-
Notifications
You must be signed in to change notification settings - Fork 10
/
nemo.py
465 lines (396 loc) · 19.8 KB
/
nemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import os
import datetime
import bclm
import pandas as pd
import subprocess
import sys
import networkx as nx
import traceback
import re
from io import StringIO
from config import *
from ne_evaluate_mentions import fix_multi_biose, read_file_sents
def read_text_file(path):
sents = []
with open(path, 'r', encoding='utf8') as f:
for line in f:
if line.strip():
toks = bclm.tokenize(line.rstrip())
sents.append(toks)
return sents
def tokenize_text(text):
sents = []
for line in text.split('\n'):
if line.strip():
toks = bclm.tokenize(line.rstrip())
sents.append(toks)
return sents
def write_tokens_file(sents, file_path, dummy_o=False, only_tokens=False):
with open(file_path, 'w', encoding='utf8') as of:
for sent in sents:
for fields in sent:
if type(fields) is str:
word = fields
else:
word = fields[0]
if only_tokens:
line = word
elif dummy_o:
line = word + ' O'
else:
line = word + ' ' + fields[-1]
of.write(line + '\n')
of.write('\n')
def write_ncrf_conf(conf_path, input_path, output_path, model, dset):
params = { 'status': 'decode' }
params['load_model_dir'] = model
params['dset_dir'] = dset
params['decode_dir'] = output_path
params['raw_dir'] = input_path
if not os.path.exists(conf_path):
with open(conf_path, 'w', encoding='utf8') as of:
for k, v in params.items():
of.write(k+'='+str(v)+'\n')
def get_biose_count(path, sent_id_shift=1):
sents = read_file_sents(path, fix_multi_tag=False, sent_id_shift=sent_id_shift)
bc = []
for i, sent in sents.iteritems():
for j, (tok, bio) in enumerate(sent):
bc.append([i, j+1, tok, bio, len(bio.split('^'))])
bc = pd.DataFrame(bc, columns=['sent_id', 'token_id', 'token_str',
'biose', 'biose_count'])
return bc
def get_valid_edges(lattices, bc,
non_o_only=True, keep_all_if_no_valid=True):
valid_edges = []
for (i, df), (_, biose, biose_count) in zip(lattices.groupby(['sent_id', 'token_id']),
bc[['biose', 'biose_count']].itertuples()):
g = nx.from_pandas_edgelist(df, create_using=nx.DiGraph, source='ID1', target='ID2')
min_node = df.ID1.iat[0]
max_node = df.ID2.iat[-1]
if non_o_only and not '-' in biose:
vp = list(nx.all_simple_paths(g, min_node, max_node))
else:
vp = [path for path in nx.all_simple_paths(g, min_node, max_node, cutoff=biose_count+1) if len(path)==biose_count+1]
if keep_all_if_no_valid and len(vp)==0:
vp = nx.all_simple_paths(g, min_node, max_node)
for path in vp:
for source, target in zip(path[:-1], path[1:]):
valid_edges.append((i[0], i[1], source, target))
return valid_edges
def to_lattices(df, path, cols = ['ID1', 'ID2', 'form', 'lemma', 'upostag', 'xpostag', 'feats', 'token_id']):
with open(path, 'w', encoding='utf8') as of:
for _, sent in df.groupby('sent_id'):
for _, row in sent[cols].iterrows():
of.write('\t'.join(row.astype(str).tolist())+'\n')
of.write('\n')
def prune_lattices(lattices_path, ner_pred_path, output_path, keep_all_if_no_valid=True):
lat = bclm.read_lattices(lattices_path)
bc = get_biose_count(ner_pred_path, sent_id_shift=1)
valid_edges = get_valid_edges(lat, bc, non_o_only=False, keep_all_if_no_valid=keep_all_if_no_valid)
cols = ['sent_id', 'token_id', 'ID1', 'ID2']
pruned_lat = lat[lat[cols].apply(lambda x: tuple(x), axis=1).isin(valid_edges)]
to_lattices(pruned_lat, output_path)
