"Constant value for Dirichlet Boundary Condition.");
args.AddOption(&nbc_val, "-nbc", "--neumann-value",
"Constant value for Neumann Boundary Condition.");
args.AddOption(&rbc_a_val, "-rbc-a", "--robin-a-value",
"Constant 'a' value for Robin Boundary Condition: "
"du/dn + a * u = b.");
args.AddOption(&rbc_b_val, "-rbc-b", "--robin-b-value",
"Constant 'b' value for Robin Boundary Condition: "
"du/dn + a * u = b.");
args.AddOption(&a_, "-a", "--radius",
"Radius of holes in the mesh.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(mfem::out);
return 1;
}
if (kappa < 0 && !h1)
{
kappa = (order+1)*(order+1);
}
args.PrintOptions(mfem::out);
if (a_ < 0.01)
{
mfem::out << "Hole radius too small, resetting to 0.01.\n";
a_ = 0.01;
}
if (a_ > 0.49)
{
mfem::out << "Hole radius too large, resetting to 0.49.\n";
a_ = 0.49;
}
// 3. Construct the (serial) mesh and refine it if requested.
Mesh *mesh = GenerateSerialMesh(ser_ref_levels);
int dim = mesh->Dimension();
// 4. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
// 5. Define a parallel finite element space on the parallel mesh. Here we
// use either continuous Lagrange finite elements or discontinuous
// Galerkin finite elements of the specified order.
FiniteElementCollection *fec =
h1 ? (FiniteElementCollection*)new H1_FECollection(order, dim) :
(FiniteElementCollection*)new DG_FECollection(order, dim);
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_BigInt size = fespace.GlobalTrueVSize();
mfem::out << "Number of finite element unknowns: " << size << endl;
// 6. Create "marker arrays" to define the portions of boundary associated
// with each type of boundary condition. These arrays have an entry
// corresponding to each boundary attribute. Placing a '1' in entry i
// marks attribute i+1 as being active, '0' is inactive.
Array<int> nbc_bdr(pmesh.bdr_attributes.Max());
Array<int> rbc_bdr(pmesh.bdr_attributes.Max());
Array<int> dbc_bdr(pmesh.bdr_attributes.Max());
nbc_bdr = 0; nbc_bdr[0] = 1;
rbc_bdr = 0; rbc_bdr[1] = 1;
dbc_bdr = 0; dbc_bdr[2] = 1;
Array<int> ess_tdof_list(0);
if (h1 && pmesh.bdr_attributes.Size())
{
// For a continuous basis the linear system must be modified to enforce an
// essential (Dirichlet) boundary condition. In the DG case this is not
// necessary as the boundary condition will only be enforced weakly.
fespace.GetEssentialTrueDofs(dbc_bdr, ess_tdof_list);
}
// 7. Setup the various coefficients needed for the Laplace operator and the
// various boundary conditions. In general these coefficients could be
// functions of position but here we use only constants.
ConstantCoefficient matCoef(mat_val);
ConstantCoefficient dbcCoef(dbc_val);
ConstantCoefficient nbcCoef(nbc_val);
ConstantCoefficient rbcACoef(rbc_a_val);
ConstantCoefficient rbcBCoef(rbc_b_val);
// Since the n.Grad(u) terms arise by integrating -Div(m Grad(u)) by parts we
// must introduce the coefficient 'm' into the boundary conditions.
// Therefore, in the case of the Neumann BC, we actually enforce m n.Grad(u)
// = m g rather than simply n.Grad(u) = g.
ProductCoefficient m_nbcCoef(matCoef, nbcCoef);
ProductCoefficient m_rbcACoef(matCoef, rbcACoef);
ProductCoefficient m_rbcBCoef(matCoef, rbcBCoef);
// 8. Define the solution vector u as a parallel finite element grid function
// corresponding to fespace. Initialize u with initial guess of zero.
ParGridFunction u(&fespace);
u = 0.0;
// 9. Set up the parallel bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the Diffusion
// domain integrator.
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator(matCoef));
if (h1)
{
// Add a Mass integrator on the Robin boundary
a.AddBoundaryIntegrator(new MassIntegrator(m_rbcACoef), rbc_bdr);
}
else
{
// Add the interfacial portion of the Laplace operator
a.AddInteriorFaceIntegrator(new DGDiffusionIntegrator(matCoef,
sigma, kappa));
// Counteract the n.Grad(u) term on the Dirichlet portion of the boundary
a.AddBdrFaceIntegrator(new DGDiffusionIntegrator(matCoef, sigma, kappa),
dbc_bdr);
// Augment the n.Grad(u) term with a*u on the Robin portion of boundary
a.AddBdrFaceIntegrator(new BoundaryMassIntegrator(m_rbcACoef),
rbc_bdr);
}
a.Assemble();
// 10. Assemble the parallel linear form for the right hand side vector.
