forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
strategies.py
276 lines (235 loc) · 10.6 KB
/
strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import sys
import time
from absl import flags
import numpy as np
import coords
import go
import mcts
import sgf_wrapper
from player_interface import MCTSPlayerInterface
flags.DEFINE_integer('softpick_move_cutoff', (go.N * go.N // 12) // 2 * 2,
'The move number (<=) up to which moves are softpicked from MCTS visits.')
# Ensure that both white and black have an equal number of softpicked moves.
flags.register_validator('softpick_move_cutoff', lambda x: x % 2 == 0)
flags.DEFINE_float('resign_threshold', -0.9,
'The post-search Q evaluation at which resign should happen.'
'A threshold of -1 implies resign is disabled.')
flags.register_validator('resign_threshold', lambda x: -1 <= x < 0)
flags.DEFINE_integer('num_readouts', 800,
'Number of searches to add to the MCTS search tree before playing a move.')
flags.register_validator('num_readouts', lambda x: x > 0)
flags.DEFINE_integer('parallel_readouts', 8,
'Number of searches to execute in parallel. This is also the batch size'
'for neural network evaluation.')
FLAGS = flags.FLAGS
def time_recommendation(move_num, seconds_per_move=5, time_limit=15*60,
decay_factor=0.98):
'''Given the current move number and the 'desired' seconds per move, return
how much time should actually be used. This is intended specifically for
CGOS time controls, which has an absolute 15-minute time limit.
The strategy is to spend the maximum possible moves using seconds_per_move,
and then switch to an exponentially decaying time usage, calibrated so that
we have enough time for an infinite number of moves.'''
# Divide by two since you only play half the moves in a game.
player_move_num = move_num / 2
# Sum of geometric series maxes out at endgame_time seconds.
endgame_time = seconds_per_move / (1 - decay_factor)
if endgame_time > time_limit:
# There is so little main time that we're already in 'endgame' mode.
base_time = time_limit * (1 - decay_factor)
core_moves = 0
else:
# Leave over endgame_time seconds for the end, and play at
# seconds_per_move for as long as possible.
base_time = seconds_per_move
core_moves = (time_limit - endgame_time) / seconds_per_move
return base_time * decay_factor ** max(player_move_num - core_moves, 0)
class MCTSPlayer(MCTSPlayerInterface):
def __init__(self, network, seconds_per_move=5, num_readouts=0,
resign_threshold=None, verbosity=0, two_player_mode=False,
timed_match=False):
self.network = network
self.seconds_per_move = seconds_per_move
self.num_readouts = num_readouts or FLAGS.num_readouts
self.verbosity = verbosity
self.two_player_mode = two_player_mode
if two_player_mode:
self.temp_threshold = -1
else:
self.temp_threshold = FLAGS.softpick_move_cutoff
self.comments = []
self.searches_pi = []
self.root = None
self.result = 0
self.result_string = None
self.resign_threshold = resign_threshold or FLAGS.resign_threshold
self.timed_match = timed_match
assert (self.timed_match and self.seconds_per_move >
0) or self.num_readouts > 0
super().__init__()
def get_position(self):
return self.root.position if self.root else None
def get_root(self):
return self.root
def get_result_string(self):
return self.result_string
def initialize_game(self, position=None):
if position is None:
position = go.Position()
self.root = mcts.MCTSNode(position)
self.result = 0
self.result_string = None
self.comments = []
self.searches_pi = []
def suggest_move(self, position):
''' Used for playing a single game.
For parallel play, use initialize_move, select_leaf,
incorporate_results, and pick_move
'''
start = time.time()
if self.timed_match:
while time.time() - start < self.seconds_per_move:
self.tree_search()
else:
current_readouts = self.root.N
while self.root.N < current_readouts + self.num_readouts:
self.tree_search()
if self.verbosity > 0:
print("%d: Searched %d times in %s seconds\n\n" % (
position.n, self.num_readouts, time.time() - start), file=sys.stderr)
# print some stats on anything with probability > 1%
if self.verbosity > 2:
print(self.root.describe(), file=sys.stderr)
print('\n\n', file=sys.stderr)
if self.verbosity > 3:
print(self.root.position, file=sys.stderr)
return self.pick_move()
def play_move(self, c):
'''
Notable side effects:
- finalizes the probability distribution according to
this roots visit counts into the class' running tally, `searches_pi`
- Makes the node associated with this move the root, for future
`inject_noise` calls.
