-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpfacts.v
737 lines (701 loc) · 21.7 KB
/
expfacts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
Set Implicit Arguments.
Unset Strict Implicit.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From mathcomp Require Import all_algebra.
Require Import QArith Reals Rpower Ranalysis Fourier MVT Lra.
Lemma ln_le (x y : R) : (0 < x -> x <= y -> ln x <= ln y)%R.
Proof.
move=> H0; case=> H.
left; apply: ln_increasing=> //.
by right; subst x.
Qed.
(* The construction of the derivability proof is needed to apply
the compositional rules in the next two proofs *)
Definition aux_const x : derivable_pt (fun x => (exp x - (1 +x))%R) x :=
derivable_pt_minus exp (Rplus 1) x (derivable_pt_exp x)
(derivable_pt_plus (fun _ : R => 1%R) id x (derivable_pt_const 1 x)
(derivable_pt_id x)).
Lemma aux_neg y (H :(y < 0)%R) :
(derive (fun x => (exp x - (1 + x))%R) aux_const y < 0)%R.
Proof.
rewrite /derive /aux_const
derive_pt_minus
derive_pt_exp
derive_pt_plus
derive_pt_const
derive_pt_id.
apply Rlt_minus.
rewrite -exp_0 Rplus_0_l.
apply exp_increasing => //.
Qed.
Lemma aux_pos y (H :(0 <= y)%R) :
(derive (fun x => (exp x - (1 + x))%R) aux_const y >= 0)%R.
Proof.
rewrite /derive /aux_const
derive_pt_minus
derive_pt_exp
derive_pt_plus
derive_pt_const
derive_pt_id.
apply Rge_minus.
rewrite -exp_0 Rplus_0_l.
apply Rle_ge.
case: H => H;
first by left; apply exp_increasing => //.
right. f_equal => //.
Qed.
Lemma ln_Taylor_upper' x : ((1 + x) <= exp x)%R.
Proof.
apply Rge_le.
apply Rminus_ge.
set f := fun x => (exp x - (1 + x))%R.
have H0 : (f x = exp x - (1 + x))%R => //.
rewrite -H0; clear H0.
have H0 : (f 0 = 0)%R by
rewrite /f exp_0 Rplus_0_r;
apply Rminus_diag_eq => //.
rewrite -H0.
case: (Rtotal_order x 0) => H.
{
left.
apply (MVT_cor1 f x 0 aux_const) in H.
case: H => c; case => H1 H2.
rewrite H0 !Rminus_0_l in H1.
rewrite H0.
have H3 : (x < 0)%R
by case: H2 => H2 H3; apply (Rlt_trans x c 0) => //.
apply Ropp_eq_compat in H1.
rewrite Ropp_involutive in H1.
rewrite H1.
apply Rlt_gt.
rewrite Ropp_mult_distr_l.
apply Rmult_lt_0_compat.
apply Ropp_0_gt_lt_contravar.
apply Rlt_gt.
apply aux_neg.
case: H2 => //.
lra.
}
{
case: H => H;
first by subst; rewrite /f Rplus_0_r exp_0; right => //.
apply (MVT_cor1 f 0 x aux_const) in H.
case: H => c; case => H1 H2.
rewrite H0 !Rminus_0_r in H1.
rewrite H0.
have H3 : (0 < x)%R
by case: H2 => H2 H3; apply (Rlt_trans 0 c x) => //.
rewrite H1.
apply Rle_ge.
rewrite -(Rmult_0_l x).
apply Rmult_le_compat.
right => //.
left => //.
apply Rge_le.
apply aux_pos.
left. case: H2 => //.
right => //.
}
Qed.
Lemma ln_Taylor_upper x : (x < 1)%R -> (ln (1 - x) <= -x)%R.
Proof.
intros h.
rewrite /ln.
case_eq (Rlt_dec 0 (1-x)); move => h1 h2;
last by apply False_rec; apply h1; lra.
rewrite /Rln => /=.
destruct (ln_exists (1 - x) h1) as [x0 e0].
apply Rplus_le_reg_l with (r := 1%R).
rewrite /Rminus in e0.
rewrite e0.
apply ln_Taylor_upper'.