def soft_merge_bio_labels(multitok_sents, tokmorph_sents, verbose=False):
new_sents = []
for (i, mt_sent), (sent_id, mor_sent) in zip(multitok_sents.iteritems(), tokmorph_sents.iteritems()):
new_sent = []
for (form, bio), (token_id, token_str, forms) in zip(mt_sent, mor_sent):
forms = forms.split('^')
bio = bio.split('^')
if len(forms) == len(bio):
new_forms = (1, list(zip(forms,bio)))
elif len(forms)>len(bio):
dif = len(forms) - len(bio)
new_forms = (2, list(zip(forms[:dif],['O']*dif)) + list(zip(forms[::-1], bio[::-1]))[::-1])
if verbose:
print(new_forms)
else:
new_forms = (3, list(zip(forms[::-1], bio[::-1]))[::-1])
if verbose:
print(new_forms)
new_sent.extend(new_forms[1])
new_sents.append(new_sent)
return new_sents
def align_multitok(ner_pred_path, tokens_path, conll_path, map_path, output_path):
x = read_file_sents(ner_pred_path, fix_multi_tag=False)
prun_yo = bclm.read_yap_output(treebank_set=None, tokens_filepath_or_buffer=tokens_path, dep_filepath_or_buffer=conll_path, map_filepath_or_buffer=map_path)
prun_yo = bclm.get_token_df(prun_yo, fields=['form'])
prun_sents = bclm.get_sentences_list(prun_yo, fields=['token_id', 'token_str', 'form'])
new_sents = soft_merge_bio_labels(x, prun_sents, verbose=False)
with open(output_path, 'w') as of:
for sent in new_sents:
for form, bio in sent:
of.write(form+' '+bio+'\n')
of.write('\n')
def get_fixed_for_valid_biose(bio_seq):
o_re = re.compile('^O+$')
s_re = re.compile('^O*SO*$|^O*BI*EO*$')
b_re = re.compile('^O*BI*$')
i_re = re.compile('^I+$')
e_re = re.compile('^I*EO*$')
if o_re.match(bio_seq):
return 'O'
if s_re.match(bio_seq):
return 'S'
if b_re.match(bio_seq):
return 'B'
if i_re.match(bio_seq):
return 'I'
if e_re.match(bio_seq):
return 'E'
raise ValueError
def get_fixed_for_invalid_biose(parts):
bio = 'O'
if 'S' in parts:
bio = 'S'
elif 'B' in parts and 'E' in parts:
bio='S'
elif 'E' in parts:
bio = 'E'
elif 'B' in parts:
bio = 'B'
elif 'I' in parts:
bio = 'I'
return bio
def validate_biose_sequence(full_bio_seq):
valid_bio_re = re.compile('^O*BI*$|^O*BI*EO*$|^I+$|^I*EO*$|^O*SO*$')
bio_seq, type_seq = zip(*[('O', None) if b=='O' else b.split('-') for b in full_bio_seq])
bio_seq = ''.join(bio_seq)
valid_bio = valid_bio_re.match(bio_seq)
type_seq = list(filter(lambda x: x is not None, type_seq))
type_seq_set = set(type_seq)
if valid_bio:
fixed_bio = get_fixed_for_valid_biose(bio_seq)
if fixed_bio!='O':
fixed_bio += '-' + type_seq[0]
else:
#take the first BIOSE tag which is not O:
#fixed_bio = list(filter(lambda x: x!='O', full_bio_seq))[0]
#rough BIOSE and first category:
fixed_bio = get_fixed_for_invalid_biose(bio_seq)
if fixed_bio!='O':
fixed_bio += '-' + type_seq[0]
return valid_bio is not None, len(type_seq_set)<=1, fixed_bio
def get_fixed_bio_sequence(full_bio_seq):
return validate_biose_sequence(full_bio_seq)[2]
def get_fixed_tok(path, orig_sents):
x = read_file_sents(path, fix_multi_tag=False)
new_sents = []
for (i, ner_sent), (sent_id, yap_sent) in zip(x.iteritems(), orig_sents.iteritems()):
for (form, bio), (token_id, token_str) in zip(ner_sent, yap_sent):
new_sents.append((sent_id, token_id, token_str, form, bio))
new_sents = pd.DataFrame(new_sents, columns=['sent_id', 'token_id', 'token_str', 'form', 'bio'])
new_toks = bclm.get_token_df(new_sents, fields=['bio'])
new_toks['fixed_bio'] = new_toks.bio.apply(lambda x: get_fixed_bio_sequence(tuple(x.split('^'))))
return new_toks
