forked from KarypisLab/GKlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.c
132 lines (107 loc) · 2.89 KB
/
evaluate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*!
\file evaluate.c
\brief Various routines to evaluate classification performance
\author George
\date 9/23/2008
\version\verbatim $Id: evaluate.c 13328 2012-12-31 14:57:40Z karypis $ \endverbatim
*/
#include <GKlib.h>
/**********************************************************************
* This function computes the max accuracy score of a ranked list,
* given +1/-1 class list
**********************************************************************/
float ComputeAccuracy(int n, gk_fkv_t *list)
{
int i, P, N, TP, FN = 0;
float bAccuracy = 0.0;
float acc;
for (P=0, i=0;i<n;i++)
P += (list[i].val == 1? 1 : 0);
N = n - P;
TP = FN = 0;
for(i=0; i<n; i++){
if (list[i].val == 1)
TP++;
else
FN++;
acc = (TP + N - FN) * 100.0/ (P + N) ;
if (acc > bAccuracy)
bAccuracy = acc;
}
return bAccuracy;
}
/*****************************************************************************
* This function computes the ROC score of a ranked list, given a +1/-1 class
* list.
******************************************************************************/
float ComputeROCn(int n, int maxN, gk_fkv_t *list)
{
int i, P, TP, FP, TPprev, FPprev, AUC;
float prev;
FP = TP = FPprev = TPprev = AUC = 0;
prev = list[0].key -1;
for (P=0, i=0; i<n; i++)
P += (list[i].val == 1 ? 1 : 0);
for (i=0; i<n && FP < maxN; i++) {
if (list[i].key != prev) {
AUC += (TP+TPprev)*(FP-FPprev)/2;
prev = list[i].key;
FPprev = FP;
TPprev = TP;
}
if (list[i].val == 1)
TP++;
else {
FP++;
}
}
AUC += (TP+TPprev)*(FP-FPprev)/2;
return (TP*FP > 0 ? (float)(1.0*AUC/(P*FP)) : 0.0);
}
/*****************************************************************************
* This function computes the median rate of false positive for each positive
* instance.
******************************************************************************/
float ComputeMedianRFP(int n, gk_fkv_t *list)
{
int i, P, N, TP, FP;
P = N = 0;
for (i=0; i<n; i++) {
if (list[i].val == 1)
P++;
else
N++;
}
FP = TP = 0;
for (i=0; i<n && TP < (P+1)/2; i++) {
if (list[i].val == 1)
TP++;
else
FP++;
}
return 1.0*FP/N;
}
/*********************************************************
* Compute the mean
********************************************************/
float ComputeMean (int n, float *values)
{
int i;
float mean = 0.0;
for(i=0; i < n; i++)
mean += values[i];
return 1.0 * mean/ n;
}
/********************************************************
* Compute the standard deviation
********************************************************/
float ComputeStdDev(int n, float *values)
{
int i;
float mean = ComputeMean(n, values);
float stdDev = 0;
for(i=0;i<n;i++){
stdDev += (values[i] - mean)* (values[i] - mean);
}
return sqrt(1.0 * stdDev/n);
}