This repository has been archived by the owner on Jun 30, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathp2p-fullblocktest.py
executable file
·1293 lines (1114 loc) · 51.5 KB
/
p2p-fullblocktest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) 2015-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from test_framework.test_framework import ComparisonTestFramework
from test_framework.util import *
from test_framework.comptool import TestManager, TestInstance, RejectResult
from test_framework.blocktools import *
import time
from test_framework.key import CECKey
from test_framework.script import *
import struct
class PreviousSpendableOutput(object):
def __init__(self, tx = CTransaction(), n = -1):
self.tx = tx
self.n = n # the output we're spending
'''
This reimplements tests from the bitcoinj/FullBlockTestGenerator used
by the pull-tester.
We use the testing framework in which we expect a particular answer from
each test.
'''
def hash160(s):
return hashlib.new('ripemd160', sha256(s)).digest()
# Use this class for tests that require behavior other than normal "mininode" behavior.
# For now, it is used to serialize a bloated varint (b64).
class CBrokenBlock(CBlock):
def __init__(self, header=None):
super(CBrokenBlock, self).__init__(header)
def initialize(self, base_block):
self.vtx = copy.deepcopy(base_block.vtx)
self.hashMerkleRoot = self.calc_merkle_root()
def serialize(self):
r = b""
r += super(CBlock, self).serialize()
r += struct.pack("<BQ", 255, len(self.vtx))
for tx in self.vtx:
r += tx.serialize()
return r
def normal_serialize(self):
r = b""
r += super(CBrokenBlock, self).serialize()
return r
class FullBlockTest(ComparisonTestFramework):
# Can either run this test as 1 node with expected answers, or two and compare them.
# Change the "outcome" variable from each TestInstance object to only do the comparison.
def __init__(self):
super().__init__()
self.num_nodes = 1
self.block_heights = {}
self.coinbase_key = CECKey()
self.coinbase_key.set_secretbytes(b"horsebattery")
self.coinbase_pubkey = self.coinbase_key.get_pubkey()
self.tip = None
self.blocks = {}
def add_options(self, parser):
super().add_options(parser)
parser.add_option("--runbarelyexpensive", dest="runbarelyexpensive", default=True)
def run_test(self):
self.test = TestManager(self, self.options.tmpdir)
self.test.add_all_connections(self.nodes)
NetworkThread().start() # Start up network handling in another thread
self.test.run()
def add_transactions_to_block(self, block, tx_list):
[ tx.rehash() for tx in tx_list ]
block.vtx.extend(tx_list)
# this is a little handier to use than the version in blocktools.py
def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])):
tx = create_transaction(spend_tx, n, b"", value, script)
return tx
# sign a transaction, using the key we know about
# this signs input 0 in tx, which is assumed to be spending output n in spend_tx
def sign_tx(self, tx, spend_tx, n):
scriptPubKey = bytearray(spend_tx.vout[n].scriptPubKey)
if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend
tx.vin[0].scriptSig = CScript()
return
(sighash, err) = SignatureHash(spend_tx.vout[n].scriptPubKey, tx, 0, SIGHASH_ALL)
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))])
def create_and_sign_transaction(self, spend_tx, n, value, script=CScript([OP_TRUE])):
tx = self.create_tx(spend_tx, n, value, script)
self.sign_tx(tx, spend_tx, n)
tx.rehash()
return tx
def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True):
if self.tip == None:
base_block_hash = self.genesis_hash
block_time = int(time.time())+1
else:
base_block_hash = self.tip.sha256
block_time = self.tip.nTime + 1
# First create the coinbase
height = self.block_heights[base_block_hash] + 1
coinbase = create_coinbase(height, self.coinbase_pubkey)
coinbase.vout[0].nValue += additional_coinbase_value
coinbase.rehash()
if spend == None:
block = create_block(base_block_hash, coinbase, block_time)
else:
coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 # all but one satoshi to fees
coinbase.rehash()
block = create_block(base_block_hash, coinbase, block_time)
tx = create_transaction(spend.tx, spend.n, b"", 1, script) # spend 1 satoshi
self.sign_tx(tx, spend.tx, spend.n)
self.add_transactions_to_block(block, [tx])
block.hashMerkleRoot = block.calc_merkle_root()
if solve:
block.solve()
self.tip = block
self.block_heights[block.sha256] = height
assert number not in self.blocks