'''
if not self.two_player_mode:
self.searches_pi.append(
self.root.children_as_pi(self.root.position.n <= self.temp_threshold))
self.comments.append(self.root.describe())
try:
self.root = self.root.maybe_add_child(coords.to_flat(c))
except go.IllegalMove:
print("Illegal move")
if not self.two_player_mode:
self.searches_pi.pop()
self.comments.pop()
return False
self.position = self.root.position # for showboard
del self.root.parent.children
return True # GTP requires positive result.
def pick_move(self):
'''Picks a move to play, based on MCTS readout statistics.
Highest N is most robust indicator. In the early stage of the game, pick
a move weighted by visit count; later on, pick the absolute max.'''
if self.root.position.n >= self.temp_threshold:
fcoord = np.argmax(self.root.child_N)
else:
cdf = self.root.child_N.cumsum()
cdf /= cdf[-2] # Prevents passing via softpick.
selection = random.random()
fcoord = cdf.searchsorted(selection)
assert self.root.child_N[fcoord] != 0
return coords.from_flat(fcoord)
def tree_search(self, parallel_readouts=None):
if parallel_readouts is None:
parallel_readouts = FLAGS.parallel_readouts
leaves = []
failsafe = 0
while len(leaves) < parallel_readouts and failsafe < parallel_readouts * 2:
failsafe += 1
leaf = self.root.select_leaf()
if self.verbosity >= 4:
print(self.show_path_to_root(leaf))
# if game is over, override the value estimate with the true score
if leaf.is_done():
value = 1 if leaf.position.score() > 0 else -1
leaf.backup_value(value, up_to=self.root)
continue
leaf.add_virtual_loss(up_to=self.root)
leaves.append(leaf)
if leaves:
move_probs, values = self.network.run_many(
[leaf.position for leaf in leaves])
for leaf, move_prob, value in zip(leaves, move_probs, values):
leaf.revert_virtual_loss(up_to=self.root)
leaf.incorporate_results(move_prob, value, up_to=self.root)
return leaves
def show_path_to_root(self, node):
pos = node.position
diff = node.position.n - self.root.position.n
if len(pos.recent) == 0:
return
def fmt(move): return "{}-{}".format('b' if move.color == 1 else 'w',
coords.to_kgs(move.move))
path = " ".join(fmt(move) for move in pos.recent[-diff:])
if node.position.n >= FLAGS.max_game_length:
path += " (depth cutoff reached) %0.1f" % node.position.score()
elif node.position.is_game_over():
path += " (game over) %0.1f" % node.position.score()
return path
def is_done(self):
return self.result != 0 or self.root.is_done()
def should_resign(self):
'''Returns true if the player resigned. No further moves should be played'''
return self.root.Q_perspective < self.resign_threshold
def set_result(self, winner, was_resign):
self.result = winner
if was_resign:
string = "B+R" if winner == go.BLACK else "W+R"
else:
string = self.root.position.result_string()
self.result_string = string
def to_sgf(self, use_comments=True):
assert self.result_string is not None
pos = self.root.position
if use_comments:
comments = self.comments or ['No comments.']
comments[0] = ("Resign Threshold: %0.3f\n" %
self.resign_threshold) + comments[0]
else:
comments = []
return sgf_wrapper.make_sgf(pos.recent, self.result_string,
white_name=os.path.basename(
self.network.save_file) or "Unknown",
black_name=os.path.basename(
self.network.save_file) or "Unknown",
comments=comments)
def extract_data(self):
assert len(self.searches_pi) == self.root.position.n
assert self.result != 0
for pwc, pi in zip(go.replay_position(self.root.position, self.result),
self.searches_pi):
yield pwc.position, pi, pwc.result
def get_num_readouts(self):
return self.num_readouts
def set_num_readouts(self, readouts):
self.num_readouts = readouts
class CGOSPlayer(MCTSPlayer):
def suggest_move(self, position):
self.seconds_per_move = time_recommendation(position.n)
return super().suggest_move(position)