-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
64 lines (54 loc) · 1.91 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os
from PIL import Image
class whale_dolphin(Dataset):
def __init__(self, root, train=True):
train_imgs = []
val_imgs = []
for path in os.listdir(root):
label = int(path[:1])
path_lst = path.split(".")
if int(path_lst[0][2:]) < 1301:
train_imgs.append((os.path.join(root, path), label))
else:
val_imgs.append((os.path.join(root, path), label))
self.imgs = train_imgs if train else val_imgs
self.transforms = transforms.Compose([
transforms.ToTensor()
])
def __len__(self):
return len(self.imgs)
def __getitem__(self, index):
img_path = self.imgs[index][0]
img_label = self.imgs[index][1]
img_data = Image.open(img_path)
img_data = self.transforms(img_data)
return img_data, img_label
# This this the data loader for test set
class whale_dolphin_test(Dataset):
def __init__(self, root):
self.imgs = []
for path in os.listdir(root):
label = int(path[:1])
path_lst = path.split(".")
self.imgs.append((os.path.join(root, path), label))
self.transforms = transforms.Compose([
transforms.ToTensor()
])
def __len__(self):
return len(self.imgs)
def __getitem__(self, index):
img_path = self.imgs[index][0]
img_label = self.imgs[index][1]
img_data = Image.open(img_path)
img_data = self.transforms(img_data)
return img_data, img_label
if __name__ == '__main__':
root = 'dataset/train'
train_dataset = whale_dolphin(root, train=True)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
for data, label in train_dataloader:
print(data.shape)
print(len(label))
break