-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
224 lines (185 loc) · 10.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import sys
import math
import random
import itertools
from typing import Iterable
import pdb
import torch
import util.misc as utils
from datasets.eval_detection import DetectionEvaluator
from datasets import (coco_base_class_ids, coco_novel_class_ids, \
voc_base1_class_ids, voc_novel1_class_ids, \
voc_base2_class_ids, voc_novel2_class_ids, \
voc_base3_class_ids, voc_novel3_class_ids)
@torch.no_grad()
def sample_support_categories(args, targets, support_images, support_class_ids, support_targets):
"""
This function is used during training. It does the followings:
1. Samples the support categories (total num: args.total_num_support; maximum positive num: args.max_pos_support)
(Insufficient positive support categories will be replaced with negative support categories.)
2. Filters ground truths of the query images.
We only keep ground truths whose labels are sampled as support categories.
3. Samples and pre-processes support_images, support_class_ids, and support_targets.
"""
support_images = list(itertools.chain(*support_images))
support_class_ids = torch.cat(support_class_ids, dim=0).tolist()
support_targets = list(itertools.chain(*support_targets))
positive_labels = torch.cat([target['labels'] for target in targets], dim=0).unique()
num_positive_labels = positive_labels.shape[0]
positive_labels_list = positive_labels.tolist()
negative_labels_list = list(set(support_class_ids) - set(positive_labels_list))
num_negative_labels = len(negative_labels_list)
positive_label_indexes = [i for i in list(range(len(support_images))) if support_class_ids[i] in positive_labels_list]
negative_label_indexes = [i for i in list(range(len(support_images))) if support_class_ids[i] in negative_labels_list]
meta_support_images, meta_support_class_ids, meta_support_targets = list(), list(), list()
for _ in range(args.episode_num):
NUM_POS = random.randint(max(0, args.episode_size - num_negative_labels),
min(num_positive_labels, args.episode_size))
NUM_NEG = args.episode_size - NUM_POS
# Sample positive support classes: make sure in every episode, there is no repeated category
while True:
pos_support_indexes = random.sample(positive_label_indexes, NUM_POS)
if NUM_POS == len(set([support_class_ids[i] for i in pos_support_indexes])):
break
# Sample negative support classes: try our best to ensure in every episode there is no repeated category
num_trial = 0
while num_trial < 50:
neg_support_indexes = random.sample(negative_label_indexes, NUM_NEG)
if NUM_NEG == len(set([support_class_ids[i] for i in neg_support_indexes])):
break
else:
num_trial += 1
support_indexes = pos_support_indexes + neg_support_indexes
random.shuffle(support_indexes)
selected_support_images = [support_images[i] for i in support_indexes]
selected_support_class_ids = [support_class_ids[i] for i in support_indexes]
selected_support_targets = [support_targets[i] for i in support_indexes]
meta_support_images += selected_support_images
meta_support_class_ids += selected_support_class_ids
meta_support_targets += selected_support_targets
meta_support_images = utils.nested_tensor_from_tensor_list(meta_support_images)
meta_support_class_ids = torch.tensor(meta_support_class_ids)
return targets, meta_support_images, meta_support_class_ids, meta_support_targets
def train_one_epoch(args,
model: torch.nn.Module,
criterion: torch.nn.Module,
dataloader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 50 # print frequency
for samples, targets in metric_logger.log_every(dataloader, print_freq, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is NaN - {}. \nTraining terminated unexpectedly.\n".format(loss_value))
print("loss dict:")
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
coco_evaluator = DetectionEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
panoptic_evaluator = None
if 'panoptic' in postprocessors.keys():
panoptic_evaluator = PanopticEvaluator(
data_loader.dataset.ann_file,
data_loader.dataset.ann_folder,
output_dir=os.path.join(output_dir, "panoptic_eval"),
)
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
if 'segm' in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
if panoptic_evaluator is not None:
res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes)
for i, target in enumerate(targets):
image_id = target["image_id"].item()
file_name = f"{image_id:012d}.png"
res_pano[i]["image_id"] = image_id
res_pano[i]["file_name"] = file_name
panoptic_evaluator.update(res_pano)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
if panoptic_evaluator is not None:
panoptic_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
panoptic_res = None
if panoptic_evaluator is not None:
panoptic_res = panoptic_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if 'bbox' in postprocessors.keys():
stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
if 'segm' in postprocessors.keys():
stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
if panoptic_res is not None:
stats['PQ_all'] = panoptic_res["All"]
stats['PQ_th'] = panoptic_res["Things"]
stats['PQ_st'] = panoptic_res["Stuff"]
return stats, coco_evaluator