Qed.
Lemma deriv_aux_lower :
derivable (fun x : R => ((1 - x) * exp (x + x ^ 2))%R).
Proof.
rewrite /derivable => x.
apply derivable_pt_mult.
apply derivable_pt_minus.
apply derivable_pt_const.
apply derivable_pt_id.
set f1 := fun x => (x + x ^2)%R.
set f2 := fun x => exp x.
have H : (fun x0 : R => exp (x0 + x0 ^ 2))
= Ranalysis1.comp f2 f1 => //.
rewrite H.
apply derivable_pt_comp.
rewrite /f1.
apply derivable_pt_plus.
apply derivable_pt_id.
apply derivable_pt_mult.
apply derivable_pt_id.
apply derivable_pt_mult.
apply derivable_pt_id.
apply derivable_pt_const.
apply derivable_pt_exp.
Defined.
Lemma ln_Taylor_lower_aux_lt_0 x (H : (x < 0)%R) :
(derive_pt (fun x : R => ((1 - x) * exp (x + x ^ 2))%R)
x (deriv_aux_lower x) < 0)%R.
Proof.
rewrite /deriv_aux_lower
derive_pt_mult
derive_pt_minus
derive_pt_const
derive_pt_id
(* Need to eliminate the substitution in the above proof *)
/ssr_have /eq_rec_r /eq_rec /eq_rect => /=.
rewrite derive_pt_comp
derive_pt_exp
derive_pt_plus
derive_pt_id
derive_pt_mult
derive_pt_id
derive_pt_mult
derive_pt_id
derive_pt_const.
ring_simplify.
set Y := exp (x + x * (x * 1)).
have H0 : (- 2* Y * x ^ 2 + Y * x = Y * ( x * (-2 * x + 1)))%R
by ring.
rewrite H0.
rewrite -(Rmult_0_r Y).
apply Rmult_lt_compat_l.
apply exp_pos.
rewrite -(Rmult_0_r x).
apply Rmult_lt_gt_compat_neg_l => //.
lra.
Qed.
Lemma ln_Taylor_lower_aux_gt_0
x (H0 : (0 < x)%R) (H1 : (x <= 1/2)%R) :
(derive_pt (fun x : R => ((1 - x) * exp (x + x ^ 2))%R)
x (deriv_aux_lower x) >= 0)%R.
Proof.
rewrite /deriv_aux_lower
derive_pt_mult
derive_pt_minus
derive_pt_const
derive_pt_id
(* Need to eliminate the substitution in the above proof *)
/ssr_have /eq_rec_r /eq_rec /eq_rect => /=.
rewrite derive_pt_comp
derive_pt_exp
derive_pt_plus
derive_pt_id
derive_pt_mult
derive_pt_id
derive_pt_mult
derive_pt_id
derive_pt_const.
ring_simplify.
set Y := exp (x + x * (x * 1)).
have H2 : (- 2* Y * x ^ 2 + Y * x = Y * ( x * (-2 * x + 1)))%R
by ring.
rewrite H2.
rewrite -(Rmult_0_r Y).
apply Rmult_ge_compat_l.
left.
apply exp_pos.
rewrite -(Rmult_0_r x).
apply Rmult_ge_compat_l => //. lra. lra.
Qed.
Lemma ln_Taylor_lower x : (x <= 1/2 -> -x - x^2 <= ln (1 - x))%R.
