-
Notifications
You must be signed in to change notification settings - Fork 0
/
GnoweeUtilities.py
881 lines (796 loc) · 40.2 KB
/
GnoweeUtilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
"""!
@file src/GnoweeUtilities.py
@package Gnowee
@defgroup GnoweeUtilities GnoweeUtilities
@brief Classes and methods to support the Gnowee optimization algorithm.
@author James Bevins
@date 23May17
@copyright <a href='../../licensing/COPYRIGHT'>© 2017 UC
Berkeley Copyright and Disclaimer Notice</a>
@license <a href='../../licensing/LICENSE'>GNU GPLv3.0+ </a>
"""
import numpy as np
import copy as cp
from Constraints import Constraint
from ObjectiveFunction import ObjectiveFunction
#------------------------------------------------------------------------------#
class Parent(object):
"""!
@ingroup GnoweeUtilities
The class contains all of the parameters pertinent to a member of the
population.
"""
def __init__(self, variables=None, fitness=1E15, changeCount=0,
stallCount=0):
"""!
Constructor to build the Parent class.
@param self: <em> Parent pointer </em> \n
The Parent pointer. \n
@param variables: \e array \n
The set of variables representing a design solution. \n
@param fitness: \e float \n
The assessed fitness for the current set of variables. \n
@param changeCount: \e integer \n
The number of improvements to the current population member. \n
@param stallCount: \e integer \n
The number of evaluations since the last improvement. \n
"""
## @var variables
# \e array:
# The set of variables representing a design solution.
self.variables = variables
## @var fitness
# \e float:
# The assessed fitness for the current set of variables.
self.fitness = fitness
## @var changeCount
# \e integer:
# The number of improvements to the current population member.
self.changeCount = changeCount
## @var stallCount
# \e integer:
# he number of evaluations since the last improvement.
self.stallCount = stallCount
def __repr__(self):
"""!
Parent print function.
@param self: <em> Parent pointer </em> \n
The Parent pointer. \n
"""
return "Parent({}, {}, {}, {})".format(self.variables, self.fitness,
self.changeCount,
self.stallCount)
def __str__(self):
"""!
Human readable Parent print function.
@param self: <em> Parent pointer </em> \n
The Parent pointer. \n
"""
header = ["Parent:"]
header += ["Variables = {}".format(self.variables)]
header += ["Fitness = {}".format(self.fitness)]
header += ["Change Count = {}".format(self.changeCount)]
header += ["Stall Count = {}".format(self.stallCount)]
return "\n".join(header)+"\n"
#------------------------------------------------------------------------------#
class Event(object):
"""!
@ingroup GnoweeUtilities
Represents a snapshot in the optimization process to be used for debugging,
benchmarking, and user feedback.
"""
def __init__(self, generation, evaluations, fitness, design):
"""!
Constructor to build the Event class.
@param self: <em> Event pointer </em> \n
The Event pointer. \n
@param generation: \e integer \n
The generation the design was arrived at. \n
@param evaluations: \e integer \n
The number of fitness evaluations done to obtain this design. \n
@param fitness: \e float \n
The assessed fitness for the current set of variables. \n
@param design: \e array \n
The set of variables representing a design solution. \n
"""
## @var generation
# \e integer:
# The generation the design was arrived at.
self.generation = generation
## @var evaluations
# \e integer:
# The number of fitness evaluations done to obtain this design.
self.evaluations = evaluations
## @var fitness
# \e float:
# The assessed fitness for the current set of variables.
self.fitness = fitness
## @var design
# \e array:
# The set of variables representing a design solution.
self.design = design
def __repr__(self):
"""!
Event print function.
@param self: <em> Event pointer </em> \n
The Event pointer. \n
"""
return "Event({}, {}, {}, {})".format(self.generation, self.evaluations,
self.fitness, self.design)
def __str__(self):
"""!
Human readable Event print function.