ParLinearForm b(&fespace);
if (h1)
{
// Set the Dirichlet values in the solution vector
u.ProjectBdrCoefficient(dbcCoef, dbc_bdr);
// Add the desired value for n.Grad(u) on the Neumann boundary
b.AddBoundaryIntegrator(new BoundaryLFIntegrator(m_nbcCoef), nbc_bdr);
// Add the desired value for n.Grad(u) + a*u on the Robin boundary
b.AddBoundaryIntegrator(new BoundaryLFIntegrator(m_rbcBCoef), rbc_bdr);
}
else
{
// Add the desired value for the Dirichlet boundary
b.AddBdrFaceIntegrator(new DGDirichletLFIntegrator(dbcCoef, matCoef,
sigma, kappa),
dbc_bdr);
// Add the desired value for n.Grad(u) on the Neumann boundary
b.AddBdrFaceIntegrator(new BoundaryLFIntegrator(m_nbcCoef),
nbc_bdr);
// Add the desired value for n.Grad(u) + a*u on the Robin boundary
b.AddBdrFaceIntegrator(new BoundaryLFIntegrator(m_rbcBCoef),
rbc_bdr);
}
b.Assemble();
// 11. Construct the linear system.
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, u, b, A, X, B);
// 12. Solve the linear system A X = B.
HypreSolver *amg = new HypreBoomerAMG;
if (h1 || sigma == -1.0)
{
HyprePCG pcg(MPI_COMM_WORLD);
pcg.SetTol(1e-12);
pcg.SetMaxIter(200);
pcg.SetPrintLevel(2);
pcg.SetPreconditioner(*amg);
pcg.SetOperator(*A);
pcg.Mult(B, X);
}
else
{
GMRESSolver gmres(MPI_COMM_WORLD);
gmres.SetAbsTol(0.0);
gmres.SetRelTol(1e-12);
gmres.SetMaxIter(200);
gmres.SetKDim(10);
gmres.SetPrintLevel(1);
gmres.SetPreconditioner(*amg);
gmres.SetOperator(*A);
gmres.Mult(B, X);
}
delete amg;
// 13. Recover the parallel grid function corresponding to U. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(X, b, u);
// 14. Compute the various boundary integrals.
mfem::out << endl
<< "Verifying boundary conditions" << endl
<< "=============================" << endl;
{
// Integrate the solution on the Dirichlet boundary and compare to the
// expected value.
double error, avg = IntegrateBC(u, dbc_bdr, 0.0, 1.0, dbc_val, error);
bool hom_dbc = (dbc_val == 0.0);
error /= hom_dbc ? 1.0 : fabs(dbc_val);
mfem::out << "Average of solution on Gamma_dbc:\t"
<< avg << ", \t"
<< (hom_dbc ? "absolute" : "relative")
<< " error " << error << endl;
}
{
// Integrate n.Grad(u) on the inhomogeneous Neumann boundary and compare
// to the expected value.
double error, avg = IntegrateBC(u, nbc_bdr, 1.0, 0.0, nbc_val, error);
bool hom_nbc = (nbc_val == 0.0);
error /= hom_nbc ? 1.0 : fabs(nbc_val);
mfem::out << "Average of n.Grad(u) on Gamma_nbc:\t"
<< avg << ", \t"
<< (hom_nbc ? "absolute" : "relative")
<< " error " << error << endl;
}
{
// Integrate n.Grad(u) on the homogeneous Neumann boundary and compare to
// the expected value of zero.
Array<int> nbc0_bdr(pmesh.bdr_attributes.Max());
nbc0_bdr = 0;
nbc0_bdr[3] = 1;
double error, avg = IntegrateBC(u, nbc0_bdr, 1.0, 0.0, 0.0, error);
bool hom_nbc = true;
mfem::out << "Average of n.Grad(u) on Gamma_nbc0:\t"
<< avg << ", \t"
<< (hom_nbc ? "absolute" : "relative")
<< " error " << error << endl;
}
{
// Integrate n.Grad(u) + a * u on the Robin boundary and compare to the
// expected value.
