-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
168 lines (157 loc) · 6.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import pandas as pd
from sentence_transformers import SentenceTransformer
import gc
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from Training import run_experiment, run_experiment_XGB
from Evaluation import evaluate, evaluate_XGB
from utils import normalize, eng_class, sampling_k_elements, extract_graph
import numpy as np
import networkx as nx
from tensorflow import keras
from keras.utils import to_categorical
import random
from models.Xgboost import create_XGB
from models.Conv1D import create_Conv1D
from models.GAT import create_GAT
from models.GCN import create_GCN
from models.MLP import create_MLP
import argparse
def parse_args():
parser = argparse.ArgumentParser("TweetGage Params")
a = parser.add_argument
a('--LOAD_CSV', action='store_true')
a('--EXTRACT_BERT', action='store_true')
a('--USE_PCA', action='store_true')
a('--USER_FEAT', action='store_true')
a('--BERT_FEAT', action='store_true')
a('--Model_Type', default='GCN', type=str)
return parser.parse_args()
def reset_random_seeds():
os.environ['PYTHONHASHSEED'] = str(2)
tf.random.set_seed(2)
np.random.seed(2)
random.seed(2)
def select_params(Model_type, X_train, y_train, X_test, y_test, df, g, num_classes=2, num_epochs=300):
num_classes = num_classes
num_epochs = num_epochs
dropout_rate = None
num_layers = None
num_heads = None
if Model_type == 'GCN':
hidden_units = [16]
dropout_rate = 0.3
learning_rate = 0.1
batch_size = 256
input = np.array(X_train.index)
target = to_categorical(y_train)
loss = keras.losses.CategoricalCrossentropy
optimizer = keras.optimizers.Adam
input_test = np.array(X_test.index)
target_test = y_test
graph_info = extract_graph(g, df)
model = create_GCN(graph_info, num_classes, hidden_units, dropout_rate)
if Model_type == 'MLP':
hidden_units = [32, 32]
learning_rate = 0.01
dropout_rate = 0.5
batch_size = 256
loss = keras.losses.CategoricalCrossentropy
input = X_train
target = to_categorical(y_train)
input_test = X_test
target_test = y_test
optimizer = keras.optimizers.Adam
model = create_MLP(X_train.shape[1], hidden_units, num_classes, dropout_rate)
if Model_type == 'Conv1D':
hidden_units = 64
learning_rate = 0.1
batch_size = 256
model = create_Conv1D(num_classes, hidden_units, X_train.shape[1])
input = X_train.values.reshape(-1, X_train.shape[1], 1)
loss = keras.losses.CategoricalCrossentropy
target = to_categorical(y_train)
optimizer = keras.optimizers.Adam
input_test = X_test
target_test = y_test
if Model_type == 'GAT':
hidden_units = 100
num_heads = 2
num_layers = 1
batch_size = 64
learning_rate = 1e-2
graph_info = extract_graph(g, df)
input = np.array(X_train.index)
target = to_categorical(y_train)
model = create_GAT(graph_info[0], graph_info[1].T, hidden_units, num_heads, num_layers, num_classes)
loss = keras.losses.CategoricalCrossentropy
optimizer = keras.optimizers.SGD
input_test = np.array(X_test.index)
target_test = y_test
if Model_type == 'XGBOOST':
max_depth = 8
learning_rate = 0.025
subsample = 0.85
colsample_bytree = 0.35
eval_metric = 'logloss'
objective = 'binary:logistic'
tree_method = 'gpu_hist'
seed = 1
model = create_XGB(max_depth, learning_rate, subsample,
colsample_bytree, eval_metric, objective,
tree_method, seed)
return model
return hidden_units, num_classes, learning_rate, num_epochs, dropout_rate, batch_size, num_layers, num_heads, input, target, loss, optimizer, input_test, target_test, model
def main(LOAD_CSV=False, EXTRACT_BERT=True, USE_PCA=False, USER_FEAT=True, BERT_FEAT=True, Model_Type='GCN'):
reset_random_seeds()
g = nx.read_gpickle('./network_tweets.pickle')
print("POST:", len(g.nodes))
print("ARCS:", len(g.edges))
print("COMPONENTS:", nx.number_connected_components(g))
if not LOAD_CSV:
df = pd.read_csv("./first_week.csv", lineterminator="\n")
df["class"] = df["engagement"].apply(lambda x: eng_class(x))
df = df.groupby('class').apply(sampling_k_elements).reset_index(drop=True)
if EXTRACT_BERT:
model = SentenceTransformer('efederici/sentence-bert-base')
emb = model.encode(df["text"])
if USE_PCA:
pca = PCA(n_components=48)
pca.fit(emb)
emb = pca.transform(emb)
df = pd.concat([df, pd.DataFrame(emb)], axis=1)
del emb, model
gc.collect()
df = normalize(df)
else:
df = pd.read_csv("./first_week_posts_bert.csv")
if USER_FEAT and not BERT_FEAT:
df = df.iloc[:, 0:11]
if not USER_FEAT and BERT_FEAT:
df = df.iloc[:, 10:]
if USE_PCA:
pca = PCA(n_components=48)
print('PCA 48 Components')
pca.fit(df.drop(["class"], axis=1))
emb = pca.transform(df.drop(["class"], axis=1))
df = pd.concat([pd.DataFrame(emb), df[["class"]]], axis=1)
X_train, X_test, y_train, y_test = train_test_split(df.drop(["class"], axis=1), df["class"], test_size=0.2,
random_state=42, stratify=df["class"])
if not Model_Type == 'XGBOOST':
hidden_units, num_classes, learning_rate, num_epochs, dropout_rate, batch_size, num_layers, \
num_heads, input, target, loss, optimizer, input_test, target_test, model = select_params(Model_Type, X_train,
y_train, X_test,
y_test,
df,
g,
num_epochs=300)
run_experiment(model, input, target, learning_rate, loss, num_epochs, batch_size, optimizer)
evaluate(model, input_test, target_test)
else:
model = select_params(Model_Type, X_train, y_train, X_test, y_test, df, g,
num_epochs=300)
obj = run_experiment_XGB(model, X_train, y_train)
evaluate_XGB(obj, X_test, y_test)
if __name__ == '__main__':
args = vars(parse_args())
main(*list(args.values))