self.blocks[number] = block
return block
def get_tests(self):
self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
self.block_heights[self.genesis_hash] = 0
spendable_outputs = []
# save the current tip so it can be spent by a later block
def save_spendable_output():
spendable_outputs.append(self.tip)
# get an output that we previously marked as spendable
def get_spendable_output():
return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0)
# returns a test case that asserts that the current tip was accepted
def accepted():
return TestInstance([[self.tip, True]])
# returns a test case that asserts that the current tip was rejected
def rejected(reject = None):
if reject is None:
return TestInstance([[self.tip, False]])
else:
return TestInstance([[self.tip, reject]])
# move the tip back to a previous block
def tip(number):
self.tip = self.blocks[number]
# adds transactions to the block and updates state
def update_block(block_number, new_transactions):
block = self.blocks[block_number]
self.add_transactions_to_block(block, new_transactions)
old_sha256 = block.sha256
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
# Update the internal state just like in next_block
self.tip = block
if block.sha256 != old_sha256:
self.block_heights[block.sha256] = self.block_heights[old_sha256]
del self.block_heights[old_sha256]
self.blocks[block_number] = block
return block
# shorthand for functions
block = self.next_block
create_tx = self.create_tx
create_and_sign_tx = self.create_and_sign_transaction
# these must be updated if consensus changes
MAX_BLOCK_SIGOPS = 20000
# Create a new block
block(0)
save_spendable_output()
yield accepted()
# Now we need that block to mature so we can spend the coinbase.
test = TestInstance(sync_every_block=False)
for i in range(99):
block(5000 + i)
test.blocks_and_transactions.append([self.tip, True])
save_spendable_output()
yield test
# collect spendable outputs now to avoid cluttering the code later on
out = []
for i in range(33):
out.append(get_spendable_output())
# Start by building a couple of blocks on top (which output is spent is
# in parentheses):
# genesis -> b1 (0) -> b2 (1)
block(1, spend=out[0])
save_spendable_output()
yield accepted()
block(2, spend=out[1])
yield accepted()
save_spendable_output()
# so fork like this:
#
# genesis -> b1 (0) -> b2 (1)
# \-> b3 (1)
#
# Nothing should happen at this point. We saw b2 first so it takes priority.
tip(1)
b3 = block(3, spend=out[1])
txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0)
yield rejected()
# Now we add another block to make the alternative chain longer.
#
# genesis -> b1 (0) -> b2 (1)
# \-> b3 (1) -> b4 (2)
block(4, spend=out[2])
yield accepted()
# ... and back to the first chain.
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b3 (1) -> b4 (2)
tip(2)
block(5, spend=out[2])
save_spendable_output()
yield rejected()
block(6, spend=out[3])
yield accepted()
# Try to create a fork that double-spends
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b7 (2) -> b8 (4)
# \-> b3 (1) -> b4 (2)
tip(5)
block(7, spend=out[2])
yield rejected()
block(8, spend=out[4])
yield rejected()
# Try to create a block that has too much fee
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b9 (4)
# \-> b3 (1) -> b4 (2)
tip(6)
block(9, spend=out[4], additional_coinbase_value=1)
yield rejected(RejectResult(16, b'bad-cb-amount'))
# Create a fork that ends in a block with too much fee (the one that causes the reorg)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b10 (3) -> b11 (4)
# \-> b3 (1) -> b4 (2)
tip(5)
block(10, spend=out[3])
yield rejected()
block(11, spend=out[4], additional_coinbase_value=1)
yield rejected(RejectResult(16, b'bad-cb-amount'))
# Try again, but with a valid fork first
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b14 (5)
# (b12 added last)
# \-> b3 (1) -> b4 (2)
tip(5)
b12 = block(12, spend=out[3])
save_spendable_output()
b13 = block(13, spend=out[4])
# Deliver the block header for b12, and the block b13.
# b13 should be accepted but the tip won't advance until b12 is delivered.
yield TestInstance([[CBlockHeader(b12), None], [b13, False]])
save_spendable_output()
# b14 is invalid, but the node won't know that until it tries to connect
# Tip still can't advance because b12 is missing
block(14, spend=out[5], additional_coinbase_value=1)
yield rejected()
yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13.