double error, avg = IntegrateBC(u, rbc_bdr, 1.0, rbc_a_val, rbc_b_val,
error);
bool hom_rbc = (rbc_b_val == 0.0);
error /= hom_rbc ? 1.0 : fabs(rbc_b_val);
mfem::out << "Average of n.Grad(u)+a*u on Gamma_rbc:\t"
<< avg << ", \t"
<< (hom_rbc ? "absolute" : "relative")
<< " error " << error << endl;
}
// 15. Save the refined mesh and the solution in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << Mpi::WorldRank();
sol_name << "sol." << setfill('0') << setw(6) << Mpi::WorldRank();
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
u.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
string title_str = h1 ? "H1" : "DG";
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << Mpi::WorldSize()
<< " " << Mpi::WorldRank() << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << u
<< "window_title '" << title_str << " Solution'"
<< " keys 'mmc'" << flush;
}
// 17. Free the used memory.
delete fec;
return 0;
}
void quad_trans(double u, double v, double &x, double &y, bool log = false)
{
double a = a_; // Radius of disc
double d = 4.0 * a * (M_SQRT2 - 2.0 * a) * (1.0 - 2.0 * v);
double v0 = (1.0 + M_SQRT2) * (M_SQRT2 * a - 2.0 * v) *
((4.0 - 3 * M_SQRT2) * a +
(8.0 * (M_SQRT2 - 1.0) * a - 2.0) * v) / d;
double r = 2.0 * ((M_SQRT2 - 1.0) * a * a * (1.0 - 4.0 *v) +
2.0 * (1.0 + M_SQRT2 *
(1.0 + 2.0 * (2.0 * a - M_SQRT2 - 1.0) * a)) * v * v
) / d;
double t = asin(v / r) * u / v;
if (log)
{
mfem::out << "u, v, r, v0, t "
<< u << " " << v << " " << r << " " << v0 << " " << t
<< endl;
}
x = r * sin(t);
y = r * cos(t) - v0;
}
void trans(const Vector &u, Vector &x)
{
double tol = 1e-4;
if (u[1] > 0.5 - tol || u[1] < -0.5 + tol)
{
x = u;
return;
}
if (u[0] > 1.0 - tol || u[0] < -1.0 + tol || fabs(u[0]) < tol)
{
x = u;
return;
}
if (u[0] > 0.0)
{
if (u[1] > fabs(u[0] - 0.5))
{
quad_trans(u[0] - 0.5, u[1], x[0], x[1]);
x[0] += 0.5;
return;
}
if (u[1] < -fabs(u[0] - 0.5))
{
quad_trans(u[0] - 0.5, -u[1], x[0], x[1]);
x[0] += 0.5;
x[1] *= -1.0;
return;
}
if (u[0] - 0.5 > fabs(u[1]))
{
quad_trans(u[1], u[0] - 0.5, x[1], x[0]);
x[0] += 0.5;
return;
}
if (u[0] - 0.5 < -fabs(u[1]))
{
quad_trans(u[1], 0.5 - u[0], x[1], x[0]);
x[0] *= -1.0;
x[0] += 0.5;
return;
}
}
else
{
if (u[1] > fabs(u[0] + 0.5))
{
quad_trans(u[0] + 0.5, u[1], x[0], x[1]);
x[0] -= 0.5;
return;
}
if (u[1] < -fabs(u[0] + 0.5))
{
quad_trans(u[0] + 0.5, -u[1], x[0], x[1]);
x[0] -= 0.5;
x[1] *= -1.0;
return;
}
if (u[0] + 0.5 > fabs(u[1]))
{
quad_trans(u[1], u[0] + 0.5, x[1], x[0]);
x[0] -= 0.5;
return;
}
if (u[0] + 0.5 < -fabs(u[1]))
{
quad_trans(u[1], -0.5 - u[0], x[1], x[0]);
x[0] *= -1.0;
x[0] -= 0.5;
return;
}
}
x = u;
}
Mesh * GenerateSerialMesh(int ref)
{
Mesh * mesh = new Mesh(2, 29, 16, 24, 2);
int vi[4];
for (int i=0; i<2; i++)
{
int o = 13 * i;
vi[0] = o + 0; vi[1] = o + 3; vi[2] = o + 4; vi[3] = o + 1;
mesh->AddQuad(vi);
vi[0] = o + 1; vi[1] = o + 4; vi[2] = o + 5; vi[3] = o + 2;
mesh->AddQuad(vi);
vi[0] = o + 5; vi[1] = o + 8; vi[2] = o + 9; vi[3] = o + 2;
mesh->AddQuad(vi);
vi[0] = o + 8; vi[1] = o + 12; vi[2] = o + 15; vi[3] = o + 9;
mesh->AddQuad(vi);
