-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalign_CHASE.py
371 lines (293 loc) · 17.1 KB
/
align_CHASE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Written by Shihao Rao, Nanjing University
# 1. import modules
import sim
import csv
import copy
import numpy as np
from math import *
import glob, cv2, gc, time # gc这个包大概是想用它来清除缓存(一开始是在个人PC上测试程序所以需要清除),有更好的方法可以更改
from astropy.io import fits
from scipy import interpolate
import matplotlib.pyplot as plt
# 2. global information define
Ddate = '20230803'
Halist = sorted(glob.glob('/data/chase/Chase/Lev1/2022/8/3/*T02*HA.fits'))
Halist2 = sorted(glob.glob('/data/chase/Chase/Lev1/2022/8/3/*T03*HA.fits'))
Halist.extend(Halist2)
Felist = sorted(glob.glob('/data/chase/Chase/Lev1/2022/8/3/*T02*FE.fits'))
Felist2 = sorted(glob.glob('/data/chase/Chase/Lev1/2022/8/3/*T03*FE.fits'))
Felist.extend(Felist2)
se0000_bias = sorted(glob.glob('/data/home/wangxinyu/data/jitter_corr/bias/20220803T021402.csv')) # 读取图像偏差
bin_num = 2 # 可以设置是否为binning模式的扫描
spec_win = 'HA' # 可以设置需要做畸变矫正的窗口,两个窗口(HA和FE)畸变矫正的方法略有区别
cut_range = [550, 850, 1550, 1850] # bottom, top, left, right # 切取小块区域用于检验畸变矫正方法是否可行
L1_5_path = '/data/home/wangxinyu/data/Lev1_5/' # 最终存储数据的路径
tot = len(Halist)
winsize = 32 # 畸变窗口大小,值越大,对畸变的改正效果越差,但太阳本身的运动的影响越小
headerkeys = ['BITPIX', 'NAXIS', 'NAXIS1', 'NAXIS2', 'NAXIS3', 'TELESCOP', \
'BIN', 'DATE_OBS', 'CRPIX1', 'CUNIT1', 'CDELT1', \
'CRVAL1', 'CRPIX2', 'CUNIT2', 'CDELT2', 'CRVAL2', 'CRPIX3', \
'CUNIT3', 'CDELT3', 'CRVAL3', 'STEPTIME', \
'PRODATE', 'STR_TIME', 'END_TIME', 'EXP_TIME', 'ORID', 'FRM_NUM', \
'SPECLINE', 'WAVE_LEN', 'SAT_POS1', 'SAT_POS2', \
'SAT_POS3', 'SAT_VEL1', 'SAT_VEL2', 'SAT_VEL3', 'INST_ROT', \
'B0', 'OBS_MOD', 'LVL_NUM'] # 因为之前是需要重新写一个fits文件,所以手动设置了头文件,这一点需要修改一下
# 3. processing series_0000
se0000_hacore = fits.open(Halist[0])[1].data[68, :, :]
se0000_header = fits.open(Halist[0])[1].header
se0000_Xo0 = se0000_header['CRPIX1'] # 读取日面中心(o代表原始original数据定出来的坐标)
se0000_Yo0 = se0000_header['CRPIX2'] # 读取日面中心
h, w = se0000_hacore.shape # 读取图片高度和宽度
se0000_hadata = fits.open(Halist[0])[1].data
haa1, haa2, haa3 = se0000_hadata.shape[0], se0000_hadata.shape[1], se0000_hadata.shape[2] # 读取Ha图片尺寸
del se0000_hadata
gc.collect()
se0000_hawing = fits.open(Halist[0])[1].data[110, :, :]
se0000_strtime = se0000_header['STR_TIME'] # 读取时间
se0000_rx = se0000_header['SAT_POS1'] # 读取卫星相对地球位置
se0000_ry = se0000_header['SAT_POS2'] # 读取卫星相对地球位置
se0000_rz = se0000_header['SAT_POS3'] # 读取卫星相对地球位置
se0000_satpos = [se0000_rx, se0000_ry, se0000_rz]
se0000_center = sim.circle_center(se0000_hawing) # 重新计算日心坐标(此时的日面还存在畸变,拟合得到的日心坐标不准确,后续会计算更准确的日心坐标)
se0000_RSUN = sim.theory_rsun(se0000_strtime, se0000_satpos, bin_num) # 计算出理论的太阳视半径(前面pipeline不知道有没有用这个方法计算日面半径,新的pipeline日面半径以这个为准)