@param self: <em> Event pointer </em> \n
The Event pointer. \n
"""
header = ["Event:"]
header += ["Generation # = {}".format(self.generation)]
header += ["Evaluation # = {}".format(self.evaluations)]
header += ["Fitness = {}".format(self.fitness)]
header += ["Design = {}".format(self.design)]
return "\n".join(header)+"\n"
#------------------------------------------------------------------------------#
class ProblemParameters(object):
"""!
@ingroup GnoweeUtilities
Creates an object containing key features of the chosen optimization
problem. The methods provide a way of predefining problems for repeated use.
"""
def __init__(self, objective=None, constraints=[], lowerBounds=[],
upperBounds=[], varType=[], discreteVals=[], optimum=0.0,
pltTitle='', histTitle='', varNames=['']):
"""!
Constructor for the ProblemParameters class. The default constructor
is useless for an optimization, but allows a placeholder class to be
instantiated.
This class contains the problem definitions required for an
optimization problem. It allows for single objective, multi-constraint
mixed variable optimization and any subset thereof. At a minimum,
the objective, lowerBounds, upperBounds, and varType attributes must be
specified to run Gnowee.
The optimum is used for convergence criteria and can be input if
known. If not, the default (0.0) will suffice for most problems,
or the user can make an educated guess based on their knowledge of
the problem.
@param self: <em> ProblemParameters pointer </em> \n
The ProblemParameters pointer. \n
@param objective: <em> ObjectiveFunction object </em> \n
The optimization objective function to be used. Only a single
objective function can be specified. \n
@param constraints: <em> list of Constraint objects </em> \n
The constraints on the problem. Zero constraints can be specified
as an empty list ([]), or multiple constraints can be specified
as a list of Constraint objects. \n
@param lowerBounds: \e array \n
The lower bounds of the design variable(s). Only enter the bounds
for continuous and integer/binary variables. The order must match
the order specified in varType and ub. \n
@param upperBounds: \e array \n
The upper bounds of the design variable(s). Only enter the bounds
for continuous and integer/binary variables. The order must match
the order specified in varType and lb. \n
@param varType: <em> list or array </em> \n
The type of variable for each position in the upper and lower
bounds array. Discrete and combinatorial variables are to be
included last as they are specified separately from the lb/ub
through the discreteVals optional input. The order should be
the same as shown below. \n
Allowed values: \n
'c' = continuous over a given range (range specified in lb &
ub). \n
'i' = integer/binary (difference denoted by ub/lb). \n
'f' = fixed design variable. Will not be considered of any
permutation. \n
'd' = discrete where the allowed values are given by the option
discreteVals nxm arrary with n=# of discrete variables and
m=# of values that can be taken for each variable. \n
'x' = combinatorial. All of the variables denoted by x are assumed
to be "swappable" in combinatorial permutations and assumed
to take discrete values specified in by discreteVals. There
must be at least two variables denoted as combinatorial.
The algorithms are only set up to handle one set of
combinatorial variables per optimization problem.
Combinatorial variales should be specified last and as a
contiguous group. \n
@param discreteVals: <em> list of list(s) </em> \n
nxm with n=# of discrete and combinatorial variables and m=# o
f values that can be taken for each variable. For example, if you
had two variables representing the tickness and diameter of a
cylinder that take standard values, the discreteVals could be
specified as: \n
discreteVals = [[0.125, 0.25, 0.375], [0.25, 0.5, 075]] \n
For combinatorial problems, you must specify the same possible
values that can be taken n times, where n is the number of different
positions in the combinatorial sequence. suppose you had a gear that
could be placed at position 2, 3, 4, or 5. The discreteVals would be
specified as (assuming no other discretes): \n
discreteVals = [[2, 3, 4, 5], [2, 3, 4, 5], [2, 3, 4, 5],
[2, 3, 4, 5]] \ n
Gnowee will then map the optimization results to these allowed
values. \n
@param optimum: \e float \n
The global optimal solution. \n
@param pltTitle: \e string \n
The title used for plotting the results of the optimization. \n
@param histTitle: \e string \n
The plot title for the histogram of the optimization results. \n
@param varNames: <em> list of strings </em>
The names of the variables for the optimization problem. \n
"""