vi[0] = o + 11; vi[1] = o + 14; vi[2] = o + 15; vi[3] = o + 12;
mesh->AddQuad(vi);
vi[0] = o + 10; vi[1] = o + 13; vi[2] = o + 14; vi[3] = o + 11;
mesh->AddQuad(vi);
vi[0] = o + 6; vi[1] = o + 13; vi[2] = o + 10; vi[3] = o + 7;
mesh->AddQuad(vi);
vi[0] = o + 0; vi[1] = o + 6; vi[2] = o + 7; vi[3] = o + 3;
mesh->AddQuad(vi);
}
vi[0] = 0; vi[1] = 6; mesh->AddBdrSegment(vi, 1);
vi[0] = 6; vi[1] = 13; mesh->AddBdrSegment(vi, 1);
vi[0] = 13; vi[1] = 19; mesh->AddBdrSegment(vi, 1);
vi[0] = 19; vi[1] = 26; mesh->AddBdrSegment(vi, 1);
vi[0] = 28; vi[1] = 22; mesh->AddBdrSegment(vi, 2);
vi[0] = 22; vi[1] = 15; mesh->AddBdrSegment(vi, 2);
vi[0] = 15; vi[1] = 9; mesh->AddBdrSegment(vi, 2);
vi[0] = 9; vi[1] = 2; mesh->AddBdrSegment(vi, 2);
for (int i=0; i<2; i++)
{
int o = 13 * i;
vi[0] = o + 7; vi[1] = o + 3; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 10; vi[1] = o + 7; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 11; vi[1] = o + 10; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 12; vi[1] = o + 11; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 8; vi[1] = o + 12; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 5; vi[1] = o + 8; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 4; vi[1] = o + 5; mesh->AddBdrSegment(vi, 3 + i);
vi[0] = o + 3; vi[1] = o + 4; mesh->AddBdrSegment(vi, 3 + i);
}
double d[2];
double a = a_ / M_SQRT2;
d[0] = -1.0; d[1] = -0.5; mesh->AddVertex(d);
d[0] = -1.0; d[1] = 0.0; mesh->AddVertex(d);
d[0] = -1.0; d[1] = 0.5; mesh->AddVertex(d);
d[0] = -0.5 - a; d[1] = -a; mesh->AddVertex(d);
d[0] = -0.5 - a; d[1] = 0.0; mesh->AddVertex(d);
d[0] = -0.5 - a; d[1] = a; mesh->AddVertex(d);
d[0] = -0.5; d[1] = -0.5; mesh->AddVertex(d);
d[0] = -0.5; d[1] = -a; mesh->AddVertex(d);
d[0] = -0.5; d[1] = a; mesh->AddVertex(d);
d[0] = -0.5; d[1] = 0.5; mesh->AddVertex(d);
d[0] = -0.5 + a; d[1] = -a; mesh->AddVertex(d);
d[0] = -0.5 + a; d[1] = 0.0; mesh->AddVertex(d);
d[0] = -0.5 + a; d[1] = a; mesh->AddVertex(d);
d[0] = 0.0; d[1] = -0.5; mesh->AddVertex(d);
d[0] = 0.0; d[1] = 0.0; mesh->AddVertex(d);
d[0] = 0.0; d[1] = 0.5; mesh->AddVertex(d);
d[0] = 0.5 - a; d[1] = -a; mesh->AddVertex(d);
d[0] = 0.5 - a; d[1] = 0.0; mesh->AddVertex(d);
d[0] = 0.5 - a; d[1] = a; mesh->AddVertex(d);
d[0] = 0.5; d[1] = -0.5; mesh->AddVertex(d);
d[0] = 0.5; d[1] = -a; mesh->AddVertex(d);
d[0] = 0.5; d[1] = a; mesh->AddVertex(d);
d[0] = 0.5; d[1] = 0.5; mesh->AddVertex(d);
d[0] = 0.5 + a; d[1] = -a; mesh->AddVertex(d);
d[0] = 0.5 + a; d[1] = 0.0; mesh->AddVertex(d);
d[0] = 0.5 + a; d[1] = a; mesh->AddVertex(d);
d[0] = 1.0; d[1] = -0.5; mesh->AddVertex(d);
d[0] = 1.0; d[1] = 0.0; mesh->AddVertex(d);
d[0] = 1.0; d[1] = 0.5; mesh->AddVertex(d);
mesh->FinalizeTopology();
mesh->SetCurvature(1, true);
// Stitch the ends of the stack together
{
Array<int> v2v(mesh->GetNV());
for (int i = 0; i < v2v.Size() - 3; i++)
{
v2v[i] = i;
}
// identify vertices on the narrow ends of the rectangle
v2v[v2v.Size() - 3] = 0;
v2v[v2v.Size() - 2] = 1;
v2v[v2v.Size() - 1] = 2;
// renumber elements
for (int i = 0; i < mesh->GetNE(); i++)
{