se0000_centerx, se0000_centerz = se0000_center[0], se0000_center[1]
l_se0000_biasx = [] # 读取卫星指向偏差(此时是角秒单位)
l_se0000_biasz = [] # 读取卫星指向偏差(此时是角秒单位)
with open(se0000_bias[0]) as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
l_se0000_biasx.append(float(row['biasx']) / (0.5218 * 2)) # 从角秒单位变为pixel单位
l_se0000_biasz.append(float(row['biasz']) / (0.5218 * 2)) # 从角秒单位变为pixel单位
se0000_x, se0000_z = np.zeros([haa2, haa3]), np.zeros([haa2, haa3])
lse0000_za, lse0000_zb, lse0000_zc = [], [], []
for j in range(haa2):
for k in range(haa3):
se0000_x[j, k] = k - l_se0000_biasx[j] # 拍摄时,若镜头向右偏移,重映射时,采用相应图像向右平移
if k == 0:
lse0000_za.append(j) # 完整的z方向2312帧坐标
if j + l_se0000_biasz[j] not in lse0000_zb: # 新图像j + l_se0000_biasz[j]位置由j位置替换
lse0000_zb.append(j + l_se0000_biasz[j]) # 因为不均匀,故不涵盖所有2312个z方向坐标,该位置作为插值的自变量
lse0000_zc.append(j) # 该位置作为插值的因变量
se0000_maxtestz = max(lse0000_zb)
se0000_mintestz = min(lse0000_zb)
se0000_tck = interpolate.splrep(lse0000_zb, lse0000_zc)
lse0000_z = interpolate.splev(lse0000_za, se0000_tck, der = 0) # 插值
lse0000_z = list(lse0000_z)
se0000_shiftmask = np.ones([haa2, haa3])
for j in range(haa2):
for k in range(haa3):
se0000_z[j, k] = lse0000_z[j] # 插值之后,每个点都对应了
if j > se0000_maxtestz or j < se0000_mintestz:
se0000_shiftmask[j, k] = 0 # 外插的点不可信,需要擦除
se0000_x = se0000_x.astype('float32') # 改变数据类型,否则remap时候会报错(下同)
se0000_z = se0000_z.astype('float32')
se0000_hadata = fits.open(Halist[0])[1].data
se0000_haheader = fits.open(Halist[0])[1].header
se0000_hacubeout = np.zeros([haa1, haa2, haa3])
for wl in range(haa1):
se0000_im_wl = se0000_hadata[wl, :, :]
se0000_imout = cv2.remap(se0000_im_wl, se0000_x, se0000_z, borderMode = cv2.BORDER_CONSTANT, \
interpolation = cv2.INTER_LINEAR) # 非刚性位移改正畸变,边界值默认为常数0以免假信号造成误解
se0000_imout = np.multiply(se0000_imout, se0000_shiftmask)
se0000_hacubeout[wl, :, :] = se0000_imout
# calculate the disk center more precisely
se0000_hacore0 = se0000_hacubeout[68, :, :]
se0000_hawing0 = se0000_hacubeout[110, :, :]
se0000_center = sim.circle_center(se0000_hawing0)
se0000_centerX0, se0000_centerY0 = se0000_center[0], se0000_center[1]
# 4. processing other images
for i in range(tot):
if i == 0:
print('Starting to process the first scan')
if spec_win == 'HA':
se0000_header = fits.open(Halist[i])[1].header
haa1, haa2, haa3 = fits.open(Halist[i])[1].data.shape
if spec_win == 'FE':
se0000_header = fits.open(Felist[i])[1].header
fea1, fea2, fea3 = fits.open(Felist[i])[1].data.shape
se0000_fedata = fits.open(Felist[i])[1].data
fea1, fea2, fea3 = fits.open(Felist[i])[1].data.shape
p0 = se0000_header['INST_ROT']
se0000_strtime = se0000_header['STR_TIME']
se0000_rx = se0000_header['SAT_POS1']
se0000_ry = se0000_header['SAT_POS2']
se0000_rz = se0000_header['SAT_POS3']
se0000_satpos = [se0000_rx, se0000_ry, se0000_rz]