# Add a block with MAX_BLOCK_SIGOPS and one with one more sigop
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6)
# \-> b3 (1) -> b4 (2)
# Test that a block with a lot of checksigs is okay
lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1))
tip(13)
block(15, spend=out[5], script=lots_of_checksigs)
yield accepted()
save_spendable_output()
# Test that a block with too many checksigs is rejected
too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS))
block(16, spend=out[6], script=too_many_checksigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# Attempt to spend a transaction created on a different fork
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1])
# \-> b3 (1) -> b4 (2)
tip(15)
block(17, spend=txout_b3)
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Attempt to spend a transaction created on a different fork (on a fork this time)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5)
# \-> b18 (b3.vtx[1]) -> b19 (6)
# \-> b3 (1) -> b4 (2)
tip(13)
block(18, spend=txout_b3)
yield rejected()
block(19, spend=out[6])
yield rejected()
# Attempt to spend a coinbase at depth too low
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7)
# \-> b3 (1) -> b4 (2)
tip(15)
block(20, spend=out[7])
yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase'))
# Attempt to spend a coinbase at depth too low (on a fork this time)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5)
# \-> b21 (6) -> b22 (5)
# \-> b3 (1) -> b4 (2)
tip(13)
block(21, spend=out[6])
yield rejected()
block(22, spend=out[5])
yield rejected()
# Create a block on either side of MAX_BLOCK_SIZE and make sure its accepted/rejected
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6)
# \-> b24 (6) -> b25 (7)
# \-> b3 (1) -> b4 (2)
tip(15)
b23 = block(23, spend=out[6])
tx = CTransaction()
script_length = MAX_BLOCK_SIZE - len(b23.serialize()) - 69
script_output = CScript([b'\x00' * script_length])
tx.vout.append(CTxOut(0, script_output))
tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0)))
b23 = update_block(23, [tx])
# Make sure the math above worked out to produce a max-sized block
assert_equal(len(b23.serialize()), MAX_BLOCK_SIZE)
yield accepted()
save_spendable_output()
# Make the next block one byte bigger and check that it fails
tip(15)
b24 = block(24, spend=out[6])
script_length = MAX_BLOCK_SIZE - len(b24.serialize()) - 69
script_output = CScript([b'\x00' * (script_length+1)])
tx.vout = [CTxOut(0, script_output)]
b24 = update_block(24, [tx])
assert_equal(len(b24.serialize()), MAX_BLOCK_SIZE+1)
yield rejected(RejectResult(16, b'bad-blk-length'))
block(25, spend=out[7])
yield rejected()
# Create blocks with a coinbase input script size out of range
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7)
# \-> ... (6) -> ... (7)
# \-> b3 (1) -> b4 (2)
tip(15)
b26 = block(26, spend=out[6])
b26.vtx[0].vin[0].scriptSig = b'\x00'
b26.vtx[0].rehash()
# update_block causes the merkle root to get updated, even with no new
# transactions, and updates the required state.
b26 = update_block(26, [])
yield rejected(RejectResult(16, b'bad-cb-length'))
# Extend the b26 chain to make sure bitcoind isn't accepting b26
b27 = block(27, spend=out[7])
yield rejected(RejectResult(16, b'bad-prevblk'))
# Now try a too-large-coinbase script
tip(15)
b28 = block(28, spend=out[6])
b28.vtx[0].vin[0].scriptSig = b'\x00' * 101
b28.vtx[0].rehash()
b28 = update_block(28, [])
yield rejected(RejectResult(16, b'bad-cb-length'))
# Extend the b28 chain to make sure bitcoind isn't accepting b28
b29 = block(29, spend=out[7])
yield rejected(RejectResult(16, b'bad-prevblk'))