def run_yap_hebma(tokens_path, output_path, log_path):
result = subprocess.run([YAP_PATH, 'hebma', '-raw', tokens_path,
'-out', output_path], capture_output=True)
with open(log_path, 'wb') as of:
of.write(result.stdout)
if len(result.stderr)>0:
print(result.stderr)
def run_yap_joint(lattices_path, seg_path, map_path, conll_path, log_path):
result = subprocess.run([YAP_PATH, 'joint', '-in', lattices_path,
'-os', seg_path, '-om', map_path, '-oc', conll_path], capture_output=True)
with open(log_path, 'wb') as of:
of.write(result.stdout)
if len(result.stderr)>0:
print(result.stderr)
def run_ncrf_main(conf_path, device, log_path):
result = subprocess.run(['python', 'ncrf_main.py', '--config', conf_path,
'--device', str(device)], capture_output=True)
with open(log_path, 'wb') as of:
of.write(result.stdout)
if len(result.stderr)>0:
print(result.stderr)
def run_ner_model(model_name, input_path, output_path, text_input=None):
temp_input_path = os.path.join(LOCAL_TEMP_FOLDER, datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')+'_run_ner_model_'+model_name+'.txt')
temp_conf_path = temp_input_path.replace('.txt','.conf')
temp_log_path = temp_input_path.replace('.txt','.log')
try:
if text_input is not None:
sents = tokenize_text(text_input)
else:
sents = read_text_file(input_path)
write_tokens_file(sents, temp_input_path, dummy_o=True)
write_ncrf_conf(temp_conf_path, temp_input_path, output_path, MODEL_PATHS[model_name]['model'], MODEL_PATHS[model_name]['dset'])
run_ncrf_main(temp_conf_path, DEVICE, temp_log_path)
except Exception as e:
print(traceback.format_exc())
if DELETE_TEMP_FILES:
for path in [temp_input_path, temp_conf_path, temp_log_path]:
if os.path.exists(path):
os.remove(path)
def run_morph_yap(model_name, input_path, output_path):
temp_tokens_path = os.path.join(LOCAL_TEMP_FOLDER, datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')+'_morph_yap_'+model_name+'.txt')
temp_conf_path = temp_tokens_path.replace('.txt','_ncrf.conf')
temp_yap_log_path = temp_tokens_path.replace('.txt','_yap.log')
temp_lattices_path = temp_tokens_path.replace('.txt','.lattices')
temp_seg_path = temp_tokens_path.replace('.txt','.seg')
temp_map_path = temp_tokens_path.replace('.txt','.map')
temp_conll_path = temp_tokens_path.replace('.txt','.conll')
temp_ncrf_morph_input = temp_tokens_path.replace('.txt', '_yapform.txt')
temp_ncrf_log_path = temp_tokens_path.replace('.txt','_ncrf.log')
try:
# read file and tokenize
sents = read_text_file(input_path)
#write temporary tokens file for yap
write_tokens_file(sents, temp_tokens_path, only_tokens=True)
#run yap hebma to create ambiguous lattices
run_yap_hebma(temp_tokens_path, temp_lattices_path, temp_yap_log_path)
#run yap joint
run_yap_joint(temp_lattices_path, temp_seg_path, temp_map_path, temp_conll_path, temp_yap_log_path)
#create temp morph input with dummy o
lat = bclm.read_conll(temp_conll_path)
form_sents = lat.groupby('sent_id').form.apply(lambda x: x.tolist()).tolist()
write_tokens_file(form_sents, temp_ncrf_morph_input, dummy_o=True)
#run ncrf morph model
write_ncrf_conf(temp_conf_path, temp_ncrf_morph_input, output_path, MODEL_PATHS[model_name]['model'], MODEL_PATHS[model_name]['dset'])
run_ncrf_main(temp_conf_path, DEVICE, temp_ncrf_log_path)
except Exception as e:
print(traceback.format_exc())
#delete all temp files
if DELETE_TEMP_FILES:
for path in [temp_tokens_path, temp_conf_path, temp_yap_log_path, temp_lattices_path,