Element *el = mesh->GetElement(i);
int *v = el->GetVertices();
int nv = el->GetNVertices();
for (int j = 0; j < nv; j++)
{
v[j] = v2v[v[j]];
}
}
// renumber boundary elements
for (int i = 0; i < mesh->GetNBE(); i++)
{
Element *el = mesh->GetBdrElement(i);
int *v = el->GetVertices();
int nv = el->GetNVertices();
for (int j = 0; j < nv; j++)
{
v[j] = v2v[v[j]];
}
}
mesh->RemoveUnusedVertices();
mesh->RemoveInternalBoundaries();
}
mesh->SetCurvature(3, true);
for (int l = 0; l < ref; l++)
{
mesh->UniformRefinement();
}
mesh->Transform(trans);
return mesh;
}
double IntegrateBC(const ParGridFunction &x, const Array<int> &bdr,
double alpha, double beta, double gamma,
double &glb_err)
{
double loc_vals[3];
double &nrm = loc_vals[0];
double &avg = loc_vals[1];
double &error = loc_vals[2];
nrm = 0.0;
avg = 0.0;
error = 0.0;
const bool a_is_zero = alpha == 0.0;
const bool b_is_zero = beta == 0.0;
const ParFiniteElementSpace &fes = *x.ParFESpace();
MFEM_ASSERT(fes.GetVDim() == 1, "");
ParMesh &mesh = *fes.GetParMesh();
Vector shape, loc_dofs, w_nor;
DenseMatrix dshape;
Array<int> dof_ids;
for (int i = 0; i < mesh.GetNBE(); i++)
{
if (bdr[mesh.GetBdrAttribute(i)-1] == 0) { continue; }
FaceElementTransformations *FTr = mesh.GetBdrFaceTransformations(i);
if (FTr == nullptr) { continue; }
const FiniteElement &fe = *fes.GetFE(FTr->Elem1No);
MFEM_ASSERT(fe.GetMapType() == FiniteElement::VALUE, "");
const int int_order = 2*fe.GetOrder() + 3;
const IntegrationRule &ir = IntRules.Get(FTr->FaceGeom, int_order);
fes.GetElementDofs(FTr->Elem1No, dof_ids);
x.GetSubVector(dof_ids, loc_dofs);
if (!a_is_zero)
{
const int sdim = FTr->Face->GetSpaceDim();
w_nor.SetSize(sdim);
dshape.SetSize(fe.GetDof(), sdim);
}
if (!b_is_zero)
{
shape.SetSize(fe.GetDof());
}
for (int j = 0; j < ir.GetNPoints(); j++)
{
const IntegrationPoint &ip = ir.IntPoint(j);
IntegrationPoint eip;
FTr->Loc1.Transform(ip, eip);
FTr->Face->SetIntPoint(&ip);
double face_weight = FTr->Face->Weight();
double val = 0.0;
if (!a_is_zero)
{
FTr->Elem1->SetIntPoint(&eip);
fe.CalcPhysDShape(*FTr->Elem1, dshape);
CalcOrtho(FTr->Face->Jacobian(), w_nor);
val += alpha * dshape.InnerProduct(w_nor, loc_dofs) / face_weight;
}
if (!b_is_zero)
{
fe.CalcShape(eip, shape);
val += beta * (shape * loc_dofs);
}
// Measure the length of the boundary
nrm += ip.weight * face_weight;
// Integrate alpha * n.Grad(x) + beta * x
avg += val * ip.weight * face_weight;
// Integrate |alpha * n.Grad(x) + beta * x - gamma|^2
val -= gamma;
error += (val*val) * ip.weight * face_weight;
}
}
double glb_vals[3];
MPI_Allreduce(loc_vals, glb_vals, 3, MPI_DOUBLE, MPI_SUM, fes.GetComm());
double glb_nrm = glb_vals[0];
double glb_avg = glb_vals[1];
glb_err = glb_vals[2];
// Normalize by the length of the boundary
if (std::abs(glb_nrm) > 0.0)
{
glb_err /= glb_nrm;
glb_avg /= glb_nrm;
}
// Compute l2 norm of the error in the boundary condition (negative
// quadrature weights may produce negative 'error')
glb_err = (glb_err >= 0.0) ? sqrt(glb_err) : -sqrt(-glb_err);
// Return the average value of alpha * n.Grad(x) + beta * x
return glb_avg;
}