# b30 has a max-sized coinbase scriptSig.
tip(23)
b30 = block(30)
b30.vtx[0].vin[0].scriptSig = b'\x00' * 100
b30.vtx[0].rehash()
b30 = update_block(30, [])
yield accepted()
save_spendable_output()
# b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY
#
# genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
# \-> b36 (11)
# \-> b34 (10)
# \-> b32 (9)
#
# MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end.
lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
b31 = block(31, spend=out[8], script=lots_of_multisigs)
assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS)
yield accepted()
save_spendable_output()
# this goes over the limit because the coinbase has one sigop
too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20))
b32 = block(32, spend=out[9], script=too_many_multisigs)
assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# CHECKMULTISIGVERIFY
tip(31)
lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
block(33, spend=out[9], script=lots_of_multisigs)
yield accepted()
save_spendable_output()
too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20))
block(34, spend=out[10], script=too_many_multisigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# CHECKSIGVERIFY
tip(33)
lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1))
b35 = block(35, spend=out[10], script=lots_of_checksigs)
yield accepted()
save_spendable_output()
too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS))
block(36, spend=out[11], script=too_many_checksigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# Check spending of a transaction in a block which failed to connect
#
# b6 (3)
# b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
# \-> b37 (11)
# \-> b38 (11/37)
#
# save 37's spendable output, but then double-spend out11 to invalidate the block
tip(35)
b37 = block(37, spend=out[11])
txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0)
tx = create_and_sign_tx(out[11].tx, out[11].n, 0)
b37 = update_block(37, [tx])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid
tip(35)
block(38, spend=txout_b37)
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Check P2SH SigOp counting
#
#
# 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12)
# \-> b40 (12)
#
# b39 - create some P2SH outputs that will require 6 sigops to spend:
#
# redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG
# p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL
#
tip(35)
b39 = block(39)
b39_outputs = 0
b39_sigops_per_output = 6
# Build the redeem script, hash it, use hash to create the p2sh script
redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY]*5 + [OP_CHECKSIG])
redeem_script_hash = hash160(redeem_script)
p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL])
# Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE
# This must be signed because it is spending a coinbase
spend = out[11]
tx = create_tx(spend.tx, spend.n, 1, p2sh_script)
tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE])))
self.sign_tx(tx, spend.tx, spend.n)
tx.rehash()
b39 = update_block(39, [tx])
b39_outputs += 1
# Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE
tx_new = None
tx_last = tx
total_size=len(b39.serialize())
while(total_size < MAX_BLOCK_SIZE):
tx_new = create_tx(tx_last, 1, 1, p2sh_script)
tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE])))
tx_new.rehash()
total_size += len(tx_new.serialize())
if total_size >= MAX_BLOCK_SIZE:
break
b39.vtx.append(tx_new) # add tx to block
tx_last = tx_new
b39_outputs += 1
b39 = update_block(39, [])
yield accepted()
save_spendable_output()