## @var objective
# <em> ObjectiveFunction Object: </em> The objective function object
# to be used for the optimization.
self.objective = objective
## @var constraints
# <em> list of Constraint Objects: </em> The constraints on the
# optimization design space.
if type(constraints) != list:
self.constraints = [constraints]
else:
self.constraints = constraints
## @var lb
# \e array: The lower bounds of the design variable(s).
self.lb = lowerBounds
## @var ub
# \e array: The upper bounds of the design variable(s).
self.ub = upperBounds
## @var varType
# \e array: The type of variable for each position in the upper and
# lower bounds array.
self.varType = varType
## @var discreteVals
#\e array: nxm with n=# of discrete variables and m=# of values that
# can be taken for each variable.
self.discreteVals = discreteVals
## @var optimum
# \e float: The global optimal solution.
self.optimum = optimum
## @var pltTitle
# \e string: The title used for plotting the results of the
# optimization.
self.pltTitle = pltTitle
## @var histTitle
# \e string: The plot title for the histogram of the optimization
# results.
self.histTitle = histTitle
## @var varNames
# <em> list of strings: </em> The names of the variables for the
# optimization problem.
self.varNames = varNames
# Ensure that the correct inputs were provided; modify as neccesary
# to meet Gnowee's requirements;
# Populate variable type id vectors
if len(self.lb) and len(self.ub) and len(self.varType) != 0 \
or len(self.discreteVals) and len(varType) != 0:
self.sanitize_inputs()
## @var cID:
# \e array: The continuous variable truth array. This contains
# a one in the positions corresponding to continuous variables
# and 0 otherwise.
self.cID = []
## @var iID:
# \e array: The integer variable truth array. This contains
# a one in the positions corresponding to continuous variables
# and 0 otherwise.
self.iID = []
## @var dID:
# \e array: The discrete variable truth array. This contains
# a one in the positions corresponding to continuous variables
# and 0 otherwise.
self.dID = []
## @var xID:
# \e array: The combinatorial variable truth array. This contains
# a one in the positions corresponding to continuous variables
# and 0 otherwise.
self.xID = []
# Develop ID vectors for each variable type
for var in range(len(self.varType)):
if 'c' in self.varType[var]:
self.cID.append(1)
else:
self.cID.append(0)
if 'i' in self.varType[var]:
self.iID.append(1)
else:
self.iID.append(0)
if 'd' in self.varType[var]:
self.dID.append(1)
else:
self.dID.append(0)
if 'x' in self.varType[var]:
self.xID.append(1)
else:
self.xID.append(0)
self.cID = np.array(self.cID)
self.iID = np.array(self.iID)
self.dID = np.array(self.dID)
self.xID = np.array(self.xID)
def __repr__(self):
"""!
ProblemParameters class attribute print function.
@param self: <em> pointer </em> \n
The ProblemParameters pointer. \n
"""
return ("ProblemParameters({}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, "
"{}, {}, {})".format(self.objective, self.constraints, self.lb,
self.ub, self.varType, self.discreteVals,
self.optimum, self.pltTitle, self.histTitle,
self.varNames, self.cID, self.iID, self.dID,
self.xID))
def __str__(self):
"""!
Human readable ProblemParameters print function.