Proof.
intros H.
rewrite -[(-x - x^2)%R] ln_exp.
apply ln_le; first by apply exp_pos.
have h : ((- x - x ^2) = - (x + x^2))%R by field.
rewrite h. clear h.
apply (Rmult_le_reg_r (/exp (- (x + x ^ 2))));
first by apply Rinv_0_lt_compat; apply exp_pos.
rewrite Rinv_r;
last by move: (exp_pos (- (x + x ^ 2))%R) => H0 H1; lra.
rewrite exp_Ropp Rinv_involutive;
last by move: (exp_pos (x + x^2)%R) => H0 H1; lra.
set F := fun x => ((1 - x) * exp (x + x^2))%R.
have H0 : (F x = (1 - x) * exp (x + x ^ 2))%R => //.
rewrite -H0; clear H0.
have H1 : (F 0 = 1)%R. rewrite /F.
have H0 : (0 + 0^2 = 0)%R by ring.
rewrite H0; ring_simplify; apply exp_0; clear H0.
rewrite -H1.
apply Rminus_le.
case: (Rtotal_order 0 x) => H2; last case: H2 => H2.
{
move: (MVT_cor1 F 0 x deriv_aux_lower H2) => H3.
destruct H3 as [c [H3 [H4 H5]]].
have h : (F 0 - F x = - (F x - F 0))%R. ring.
rewrite h H3. apply Rge_le. clear h.
rewrite Rminus_0_r.
apply Ropp_0_le_ge_contravar.
apply Rmult_le_pos; last by lra.
apply Rge_le.
apply ln_Taylor_lower_aux_gt_0 => //.
lra.
}
{
right. subst. ring.
}
{
move: (MVT_cor1 F x 0 deriv_aux_lower H2) => H3.
destruct H3 as [c [H3 [H4 H5]]].
rewrite H3.
rewrite Rminus_0_l.
rewrite -(Rmult_0_r (derive_pt F c (deriv_aux_lower c))%R).
apply Rmult_le_compat_neg_l; last by lra.
left.
apply ln_Taylor_lower_aux_lt_0 => //.
}
Qed.
Lemma exp_Taylor_lower x : (x <= 1/2 -> exp(-x - x^2) <= 1 - x)%R.
Proof.
move => H.
move: (ln_Taylor_lower H); case.
{ move => H2; left.
rewrite -[(1 - _)%R]exp_ln.
{ apply: exp_increasing.
apply: H2. }
lra. }
move => ->; rewrite exp_ln; lra.
Qed.
Lemma exp_mult x y : exp (x * INR y) = exp x ^ y.
Proof.
apply: ln_inv; try apply: exp_pos.
{ apply: pow_lt; apply: exp_pos. }
rewrite ln_exp; elim: y => //.
{ simpl; rewrite Rmult_0_r ln_1 //. }
move => n IH /=; rewrite ln_mult; try apply: exp_pos.
{ rewrite -IH; clear IH; case: n.
{ by rewrite Rmult_1_r ln_exp /= Rmult_0_r Rplus_0_r. }
by move => n; rewrite ln_exp // Rmult_plus_distr_l Rmult_1_r Rplus_comm. }
apply: pow_lt; apply: exp_pos.
Qed.
Lemma exp_le_inv : forall x y : R, exp x <= exp y -> x <= y.
Proof.
intros. inversion H.
left. apply exp_lt_inv; auto.
right. apply exp_inv. auto.
Qed.
Lemma derive_decreasing_interv :
forall (a b : R) (f : R -> R) (pr : derivable f),
a < b ->
(forall t : R, a < t < b -> derive_pt f t (pr t) < 0) ->
forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f y < f x.
Proof.
intros. apply Ropp_lt_cancel.
set g := comp Ropp f.
replace (- f x) with (g x); auto.
replace (- f y) with (g y); auto.
eapply (derive_increasing_interv a b g _ H); auto.
intros. rewrite /g.
erewrite derive_pt_opp.
apply Ropp_lt_cancel. ring_simplify. apply H0. auto.
Qed.
Lemma ln_upper_01_aux_deriv c :
derivable (fun x => 1 - x + x * exp c - exp (c * x)).
Proof.
apply derivable_minus.
apply derivable_plus.
apply derivable_minus.
apply derivable_const.
apply derivable_id.
apply derivable_mult.
apply derivable_id.
apply derivable_const.
apply derivable_comp.
apply derivable_mult.
apply derivable_const.
apply derivable_id.
apply derivable_exp.
