-
Notifications
You must be signed in to change notification settings - Fork 0
/
axioms.v
33 lines (23 loc) · 1020 Bytes
/
axioms.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Set Implicit Arguments.
Unset Strict Implicit.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From mathcomp Require Import all_algebra.
Import GRing.Theory Num.Def Num.Theory.
Require Import QArith Reals Rpower Ranalysis Fourier Lra.
Require Import dist.
(** The following lemmas (stated here as axioms) are well
known but should nevertheless be proved. Until proved,
any paper that uses/references results from OUVerT.axioms
should state explicitly that the formal claims depend upon
the following assumptions:
NOTE: We should see whether the results from Affeldt et al's:
https://staff.aist.go.jp/reynald.affeldt/shannon/
can be imported here to prove [pinsker] and related theorems
in information theory. *)
Axiom pinsker_Bernoulli :
forall (p q:R) (p_ax:0<p<1) (q_ax:0<q<1),
sqrt (RE_Bernoulli p q / 2) >= TV_Bernoulli p q.
Axiom gibbs_Bernoulli :
forall (p q:R) (p_ax:0<p<1) (q_ax:0<q<1),
0 <= RE_Bernoulli p q.