se00xx_RSUN = sim.theory_rsun(se0000_strtime, se0000_satpos, bin_num)
if spec_win == 'FE': # Fe线窗口的第一幅全日面拼接像,使用上一步的畸变矩阵进行矫正
se00xx_cubeout = np.zeros([fea1, fea2, fea3])
for wl in range(fea1):
se0000_im_wl = se0000_fedata[wl, :, :]
se0000_feimout = cv2.remap(se0000_im_wl, se0000_x, se0000_z, borderMode = cv2.BORDER_CONSTANT, \
interpolation = cv2.INTER_LINEAR) #非刚性位移改正畸变
se00xx_feimout = np.multiply(se0000_feimout, se0000_shiftmask)
se00xx_cubeout[wl, :, :] = se00xx_feimout
se00xx_imwing = se00xx_cubeout[10, :, :]
gc.collect()
if spec_win == 'HA': # Ha线窗口的第一幅全日面拼接像,由于已经用畸变矩阵矫正过
se00xx_cubeout = copy.deepcopy(se0000_hacubeout)
se00xx_imwing = se00xx_cubeout[110, :, :]
hacore0 = se0000_hacubeout[68, :, :] # 取出矫正过Ha线线心图像
else:
print('Starting to process scan: ', i)
if spec_win == 'HA': # 读取光球图像用于定日心坐标
se00xx_wing = fits.open(Halist[i])[1].data[110, :, :]
se00xx_header = fits.open(Halist[i])[1].header
if spec_win == 'FE':
se00xx_wing = fits.open(Felist[i])[1].data[10, :, :]
se00xx_header = fits.open(Felist[i])[1].header
se00xx_strtime = se00xx_header['STR_TIME']
se00xx_rx = se00xx_header['SAT_POS1']
se00xx_ry = se00xx_header['SAT_POS2']
se00xx_rz = se00xx_header['SAT_POS3']
se00xx_satpos = [se00xx_rx, se00xx_ry, se00xx_rz]
p0 = se00xx_header['INST_ROT']
se00xx_center = sim.circle_center(se00xx_wing)
se00xx_RSUN = sim.theory_rsun(se00xx_strtime, se00xx_satpos, bin_num)
se00xx_centerx, se00xx_centery = se00xx_center[0], se00xx_center[1]
se00xx_hacore = fits.open(Halist[i])[1].data[68, :, :].astype('float32')
dx, dy = -(se00xx_centerx - se0000_centerX0), -(se00xx_centery - se0000_centerY0)
print(dx, dy, se00xx_RSUN)
se00xx_hacore2 = sim.imshift(se00xx_hacore, [int(dy), int(dx)]) #刚性对齐
print('Processing distortion correction...')
se00xx_flow = cv2.calcOpticalFlowFarneback(hacore0, se00xx_hacore2, flow = None, pyr_scale = 0.5, \
levels = 3, winsize = winsize, iterations = 5, poly_n = 5, \
poly_sigma = 1.2, flags = 0) #计算畸变
se00xx_x1, se00xx_y1 = np.meshgrid(np.arange(w), np.arange(h))
if spec_win == 'HA':
se00xx_data = fits.open(Halist[i])[1].data
se00xx_cubeout = np.zeros([haa1, haa2, haa3])
a1, a2, a3 = haa1, haa2, haa3
if spec_win == 'FE':
se00xx_data = fits.open(Felist[i])[1].data
se00xx_cubeout = np.zeros([fea1, fea2, fea3])
a1, a2, a3 = fea1, fea2, fea3
se00xx_x2 = copy.deepcopy(se00xx_x1)
se00xx_y2 = copy.deepcopy(se00xx_y1)
se00xx_flow2 = copy.deepcopy(se00xx_flow)
for j in range(a2): # 只选取日面范围的区域(2.1日面半径的正方形)计算每步扫描的指向偏差,或许可以自适应调节区域大小
if abs(j - se00xx_centery) <= 1.05 * se00xx_RSUN:
xrange = [se00xx_centerx - sqrt((1.05 * se00xx_RSUN) ** 2 - (se00xx_centery - j) ** 2), \
se00xx_centerx + sqrt((1.05 * se00xx_RSUN) ** 2 - (se00xx_centery - j) ** 2)]
flowx_mean = se00xx_flow[j, int(xrange[0]):int(xrange[1]), 0].mean()