@param self: \e pointer \n
The ProblemParameters pointer. \n
"""
header = [" ProblemParameters:"]
header += ["Lower Bounds: {}".format(self.lb)]
header += ["Upper Bounds: {}".format(self.ub)]
header += ["Variable Types: {}".format(self.varType)]
header += ["Continuous ID Vector: {}".format(self.cID)]
header += ["Integer ID Vector: {}".format(self.iID)]
header += ["Discrete ID Vector: {}".format(self.dID)]
header += ["Combinatorial ID Vector: {}".format(self.xID)]
if len(self.discreteVals) > 1:
if self.discreteVals[0] == self.discreteVals[1]:
header += [("Discrete Values (only printing elem 1 of {}): "
"{}".format(len(self.discreteVals[0]),
self.discreteVals[0]))]
else:
header += [("Discrete Values: {} ".format(self.discreteVals))]
header += ["Global Optimum: {}".format(self.optimum)]
header += ["Plot Title: {}".format(self.pltTitle)]
header += ["Histogram Title: {}".format(self.histTitle)]
header += ["Variable Names: {}".format(self.varNames)]
header += ["{}".format(self.objective)]
for con in self.constraints:
header += ["{}".format(con)]
return "\n".join(header)+"\n"
def sanitize_inputs(self):
"""!
Checks and cleans user inputs to be compatible with expectations from
the Gnowee algorithm.
@param self: \e pointer \n
The ProblemParameters pointer. \n
"""
# Check input variables
assert self.varType.count('d') + self.varType.count('x') \
== len(self.discreteVals), ('The '
'allowed discrete values must be specified for '
'each discrete variable. {} in varType, but {} in '
'discreteVals.'.format(self.varType.count('d')+\
self.varType.count('x'), len(self.discreteVals)))
assert self.varType.count('c')+self.varType.count('i') == len(self.ub)\
, ('Each specified continuous, binary, and '
'integer variable must have a corresponding '
'upper and lower bounds. {} variables and {} '
'bounds specified'.format(self.varType.count('c')\
+ self.varType.count('i'), len(self.lb)))
assert max(len(self.varType) - 1 - self.varType[::-1].index('c') \
if 'c' in self.varType else -1,
len(self.varType) - 1 - self.varType[::-1].index('i') \
if 'i' in self.varType else -1) \
< self.varType.index('d') if 'd' in self.varType else \
len(self.varType), ('The discrete variables must be '
'specified after the continuous, binary, and integer '
'variables. The order given was {}'.format(self.varType))
assert len(self.lb) == len(self.ub), ('The lower and upper bounds must '
'have the same dimensions. lb = {}, ub = {}'.format(
len(self.lb), len(self.ub)))
assert set(self.varType).issubset(['c', 'i', 'd', 'x', 'f']), ('The '
'variable specifications do not match the allowed values '
'of "c", "i", "d", "x", "f". The varTypes specified is '
'{}'.format(self.varType))
if len(self.ub) != 0 and len(self.lb) != 0:
assert np.all(self.ub > self.lb), ('All upper-bound values must '
'be greater than lower-bound values')
# Ensure discreteVals is a list
if type(self.discreteVals) != list:
self.discreteVals = self.discreteVals.tolist()
# Append discretes to lb and ubs and convert to numpy arrays
for d in range(len(self.discreteVals)):
self.lb.append(0)
self.ub.append(len(self.discreteVals[d])-1)
self.lb = np.array(self.lb)
self.ub = np.array(self.ub)
def map_to_discretes(self, variables):
"""!
Maps the sampled discrete indices to the array of allowable discrete
values and returns the associated variable array.
@param self: \e pointer \n
The ProblemParameters pointer. \n
The Parent pointer. \n
@param variables: \e array \n
The set of variables representing a design solution. \n
@return \e array: An array containing the variables associated with
the design.
"""
varID = self.dID+self.xID
if sum(varID) != 0:
tmpVar = []
i = 0
for j in range(len(varID)):
if varID[j] == 1:
tmpVar.append(self.discreteVals[i][int(variables[j])])
i += 1
elif self.iID[j] == 1:
tmpVar.append(int(variables[j]))
else:
tmpVar.append(variables[j])
else:
tmpVar = cp.copy(variables)
return np.array(tmpVar)
def map_from_discretes(self, variables):
"""!
Maps the discrete values to indices for sampling.