# Test sigops in P2SH redeem scripts
#
# b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops.
# The first tx has one sigop and then at the end we add 2 more to put us just over the max.
#
# b41 does the same, less one, so it has the maximum sigops permitted.
#
tip(39)
b40 = block(40, spend=out[12])
sigops = get_legacy_sigopcount_block(b40)
numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output
assert_equal(numTxes <= b39_outputs, True)
lastOutpoint = COutPoint(b40.vtx[1].sha256, 0)
new_txs = []
for i in range(1, numTxes+1):
tx = CTransaction()
tx.vout.append(CTxOut(1, CScript([OP_TRUE])))
tx.vin.append(CTxIn(lastOutpoint, b''))
# second input is corresponding P2SH output from b39
tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
# Note: must pass the redeem_script (not p2sh_script) to the signature hash function
(sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL)
sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))
scriptSig = CScript([sig, redeem_script])
tx.vin[1].scriptSig = scriptSig
tx.rehash()
new_txs.append(tx)
lastOutpoint = COutPoint(tx.sha256, 0)
b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1
tx = CTransaction()
tx.vin.append(CTxIn(lastOutpoint, b''))
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill)))
tx.rehash()
new_txs.append(tx)
update_block(40, new_txs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# same as b40, but one less sigop
tip(39)
b41 = block(41, spend=None)
update_block(41, b40.vtx[1:-1])
b41_sigops_to_fill = b40_sigops_to_fill - 1
tx = CTransaction()
tx.vin.append(CTxIn(lastOutpoint, b''))
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill)))
tx.rehash()
update_block(41, [tx])
yield accepted()
# Fork off of b39 to create a constant base again
#
# b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13)
# \-> b41 (12)
#
tip(39)
block(42, spend=out[12])
yield rejected()
save_spendable_output()
block(43, spend=out[13])
yield accepted()
save_spendable_output()
# Test a number of really invalid scenarios
#
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14)
# \-> ??? (15)
# The next few blocks are going to be created "by hand" since they'll do funky things, such as having
# the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works.
height = self.block_heights[self.tip.sha256] + 1
coinbase = create_coinbase(height, self.coinbase_pubkey)
b44 = CBlock()
b44.nTime = self.tip.nTime + 1
b44.hashPrevBlock = self.tip.sha256
b44.nBits = 0x207fffff
b44.vtx.append(coinbase)
b44.hashMerkleRoot = b44.calc_merkle_root()
b44.solve()
self.tip = b44
self.block_heights[b44.sha256] = height
self.blocks[44] = b44
yield accepted()
# A block with a non-coinbase as the first tx
non_coinbase = create_tx(out[15].tx, out[15].n, 1)
b45 = CBlock()
b45.nTime = self.tip.nTime + 1
b45.hashPrevBlock = self.tip.sha256
b45.nBits = 0x207fffff
b45.vtx.append(non_coinbase)
b45.hashMerkleRoot = b45.calc_merkle_root()
b45.calc_sha256()
b45.solve()
self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256]+1
self.tip = b45
self.blocks[45] = b45
yield rejected(RejectResult(16, b'bad-cb-missing'))
# A block with no txns
tip(44)
b46 = CBlock()
b46.nTime = b44.nTime+1
b46.hashPrevBlock = b44.sha256
b46.nBits = 0x207fffff
b46.vtx = []
b46.hashMerkleRoot = 0
b46.solve()
self.block_heights[b46.sha256] = self.block_heights[b44.sha256]+1
self.tip = b46
assert 46 not in self.blocks
self.blocks[46] = b46
s = ser_uint256(b46.hashMerkleRoot)
yield rejected(RejectResult(16, b'bad-blk-length'))
# A block with invalid work
tip(44)
b47 = block(47, solve=False)
target = uint256_from_compact(b47.nBits)
while b47.scrypt256 < target: #changed > to <
b47.nNonce += 1
b47.rehash()
yield rejected(RejectResult(16, b'high-hash'))
# A block with timestamp > 2 hrs in the future
tip(44)
b48 = block(48, solve=False)
b48.nTime = int(time.time()) + 60 * 60 * 3
b48.solve()
yield rejected(RejectResult(16, b'time-too-new'))
# A block with an invalid merkle hash
tip(44)
b49 = block(49)
b49.hashMerkleRoot += 1
b49.solve()
yield rejected(RejectResult(16, b'bad-txnmrklroot'))
# A block with an incorrect POW limit
tip(44)
b50 = block(50)
b50.nBits = b50.nBits - 1
b50.solve()
yield rejected(RejectResult(16, b'bad-diffbits'))
# A block with two coinbase txns
tip(44)
b51 = block(51)
cb2 = create_coinbase(51, self.coinbase_pubkey)
b51 = update_block(51, [cb2])
yield rejected(RejectResult(16, b'bad-cb-multiple'))
# A block w/ duplicate txns
# Note: txns have to be in the right position in the merkle tree to trigger this error
tip(44)
b52 = block(52, spend=out[15])
tx = create_tx(b52.vtx[1], 0, 1)
b52 = update_block(52, [tx, tx])
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
# Test block timestamps
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15)
# \-> b54 (15)
#
tip(43)
block(53, spend=out[14])
yield rejected() # rejected since b44 is at same height
save_spendable_output()
# invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast)
b54 = block(54, spend=out[15])
b54.nTime = b35.nTime - 1
b54.solve()
yield rejected(RejectResult(16, b'time-too-old'))
# valid timestamp
tip(53)
b55 = block(55, spend=out[15])
b55.nTime = b35.nTime
update_block(55, [])
yield accepted()
save_spendable_output()
# Test CVE-2012-2459
#
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16)