flowy_mean = se00xx_flow[j, int(xrange[0]):int(xrange[1]), 1].mean()
for k in range(a3):
se00xx_flow2[j, k, 0] = flowx_mean # 同一步的图像需要刚性平移改正畸变
se00xx_flow2[j, k, 1] = flowy_mean
se00xx_x2 = se00xx_x2 + se00xx_flow2[:, :, 0]
se00xx_y2 = se00xx_y2 + se00xx_flow2[:, :, 1]
se00xx_x2 = se00xx_x2.astype('float32')
se00xx_y2 = se00xx_y2.astype('float32')
for j in range(a1):
if spec_win == 'HA':
se00xx_im3tmp = se00xx_data[j, :, :]
se00xx_im3 = sim.imshift(se00xx_im3tmp, [int(dy), int(dx)]).astype('float32')
if j == 110:
se00xx_imwing = se00xx_data[j, :, :].astype('float32')
if spec_win == 'FE':
se00xx_im3tmp = se00xx_data[j, :, :]
se00xx_im3 = sim.imshift(se00xx_im3tmp, [int(dy), int(dx)]).astype('float32')
if j == 10:
se00xx_imwing = se00xx_data[j, :, :].astype('float32')
se00xx_imout = cv2.remap(se00xx_im3, se00xx_x2, se00xx_y2, borderMode = cv2.BORDER_CONSTANT, \
interpolation = cv2.INTER_LINEAR) #非刚性位移改正畸变
se00xx_cubeout[j, :, :] = se00xx_imout
print('Distortion correction successful')
# 将INST_ROT旋转回来
se00xx_center = sim.circle_center(se00xx_imwing)
se00xx_centerx, se00xx_centery = se00xx_center[0], se00xx_center[1]
print(se00xx_centerx, se00xx_centery, se00xx_RSUN)
print('Rotating...')
if spec_win == 'HA':
a1, a2, a3 = haa1, haa2, haa3
if spec_win == 'FE':
a1, a2, a3 = fea1, fea2, fea3
se00xx_cubeout2 = np.zeros([a1, a2, a3])
se00xx_rotate1 = np.zeros([a2, a3])
se00xx_rotate2 = np.zeros([a2, a3])
for j in range(a2):
for k in range(a3):
original_coor = [k - se00xx_centerx, 0, j - se00xx_centery]
local_rot = np.dot(sim.rotation_matrix3('y', p0 / 180 * pi), \
original_coor)
se00xx_rotate1[j, k] = local_rot[0] + se00xx_centerx
se00xx_rotate2[j, k] = local_rot[2] + se00xx_centery
se00xx_rotate1 = se00xx_rotate1.astype('float32')
se00xx_rotate2 = se00xx_rotate2.astype('float32')
for j in range(a1):
se00xx_cubeout2[j, :, :] = cv2.remap(se00xx_cubeout[j, :, :], se00xx_rotate1, se00xx_rotate2, \
borderMode = cv2.BORDER_CONSTANT, \
interpolation = cv2.INTER_LINEAR)
print('Rotation successful')
se00xx_mask = np.ones([a2, a3])
for j in range(a2):
for k in range(a3):
if (j - se00xx_centery) ** 2 + (k - se00xx_centerx) ** 2 >= (1.1 * se00xx_RSUN) ** 2:
se00xx_mask[j, k] = 0
if spec_win == 'HA':
se00xx_wing2 = copy.deepcopy(np.multiply(se00xx_cubeout2[110, :, :], se00xx_mask))
if spec_win == 'FE':
se00xx_wing2 = copy.deepcopy(np.multiply(se00xx_cubeout2[10, :, :], se00xx_mask))
se00xx_center = sim.circle_center(se00xx_wing2)
se00xx_centerx, se00xx_centery = se00xx_center[0], se00xx_center[1]
print('Final disk parameter for series {}: '.format(i), se00xx_centerx, se00xx_centery, se00xx_RSUN)
# 绘制快速预览图
if spec_win == 'HA':
core_img = se00xx_cubeout2[68]
wing_img = se00xx_cubeout2[110]
filename = Halist[i].split('/')[-1]