@param self: \e pointer \n
The ProblemParameters pointer. \n
The Parent pointer. \n
@param variables: \e array \n
The set of variables representing a design solution. \n
@return \e array: An array containing the variables associated with
the design.
"""
varID = self.dID+self.xID
variables = variables.tolist()
if sum(varID) != 0:
tmpVar = []
i = 0
for j in range(len(varID)):
if varID[j] == 1:
tmpVar.append(self.discreteVals[i].index(variables[j]))
i += 1
else:
tmpVar.append(variables[j])
else:
tmpVar = cp.copy(variables)
return np.array(tmpVar)
def set_preset_params(self, funct, algorithm='Gnowee', dimension=2):
"""!
Instantiates a ProblemParameters object and populations member
variables from a set of predefined problem types.
@param self: \e pointer \n
The ProblemParameters pointer. \n
@param funct: \e string \n
Name of function being optimized. \n
@param algorithm: \e string \n
Name of optimization program used. \n
@param dimension: \e integer \n
Used to set the dimension for scalable problems. \n
"""
# Build temp varType array for continuous problems with variable
# dimensions
v = []
for i in range(0, dimension):
v.append('c')
for case in Switch(funct):
if case('mi_spring'):
ProblemParameters.__init__(self, ObjectiveFunction('mi_spring'),
Constraint('mi_spring', 0.0), [0.01, 1],
[3.0, 10], ['c', 'i', 'd'],
[[0.009, 0.0095, 0.0104, 0.0118,
0.0128, 0.0132, 0.014, 0.015, 0.0162,
0.0173, 0.018, 0.020, 0.023, 0.025, 0.028,
0.032, 0.035, 0.041, 0.047, 0.054, 0.063,
0.072, 0.080, 0.092, 0.105, 0.120, 0.135,
0.148, 0.162, 0.177, 0.192, 0.207, 0.225,
0.244, 0.263, 0.283, 0.307, 0.331, 0.362,
0.394, 0.4375, 0.500]], 2.65856,
('\\textbf{MI Spring Optimization using %s}'
%algorithm),
('\\textbf{Function Evaluations for Spring '
'Optimization using %s}' %algorithm),
['\\textbf{Fitness}', '\\textbf{Spring Diam}',
'\\textbf{\# Coils}', '\\textbf{Wire Diam}'])
break
if case('spring'):
ProblemParameters.__init__(self, ObjectiveFunction('spring'),
Constraint('spring', 0.0), [0.05, 0.25, 2.0],
[2.0, 1.3, 15.0], ['c', 'c', 'c'], [],
0.012665,
('\\textbf{Spring Optimization using %s}'
%algorithm),
('\\textbf{Function Evaluations for Spring '
'Optimization using %s}' %algorithm),
['\\textbf{Fitness}', '\\textbf{Width}',
'\\textbf{Diameter}', '\\textbf{Length}'])
break
if case('pressure_vessel'):
ProblemParameters.__init__(self,
ObjectiveFunction('pressure_vessel'),
Constraint('pressure_vessel', 0.0),
[0.0625, 0.0625, 10.0, 1E-8],
[1.25, 99*0.0625, 50.0, 200.0],
['c', 'c', 'c', 'c'], [], 5885.332800,
('\\textbf{Pressure Vessel Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for '
'Pressure Vessel Optimization using %s}'
%algorithm),
['\\textbf{Fitness}', '\\textbf{Thickness}',
'\\textbf{Head Thickness}',
'\\textbf{Inner Radius}',
'\\textbf{Cylinder Length}'])
break
if case('mi_pressure_vessel'):
ProblemParameters.__init__(self,
ObjectiveFunction('mi_pressure_vessel'),
Constraint('mi_pressure_vessel', 0.0),
[10.0, 1E-8], [50.0, 200.0],
['c', 'c', 'd', 'd'],
[(np.asarray(range(99))*0.0625+0.0625)\
.tolist(),
(np.asarray(range(99))*0.0625+0.0625)\
.tolist()],
6059.714335,
('\\textbf{MI Pressure Vessel Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for '
'MI Pressure Vessel Optimization using %s}'
%algorithm),
['\\textbf{Fitness}',
'\\textbf{Inner Radius}',
'\\textbf{Cylinder Length}',
'\\textbf{Shell Thickness}',
'\\textbf{Head Thickness}'])
break
if case('welded_beam'):
ProblemParameters.__init__(self,
