-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
156 lines (117 loc) · 4.78 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import telebot
from telebot import types
from bot_description.texts import *
from blindness_detection.model import MakePredict
import os
import time
from flask import Flask, request
from flask import render_template
from PIL import Image
from io import BytesIO
import numpy as np
## Constants
TOKEN = '841484068:AAFciZH0o5mT8Zo_r7upTTGt-BdZ_Y0oiJk'
STICKER_ID = 'CAADAgADAQAD3BQ9Js2i8jeh-Q6nAg'
GIF_ID = 'CgADAgAD4AMAAtmwSUmif7hi8FXP3gI'
bot = telebot.TeleBot(TOKEN)
app = Flask(__name__)
## Bot menu
markup_menu = types.ReplyKeyboardMarkup(resize_keyboard=True, row_width=2)
btn_service = types.KeyboardButton('About Service')
btn_ethos = types.KeyboardButton('Our Ethos')
btn_apm = types.KeyboardButton('About Prediction Algorithms')
markup_menu.add(btn_service, btn_apm, btn_ethos)
## Command handlers
@bot.message_handler(commands=['start'])
def send_welcome(message):
user_first_name = message.from_user.first_name
bot.reply_to(message, f"Welcome {user_first_name}, I'm a bot-ophthalmologist, you can upload a " \
"snapshot of the retinal fundus, and i will make a prediction the " \
"presence of diabetic retinopathy in the picture on a scale of 0 to 4. \n"\
"Update: Now I can segment the retinal blood vessels.",
reply_markup=markup_menu)
@bot.message_handler(commands=['help'])
def send_welcome(message):
bot.reply_to(message, HELP_DISCRIPT,
reply_markup=markup_menu)
@bot.message_handler(commands=['list'])
def send_welcome(message):
bot.reply_to(message, LIST_DISCRIPT,
reply_markup=markup_menu)
@bot.message_handler(commands=['contact'])
def send_welcome(message):
bot.reply_to(message, CONTACT_DISCRIPT,
reply_markup=markup_menu)
## Information buttons
@bot.message_handler(func=lambda message: True)
def echo_all(message):
if message.text == 'About Service':
bot.reply_to(message, ABOUT_SERVICE,
reply_markup=markup_menu)
elif message.text == 'About Prediction Algorithms':
bot.reply_to(message, ABOUT_PREDICTION_MODEL,
reply_markup=markup_menu)
elif message.text == 'Our Ethos':
bot.reply_to(message, OUT_ETHOS,
reply_markup=markup_menu)
## File handlers
@bot.message_handler(content_types=['sticker'])
def sticker_handler(message):
bot.send_sticker(message.chat.id, STICKER_ID)
@bot.message_handler(content_types=['document'])
def gif_handler(message):
bot.send_document(message.chat.id, GIF_ID)
bot.send_message(message.chat.id, FILE_DISCRIPT)
# Photo handler for make prediction
@bot.message_handler(content_types=['photo'])
def send_prediction_on_photo(message):
print("Start working on photo")
# get photo id and upload it into memory
# [-1] index corresponds to the best quality
photo_id = message.photo[-1].file_id
photo_info = bot.get_file(photo_id)
photo_bytes = bot.download_file(photo_info.file_path)
bot.send_message(message.chat.id, 'Your photo is in line, please wait.',
reply_markup=markup_menu)
# create BytesIO wrapper for the image
img = Image.open(BytesIO(photo_bytes))
img = img.resize((312, 312), Image.BILINEAR)
prob, label, heatmap, seg_prediction = MakePredict().make_predict(img)
# send prediction with probability
prob = np.array(prob[label]) * 100
prob = np.around(prob, 2)
bot.send_message(message.chat.id, f'This is class {str(label)} with probability {str(prob) + " %"}',
reply_markup=markup_menu)
# send alpha heatmap
bot.send_message(message.chat.id, "Visual explanations from neural net via gradient-based localization",
reply_markup=markup_menu)
stream = BytesIO()
heatmap.save(stream, format='PNG')
stream.flush()
stream.seek(0)
bot.send_photo(message.chat.id, stream)
time.sleep(1)
print("Sent First Photo To User")
time.sleep(1)
# send a mask of blood vessels
bot.send_message(message.chat.id, "Retinal blood vessels segmentation",
reply_markup=markup_menu)
stream = BytesIO()
seg_prediction.save(stream, format='PNG')
stream.flush()
stream.seek(0)
bot.send_photo(message.chat.id, stream)
time.sleep(1)
print("Sent Second Photo To User")
seg_prediction.save(stream, format='PNG')
@app.route('/' + TOKEN, methods=['POST'])
def getMessage():
bot.process_new_updates([telebot.types.Update.de_json(request.stream.read().decode("utf-8"))])
return "!", 200
@app.route("/")
def webhook():
bot.remove_webhook()
bot.set_webhook(url='https://eyemedservice.herokuapp.com/' + TOKEN)
return render_template("index.html"), 200
if __name__ == "__main__":
app.run(host="0.0.0.0", port=int(os.environ.get('PORT', 5000)))