if spec_win == 'FE':
core_img = se00xx_cubeout2[22]
wing_img = se00xx_cubeout2[10]
filename = Felist[i].split('/')[-1]
# 线心全日面像
plt.figure(figsize = (20, 20))
plt.imshow(core_img[int(se00xx_centery) - 1000:int(se00xx_centery) + 1000, int(se00xx_centerx) - 1000:int(se00xx_centerx) + 1000], origin = 'lower', cmap = 'afmhot', vmin = 0, vmax = 4 * core_img.mean())
plt.title(filename[3:7] + '-' + filename[7:9] + '-' + filename[9:11] + 'UT' + filename[12:14] + ':' + filename[14:16] + ':' + filename[16:18], size = 30)
if spec_win == 'HA':
plt.savefig(L1_5_path + 'figure/ha/' + filename.split('.')[0] + '.png', dpi = 300)
if spec_win == 'FE':
plt.savefig(L1_5_path + 'figure/fe/' + filename.split('.')[0] + '.png', dpi = 300)
plt.close()
# 线心局部区域像
plt.figure(figsize = (20, 20))
plt.imshow(core_img[int(se00xx_centery) - 1000:int(se00xx_centery) + 1000, int(se00xx_centerx) - 1000:int(se00xx_centerx) + 1000][cut_range[0]:cut_range[1], cut_range[2]:cut_range[3]], \
origin = 'lower', cmap = 'afmhot', vmin = 0, vmax = 4 * core_img.mean())
plt.title(filename[3:7] + '-' + filename[7:9] + '-' + filename[9:11] + 'UT' + filename[12:14] + ':' + filename[14:16] + ':' + filename[16:18], size = 30)
if spec_win == 'HA':
plt.savefig(L1_5_path + 'figure/ha/cut_core' + filename[3:].split('.')[0] + '.png', dpi = 300)
if spec_win == 'FE':
plt.savefig(L1_5_path + 'figure/fe/cut_core' + filename[3:].split('.')[0] + '.png', dpi = 300)
plt.close()
# 线翼局部区域像
plt.figure(figsize = (20, 20))
plt.imshow(wing_img[int(se00xx_centery) - 1000:int(se00xx_centery) + 1000, int(se00xx_centerx) - 1000:int(se00xx_centerx) + 1000][cut_range[0]:cut_range[1], cut_range[2]:cut_range[3]], \
origin = 'lower', cmap = 'afmhot', vmin = 0, vmax = 4 * wing_img.mean())
plt.title(filename[3:7] + '-' + filename[7:9] + '-' + filename[9:11] + 'UT' + filename[12:14] + ':' + filename[14:16] + ':' + filename[16:18], size = 30)
if spec_win == 'HA':
plt.savefig(L1_5_path + 'figure/ha/cut_wing' + filename[3:].split('.')[0] + '.png', dpi = 300)
if spec_win == 'FE':
plt.savefig(L1_5_path + 'figure/fe/cut_wing' + filename[3:].split('.')[0] + '.png', dpi = 300)
plt.close()
# 存为fits文件
dataf = fits.PrimaryHDU(se00xx_cubeout2)
dataHDU = fits.HDUList([dataf])
hdr = dataHDU[0].header
for j in range(39):
try:
hdr[headerkeys[j]] = se00xx_header[headerkeys[j]]
except:
try:
hdr[headerkeys[j]] = se0000_header[headerkeys[j]]
except:
print(headerkeys[j] + 'not exist.')
hdr['TELESCOP'] = 'CHASE'
hdr['SPECLINE'] = 'HA'
hdr['OBS_MOD'] = 'RSM'
hdr['CRPIX1'] = round(se00xx_centerx, 6)
hdr['CRPIX2'] = round(se00xx_centery, 6)
hdr['R_SUN'] = round(se00xx_RSUN, 6)
hdr['RSUN_OBS'] = round(se00xx_RSUN * bin_num * 0.5218, 6)
print('Writing...')
dataHDU.writeto(L1_5_path + filename, overwrite = True)
print('Writing successful')