ObjectiveFunction('welded_beam'),
Constraint('welded_beam', 0.0),
[0.1, 0.1, 1E-8, 1E-8],
[10.0, 10.0, 10.0, 2.0],
['c', 'c', 'c', 'c'], [], 1.724852,
('\\textbf{Welded Beam Optimization using '
'%s}' %algorithm),
('\\textbf{Function Evaluations for Welded '
'Beam Optimization using %s}' %algorithm),
['\\textbf{Fitness}', '\\textbf{Weld H}',
'\\textbf{Weld L}', '\\textbf{Beam H}',
'\\textbf{Beam W}'])
break
if case('speed_reducer'):
ProblemParameters.__init__(self,
ObjectiveFunction('speed_reducer'),
Constraint('speed_reducer', 0.0),
[2.6, 0.7, 17.0, 7.3, 7.8, 2.9, 5.0],
[3.6, 0.8, 28.0, 8.3, 8.3, 3.9, 5.5],
['c', 'c', 'c', 'c', 'c', 'c', 'c'], [],
2996.348165,
('\\textbf{Speed Reducer Optimization using '
'%s}' %algorithm),
('\\textbf{Function Evaluations for Speed '
'Reducer Optimization using %s}' %algorithm),
['\\textbf{Fitness}', '\\textbf{Face Width}',
'\\textbf{Module}', '\\textbf{Pinion Teeth}',
'\\textbf{1st Shaft L}',
'\\textbf{2nd Shaft L}',
'\\textbf{1st Shaft D}',
'\\textbf{2nd Shaft D}'])
break
if case('mi_chemical_process'):
ProblemParameters.__init__(self,
ObjectiveFunction('mi_chemical_process'),
Constraint('mi_chemical_process', 0.0),
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[10.0, 10.0, 10.0, 1, 1, 1, 1],
['c', 'c', 'c', 'i', 'i', 'i', 'i'], [],
4.579582,
('\\textbf{MI Chemical Process Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for Chemical '
'Process Optimization using %s}' %algorithm),
['\\textbf{Fitness}', '\\textbf{x1}',
'\\textbf{x2}', '\\textbf{x3}',
'\\textbf{y1}', '\\textbf{y2}',
'\\textbf{y3}', '\\textbf{y4}'])
break
if case('dejong'):
ProblemParameters.__init__(self, ObjectiveFunction('dejong'),
[], np.ones(dimension)*-5.12,
np.ones(dimension)*5.12, v, [], 0.0000,
('\\textbf{De Jong Function Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for De Jong '
'Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('shifted_dejong'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_dejong'),
[], np.ones(dimension)*-5.12,
np.ones(dimension)*-5.12, v, [], 0.0000,
('\\textbf{Shifted De Jong Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'De Jong Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('ackley'):
ProblemParameters.__init__(self,
ObjectiveFunction('ackley'),
[], np.ones(dimension)*-25.,
np.ones(dimension)*25., v, [], 0.0000,
('\\textbf{Ackley Function Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for Ackley '
'Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('shifted_ackley'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_ackley'),
[], np.ones(dimension)*-25.,
np.ones(dimension)*25., v, [], 0.0000,
('\\textbf{Shifted Ackley Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'Ackley Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('easom'):
ProblemParameters.__init__(self, ObjectiveFunction('easom'),
[], np.array([-100., -100.]),
np.array([100., 100.]), v, [], -1.0000,
('\\textbf{Easom Function Optimization using '
'%s}' %algorithm),
('\\textbf{Function Evaluations for Easom '
'Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}', '\\textbf{x}',
'\\textbf{y}'])
break
if case('shifted_easom'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_easom'),
[], np.array([-100., -100.]),
np.array([100., 100.]), v, [], -1.0000,
('\\textbf{Shifted Easom Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'Easom Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}', '\\textbf{x}',
'\\textbf{y}'])
break
