forked from LeslieZhoa/GFPGAN-1024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_roi.py
164 lines (120 loc) · 4.17 KB
/
get_roi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import sys
sys.path.insert(0,'')
from LVT.LVT import Engine
from LVT.utils import utils
import time
from multiprocessing import Pool
import math
import argparse
import torch.distributed as dist
import torch
import numpy as np
import os
import cv2
import pdb
parser = argparse.ArgumentParser(description="InfoProcess")
parser.add_argument('--pool_num',default=5,type=int)
class InfoProcess:
def __init__(self):
model_dir = ''
self.engine = Engine(face_lmk_path=model_dir + 'slpt-lmk.onnx')
self.left_eye_index = list(range(60,68))
self.right_eye_index = list(range(68,76))
self.lip_index = list(range(76,88))
def run(self,img_paths,save_base):
os.makedirs(save_base,exist_ok=True)
i = 0
for img_path in img_paths:
try:
self.run_single(img_path,save_base)
except:
continue
print('\r have done %06d'%i,end='',flush=True)
i += 1
print()
def run_single(self,img_path,save_base):
img = cv2.imread(img_path)
# 98点
h,w,_ = img.shape
lmk = self.get_lmk(img,h,[0,0])[0]
left_eye = self.get_area(lmk[self.left_eye_index])
right_eye = self.get_area(lmk[self.right_eye_index])
lip = self.get_area(lmk[self.lip_index])
data = {'left_eye':left_eye,
'right_eye':right_eye,
'mouth':lip}
name = os.path.splitext(os.path.basename(img_path))[0]
np.save(os.path.join(save_base,name+'.npy'),data)
return True
def get_lmk(self,crop_img,crop_height,top):
inp = self.engine.preprocess_lmk(crop_img)
lmk = self.engine.get_lmk(inp)
lmk = self.engine.postprocess_lmk(lmk,crop_height,top)
return lmk
def get_area(self,lmk):
left = np.min(lmk,0)
right = np.max(lmk,0)
mean = (left + right) / 2
height = np.max(right-left)
return np.array(mean.tolist()+[height])
def draw_lmk(self,img,lmk):
for p in lmk:
cv2.circle(img,(int(p[0]),int(p[1])),2,[0,255,0])
return img
def draw_rec(self,img,data):
x,y,h = data
x1 = x - h/2
y1 = y - h/2
x2 = x + h/2
y2 = y + h/2
cv2.rectangle(img,(int(x1),int(y1)),(int(x2),int(y2)),[255,0,0],2)
return img
def work(video_paths,save_base):
process = InfoProcess()
process.run(video_paths,save_base)
def print_error(value):
print("error: ", value)
if __name__ == "__main__":
import torch.multiprocessing as mp
mp.set_start_method('spawn')
args = parser.parse_args()
fn = lambda x:[os.path.join(x,f) for f in os.listdir(x)]
# img_paths = fn(base1) + fn(base2)
base = ''
img_paths = fn(base)
save_base = ''
# work(img_paths,save_base)
length = len(img_paths)
rank = int(os.environ.get('RANK','0'))
world_size = int(os.environ.get('WORLD_SIZE','1'))
print('*********************',rank,world_size)
pool_num = args.pool_num
dis1 = math.ceil(length / float(world_size))
img_paths = img_paths[rank*dis1:(rank+1)*dis1]
length = len(img_paths)
dis = math.ceil(length/float(pool_num))
if world_size > 1:
dist.init_process_group(backend="nccl") # backbend='nccl'
dist.barrier() # 用于同步训练
signal = torch.tensor([0]).cuda()
t1 = time.time()
print('***************all length: %d ******************'%length)
p = Pool(pool_num)
for i in range(pool_num):
p.apply_async(work, args = (
img_paths[i*dis:(i+1)*dis],
save_base,),error_callback=print_error)
p.close()
p.join()
print("all the time: %s"%(time.time()-t1))
signal = torch.tensor([1]).cuda()
if world_size > 1:
while True:
dist.all_reduce(signal)
value = signal.item()
print('***************',value)
if value >= world_size:
break
else:
dist.all_reduce(torch.tensor([0]).cuda())
signal = torch.tensor([1]).cuda()