temp_seg_path, temp_map_path, temp_conll_path,
temp_ncrf_morph_input, temp_ncrf_log_path]:
if os.path.exists(path):
os.remove(path)
def run_morph_hybrid(model_name, input_path, output_path, align_tokens=False):
temp_tokens_path = os.path.join(LOCAL_TEMP_FOLDER, datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')+'_morph_hybrid_'+model_name+'.txt')
if align_tokens:
temp_tokens_path = temp_tokens_path.replace('_morph_hybrid_', '_morph_hybrid_align_tokens_')
temp_morph_ner_output_path = temp_tokens_path.replace('.txt','_morph_ner.txt')
else:
temp_morph_ner_output_path = output_path
temp_conf_path = temp_tokens_path.replace('.txt','_ncrf.conf')
temp_yap_log_path = temp_tokens_path.replace('.txt','_yap.log')
temp_lattices_path = temp_tokens_path.replace('.txt','.lattices')
temp_seg_path = temp_tokens_path.replace('.txt','.seg')
temp_map_path = temp_tokens_path.replace('.txt','.map')
temp_conll_path = temp_tokens_path.replace('.txt','.conll')
temp_ncrf_morph_input = temp_tokens_path.replace('.txt', '_yapform.txt')
temp_ncrf_log_path = temp_tokens_path.replace('.txt','_ncrf.log')
temp_multi_output_path = temp_tokens_path.replace('.txt','_multi.txt')
temp_pruned_lattices_path = temp_tokens_path.replace('.txt','_pruned.lattices')
try:
# read file and tokenize
sents = read_text_file(input_path)
#write temporary tokens file for yap
write_tokens_file(sents, temp_tokens_path, only_tokens=True)
#run yap hebma to create ambiguous lattices
run_yap_hebma(temp_tokens_path, temp_lattices_path, temp_yap_log_path)
#run multi
run_ner_model(MULTI_MODEL_FOR_HYBRID, input_path, temp_multi_output_path)
#prune lattices
prune_lattices(temp_lattices_path, temp_multi_output_path, temp_pruned_lattices_path)
#run yap joint on pruned lattices
run_yap_joint(temp_pruned_lattices_path, temp_seg_path, temp_map_path, temp_conll_path, temp_yap_log_path)
#create temp morph input with dummy o
lat = bclm.read_conll(temp_conll_path)
form_sents = lat.groupby('sent_id').form.apply(lambda x: x.tolist()).tolist()
write_tokens_file(form_sents, temp_ncrf_morph_input, dummy_o=True)
#run ncrf morph model
write_ncrf_conf(temp_conf_path, temp_ncrf_morph_input, temp_morph_ner_output_path, MODEL_PATHS[model_name]['model'], MODEL_PATHS[model_name]['dset'])
run_ncrf_main(temp_conf_path, DEVICE, temp_ncrf_log_path)
if align_tokens:
prun_yo = bclm.read_yap_output(treebank_set=None,
tokens_filepath_or_buffer=temp_tokens_path,
dep_filepath_or_buffer=temp_conll_path,
map_filepath_or_buffer=temp_map_path,
)
prun_sents = bclm.get_sentences_list(prun_yo, fields=['token_id', 'token_str'])
new_toks = get_fixed_tok(temp_morph_ner_output_path, orig_sents=prun_sents)
new_sents = bclm.get_sentences_list(new_toks, fields=['token_str', 'fixed_bio'])
write_tokens_file(new_sents, output_path)
except Exception as e:
print(traceback.format_exc())
#delete all temp files
if DELETE_TEMP_FILES:
for path in [temp_tokens_path, temp_conf_path, temp_yap_log_path, temp_lattices_path,
temp_seg_path, temp_map_path, temp_conll_path,
temp_ncrf_morph_input, temp_ncrf_log_path,
temp_multi_output_path, temp_pruned_lattices_path, temp_morph_ner_output_path]:
if os.path.exists(path):
os.remove(path)
def multi_to_single(model_name, input_path, output_path):
temp_multi_output_path = os.path.join(LOCAL_TEMP_FOLDER, datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')+'_multi_to_single_'+model_name+'.txt')
try:
run_ner_model(model_name, input_path, temp_multi_output_path)
sents = read_file_sents(temp_multi_output_path, fix_multi_tag=True).tolist()
write_tokens_file(sents, output_path)
except Exception as e:
print(traceback.format_exc())
#delete all temp files
if DELETE_TEMP_FILES:
for path in [temp_multi_output_path]:
if os.path.exists(path):
os.remove(path)
def run_multi_align_hybrid(model_name, input_path, output_path):
temp_tokens_path = os.path.join(LOCAL_TEMP_FOLDER, datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')+'_multi_align_hybrid_'+model_name+'.txt')
temp_conf_path = temp_tokens_path.replace('.txt','_ncrf.conf')
temp_yap_log_path = temp_tokens_path.replace('.txt','_yap.log')
temp_lattices_path = temp_tokens_path.replace('.txt','.lattices')
temp_seg_path = temp_tokens_path.replace('.txt','.seg')
temp_map_path = temp_tokens_path.replace('.txt','.map')
temp_conll_path = temp_tokens_path.replace('.txt','.conll')
temp_ncrf_morph_input = temp_tokens_path.replace('.txt', '_yapform.txt')
temp_ncrf_log_path = temp_tokens_path.replace('.txt','_ncrf.log')
temp_multi_output_path = temp_tokens_path.replace('.txt','_multi.txt')
temp_pruned_lattices_path = temp_tokens_path.replace('.txt','_pruned.lattices')
try:
# read file and tokenize
sents = read_text_file(input_path)
#write temporary tokens file for yap
write_tokens_file(sents, temp_tokens_path, only_tokens=True)
#run yap hebma to create ambiguous lattices
run_yap_hebma(temp_tokens_path, temp_lattices_path, temp_yap_log_path)
#run multi
run_ner_model(MULTI_MODEL_FOR_HYBRID, input_path, temp_multi_output_path)
#prune lattices
prune_lattices(temp_lattices_path, temp_multi_output_path, temp_pruned_lattices_path)
#run yap joint on pruned lattices
run_yap_joint(temp_pruned_lattices_path, temp_seg_path, temp_map_path, temp_conll_path, temp_yap_log_path)
align_multitok(temp_multi_output_path,
temp_tokens_path,
temp_conll_path,
temp_map_path,
output_path
)
except Exception as e:
print(traceback.format_exc())
#delete all temp files
if DELETE_TEMP_FILES:
for path in [temp_tokens_path, temp_conf_path, temp_yap_log_path, temp_lattices_path,
temp_seg_path, temp_map_path, temp_conll_path,
temp_ncrf_morph_input, temp_ncrf_log_path,
temp_multi_output_path, temp_pruned_lattices_path]:
if os.path.exists(path):
os.remove(path)
if __name__=='__main__':
command = sys.argv[1]
model_name = sys.argv[2]
input_path = sys.argv[3]
output_path = sys.argv[4]
if not os.path.exists(LOCAL_TEMP_FOLDER):
os.makedirs(LOCAL_TEMP_FOLDER)
#just run a ner model on a file of space delimited sentences
if command=='run_ner_model':
run_ner_model(model_name, input_path, output_path)
#run multi model and transform multi-labels to single label per token
if command=='multi_to_single':
multi_to_single(model_name, input_path, output_path)
#run morph model on yap segmented output
if command=='morph_yap':
run_morph_yap(model_name, input_path, output_path)
#run morph model on hybrid segmented output (includes an initial run of multi model)
if command=='morph_hybrid':
run_morph_hybrid(model_name, input_path, output_path)
#run multi model and align hybrid segmented output
if command=='multi_align_hybrid':
run_multi_align_hybrid(model_name, input_path, output_path)
#run morph model on hybrid segmented output and result align back to tokens
if command=='morph_hybrid_align_tokens':
run_morph_hybrid(model_name, input_path, output_path, align_tokens=True)