if case('griewank'):
ProblemParameters.__init__(self,
ObjectiveFunction('griewank'),
[], np.ones(dimension)*-600.,
np.ones(dimension)*600., v, [], 0.0000,
('\\textbf{Griewank Function Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for Griewank '
'Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('shifted_griewank'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_griewank'),
[], np.ones(dimension)*-600.,
np.ones(dimension)*600., v, [], 0.0000,
('\\textbf{Shifted Easom Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'Easom Function Optimization using %s}'
%algorithm,
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)]))
break
if case('rastrigin'):
ProblemParameters.__init__(self, ObjectiveFunction('rastrigin'),
[], np.ones(dimension)*-5.12,
np.ones(dimension)*5.12, v, [], 0.0000,
('\\textbf{Rastrigin Function Optimization '
'using %s}' %algorithm), \
('\\textbf{Function Evaluations for '
'Rastrigin Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('shifted_rastrigin'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_rastrigin'),
[], np.ones(dimension)*-5.12,
np.ones(dimension)*5.12, v, [], 0.0000,
('\\textbf{Shifted Rastrigin Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'Rastrigin Function Optimization using %s}'
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('rosenbrock'):
ProblemParameters.__init__(self,
ObjectiveFunction('rosenbrock'),
[], np.ones(dimension)*-5.,
np.ones(dimension)*5., v, [], 0.0000,
('\\textbf{Rosenbrock Function Optimization '
'using %s}' %algorithm),
('\\textbf{Function Evaluations for '
'Rosenbrock Function Optimization using '
'%s}' %algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('shifted_rosenbrock'):
ProblemParameters.__init__(self,
ObjectiveFunction('shifted_rosenbrock'),
[], np.ones(dimension)*-5.,
np.ones(dimension)*5., v, [], 0.0000,
('\\textbf{Shifted Rosenbrock Function '
'Optimization using %s}' %algorithm),
('\\textbf{Function Evaluations for Shifted '
'Rosenbrock Function Optimization using %s}'\
%algorithm),
['\\textbf{Fitness}']+['\\textbf{Dim \#%s}' \
%i for i in range(dimension)])
break
if case('tsp'):
ProblemParameters.__init__(self, ObjectiveFunction('tsp'),
[], [], [], [], [], 0.0,
('\\textbf{TSP Optimization using %s}'
%algorithm),
('\\textbf{Function Evaluations for TSP '
'using %s}' %algorithm),
['\\textbf{Fitness}'])
break
if case():
print ('ERROR: Fishing in the deep end you are. Define your '
'own parameter set you must.')
#------------------------------------------------------------------------------#
class Switch(object):
"""!
@ingroup GnoweeUtilities
Creates a switch class object to switch between cases.
"""
def __init__(self, value):
"""!
Case constructor.
@param self: <em> pointer </em> \n
The Switch pointer. \n
@param value: \e string \n
Case selector value. \n
"""
## @var value
# \e string: Case selector value.
self.value = value
## @var fall
# \e boolean: Match indicator.
self.fall = False
def __iter__(self):
"""!
Return the match method once, then stop.
@param self: <em> pointer </em> \n
The Switch pointer. \n
"""
yield self.match
raise StopIteration
def match(self, *args):
"""!
Indicate whether or not to enter a case suite.
@param self: <em> pointer </em> \n
The Switch pointer. \n
@param *args: \e list \n
List of comparisons. \n
@return \e boolean: Outcome of comparison match
"""
if self.fall or not args:
return True
elif self.value in args:
self.fall = True
return True
else:
return False