Qed.
Lemma ln_upper_01_aux_deriv_at_pt c x :
@derive_pt (fun x => 1 - x + x * exp c - exp (c * x))
x (ln_upper_01_aux_deriv c x)
= -1 + exp c - c*exp (c * x).
Proof.
erewrite pr_nu_var2.
erewrite derive_pt_minus.
2: (intros; reflexivity).
erewrite pr_nu_var2.
erewrite derive_pt_plus.
2: (intros; reflexivity).
erewrite pr_nu_var2.
erewrite derive_pt_minus.
2: (intros; reflexivity).
erewrite null_derivative_0.
2: constructor.
erewrite derive_pt_id. ring_simplify.
erewrite pr_nu_var.
erewrite derive_pt_mult.
2: reflexivity.
erewrite derive_pt_id. ring_simplify.
erewrite null_derivative_0.
2: constructor.
ring_simplify.
erewrite pr_nu_var2.
erewrite derive_pt_comp.
2:{
intros. assert (exp (c * h) = (comp exp (fun x=> c * x)) h) by auto.
rewrite H. reflexivity.
}
erewrite derive_pt_exp.
erewrite pr_nu_var2.
erewrite derive_pt_scal.
2: (intros; reflexivity).
erewrite derive_pt_id. ring.
Unshelve.
apply derivable_pt_plus. apply derivable_pt_minus.
apply derivable_pt_const. apply derivable_pt_id.
apply derivable_pt_mult. apply derivable_pt_id.
apply derivable_pt_const. apply derivable_pt_comp.
apply derivable_pt_scal. apply derivable_pt_id...
apply derivable_pt_exp. apply derivable_pt_minus.
apply derivable_pt_const. apply derivable_pt_id.
apply derivable_pt_mult. apply derivable_pt_id.
apply derivable_pt_const. apply derivable_const.
apply derivable_const. apply derivable_pt_mult.
apply derivable_const. apply derivable_id.
Qed.
Lemma ln_upper_01_aux_bot c :
0 = 1 - 0 + 0 * exp c - exp (c * 0).
Proof.
rewrite Rmult_0_r exp_0. ring.
Qed.
Lemma ln_upper_01_aux_top c :
0 = 1 - 1 + 1 * exp c - exp (c * 1).
Proof.
rewrite Rmult_1_r Rmult_1_l. ring.
Qed.
Lemma ln_upper_01_aux_deriv_at_top c :
0 <= @derive_pt (fun x => 1 - x + x * exp c - exp (c * x))
0 (ln_upper_01_aux_deriv c 0).
Proof.
rewrite ln_upper_01_aux_deriv_at_pt.
rewrite Rmult_0_r exp_0. ring_simplify.
move: (ln_Taylor_upper' c) => H. lra.
Qed.
Lemma ln_upper_01_aux_deriv_at_bot c :
0 >= @derive_pt (fun x => 1 - x + x * exp c - exp (c * x))
1(ln_upper_01_aux_deriv c 1).
Proof.
rewrite ln_upper_01_aux_deriv_at_pt.
rewrite Rmult_1_r.
suffices: exp c <= 1 + (c * exp c); first by
(intros; lra).
move: (Rtotal_order c 0) => H1.
destruct H1 as [H1 | [H1 | H1]].
{
suffices: ((1 -c) * exp c <= 1). intros H2.
ring_simplify in H2.
apply (Rplus_le_compat_l (c * exp c)) in H2.
ring_simplify in H2. lra.
apply (Rle_trans _ ((exp (- c)) * (exp c)) _).
apply Rmult_le_compat_r. apply Rlt_le. apply exp_pos.
apply ln_Taylor_upper'. rewrite <- exp_plus.
right. replace (-c + c) with 0. apply exp_0. ring.