# \-> b57 (16)
# \-> b56p2 (16)
# \-> b56 (16)
#
# Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without
# affecting the merkle root of a block, while still invalidating it.
# See: src/consensus/merkle.h
#
# b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx.
# Result: OK
#
# b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle
# root but duplicate transactions.
# Result: Fails
#
# b57p2 has six transactions in its merkle tree:
# - coinbase, tx, tx1, tx2, tx3, tx4
# Merkle root calculation will duplicate as necessary.
# Result: OK.
#
# b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches
# duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates
# that the error was caught early, avoiding a DOS vulnerability.)
# b57 - a good block with 2 txs, don't submit until end
tip(55)
b57 = block(57)
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
tx1 = create_tx(tx, 0, 1)
b57 = update_block(57, [tx, tx1])
# b56 - copy b57, add a duplicate tx
tip(55)
b56 = copy.deepcopy(b57)
self.blocks[56] = b56
assert_equal(len(b56.vtx),3)
b56 = update_block(56, [tx1])
assert_equal(b56.hash, b57.hash)
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
# b57p2 - a good block with 6 tx'es, don't submit until end
tip(55)
b57p2 = block("57p2")
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
tx1 = create_tx(tx, 0, 1)
tx2 = create_tx(tx1, 0, 1)
tx3 = create_tx(tx2, 0, 1)
tx4 = create_tx(tx3, 0, 1)
b57p2 = update_block("57p2", [tx, tx1, tx2, tx3, tx4])
# b56p2 - copy b57p2, duplicate two non-consecutive tx's
tip(55)
b56p2 = copy.deepcopy(b57p2)
self.blocks["b56p2"] = b56p2
assert_equal(b56p2.hash, b57p2.hash)
assert_equal(len(b56p2.vtx),6)
b56p2 = update_block("b56p2", [tx3, tx4])
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
tip("57p2")
yield accepted()
tip(57)
yield rejected() #rejected because 57p2 seen first
save_spendable_output()
# Test a few invalid tx types
#
# -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> ??? (17)
#
# tx with prevout.n out of range
tip(57)
b58 = block(58, spend=out[17])
tx = CTransaction()
assert(len(out[17].tx.vout) < 42)
tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff))
tx.vout.append(CTxOut(0, b""))
tx.calc_sha256()
b58 = update_block(58, [tx])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# tx with output value > input value out of range
tip(57)
b59 = block(59)
tx = create_and_sign_tx(out[17].tx, out[17].n, 51*COIN)
b59 = update_block(59, [tx])
yield rejected(RejectResult(16, b'bad-txns-in-belowout'))
# reset to good chain
tip(57)
b60 = block(60, spend=out[17])
yield accepted()
save_spendable_output()
# Test BIP30
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b61 (18)