}
{ subst. right. rewrite exp_0. ring. }
{
suffices: (0 <= 1 + c * exp c - exp c); first by (intros; lra).
set f:= (fun x => 1 + x * exp x - exp x).
replace 0 with (f 0); last by (rewrite /f exp_0; ring).
replace (1 + c * exp c - exp c) with (f c); last by reflexivity.
apply Rgt_lt in H1. left.
eapply (@derive_increasing_interv 0 c f _ H1); try split; try lra.
intros. rewrite /f.
erewrite pr_nu_var2.
erewrite derive_pt_plus.
2: intros; reflexivity.
erewrite pr_nu_var2.
erewrite derive_pt_plus.
2: intros; reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_const.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_mult.
2: reflexivity.
erewrite derive_pt_id.
erewrite derive_pt_exp.
erewrite pr_nu_var.
erewrite derive_pt_opp.
2: reflexivity.
erewrite derive_pt_exp.
ring_simplify.
apply Rmult_lt_0_compat.
apply exp_pos.
inversion H; lra.
}
Unshelve.
rewrite /f.
all:
repeat (try apply derivable_plus;
try apply derivable_id;
try apply derivable_mult;
try apply derivable_opp;
try apply derivable_exp;
try apply derivable_const).
Qed.
Lemma ln_upper_01_aux_deriv_2 c :
derivable (fun x => - 1 + exp c - c * exp (c * x)).
Proof.
eapply derivable_plus.
eapply derivable_plus;
eapply derivable_const.
eapply derivable_opp.
eapply derivable_scal.
eapply derivable_comp.
eapply derivable_scal.
eapply derivable_id.
eapply derivable_exp.
Qed.
(* move me to numerics *)
Lemma square_pos :
forall c, c <> 0 -> 0 < c^2.
Proof.
intros. replace (c ^ 2) with (c * c) by ring.
move: (Rtotal_order 0 c) => H0.
destruct H0 as [H0 | [H0 | H0]].
- apply Rmult_lt_0_compat; lra.
- congruence.
- replace (c * c) with ((- c) * (- c)) by ring.
apply Rmult_lt_0_compat; lra.
Qed.
Lemma ln_upper_01_aux_deriv_2_decreasing c :
c <> 0 ->
strict_decreasing (fun x => - 1 + exp c - c * exp (c * x)).
Proof.
intros cNeq.
apply negative_derivative with (pr := ln_upper_01_aux_deriv_2 c).
intros.
erewrite pr_nu_var2.
erewrite derive_pt_plus.
2: reflexivity.
erewrite pr_nu_var2.
erewrite derive_pt_plus.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_const.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_const.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_opp.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_scal.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_comp.
2:{
replace (fun h : R => exp (c * h)) with (fun h : R => (comp exp (Rmult c)) h).
all: reflexivity.
}
erewrite pr_nu_var.
erewrite derive_pt_exp.
2: reflexivity.
erewrite pr_nu_var.
erewrite derive_pt_scal.
2: reflexivity.
erewrite derive_pt_id.
ring_simplify.
suffices: 0 < c ^ 2 * exp (c * x).
intros H. apply Ropp_0_lt_gt_contravar in H. apply Rgt_lt.
ring_simplify in H. lra.
apply Rmult_lt_0_compat.
apply square_pos. auto.
apply exp_pos.
Unshelve.
all:
repeat (try apply derivable_plus;
try apply derivable_id;
try apply derivable_mult;
try apply derivable_opp;
try apply derivable_comp;
try apply derivable_exp;
try apply derivable_const).
Qed.
Lemma ln_upper_01 x c :
0 < x < 1 ->
c * x <= ln (1 - x + x * exp c).
Proof.
intros.
apply exp_le_inv.
rewrite exp_ln.
case: (Req_EM_T c 0); intros.
{
subst. rewrite Rmult_0_l exp_0. lra.
}
{
suffices: (0 <= 1 - x + x * exp c - exp (c * x)).
intros. lra.
set f := fun x => 1 - x + x * exp c - exp (c * x).
set f' := fun x => -1 + exp c - c * exp (c * x).
replace (1 - x + x * exp c - exp (c * x)) with (f x); last by auto.
move: (Rolle f 0 1) => H_rolle.
assert (0 < 1) as duh by lra.
assert (f 0 = f 1) as H_bounds by
(rewrite /f -(ln_upper_01_aux_bot c) -(ln_upper_01_aux_top c); auto).
specialize (H_rolle
(fun x _ => ln_upper_01_aux_deriv c x)
(fun x _ => (derivable_continuous_pt _ x (ln_upper_01_aux_deriv c x)))
duh H_bounds).
destruct H_rolle as [z [z_bounds z_deriv]].
clear duh H_bounds.
move: (Rtotal_order x z) => H0.
destruct H0 as [H0 | [H0 | H0]].
+ replace 0 with (f 0).
2: rewrite /f; rewrite <- (ln_upper_01_aux_bot c); auto.
apply Rlt_le.
inversion H.
eapply derive_increasing_interv with
(a := 0) (b := z) (pr := ln_upper_01_aux_deriv c); try split; try lra.
intros.
rewrite ln_upper_01_aux_deriv_at_pt.
rewrite ln_upper_01_aux_deriv_at_pt in z_deriv.
move: (ln_upper_01_aux_deriv_2_decreasing b) => H4.
rewrite <- z_deriv. apply H4. inversion H3. auto.
+ replace 0 with (f 0).
2: rewrite /f; rewrite <- (ln_upper_01_aux_bot c); auto.
apply Rlt_le.
inversion H.
eapply derive_increasing_interv with
(a := 0) (b := z) (pr := ln_upper_01_aux_deriv c); try split; try lra.
intros.
rewrite ln_upper_01_aux_deriv_at_pt.
rewrite ln_upper_01_aux_deriv_at_pt in z_deriv.
move: (ln_upper_01_aux_deriv_2_decreasing b) => H4.
rewrite <- z_deriv. apply H4. inversion H3. auto.
+ replace 0 with (f 1).
2: rewrite /f; rewrite <- (ln_upper_01_aux_top c); auto.
apply Rlt_le.
inversion H. apply Rgt_lt in H0.
eapply derive_decreasing_interv with
(a := z) (b := 1) (pr := ln_upper_01_aux_deriv c); try split; try lra.
intros.
rewrite ln_upper_01_aux_deriv_at_pt.
rewrite ln_upper_01_aux_deriv_at_pt in z_deriv.
move: (ln_upper_01_aux_deriv_2_decreasing b) => H4.
rewrite <- z_deriv. apply H4. inversion H3. auto.
}
{
replace (1 - x + x * exp c) with (1 - (x * (1 - exp c))); last by ring.
assert (1 - exp c < 1).
{
move: (exp_pos c) => H0. lra.
}
move: (Rtotal_order (1 - exp c) 0) => H1.
apply Rlt_Rminus.
destruct H1 as [H1 | [H1 | H1]].
* inversion H. apply (@Rlt_trans _ 0 _).
apply Ropp_lt_cancel.
assert (- ( 1 - exp c ) > 0) by lra.
replace (- (x * (1 - exp c))) with (x * - (1 - exp c)); last by ring.
replace (- 0) with 0; last by ring.
apply Rmult_lt_0_compat; lra. lra.
* rewrite H1. lra.
* replace 1 with (1 * 1) at 2. inversion H.
apply Rmult_le_0_lt_compat; lra. ring.
}
Qed.
Lemma exp_upper_01 x c :
0 <= x <= 1 ->
exp (c * x) <= 1 - x + x * exp c.
Proof.
case => H1 H2; case: H1 => H1x; last first.
{ subst x; rewrite Rmult_0_r exp_0 /Rminus Ropp_0 Rplus_0_r Rmult_0_l Rplus_0_r.
apply: Rle_refl. }
case: H2 => H2x; last first.
{ subst x; rewrite Rmult_1_r Rmult_1_l; lra. }
have Hx: 0 < 1 - x + x * exp c.
{ rewrite -[0]Rplus_0_l; apply: Rplus_lt_compat; try lra.
apply: Rmult_lt_0_compat => //; apply: exp_pos. }
move: (ln_upper_01 c (conj H1x H2x)); case.
{ move/exp_increasing => H; left; apply: Rlt_le_trans; first by apply: H.
rewrite exp_ln //; apply: Rle_refl. }
move => ->; rewrite exp_ln //; apply: Rle_refl.
Qed.
(* Lemmas in support of Gibbs' inequality. *)
Lemma exp_minus_1_minus_x_at_1 :
exp (1-1) - 1 = 0.
Proof.
replace (exp (1-1)) with 1. field.
rewrite <- exp_0 at 1. f_equal. field.
Qed.
Lemma derivable_exp_minus_1_minus_x : derivable (fun x => exp(x-1) -x).
Proof.
rewrite /derivable => x.
apply derivable_pt_minus.
replace (fun x0 : R => exp (x0 -1)) with
(comp (fun x => exp x) (fun x => x - 1)).
apply derivable_pt_comp.
apply derivable_pt_minus.
apply derivable_pt_id.
apply derivable_pt_const.
apply derivable_pt_exp. auto.
apply derivable_pt_id.
Defined.
Lemma deriv_at_point_exp_minus_1_minus_x :
forall x pf,
derive_pt (fun x => exp(x-1) -x) x pf = exp(x-1) -1.
Proof.
intros. rewrite (pr_nu _ _ _ (derivable_exp_minus_1_minus_x x)).
rewrite /derivable_exp_minus_1_minus_x.
rewrite derive_pt_minus
derive_pt_comp
derive_pt_minus
derive_pt_id
derive_pt_const
derive_pt_exp.
field.
Qed.
Lemma deriv_at_point_exp_minus_1_minus_x_deriv_on_0_1 :
forall x pf, 0 < x < 1 -> derive_pt (fun x => exp(x-1) - x) x pf < 0.
Proof.
intros. rewrite deriv_at_point_exp_minus_1_minus_x.
suffices: (exp (x - 1) < 1).
intros. lra.
replace 1 with (exp 0) at 2.
apply exp_increasing. destruct H. lra.
apply exp_0.
Qed.
Lemma deriv_at_point_exp_minus_1_minus_x_deriv_on_1_inf :
forall x pf, 1 < x -> 0 < derive_pt (fun x => exp(x-1) - x) x pf.
Proof.
intros. rewrite deriv_at_point_exp_minus_1_minus_x.
suffices: (1 < exp (x - 1)).
intros. lra.
replace 1 with (exp 0) at 1.
apply exp_increasing. lra.
apply exp_0.
Qed.
Lemma exp_minus_1_minus_x :
forall x, 0 < x -> 0 <= exp(x - 1) - x.
Proof.
intros.
case: (Rtotal_order x 1).
- intros. rewrite <- exp_minus_1_minus_x_at_1. left.
set (f := fun x => exp (x - 1) - x).
replace (exp (1 - 1) - 1) with (f 1); try auto.
replace (exp (x - 1) - x) with (f x); try auto.
assert (0 < 1) by lra.
eapply (derive_decreasing_interv H0).
intros. apply deriv_at_point_exp_minus_1_minus_x_deriv_on_0_1.
auto. split; lra.
split; lra. auto.
- intros. destruct b. subst. right.
replace (exp (1-1)) with 1. field.
rewrite <- exp_0 at 1. f_equal. field.
- intros. rewrite <- exp_minus_1_minus_x_at_1. left.
set (f := fun x => exp (x - 1) - x).
replace (exp (1 - 1) - 1) with (f 1); try auto.
replace (exp (x - 1) - x) with (f x); try auto.
assert (1 < x + 1) by lra.
eapply (derive_increasing_interv _ _ f _ H1).
intros. apply deriv_at_point_exp_minus_1_minus_x_deriv_on_1_inf.
destruct H2; lra. split; lra. split; lra. lra.
Unshelve.
all: apply derivable_exp_minus_1_minus_x.
Qed.