#
# Blocks are not allowed to contain a transaction whose id matches that of an earlier,
# not-fully-spent transaction in the same chain. To test, make identical coinbases;
# the second one should be rejected.
#
tip(60)
b61 = block(61, spend=out[18])
b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig #equalize the coinbases
b61.vtx[0].rehash()
b61 = update_block(61, [])
assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize())
yield rejected(RejectResult(16, b'bad-txns-BIP30'))
# Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests)
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b62 (18)
#
tip(60)
b62 = block(62)
tx = CTransaction()
tx.nLockTime = 0xffffffff #this locktime is non-final
assert(out[18].n < len(out[18].tx.vout))
tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence
tx.vout.append(CTxOut(0, CScript([OP_TRUE])))
assert(tx.vin[0].nSequence < 0xffffffff)
tx.calc_sha256()
b62 = update_block(62, [tx])
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
# Test a non-final coinbase is also rejected
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b63 (-)
#
tip(60)
b63 = block(63)
b63.vtx[0].nLockTime = 0xffffffff
b63.vtx[0].vin[0].nSequence = 0xDEADBEEF
b63.vtx[0].rehash()
b63 = update_block(63, [])
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
# This checks that a block with a bloated VARINT between the block_header and the array of tx such that
# the block is > MAX_BLOCK_SIZE with the bloated varint, but <= MAX_BLOCK_SIZE without the bloated varint,
# does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not
# care whether the bloated block is accepted or rejected; it only cares that the second block is accepted.
#
# What matters is that the receiving node should not reject the bloated block, and then reject the canonical
# block on the basis that it's the same as an already-rejected block (which would be a consensus failure.)
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18)
# \
# b64a (18)
# b64a is a bloated block (non-canonical varint)
# b64 is a good block (same as b64 but w/ canonical varint)
#
tip(60)
regular_block = block("64a", spend=out[18])
# make it a "broken_block," with non-canonical serialization
b64a = CBrokenBlock(regular_block)
b64a.initialize(regular_block)
self.blocks["64a"] = b64a
self.tip = b64a
tx = CTransaction()
# use canonical serialization to calculate size
script_length = MAX_BLOCK_SIZE - len(b64a.normal_serialize()) - 69
script_output = CScript([b'\x00' * script_length])
tx.vout.append(CTxOut(0, script_output))
tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0)))
b64a = update_block("64a", [tx])
assert_equal(len(b64a.serialize()), MAX_BLOCK_SIZE + 8)
yield TestInstance([[self.tip, None]])
# comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore
self.test.block_store.erase(b64a.sha256)
tip(60)
b64 = CBlock(b64a)
b64.vtx = copy.deepcopy(b64a.vtx)
assert_equal(b64.hash, b64a.hash)
assert_equal(len(b64.serialize()), MAX_BLOCK_SIZE)
self.blocks[64] = b64
update_block(64, [])
yield accepted()
save_spendable_output()
# Spend an output created in the block itself
#
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
#
tip(64)
b65 = block(65)
tx1 = create_and_sign_tx(out[19].tx, out[19].n, out[19].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 0)
update_block(65, [tx1, tx2])
yield accepted()
save_spendable_output()
# Attempt to spend an output created later in the same block
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
# \-> b66 (20)
tip(65)
b66 = block(66)
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 1)
update_block(66, [tx2, tx1])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Attempt to double-spend a transaction created in a block
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
# \-> b67 (20)
#
#
tip(65)
b67 = block(67)
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 1)
tx3 = create_and_sign_tx(tx1, 0, 2)
update_block(67, [tx1, tx2, tx3])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# More tests of block subsidy
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
# \-> b68 (20)
#
# b68 - coinbase with an extra 10 satoshis,
# creates a tx that has 9 satoshis from out[20] go to fees
# this fails because the coinbase is trying to claim 1 satoshi too much in fees
#
# b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee
# this succeeds
#
tip(65)
b68 = block(68, additional_coinbase_value=10)
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-9)
update_block(68, [tx])
yield rejected(RejectResult(16, b'bad-cb-amount'))
tip(65)
b69 = block(69, additional_coinbase_value=10)
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-10)
update_block(69, [tx])
yield accepted()
save_spendable_output()
# Test spending the outpoint of a non-existent transaction
#
# -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
# \-> b70 (21)
#
tip(69)
block(70, spend=out[21])
bogus_tx = CTransaction()
bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c")
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff))