From cf1c54f8bef8b2d954ab9a03c301a02e0cb2d22a Mon Sep 17 00:00:00 2001 From: github-actions Date: Mon, 8 Jul 2024 21:56:36 +0000 Subject: [PATCH] Update documentation --- .../user_guide_1_binning_fake_data_13_0.png | Bin 119713 -> 114922 bytes .../user_guide_1_binning_fake_data_8_0.png | Bin 265466 -> 258458 bytes sed/latest/_modules/index.html | 8 +- sed/latest/_modules/sed/binning/binning.html | 91 +++--- .../_modules/sed/binning/numba_bin.html | 40 ++- sed/latest/_modules/sed/binning/utils.html | 42 +-- sed/latest/_modules/sed/calibrator/delay.html | 93 +++--- .../_modules/sed/calibrator/energy.html | 253 ++++++++------- .../_modules/sed/calibrator/momentum.html | 230 +++++++------ sed/latest/_modules/sed/core/config.html | 38 ++- sed/latest/_modules/sed/core/dfops.html | 101 +++--- sed/latest/_modules/sed/core/metadata.html | 59 +++- sed/latest/_modules/sed/core/processor.html | 289 ++++++++--------- sed/latest/_modules/sed/dataset/dataset.html | 8 +- sed/latest/_modules/sed/diagnostics.html | 17 +- sed/latest/_modules/sed/io/hdf5.html | 18 +- sed/latest/_modules/sed/io/nexus.html | 24 +- sed/latest/_modules/sed/io/tiff.html | 27 +- .../_modules/sed/loader/base/loader.html | 57 ++-- .../_modules/sed/loader/flash/loader.html | 91 +++--- .../_modules/sed/loader/flash/metadata.html | 37 ++- .../_modules/sed/loader/generic/loader.html | 47 ++- .../_modules/sed/loader/loader_interface.html | 15 +- .../_modules/sed/loader/mirrorutil.html | 23 +- .../_modules/sed/loader/mpes/loader.html | 94 +++--- .../_modules/sed/loader/sxp/loader.html | 93 +++--- sed/latest/_modules/sed/loader/utils.html | 32 +- sed/latest/_static/documentation_options.js | 2 +- sed/latest/genindex.html | 10 +- sed/latest/index.html | 8 +- sed/latest/misc/contributing.html | 8 +- sed/latest/misc/contribution.html | 8 +- sed/latest/misc/maintain.html | 8 +- sed/latest/objects.inv | Bin 8133 -> 8138 bytes sed/latest/py-modindex.html | 8 +- sed/latest/search.html | 8 +- sed/latest/searchindex.js | 2 +- sed/latest/sed/api.html | 8 +- sed/latest/sed/binning.html | 60 ++-- sed/latest/sed/calibrator.html | 263 +++++++-------- sed/latest/sed/config.html | 24 +- sed/latest/sed/core.html | 160 +++++----- sed/latest/sed/dataset.html | 13 +- sed/latest/sed/dfops.html | 60 ++-- sed/latest/sed/diagnostic.html | 10 +- sed/latest/sed/io.html | 24 +- sed/latest/sed/loader.html | 210 ++++++------ sed/latest/sed/metadata.html | 14 +- .../user_guide/1_binning_fake_data.html | 80 ++--- .../user_guide/1_binning_fake_data.ipynb | 302 +++++++++--------- sed/latest/user_guide/config.html | 56 ++-- sed/latest/user_guide/index.html | 8 +- sed/latest/user_guide/installation.html | 8 +- sed/latest/workflows/index.html | 8 +- 54 files changed, 1608 insertions(+), 1589 deletions(-) diff --git a/sed/latest/_images/user_guide_1_binning_fake_data_13_0.png b/sed/latest/_images/user_guide_1_binning_fake_data_13_0.png index 7204597e1731929d84ae016327960436d795fbf7..15436cbbe8f7b94bab5eae70b1f66ae7df5da777 100644 GIT binary patch literal 114922 zcmcG#1y@^Pw=Ep3NO5;}FYfN{?rz21-7UBjcPUPBEAH;@?i7dK^gZ{Sd%hp=jR8qU zNH*C!^I2=ox#kn4q#%g^hYJS)01%|5#8dzP2s!`&3<~B8=$U)U$An)GHU=B03aUKpREC%*Kg-75#*4A z3($j~>h+PCpBY!Vxh(~jF`f;m z|N9B2PCByO>i_SHuE!#&=>Fe(K#ztySoTI`{?~Dw25xI&|NlSK@OM z&VSB;wfp1JL3Ez2^V;uP6dCfls^^vNeKhYK*1&TY3SYn%`|p|I2OZzzis|#(a(B2L zN6d7<=e?3T#i!Wio9aTW^wC@osH9DN<0Z{TL zbK3U{;O4BV*2LQzcbfkRUm=(81(C@5zpvk|eL@Rq?aX#%h#zP8^_!M~frN(#C%U*- z84^|eI#)1p@8cs!czAez<+7zIPke}bM^~Aj+tzfraW8W$p8dWTVfSsEL;kGQ&O(JM zm(L@;ySuyN>w~q<@lIa|HUUA`B_-W07wAi)cw|uk_~6l@MnTHWcdkZw>Pqry4BXmB zdGM40w$?iLeq~kDGclQ(nH}T^#B%NBYw76?bo;&4cx^l3$6hO%x=s4@`xVbyFP#4w z@dd4`gJ=G3{qC$SG%_f&6UWCYNx(Tk#@=lr%;Pa5x`+quaNb@Oz5DX(TuKLii8dZxUzxO;ei4u%~?bK;Yo4D1t2e+_pS&~ z%SZg=^+rmfUr+I_{<_0^{gBeyy!jrHR-wT*d;gv4F4uu~=H3ess9OO5JnRZT zdRvF3^|1gtFlv&g=Y2>wWGEUO*z-aRD(P<|Zj0Jq-$Z;(25QJpz2#+*Dd$f^+THmhgy#93M>%c$B4%-6q>~r6EK7 zlr)yevPXtd;TyJlp2lqL{?0v#EbHP|y>H%pjBNWnw^ESA>|9uSy0imT{Bo^(`oj137V_=1$>|}yszz2vAHfyP1sUQ?^e;mD{ z;ZGU${Sf&r_5g3sEAqsJS1POb{Tyh?8hCz$my&*CE<7jJF&$j5RPy0Hzi*6~$hJGB zA0|*w1Q+|2P%l|>Dc&`pm zdp;d!Mm04owG2%1sSWtfd9-9Q0|GJD1&5QK7HZO10?(<=q zKCRuE_VhD*W)Tv6a%XsR(P={B;r`I&VEK0KnzWPfjy?Hlyt_#3!CSn>dhc~vr%fQG zvg*s_xx~5n)Hy;q#Hl^h=@nk>eh34a488+8XpyR_ssaMhs1$an1Ycl3FQz}?dv5W1 zg4{deCMPGQFpAY^jg5?U5T4!)qEEPhfwiHj)ap@N>)m_eTlW}DECPUwT;y8oOdEg= z^2bNa(}_?!>6?Z+g#WPZqa?u4spJW5xwCY-cwbKJSH!!=v6Id0B|r$JNA)uzyz$8j6g^YiSBUn}qsfG4~1*?%2Y<8h#c1_a@X*RLii zQqNGGope8>1_$^bNPP^cPfE>r-VdP{Z4SYGQy6e^F>U!#$eN!2bnp*KQ|#P959^V9 zg0=VBv->s?Z$b~;n=d>w@cH|z@H_1<;alI*AhW;>IZs>gs4qAPv=w6^jJSgtkFobw z>50$+6c3bKVRE?B9^S4u(jKKv<=K$XmaFf1qD&Fl$aw7ap0qq(F5<7tSg(^^(uH{9 z&o^0tei!ZuQL4V#E^s@SqjdIFqhkiY&jY(RQq@mFARbyM)rp#1dGzxB)_OD^%G3kc z@bj(b+d&UJ(n#=M54b)y+Z-5j!aEw^e(((~b&Xlf3rA_vQAz|R59jM=luSEY)(SCU zuG|$vQCQF3wptoMK6iI{6W{{Eh%A+8MQJdtwm}DLNd%kf#LhjQwSJTw3!O`>{90iZ zHr3i1nx6>qY{^;rRVqh6|4_ywE3GXIp4Z=hVl7NNpV#|4hLZrGBi?s?>YQQ=YdefG zUXiDa*j!}2X5PE$a)XoygL2@BK|nHo>P?ggKi>^>CU-f}PbaO#*S%le>(Xy_`vXD_ z1r?vW6Ev#AK-kK!s`|S9_w(srdjbHl6g+YNj_}TGmtS-CSc&NiV@X2>Q+(sMN zvuI!-zHLMu)luKq(vnY^>}Y6MxZFh4&DdqnQE=4o(7n>~?CZD9{2m9lV3xF0He#On z#gB2^fR~~CjwfyO7sk0R_qB-BJjV5nyby{m*&F*%Zr0fvggs~vTq8Mr?_o+cr#B3^W3kpbPrwSzxvah z1_rwLB-cllRWZteO$_?y`i1%x7wvlSn?uog9zP;YuM6CW(eGNBB7Pu69(sFZEg}6n zpP?EC3tU2*=D77Ow$$_BNvg^>NZ=dhSsomK*&vtA5GO>rIWAJ62gqk1g88;_#e=>Z z8cmv7WdJ$y5%{GKVsC4!*tD3RGrkUw{CIP??DQXEbMO+DaZ7;bTg=S3F3>d1rQE0k zQ7(4oUS~?28hUS7de|exS3D0NI?FwS&TjeiZI)`dfb9qKH85V-ApP#=rT2l)!rZRM z2|;G)k{yJ3IA7Ge>=a(JYgTvFx!k}yZh|{*C2$wotKN*(MOrWxu%cz1ov?UkpT`ZnxsHGgSc&h6YZ$3K~tWa8`~h z@)D9YXgRFfI0QGvPk;KrAlKb06@)7HVh*j=j2Da5!rfhQw`5se@lnVN49cRRi*fh> z)Q7a9u%6=JhqP7Tk+i{TP(pJi<42gQPB+oPT+mSXhsfpf^WjTuU8(iA=~JPXIhmkW;5>52p?s}ib=w&s=dCG?%TFviFF-;h zrcNbWR+NxA;p?SEc4n9Lm2_s8`HcTFdW&3g2GjPNq-Qy*E;12?u!L7W6&1x`_?#0@ z0NiugNO1PhC$71f-S@FEZ*Xi3u3?ovo{&HK-}OS`y8!@p6#qUb7F5y_dY_Oq=`i@d z?-LE@{e8*%8`?G^RAY#vD( zgxcg2CoTLf^4s2s#IdDPhQvbv%|;wT_=#hRusr3d3qYvjp4cdYEo{V+iy?dsCe$+X zlB`b|J4gvRx={~IF60s|b}(OEr27|3bKaFbLBFH98bxL-u}Gf^8eGp7KvWfG5_!2< zr|6t4z+o*1I_S(Dk|cQ+9mlQh$j6prSC%^Z*$zkh_B)<{q@LP%J4u#^Ra}!^vs`cY z)!DLr&$!mD#ZVNNy@4y~d0_)$=u3zm_qCa`P~~HhwPdbn`+(R*M~@MBcFsR2@rBR}2L@ok z1qzg+p>__wQKOPamlCM7z;T0CGH^6DT}}uqBwQ>VRd7s5&hFU~E)r`*h{>TZ)!NP_ zhRsnpJgtvP#-uKZk`fT1O(iiyTL<0l@Puqwk($w2msJ0Pr;6xw`%}M17ct!1lUn(=)U5>BmM5-lT5}D z$|{Gm$zt<5E&k%ZMRsTDzJ+%8%f!!X?#=@D&I6BbZ**)OZJEx_?FfsLHa_}5wNxp} zGF2*{W_ZVyy4G|P#vBGP;9_eJq*#HmHefNAIaNS|8rRnjb9c?kE%WxG6LCwUB4Qie zO@{ndQ5dD@^>uRA9{b!bsnC!?oKnr%m|fXk;_EM8AC#d%3Lb$MEkLg}_a{#W7R$##|F80>j*Bd~-!Tw_us5N>1_-7yl>T;H~ zGEmVObP10Uu#)NUXg&c1U}rxv7+g~p4;$ISPm!z#}*rWCk92?}2(C8z=gWb^PPFS(L8$NBt& z7_i=WSVk*xP<=0Is(`-&daXp7 zhyOM3Lp%{Z%48)w0=MZ&4g#bvBZs3}sA@EEuJQkxrx*Y;pznA9*sml%@kYOmEmH3p z(l*la22e)#99otd+0WzM0FEL+^C6p>cR)vCPPzE^6CzG}l%inANmlq07ZPp?PJte>0?J;eFJ#l7#hvZ5asm)IP2RUWxgr$ORWM zJ`{-t9^vn~9Uog$H1^}8(fBz{gxoLaT?pVd=W5}nAJJp6|%whyVnNk-Mo zPVby@T^$n1WHjM5M<|T*i5Orm=5-0qmwB0}t~tlwM2hu7UBr_D5Tj+7r!If0IEq50 z1qA@RflkekMEjYq@ zj*=kT-I(Kji-+3(XTXlyfZU$CeKnFv@{?8a&R4Hj1*>XQOmAsQ{3sw<~ zm>EB=)N)oQ3YiqPS>)P9TVJVXNZ#}~YL$X^1d2@f#Xi6p6<9AN+8udeJ3`oe1tfy3 z27&Fi2lf%Sz@xTBaYTRD8!@VjEdUVrR1Wi+lA%O1Zm0J(9F7eLwlXj{T~@A0G2%9F zR^;cI@<{hsVXq|>8AT+B2p2^PT?dQjhbhRZJu7>C8Ma=4NvSxquq&+c2#&05o^0*> zDG{bT{mfmN26cU?Df)_)_dM!aH+9{qsvrN`eG47IuBD!okZLQp)gYkI6OnoloOreq zpf}$ExTuk+aI2PuGuWIR1t)&xe=ZK1uN?eFyLk$uuS@+M%!t3vng+-eVs!w9?YEiw zHE|FegNqkKB)e!+iqS4&)PJt<-nPW`M4C>G3?g589hwF$dZDby1Kn;=49bYsRG36k zd|a$;^yH3j`$mOFi7OB?FEO%^lqQ#b-MBBAh>ZW7_v>Wv6$6GWZ!LdCF9)w0h8I#j z-Jhc|D23Z@EzHxL%M;zRVl11}1s|TW*2{n9=dC>=7M#2Lt(2qb-%wD2gy=}X0C{R4 zdlArLukeq1nz1vB2P1Z!tMQY@Sr91YR)3b1%qxe%)<}pi1{On&*chXc!K+If{vsZt+21CyDPnhCayMK0^di&5GB+Wfebi@Vr4!OdWX8A%LvUx11%`+~ z<|1ul14YVwHPi($@^^Fm!mS?gG(xU=0}xFfV0V4OT4hJ2hK~qozRokRr5Yxie4##= z>HLeVYvIFuLXVnJ)iqyJvGp<8JPEG}3R&Y>L-Qf%d#8kf%4pbdM z??B-CSvQ(P#swa>GO8^!6@26<~IPkChGIpsltQi>X*&?0aS)6-}}UtmJX znI<{pd69a{g#fI$5Lz0D5m$I8Ilu&LQH&`&A=_jz9qjz9RuSzMk_6=IOZ_Ieq*R|? z3z5X;*JHcp#5eH<2-$>p*%O%T>+QYB?tU}S6WJf2P71DEawLT$uSc@+W#TMwe8mF{ zRqsrD#sye}jwUtDaPn(Y!}+yjApnFp|4D>dH`R#zh%aA%2NC3RYMBu#S5CFg}9 z{w>V>2lzc!w5L_iD3ZNAj>L4_v}UdQi? zpvBjp0ua&$AJ!O2Ah=rHN5?KXR+?y9(i%E%mB>|MQPbv|=ysEXFc7P7EdnbrW>q&vr81>GHiw)Prat8T6^6x@PJPhAKY2+K0`)GZx5_X^xI)E7$5k4^YW!0r5Qd0&5+eYd{zS)#;h=^lk z*uXnX4|9xBDCvz-YY0@)P!d%4NPrUuEG&Q>|ExqA7x9p6@3l1yUepgTCLOAk$ek7; zU|4W(7w=BSj`q29a6i03D*BV$73L4msEDZvxye4Up@*ZiRi<(g+YcC7Nr`zts6UgQ z(5?ibLk>McNzXNZj_O8QG6u-|&ovh0SZzu)TE#18+Bhi%Badw9=N(MOEj5E#VKB=l zW20J#SBMaxixlZ?Xou`g+JO|BG%fC9RBjs}ui#!o$f=5nn!fa_M^PZQ7_;(wfILm6 z8k>wnncoZHhUcG*Tg&3;knsHt;;sEraL+sR1nEn5jee_k*A1B|T)77#*;8QiP-`0H z1r*O-b_64&Z}54pfZh$#hCLk@5=c~uok<5a?3k#nKNG3X`AmY4=o`-+m=GvYL{i}? z#T8q#0FTK>dAytTW%>?-jY{>zCz%bYHrQ5<(_+dqJZfK>@k84Je01qbWfxj`gVZq6Kt`qB)kgg9GUQ-aW4cx3M-3(XRER~MPSGRsa zzmz2)3>`M~P#N;AqGNM!%8`Qbzlaw%;$@{D43p(f@;?EtWjZX-vu&rFVmX?HaYAzu5}>_ z3JV}FcC6Nmm7o1UQJ$HCWt2PNxaM|IXoWL7Wz`}GoV(0uEpj*ogE~HG+>cv`8HbN_BI`*L9UY%@1VV@IG@75 zIce|D?EgSie5v{BS@&@Vxl!xeTPohIwPA1;#SFq{cX{vlU7IsnntwC8^@Btk?k%=5 zc^lvE3}e1{2`_=QH`;lmA2dxeGMs4_#;u6;9~^l3Q`5Y~3`Sy*G*@FX-4ed6Aw1xw z6)uP4Vo@0h%Ox8GM>Uf70ASN9*Pw3D+m=EI9o7(LU?dP>6$LA+mud-}U5JF5q-A_n z&RQt+LrC#P7>t)}Qt8M2AX88F&dJyCbLKmv&Tb+t*RW&{d3Or6l#}c)re6W*(TT3E zqQ6M&c7vIncgvEjKdHEKjE=L_Me2GmFBLz&pFdxBa_;u^VDu%u_Dkm{}L7VA3MNqf}(C+jI?(0esL=`1fG3 zTr+xJhs%}?S>pW`wi zX(Jj!i10M#7kqsLFB7(w|7_n4z55L^PsI<0+$(4dLam~w^S0rwr@?1;sbdX}1n5Ny zJvtEg_fWrQXVFOJ&g()qgxbRpVR)pdD&aAX!*T^1Pc*t9t2tecn1${kp1ya9_W$$U zr`bX6EImEpd|{NJEuQrf*_sq55bpWO#3`4&!hkZs{a z3d#fk>^Fbx{rXYeT18<~moBQd;XuwnXVHwpN?6fAg2(6835Ps#*M>lq(#-D#ufvL! z1tA|V$yMUa9&8px@wB)g$DQ(Vs8C(VGLupawYf^yJ9{ccQS9D{4J3L@g7x0S9T#m0 zsjK+R^jdQOVe??x0aa$d#MKHReFiw>3O3{|nC}5;gL*t-_ zV7;UT+)%cF(tEWw2%OdAH?}*s_YSdIBYH{5gx%d%)zF1q(uuM3At_#QbwP6kJYX>r zTsD!mYn&-WX+ZW{o$kEyvJ!)c4oPSqBDi;bV%@*`XB=+^F#p^q)@8Pd@yR9U!5>+* zUgmoAniORHk;bItZMzk)j|{T%*T9~aM-)phX;STEoD|N z_!mteCErh&=Ax0xr1=x-_?c?~^9_OOXlaKtd*$=c z6cBikDSmN4Z-vi4n?@Ii!9hVcZf;Ze6wbxN(}B-#0Smm#o}A%IDxwD;b&5|YdaK7; zZP*odRsT*6-nHkWv+$K9J8O7h+oz4o252bzx^P+sV&0iZ)8Z9F&vj%)HU;LUg;856rsj&{RBs~+*An+_?DeHbV=3nedy;-< zVrgnANpyZ#8T0mTK(ULE7-^<6Q#~VRRO$WBx~iZv3rd4x`~0k4(6M#&15fafG_`CQ zamaGeK-5OC9rmLYn_txtdds01RIC3zXy{wX$gf#= z2q=pFF717=YI)Qz>==O3%)8RB&bAsgZl(vst{7`d#g57YJ1zv^nac10$47ShC9;`2z`Nm8FA_^itUq4Uhd{nxW9^ zF9|L>JI>r@O+>O#sC>M0jJ8=}$O%8`wj@iKQv6hSD<|5ekf`R&sV+TJzQ zb6x#{dH&V_*&00W@v{9Vgi`~;v3^!J^0bosL=oK@Vb5b5-mh8 zWr_wC+ilLe`#>KdK;DAaIz&i{3~jwT6ExKMFTZM8Z(AAOm7ThM@bOoEell*mEEPE;IQmSuZ-LTlQ zd&@B}JmkVwo(FMx?qqe1ksRpxiF(NkpN6&&fi{C{4E*L(1DSw@qpK$^hpvM#J20J~ z%eNg?m~Q`;qTBQePw!`f%-?u{FNP?FmJ{w12LO7QB{}15B5G~**LHODV5^*rsXr3j z?ptrW?BFKgW?Ix3GAOriXUazZ_?C!!Vg47t&FW`~_UuA3WlN5XlXH-oblDS|cAL6O z^t$^$-?c@gj&>w&k=tDt6XYdq2-L4@{maJ;pg=pGgW!H?CN5;@Ora-KhmwU=$XvsB z4<&L^i?+8IufQ55H2Nm$ZiR6}*w;D9A>1m{2ItX)2fM4u(gFkOL)OvIks6<~O|xlc z&j6w0ML3PFNRATN_O!?~0_oy(twXVqzoUuFqnLO5WL%m34HjYQ3KdQYm0wCQzXyMB zOgfe!HCGWO0GJutiZD36E?8Wu_`*$X&)!Ak52!Qb-mX0OPS^i(?pXe*G}ymabZqMPg11 zly#^|Trr~gEQQ?qjR@54crUE)9wR{X+3Fhl^wsA+AjG{)n3ZN_SBMbX6U2=(X1mSL z#I$C;AXa{uWX>XwMV*OE!U_ya$f^21M6e_WXCYxCC(7(Y*Bt>3vO|0UZ#TL}yO z^|72sv*k-asHN$A)11};QlzYX8zu+ZB`H+{QZuz_AoE{*|5Nm$nV$)rA)m;! z#<5UZJ(^Oab7A&Hc#OxpzpnZYLovuXUo*) z#Xv+nrN9y%6BBoo%hM0Dtq>xjNg{jGN#2=xP|5bp2NW4b5z)X&laI->Nvt@PVB#Re z@-j244u^eT+ZwGpY1<$@{ASuUD4?sC=gc~%`J0k>VxYor8tmkkB81RDG0o_X={M#l z|7#gDA+r#18nq2-P44RPBs8YXK=+{j8uL$~#FV8GY_wf~*wetj^aMf4(}aOz&5*EQv#b-2(^K2UVlCn}h13BK~0(vKe{>3y~p=(XNKh`X? zXqNBri*CRBbgVZCzDO+CJs}jcQS9s&RP^}sa zXDcT-%-&cc4B}z|*@f?b3+{12UYCk+cao@A%hhYP0Dm+C64B|G3)Xw!R-%R>ScQdD z&)oNf$7`J>b~q#FrlGr;?f^`{%rg~Lfh@RLJAv3;*2NE`&BuxaxBVa|PztSX4J6yuun`2LmUbr~0F@=md;(yyy%cNA2p2L`M7Q zRuW3 zKW0c}A30EVIkQoknQ#~iXn7??T~8f?ra}?_tj~V&X7*09@_h=w>&;QMLg%j3{uu_R z-XG#PbiZ&?v+~^&eID>#yR>r@o|~n@Y_kjT~`LX+tT1jB+D4#+I7)eQ7JY`7??q z4l@BGqs;;)wLn?2D}{cJU$rB$aY7 z0QnQ7I#aSy!19);{J{XCt`D>JHu+d;_628|ZE7JZHK?yZ1Dm36CdMb%+=W0E*h`~4 zq6TptQ!h~IEX+vtcLVQY;y78&(_0DG9YLPkqd-G(A}VFpDYC_~TP9o9U~&-W(}&SV z+0HYvAwFxS4A=&YY#L0lnulp4%=(Hx?iTcHlk4tlO#U0`ffD2!v`$qbzy6_r9q$_g zJxH2*7PbBtI}(w%OG?R~;k&-D1kxP_h9*hj9_7ft6rPUlFT&3b$omeZs)Mo+Liwmk z9bMlHjh)+lOAR_4;8&e7bddx~uINe{CAa~jWfriPCjs#U2^W^&00UaPq3Q0WVwotPza+(&qBTDsKN?RC z)q~djOhF6b#?wv2H#hPCd_OcMI+n{4AO%BMdjh?;JoAibdoVa_O^rZRZN!F8`R19b z$(5|J5;>ypI`~bc2d>usWCKUbKGJmkmR6<$UjIh%r3>wL9GIAmCyjTFDc~Mq{(;9B zwSSDT+lX2bs;e>Jq~~70{DfdQ-?PV=9Z0WEH-j+S@f(QUvl?o_OWsoTc(e;&T%kdY zJEhv#iA&2pS2PEbq2hix!Zmoj+7PtYqQX$aAzVNG1GCwl0w;Wn8^V@$O!8HxBN6ymGxTlMvi z@={NdfmQzPr*TumMKWly^x}=py9Js{%oIKDDwC&ymVXy-SveBbx0Wvs&eURAauDT9 zzpr~)MuP}<2)WwqRxE$lwmf(9WMBBLhugEViNjEh6kOv`k`Ec`kcdGGi7jcdZL3a4 zhc;YN{Kv7_yM*L5HdR!+iH|DAfprYl)l%o??^@yA2pn+S#vB|Mry0=i?0 zIA6<*GBAB(J46LXrd}xS0zi7#|GJ2Z&a8+Y2)hDfArVeSv`}q0GTW#pRy7^@P!a8~ z9e4<{r#+pu)xWh7=L5Z?fJ6Ps8P3D05G%q&9u)@$_(Osrlz|rc4kk3C zji(4%NqRxhWPxWOQ|7O?JSSDD1rp9(*Gkkgs`Sihv0M=r*##DzPec4(v4bo`1V zqyYnQ@+HYyAAm<}zu=2h_l5q}bne%=QWECo3@9QR{I&7mc9#N8u3s;7K`)(OGq|Hi zN~wCuj;sy&^9E1>OBh*hcWVBa^)SHQNkc5_5r87o7Cq|_p7)boe&R2aozThnHtZ(i zvp?Ddo%l@s5gm*QW#6bt5;^X{4__=*%>Cv3&t5L&0hJhz&Xo8`8ZfX9<|SP=60i)L zOziRuaM+$l{P^niB45kNP!ks2kVz$ee8Q-kQkpWQ+|8_=m zxvXcgN3wSnT1qK4x(*uweXU-%qdwvFQ{LUe8RDL~n>mptoveckxCIu{pc6O;J=DM7xr_=n2j&Fz-85FR zdnSt>+^cj{5uJufn4v23a*G_JYr$f(yLa)cMrbzxUzM%kD%N;`QNRq}x_xId$}F7{ zFnQ{b!}fwT-UID<0X{f*bJ1HsXxxp7Ur9Rwt}V|`B_qHNt^Mv(u}mIlsgkJ)37?~? zF|DG{ZLUPJ9mgE`7_vn9vi_IsbNFs`iq1xXLSq-@EA*(6YzP6P-rY-uKM0N^J)Vq) z8iaDDsVO@VB1*n(67U<3A~Vq7SB(Ag6MZ0g&JORJdug-)` zm4uH_*Z;0n;Jfk$CYw%Q?s9priA!S=WF}q zloLoBc&{eR&AbdqwsgUK$k}Fr<{WYc7wF>B!f|B#cAt8RQfOk=BjljIUwocI%^9SU z2{&yZ6QNuaJ~(rS35qu#;X&7^P-eQBn6ryyhol^P(N)bbPDsR3m~7&+IDjy}>818h@dAvfX0~p&4fYfMJ|{RmZF&@e_J4eQd^|6d353a}Gm0;@{r!9^ zpq4qDeV&?qUX-G@7;NJWSI|=IL6XS!A3K4ojlnPgo`lm9}0QgPgmNhBsP3F|IL& z7FSP)Mi6_lHjU0NH{!2;DeN_+pxF@tZs{Ml_2Hx9_|YD7bxjg^n7T8$$4sRvK4pu! zz`|VwAxH)%d7&1B;Pm_BY!vjNX0|&k5TnEaCw=L`K4-w*VAf6Z`x3aY3T1;Wm!nTC zh`#3DEyCPVjx63Ss9e8?k*Yvr672Ny*6`Q`e@<#0mdbiHEBdx~)yR2wxhm@!1jn>e zf@7aV8;`l2VH1IkK+n31t5uZR9q zN$K-MiM$BXT7+c9>c+nOrWjGXFGiGEQn@V3vS;@-=#OlrZ-6=p&%)n#;qD@CcF=3i zQ2LY}(S|jB<7FAgUj^egVtx?v%qCdWe+{1jj+oacv(Jn*49j^J1ie~CAH=PreJrFP z0W$yYbC0m7+q)5PN0@eIO=4@Hi3v&cw}NIJp=u91&=q97Kgaxv`!4i~zCSrwZ4Z_>vtK*DnPfa}oSfCcPl zN;sqM75SHV4celQSv2x5-Q0 z-s+>wGLi?0Bz;M4R^@(}X!vOKV@0D(KhJ-fXkX!~CTsrv1$|kDqzhf493b`uZCRz@ zK8TIIF>EM^Uby?}v#^*4GmAUgmL@`XgxMwok`rRi3@l%`NMDL&o{A9n+M}TF=)`p( zlvOGdMgKuTOCvtewp?`@F~IOtLG<>?0`6sKjKGITtNU&9TEZaU($-KkAV6>`mp=x{ z|0d+YpCxmkw^!)+s73$e#diRixz(4w@CcH)@)Jtz7319kOUq@7= z5Emq5xrT?0WyUc&MYbS3Kn#pnJD?&cg z@K^e-B4+0Ko_ah%nEV(-y9+FRLCb-I5L+@ykkBpr@Jn2PGb%v!g5`(~b&`h-XpfZy zVup!FFCZ-)JLDSFsRT&tjOi@>_WLddNVVedc_%nYBG`Wi-PH+2&ae=n&6s9jBiaHn z20PLcdW;7OiByQ=(fGfBXqN>=aU6)l(}F4m;6B+_4y*i_-6#GKu6bXaXLu+|IjgQd z=6l3>v>p;Yr!<(D<~UnfkTb^jQ7+vpZgu`+HK}fYR6fl8NIh}%n7T0SS z8IoqgNMAMD6!4_AjO{Ov#9ZF2|F-Xp)9s;v^vTvBXgI2O?mXgdYfE=myXbAo+NKl7 zkAC;!d+^codEO&oXh;-~&mGL*1JyxyDTOXR^!Y~iXzGXxWWOc}JXhHs%e1=g?8;bKteVe`>yb4e>V z5t`V}b(s{MB^4QYd9M6*hLL>tprg+H$D~u)XK6HOP!iw3-x$cd7FST)V9`ESb}i=4 zxR8d-a|Vz!XKX3I+tq=yo!GCd>Bo?Q{5}76VI$Tjx5TZOg41PpidLP){r-phL{pfp zekc;8HxU>Hs|fU{2#j(WP%iJtL+(ZeBLXbJ<2A?BTmSIP_LHU}b>}c5*P+|qCF9-H z9y|8vJ_o@CU}YdPWHTTwz{68eqLRFUdaAStBO-crvvX0z0MA__1pw9M5mI8gD;%X9FJ(OK%N+X=j;TiWYbnWe_* zo)Sp4_oi-}F+nba?^W2Gx~;HojZ%M?!vRQ#SFvRn!IsG_N~%_S<>t9Cs|nc>6R1@F z0QqaUp*kRc!lt|B4dH}=D64-cA?HWfnDN&aO)Yh2s`ap%HN@HOJ4>0s`DkLo;PzSd z<^r{r0;e5q>IiH666G|Foehr+u`g`HaY~!a++xdJ{QNMW4^PcxXff`64?K_8 zE5%VH=^E%%g7hg8_#yQ9URn&mC1o^et0ycJCv5@4zWfPl7w3$iL5m-j4#+hfa%>I*dV?QDWS zdShc_20Ge1C9s9h7HK|3Q1AR^(swBT9dzd6rN#o?5T5m&myf<49@(LAFS(JHO1E3A)^MdNa1IxN5XyCJV11|JPTV(~@mY$0~nYWcJ zt3Z<)i>s%`+neQEtDkhQw|b^E^j%C2rrg`4OGJEK5$ z?%#8>+;7^pGf)*zxJc+&f|%>2lilISUg-H3uFv=a9`j+Kwl3^bC}@Y+LU4EfZ>NVV ziC7@`)i+Y5h>PvN@O?^Pli&OUV$Jhg-s>WYPz&*x5!hl1?*Aw(MY8>>dPMwjDtv}f z|JDz!bs5i=R6<~vQ1@ZM#0ygm`RmG?2(UyquWk!Wk6xjioJ|2uiMkwqHfM0cOY*i? za==;Y-#JQ8ITUcG73^CfneXD^!a|G?(swUHO>&gC40Wm)n|!Hdp6mYCa9vYC+nyLe zVSvz;$d8!oQM@tHZ2kDhZ`zcwWY51424#9X@Czv#O#N>5)5#G207z^7e6H0%J2L+5 zYQ0?w6;KMTp~RNio+Xy&Peq6*3F-{~KYYD&bYI~XhWU$a+g2N=X>8lJ(b#HiG`1Ss z4IA5R)TpuTIl1@Fnwd4T=I?ejT_@)|-`?+j-)EEj7)A8Nq3tZqi=sYp;@DH2d0s%Tub~Q$A-(@`&>S|Z$7dvPl#a8N{Z%}Cpw|jQWGYk^K>_Gf zm~AOsIbABb7>9>QC&%>>aqe?W*E`U`Tr!sUb%+4a^CX5qTXs#B%D zB<-|SB00G=t*#lGMD1)9s^v1>s~QFlHUEDO_1T)5CGa@|qBhx*&u=T?=aGumsATv@ zA;`a!8G|!cq@s`*>+2=RB&4bVg~YWP6IoX-b0)R_N|^aZn&+CFb;3#;8`J6F{Ww)| z=VyG-Pbvi;O*)Y*)*OPjOchscB`oAYF9pKv%E`Gjo zDYef}ZL$0W1TtlDatvf>HnBMO0_En>_sqEuuET;K5**gK#N(^myJ4$Vs7KQl5!DoT zUn8h}u9DF(NVF2ZR}>9@>hfz6MWJBIre1chLAvt}vAstZLj8+i@BmKid!zLAc3uUS zgv7tkZZcN@1%yjTxaK>sO1Tyj6JPGiM-pw#bTfg9fx}Ohkld>)g(cgu=_Fs@Mu5F>`PD}i3e*2WoEyuPL3EsmB` zjvrsh2_EN9&qqvln!M1v>?|mgCg3+xoe>L^x76SnJLr1lkAH~{%9}i_AW8|FL7KE# zX8W}dhQt(c8pATh$qQRjQ%k!q*c{U}{GS3|7&z&2?1&Bmn-&Xp{(PB+DE!Cjk5wzB z2FRR9k4`(?b=np&XFl6I(fccY5AI|Pkr5YHbe6`mR`~4cCensm{lb}g=JPBoVFPZ$ zX3a~fsJdNVaw?s$D>f3PkzzY*SYkfg^9r4rL2y_Ba z4X5D>O;s+ZO2C(FHvyV_6R}}vN{~~k{9&o@9cKID*Y4446KpZt$RBV((3kHoae6TF zNXh;I`(9>2oBo|sVHSALWO?JJ-nRKa%%0U$4Zv@k%)Q;JwrxI&$p3QD_aBBym4h$B z`ue)2p4oRB&dd-qt+edy0gAY`Y$^!`NkF}eD*`1mCC zkC9~<>(+?KWYhk#8^h5F-YeH^NR3xNSZgIe{cSOj5g32F@OB8f@{-zJPtZYB5#PN{ z&mq|o%H+S>!lF44${5*1lPvL&X!jLc%X^KODG!e!rb{vXpK4Q- zXMX#kGL}JxBx`@<%oH*yB#8vy7*6ERmCx_h7uen%zK0?=?Fq|1@!?u+F6EhIGF`qO zEz{jd7_p=(QZ<(x88NZl)Q}-N@dq5Ci#Qoi87B)W^nDdeThK;W?k%u+J)0p0_#JS} zPa0iUSfKGdso3t9vF`r!m&tR|1j)ZZ+12m=HU*5y#UUstC_E1G!!8`&PrKKzEjpHj ztDPjis`gZzjO|TNnOcRsGFckSFhny`mhUJ->9a4xh;$gamV%b;tkq#!Wm!rn=oah@ zN##_F7X`nF%G<&`X~HhGgw=nV(#!WnP!-O@>}4o+WcFdYJ5K*Hi-45KCqG`5|5B$! z*}Qx{@1k4zX3XVfVAL(+Yz~ExYqFu#r(oAdr%g*@5|^CtK8cDY^gKHGsM*ac@jR;g zNA$4k>rA&>z23Z{L$a@BtW5Rw#%J|(tf6FmOTh|uMV=A*67h-e7TV)1P=cq`e!@{7 z`Ti}T`A7aMh0jl^sBn^$q_MqTx`0Q}G9(WU=jjSt#HgCWQ{fqFm4=Dd zCzt%@pJ4wx1MM#C%rri;e{+LHIp8hZ8XZo3o51xlSFL9g%nf{UjMPW4P8DRrr@&Uq zf$WStFmH|nMoKq4#8YBNB8<7T{F^;jVam9#)C3hk813Q#^=S78Z1VB#9Q~{YCN~eK zA3F^0D1}o1prN!uKqZ)fg%D9@c${V@@UP>(mf@(-{lP(bOkKKE@lG(LE@ZJdJP#- zk}G8|Q5wCQU$CyoF)CgCPb*8Uf3TG@d;8a9sN-q5tOO5yXUw|DeR?c6oddY@0s=&Q zf6d(T4n{;S@EQo6dY~20ok)yew)_IslGLaD2!H2&mIc)7$yNJ~AIR&-u!9qmWsY*B zbXMNLkwrVTd2NN?{FIQP@z~|c8n23v3=AuSG`yM5^KQT(L=+mp3V>Fk&%mH}wx$7Y za8U>arn`5N&bcgR4<&4a9y|yOldWncRJmIGMFS8OL=>*OS;l9B*%MePh&h3|QQ_OS zQhl4|mCXW_VokxF-xT@pGDEwfG9`z+i#0){x*${WGNNqpzfA!M9(~J~9Hno}FUtPs zx;Lb-ZhHKztU)EYeqK}0?L@+-6BuSPlnL7$`f;-!mINzY6sg5;A%;${e^?c4sUUJR@bjddMxm;A0DZ0 zugCwKNDWrETmZvHv&ts4_ly)VJ*ZcJfJS1eLaFCDjCN4)6v3dOuynt zvB9hTh3KizkwO*?7%v)^rNJ@~CE*l=oGKxm{J-vL0`8Bb*ZIV96y5Hky33Ub?x3rh zpWmK_AJx^9z}wJ!c#Y2<1Gn=(#E-{c<9A!}pF2Gv&Ib}yQ6R6Nurr>{#_f5vJHeg( z(b6)7|1V7@?N8D}Fk_m13`|}_cA;SkP*>NCivl;+4T=V7kt)f_GB)6-lXaH>X~4*5 zf5`T=aLzK;O#*)&DwshL3(VwKN|3sOWDF}a^Y3+o{$z#vbbs?4rRx6Z4wZ^5o_UFy zK*jgbuEpTg*%@5Z;n6>IP=#@L!LcCt4BaBrR}UOjoqXtySw1>zVT=U*Dx-pz6e^KL>_el5ftfvM=|bm3UTlbw#xYm0hf`b(;x2=(hZn*umw*?XbX5h^t;h|r? z4wo9NbrNRB?%v6lvZ_`6&LoWFv|qJ@WMM0LsOCihPr=LgD!Ypvr^Ay zlNqnldx%sN;X#?Wq&T}c;hQPl2w4Om1iB$OdWczdQnxnVMF=_h)93omKGwPpX0Da% zRitgb&8O+ETln;qO&9w2NHO!hzi`~i3&2*!kn=z5aS&zf%w0Y4WAQaGTe}B$mjJW< zMw%z9?$ZcAZ2_KcF-wW(3tFIiotXfxcI$GORuWmN4(wXlJnipV@M>d_X5(I0X0(Y{ zssCC7tb#Y_QbrVstJ%e$cQ)G{R`dTXiHEeU%QV)&GL1Lq6Lmp&KzT<3P3q;FKtJ#A z>#sgL1e=0|Gd*Q0C60F|S|=wbe{T-w8Yh2$hxz>FOXNP#=K~RhaOh`wmgMlT)E_z^ z#?ANziOw$-^+{Kzv+xX8x;+wK_hCOL%y+N7iWNvlL3>{^Iw9a0n|sg^X*a}d`IHWl=axc^>;^p*E2lY1OkYz=yA zun$fY8?wancx{aIRj6Mgπp(Jve&Q_ok{G|8%9td7Uf~%)N1I)Z2{gEMVP%Icw8gz zM+Gha$RI)fEIg>J0Ra}CN0m~DqG~1fA0li>Sdeh6(_o%zs6JyJ;FQ z{92}#-$X<%)jm*_@sTY0Pcd#xGo5!PWc~@Ls9QTt{)0<%806jBOEnk-9xqV6%pS6T zw0eYJTwp(-apVbt3JMCQuf}zf6HWh-pxHj$1;F!$v^l=Ow}sw#Ocryg@>C(2nPk@8DQ9-(h`Gh)FlX3fDw+&s+sccNdI*JG;U{%*F!-kypl^dIuP0i9wr*9Y2um=)RXP3y=#|u57EE`ea{Sxy=65NFVq(aDyK-lTw zFZGUVSWEnX=MPY_y&?hIE4uyI0HWxEs1X1?hRRA``nNraj-71Ofh!^q7Iu7mDSpMup7_P{~n{8gYBTd^pxTFvc7)*%1zDnvg^X#;Y_=ggrkh z^!cA==o9O&ald&9IZXZC1qBhPdcD$fllg#~WBy8xurYLqkcQRZ(E0na<#$b5t`i-- z(zu_B{F5m<$6$Zf;k}p}>MWh<19Qgggw0RH-sBe4GW#Q1u2&Gh5 zU#R__Tl{&?tlEWu6FTg@Zgs=}YRzoxA4Kh>-_?vQ9qUYNESQS@8Pi<) z&pR%89Imph#95I`|BTrNb*qCg#QIZwLeNHNqEo9p+{X+1Mw?pk;KvRGm_k zkcs`lpU4gMBI7afYCU(^hV4Z@eIph9u!jQs6iRAFl?}&p5QfgmG&g-CHjdC=(NAXV z5_D=eX8{4_NN=6HvX4z<$vc3o{pwqLiul_%;1-QusUI2SU@1-_Y%sJ9M;%74Q$syf za*LBKSilie2}X$t-#FLX;@xQr`N0NR%-V>c%uLsH9f1bv95t+Kd=W3W9S+CdBI$+? z3cxWj-P6Mmc-ca^qyd1QA5=|sb@hvb!nkdf+^6}>jkwuO7&*$6^~32RIeV8@9YYm0H5sJA2sp*YH?%pDMgd(=tNk&;4@BT(QN|&TV1^;1ka%Mmx3g zNNxp}ieCwjMCg^H$b2W#YEWHPj~GY+K|Z9$&^|#g+bb2$B&h!F0<3NZ}%1dso@>_2U(L23sYFR$|GB)Mq)#F{qA1t`@@ZVgJ$J=JeZYdYNL{PET0ognK`{1 zj(2cFV>wObS6sHq{qYGG_26eC#+4NhmQtOZvYt}U1XrL07T}7bHE;r)m0MxOu)wHJ zTk>)wY~yOiL_F zQy)oL_{@Hg%WQN}N3^2a9p|Isb2izzVtaLkxKq&!#4p$I3@vhChR?~MytkgJfN0OQJ1y7xA z3M;u(Pr5JA#>~o~x){w>w_97df+fp#{9PM)=iLnXr=s@G%@_1NItL+}3^W0vf@-^^ z^lh9y1f5D!KZx?yljD6VjPZMg-P}W$c~h5m`J(~{>W`ZY@CPY&C(yYbSJ!@WG$6<7x7cN+D^+#YF93A!Ecfb2;yB*F_ zF)}iKU~>iT_dBxD;;_E0*?;@UnPJvn{r!%TIQcw<0cgsCMp!&}KX18jC2~gS_pA>J z$*lAt3|FO;g8(3y?Qkw`1iLlwBXe3Zk+%NhO?JZI#bUlu0XdV88#th7!o}J~YXa1` zqEum|+e?QwQ3MEFwMw^+VF8)GX%kyw`f}_7?HNK4s|GmtP9^@YE~}nO=wR*E6!3|_ zdG4B|Dd`Fr%iAJYV$SX|qfn;{GLgO2$lha`#+mQNZFJYLnkA^j=~vl$`fZO(koqhNQGiOp5odR@;hwLyHJ- zsD+zk4}2leT08-}4bc%3oA3@=coh9yOBS};LNa~np^h9ip7Bt{W3SnI%d&%%PBlpV z;B_YFAWR_sr?@8z$taRdEJD>RX)r{J6!Hb=TKd~hn3>V~+c^ZJ2X!2t5d>8z&{q|) z`)%Z^_NN{YyhV!=Pj4B$-6AdvD$=zyR0T@y^PfXAq(|*2vWn__<6C~icauutW6Y`x zTrfl*2du#4o+}Bh+huJO*oo5h1o5*0`V995dSiwPBk$Z;P7U|wMF>+C8Tn0h@UHyd zY%AwvKv^s)CM{Ru398+Sxh`FtHUG zUA`do-2{~cBBAu|^ujGA{ld14d48I0V*fk_d1AxaX1^v2^Za24@VNN>pUU_2)b8um zFonlaS;<8|h5~8k#I|$pGhx@m01J8U6h+d=f0TRq>@Tik97~&(b>LDMiZPPKI~K3c4)(Z|-kQ$yYF`T$@olxZWz$>%xQJnFRdoI?C=N$}#i zhX_1XCh&#Gp$@IfTA!NOH|LkIgmYoueUmqhUjQ&k)8~@}J!KPbBIKbp63zh|Id!7! zb2gRKu>^F2{@tM$Bpn-TEnv6LU~fL>K@IG0`T@t44y(2X&?t9{@yrqHgR;OyC-O7g zmZy}5!EnscF3t&^qX0j!&RI(!-%Y`jgW=ysfZ}$C&4o`h{~PR~f{bJAT=5>gkww|v znp4Y(E*$I34T+3x=R$CndVPXU2?dJKp7#K5e8wBZS_ zEjr-ML!c2G;~0Pc2a+}Bgqm(CK87 zJGSkd1`D{zg^V*h1fv90kVb% zOSklKc{7BC?>W-(hcfJzrKzLSXCd&cRasg2aT*V13O%+XXfApnP(Yx!8-;hw^78Hc zFyhEG;jX0}agz|*fTQmaqR&5)dqiE7{cb9XYwwd4%!NlU7deg$wAp;JX}RbUur_Rh zs-ZwD&SagQJGHTZ=lYeg*Bvt6N9@dO$Xfj?`%i?M4xsuA$KG(47c$GZ%>)H#AwA23 zrQEcumtvRle#!bOsl`A?Y5(e74n&Y{$k z_l{=d6|PAq)YN=LV)ZJqGMib(T3d?vBN(Wa0(+06w?}ywGP&JLasd(4C=3la1xB@; zj0mdD@_kX*h8FPcxxwr{;n$L7HZCZt+C7bJdPQ3ogS!MYN8EQ5&!QW`VS2jr~5(7tFx&oBq0IK;}#k-A38-| zrKvBwvsas$$~twU5zZHlAODIGk5KFPe+Spe$N&Kg_@WIfEkJ&UN22bBU@0#2(?BT` z4gcpAp!R0w$`GKG$;rc5!A{t^)}$}$t4X7=GA}KtmNb|LMnkfAPCo~K#YU=$V^|s~ zXx0C#p7~eaH_xBMf%*g{#5WTcgPaWf(U0(6BqZ@02 zjwM>{pQ4a{oJpbCR;+@}bh)%6{5r)Tw7r_bUMjp_VFlch+wKLaEv2JHtHh0z75aGB zSk%!y1UP_VMnMh>Kzc8v;VLZc0G`aXhb3PPX=Mr!;UZ%K_srBW9W^2x#kr|BY>y>f z*7@EU$EA4Yk*Y3aU)(yw9Vi!D>!Ro^YUxfK40NnKixr)oJ?xZ!mfU`zL!%y%(~1Y( z760KKPv*x_KWkUayZwmoY0&R(D!uIz9Xv~MBR{I+wEY2ETf=)g+AIVsJ|bFUb+c zfas=)Ar-)BZphxNzsUv<;QC=f@A%c!01InLDR*o?5IL@r z;J>JrwXD_|&3qyrkR02v3$sPj&N>pOtx!+||2{^jVoB=TBETJ` zhQ#NF(nEU`nKceVnzcC8kTL3ey&}Iu|KA~88_wne;L6Fc8=!imjbezgD$I|q5#D6~ z&EWhK1$ISzs~7@Asg4pF1}=Dj$;977MXN$>leLdlBx`kN(=bRsqwCt#UrwT-<=XVk z_{Wou_4_Vm{nR){w<0im+OH=Tl5|<6*e!N_Cj)|)(q~22!PSijQuAT1R}AS-ne@Qy zW`0OZEf4To{3}9k82z^le5s`P130RgHi!5%NXdky9ba?`{^VVl!2ivVE@A}-*$k~5 z&(P>Bd&H|r)hkftuY$35Obl^w;ARS5N)00Az9%!!Q$x?-njFXRV;eqh#B&{K!(R&X zC2of#kB36!A!0S~rsu9yEpMwd*){m9JdAAEZ6>%T{?V!wSQV1^ayR}l^rQHKQ$ z*C#)7NE*nc__0|5I~BCVT=cCvq!pUi9XV^N_3kw|D1C?}*y~YOQ3#eD0KBVy2J78O z;lem05Ntkc$E^2d33lMhFY)T-V#HW3Mg3L4n40gn!zJ3#j(ssz{P*P??ltUw?{Fe;h;RDZ0NJQ&%%<+ZsgENvM@kR~$bWvDq0cFU1 zSI{EroQBa654W*VV)8(@QS(g#|BoPk6=Qo%|CioAD({uRbq7P|NHq+iG6SE#kDS#$ z(tSO6N3sy0E6XxDO-UA*d576Ec|ixy@iC|qpMm{dmU#;M+tcWvTMT$sft|!-gcF~N zA*Yunh|TE(!t^4isOs#so1A6%c)o6N$+0_09C!i7-|56fw?GPqbm++q(3UwC5T-Dn zV&x!eiG*cdcuSUD_bnp<(CIDvrMFOK6&Sc(Md;Ps5<>S1OsMiu^b%gGDYmtmRzqRn#e*GkmbOZ9P zj`D>-RC2wt)ge1jNjE<}e@8&dR4MqaKQO-;JUdWb22p`eh6My?ju$BXnnwmj=O7p3 zU~1L5=O~H``TGZBpIT8C)IU9Ep73;?OOXtEMR~b4I9GJ^2)0=(4eJoQT*Gm#a-0PUhR z1v-Xn3h!7qA+qmB)AQg#7}O{3hJDs&FM9Xeo+eDq4y%nOK@6+_B(qnS<5`{ytWzxBLqyOrnZLyNA$1M6cfI{(CmD4SYFLl+CDTdnUb_Hjy(4iDr49serwSbtU(YE$_sKqLK`V8QT`tLRXi|6Mpge7+EsL)49hmMvUpL8Y# z>U?Cgvbrv(`tTPOglX>f(yPBj!va{;%)ljgB`{)8TF9Rf^t()Z{L{B2I^#f&LK}I( z`I>%C$;5}T1VurpF$>etjwBfD>Fwa6$gNi~YN;#JZ z^FXE1;6%;#Or_smk8~|XLrRaLTwft@AJ7U#=kHw$&nqKepg7B%BC&l$C=vqxX+p0) zyJS=X;W%nuHv=yCecLoPAJ714*5%ikIdmPc4xh;Rp1+ODkRe<%-bo_!u;)5@(H6s;8j_rhbTWJm*$;NLp0_4bN* zuD^Z1l>w!(0NYcJihK7P^VCsZ`JPWdPA3KqXx>Lb?y4Ea=xUk!^Js3x$x5cawTbg+ z-bj?a*g2ar(y`Ib$iE*zo?1N)o>ay&if>q!d=L8hMU13%_^!>XCeByk3DlZ92ZQ*R zl7M7R!EA<&KzWi2xni0y`zi}K1K1?v35iy;!x-{e!hO~#IwoIcWsLmlMqW)o@nAn~ zd&)RgMPL7Xi5HWm4M<_S%Z4AQR>q4-_-y*<#0s}3W`AFd#~MAKVMi;MX}JfSw1aD` zR$;qppiv*5dEH)gXYmXFh&1b1*I&)$zG0HQU4$Jr{f&M5Sm@Jr*HqIfB7r4A=%BY& zK1y_M`oZdKFH;SvH1ZjfFa=9F z2>6-er)Y|2{jfIC+l`;9R(_iE%!Frep=P_Aq65&*-E(CNoZ8DCZkJ4rYk+yE-lD$| zWX}dUr0F2ktzCfEkiruJqxL33$eKCxRW9mgfbDvGwSU(IBQP|a zUf3jFsb3gZBe1J%rVA*%9ruzdXA=a}#s4`xE2f*&!HVCN?d%LnqzwqFb2vwpWy&-CMhKkf!jVgHe=Xt}HoSrHCT^zKLY0C@3Q}#dZrxur zAvaDq9B^JEklzi!NUea`akS+mfaw$J00Fcn@*7cA9@yA(c?{dlFMtP}u=i=#eCnKp z%=gv2_g0PeEyi_fT`y(5`r}NuCh% z-f%R{rT}S}g1bu+FXIR-#;jGGxF4jSa4)rSjjoAU-E>961{Jn^oqt-k@g5!ud|$%H=ARhc ze#3G5n||Wu0iD+*cpy2&DDe$|tk&Z<#~uy?wup@kRFbe+D_L0i>Rq40Zun8H#f9HkB>p&2Zqas5N2T{9$?VeT&~EEbr5YEVjP!=+SHr(2j%15W!tP zGY|vuC*i5wCef%b1YTJ@JVZJ$e7jQ(O8|?;QnuyWg}>R<;vPzaF9wot&K`EU#>#c$ zLZ1_A0LPUEa+%}c%K3OlqTpMB0_M$|Gr#&d)MKM21O1|Wsi>7g6{KeOs8d0p8OhlF z5n5(&)o0XInO>5`9k$GZgT4@OR))QL^Lyca0|1nqm9jS)_mF0&+{x{45olGPq>UFK-j-Ylz=dOD?ni> z#z>a=8D2+B5Hl%tvjVHRDntEuxBV}C69zvloP3$RcPU?w;R?V)IoM+|4QBQN;8Xqy z)L-0cUv#~)Yu2^Y2O*8cX-N8Mg&_^uPR7gKrK`C}oEHU)+x z@VYG=4@D0ZX<`GI-BR=)yKMyk%$*#6_t%z=-tOiM5UVz6id_V?Ygp4r#J4p{`O*L+ zv&0K8AU1jo{1x2SBP#Bp6+XKZ+tNE^S$@$E+9Vr^;=9aUJxsg6u7=K@B3^~hn(#S; zoh_kxgp8LF%zCWCk*+>?=|;Y=!{x}UkKmEMevoGdtbfv(*v})5EADo`WB2`9o-&ia zh|j*uuh63;jI)##T8IlBfYIBia?xr#DML%*aaph^)%=8^!PGLH@wCUL%u@Eg&gS&N zr7M}j3e!)sUt;euR-MHj1C!95g3kTR-4QWZ_BSWvIQy9>4 zu{5bw<)N-q)eZGOlVh@ksPqE6R{#Kz)z!9+o-ONG>N5dWsrr>%n(!cdtvh{(7ewT2 z>{pcPr9#^KQXp;*3?Q%808muz<%&uX>QNWF2u3zAh_IAPqQ?EN`Pi!p0P48W1_NMZ zIl-%auDS=(XC||KpVk!dklviJ%2t}38u{4U6nKLKAj~69jFMaRE2-cu<(2|knGH_$ z%y>t{Yh~yO?K^x}a{E`rSJE53Z&!>os5AbHP?PWjQ`np(h@)J<#1LIgaQZ_TuDhA~ zgZqS_RJjmedgRk>i%xlkAjF5WKR*fe;l8-Ry3;CtXAc}Sg8EYOy(G0StK6*v7K6+T z@DGOf)~C+qufow=nlmr_#b*7{O@|cr2N4~RM?V8;Y6{<(CYZs5_x6?eF92G#%^y*; z6U6b>8F_K!dhn8CO+@IUu#eetZVI@N?E_oYU{XG;O{X#c-BQ`1v{wEf2o;dhDSaaP zmUdbi4oj~=YLyPN>gq(lp2e!j7$?z;md~LJy*e6u3rvXFSB^him+I)AZ`v(<02^qc zXTmz*b_Yy1N~K6v-3)ah0(fS+4665^Dk|H$-eH897^FM3J8_EgW^k|LJ=OXiS~Lgl zfMU5cOF7=i5RO$N2o@M7r7MOo;5Gz0Q~SN(46Ste$5gTSXrgDzCR1Dsmqr?^Lpc4> z=N%|#1jT18)w&T5JKq0sLlIGc>_6W95Ed4QlwQG>IRUN_JrUqs9!>aHJ2jDO!CS$X zCgMd`$xSsXx67lvO{Jw`+TKID0f|ecFx?g0-bvFo3Z6&ZsxD1q_BpTs7C+xIkFq>p zP&W~~R-$wP0h9K3%+l?L4B$;R?}OY`^hVVMr36P4LM!wrMZGn`Te^rl+dG5iKs!Z$ zZCHK%ZycV(#3q*DQd&tzUlhp}kW>POCyx)Ix(rk#PV;wN**F&Q!YfLyiYB@i_D<+;6LlJJO6 zYGpwNBp#z=L?8msdJUHU1!zqN z$bJt-1DaR-a}sf<93`&c%udTml(Q^w`j}~lAuBW|a@z0P&KP4&k`!IOPx81^!-B?FoL~{Y9#tVL5}c!x^ub)5rm36)3&NfpCE;2N8Dnjb;FK9(PynMpH_Q?} zIxi4q7XK=#?VFFDVq@iag`bZ$qIUO!DV^0>(^}*=g2~O-=(X&i=}~pt)$3PMldE2L zE=Bhq5V~hzFJb`a@Be7>wcG1gKoiCm8;K!&$&V$FfeLaDE^D#`R*5*E&IMn- zajR=fvAWDfu{T;nWY@RlKUkmtaj!lA*#A9_xF5U0KEeSDS-=j};ooNFP&9y66k@;o z*Jr{wkp6HWiZjK}7aTP0PNuL560~XL-4;Zs?ZQOsWC=YhCpRq{Ac+4|;9qJ;kRW8+3*0Ka!@Lc3^NH>MST@Z) zM68t_X7T+i_7dknTw=181@BpVXtwyB0{?HcTu-Ho(m7&#DA-}aeOGUWv)K2}6X6;h z1c2tUefRVCT2NV8l@-MB^zCQ?>?=Kv1}d49lK7KaD`RnKF#EYcFu>KiG~ZSy(%ir> z!d3J}dgzc4doT_!Z`-s5OvDo9{{X(iX%G^B@26}U#g1vJ!k4nY9CBH4cHagvk{@<)JP zq}iEy+I~(&;wBVAy`mKTa&PxTq1G?1st)zHlAJC~d8Y2>}o7Kr80ptGem z_OIt=XmYoJ1@VZ%ilhaI$j7g~E*LDz;Vv|)@DX)viA5-^JQ0221aEZMU17Q8i zO~?TA7T~H^Y}@IyJ_pH1d8zLzdS3@vDJFGwD;eFRpF7v*_~5-|UT8(oFr4eszWOSv zLIloV$kMjQS1V{+%HoiBmX)QW4roL|Eut`d<$k;0FD*aYZO>cfzZJ_UGip@_@0?<# z&3EevKgm)+4A{O#nm?07XDHyzFL+S7OBZg|7=Bs|b4|k{d5r3?5OXSl2^iIb@9~{e zxyEM?`%DIk_YLrfyWi~PI{llDv@WUzj)fUo>afH1=Y&%1sJ7TM*AroB+0pKu76TZ!zf<}a6q2mB+E?_WHO!R)t z{rBmXOD#xaVifr>m*AL5vVNZyP;AZ__^FO_MqI`Q1Sy5te^zB*CGcR#i;r6i%6YTB z+Y5yHM4E;qiUp z$(zVu3YiMVKaBI=Bgwx?=X~<-!6+q$%D_PO6X5qJJb=qrpF$+q0E&M%h8w6{y*+wfFLf}C0cVM0o&fdz z?Dh&Q40FTN&j-O$JfY#mPTzN0{Uig8b z;v!k}AQ{+T<}_pUk4Bb6tRUSZWTp;11x}M%Dc+|dikb?Laj(x&lK^C$O8&OoRR~E+ zS{RH%Y)D{!Uc{+s`(J{SPJojFbe+ptrpL&>-9dnWqn`e%f0GjT0+mUt{7m9pn{*m9 zM1!PbLVxGa;4{tS&mPx2&%*5I4yyH24be*QONA5M=?m0Ttn)HJna3vJ4bAyh=hYI+ zY|lG0SvwMv)`9raKTy2MkznQufvN9O*BLj*aYrX<3w7W-wZ8PSc6D^qX-3xhQ04mw}MuBYm^qBW|}oUK&+d#k!lN z6Hu;B7g0ZC*GZ*O@v{GQ(N;W#RDvAn7r}ye`q`gQu?UDw&*i0^o~^0-!>JORrJ%)) z_1XVQzg0*rEdCJdy5bi;N!6N|DUMG+_JncX>%vF%zH~gdu`EPELArA!e8DJ>$XEc` zkZcVUq(ibxcnk+9crCjg_zs8x+!u^`X_RZjmA?gFn;!WT4=qI z`sf9t6ZEKwc>Zn&5@$0DU>p2BnddQ~eI0MHtdDBNx=_mIrRv`KeJwQE&_^D9ANQ*J zzS2ho03DQs!MIds8C z;k!YVE}liY!v(k$9Xi|ppB$wMssoWq);yOIk+5kO{IgN(1JbbsOg&8L3{GHRc7=1) zSQVb9Do$=zkSpSG-JK%xc8)EjUJd(iFQKiU-o8+wd7AL_r}f~KFSKVa;Mj;InNVY=$E~~)qV8-VAPnJZTa&By#fU0wRqvCau zb1@;ry!P7hiY(Zs>XWF*I-*17s9xgSZMpamI4~Ux8%KbnEbmBUO(IR-nm2|>R?(Z! zLiuzf%H9MPU|j)NyhmXs->9GUD_=QwNhVOylL1&-5=kC>j6ICzQ@a7MNZCe;dy6^WO1mI-(p~m$mgtEgMS=7=9P|3(AuE3?`Cw_n(`Y8h* z6YPHr$Gg^q9!!71H$K@@n?C>lvYCw4_BY>OH-}8(_(B~3r~I&a!^6wIK%9dA)11fM zipBj4&v~)p&pQkb1jCp=zh`edS%4xmz70!xAc(x^kC94Coi<9vrD0=nb$JZ6gn;&n z-vLuD{>myI)XJEAtK8?Jc=(n_KwwQY@uroz8UPj21DtY+wGA#BS0KCRQP?arv@m*f zfliiDeW+0l+8}Q@YP0(s%Y;vuAKITy$AZaEZ;9I>Scv_SAWOS zT3y6RKi~X~A$NA#J%#DGt>gPd8Dxy-sXgg?%PLvx}H%++N& zZNN0`HHIRvbQ$4Suxxj-<{O`J59LKQjS0-L#u+NnkMWq zNWGA-LJpuD49l_qh>P8Rli%zp5YLGT2)s#*l9N9l*M-Ymd(Kq>)70ce+fbMYoF?w6 z^Z+_o_yzM-&aQft4aoS>`s-4{QFPYXr(%4<5`-ZMeHhUAoBx^M=^OPpTeO`q%9CX@ zRKUO~!eG<^?@)gjNbuXQTA$Et|6}$%2k3c#8V(}b|@h9Cf*6aNE<@eg+`QU;HXSV$cNj7WK-%|MYQf&w5> z`}y)xTgZhK07M{Un;t2va3h>^)QKOk;E|;(xU+xaXJDt^e=rq5`K?3s@w%>``*B@8 z*%&AC;(yWO- zV3;`#NSBeal&pZ+Rku-Bb85#qW;+xS+>{kszkzF#GEg!?c?#}rrFO2x8ctfY6=_;w z?7Xj_D>7GC+6k2>xJL%2V617FgQ?fuz1647E$)CU(f`@?3jb0RD7|(qz>kP#PtPQ~ zWeV1!(;STaKhHwq70KdmK7M}Y%?_Q-rUrtCRTJ@-H1fpX{hInSK0%ZT`KQ8yL;Yq> zMy|8{APRLE;eLu`i#uYlgaj#lsoei8ql$(hW`Qgw7-sp+ofxr1unANd1A7LH+v z@dpQd2d<*^@D3V%LThX{B^n}R~;;&;vwJ(U_GcS@S=)93jh*%GdE59nC6w_Nl}lqg*mt}}iniI1-j&+?E=MYBD~k?sD<{G zSKE6k@}Ze`VS*+)jKwbm0?mV%2UWFF{B>A@HVqqC0k;pZXaV!%UjVHwbg4c@@?GYX zIn+3UKRLS+3{U{8AoxI`ZBdP|+jXWVnY5yZ`QeRG30I z@|6ueFgivR+4eH9jUVUlaf-`Rh2}2L)wgbV2^1ItrRX5~huzLK4PL3v09#2uRe;T| zwJ$cM!8IQ6N>#H`!z7WKzY>CP5qcIxK7L#&Hew#_Yu4l4GdWcaZ#=k`LSML)g&J8< z#5A2!@}h0hHXDD?2Z1_?8(UZ?3qv#TI{LG7UxdQu~p^aXaCgiIkC?_ScM zZt}#3*gwyEsI^tVfD7tBn0-X~mcP&vdwv0Y&8E4AD5C>$4MloAWq@#a1DGyUSC7Du zm?s0m<^_pvso7_>jW%i8C}y5mQ|i1kIhW9`!hMPJhrlU zL+3x3EZ>mP!16rX1T@^2?+KhG@RGGcLxFHx@xcBsCG5n z-?aYOQYBD)6NuK*l0KNDs-#bA`R9A;A6oN@bn_JqeMV2{s$Vt%ryPpXxz%p*UH9`OUlj}5x`q#LhVTq;CcErVuyVi!AMTn zK&HkWH~RnY9Bvv(IwY9UVx78Apo)^wY-YeH3UDgN8>J@M2byk75c)OP ziUb8KTGX>{f8@+qDtV_eZ)oi%+5N9F%p^4vs+9r(FoG*GcZA&ZTak<=ABNohHH^Vx`e;CE z@bSwykIFG@|M)IPDT9QkgMxjFy%MYo8(Yzx1A2+-AX^&)yEP>(0RGm3MS-sw@7cNL z+t}G5V@pNs{E)(m2`2W&#bMI#VV@Roa6snx=h`6+Xbk(p@y~$VDC7>Oe|N&czdM1l zWEqX-Yd~iRAjK0cjl0Xa8Uv-gH0zD@U^rIwf%#vri$RyBvT5$?nYaNuN(wtYV!2$v zht5Qh;}bA!Q!v5?&iRWA!x~latLRn8k)-{BilnXmGzJUNGr*m?kmXCyUHlo#ud+P1 zGwoN!FMZwuvRj&VxJH5+r>lpmNAkk+qd7@JMq!) zLS3)$>7wc7cx;aes@r@gz{c#$3?lw>F>axP$j}+Cm(>ak=`k6KV*V$is z9`ZkJqxgh)y*|voLO?)RG_S3!uSaNz$`ztRLqk{97eBhLFp?ztjeBX`ZEl7b2Bj&0 zw=&4mLAU;(apos8Dc2O$sLuMhd{*gOVvBV(^TTTdlX^w3y7|&5Fp-KSX4z)N*iZ); ztwNr|8gbMB7FC*$5cGaP-K5aWSV3;-=W7=R$PWFwC@fbP4<4x>65MY{HPD{hdH}24 z!e2x_qa!Sn6-PD-z9<=j!gaRh^O+cbeh%-*5UDj`ihF_RuqqDngOl@M%2_S+q~+}{ zBq`VNvR6f?uxR9aRw;QSfzdq?m(+p5eXVD9&|5Ssh52&;wte*r1)jX%=!*BT<&WJL2`K?sIV!<0p~h0i$ZGwa-F1&+CJGQ9hhk3^7L#1FZ7~fa$bJUh z9OBgh=X?P5f#(aZg@7w0fQsdT0qc+j9(M6&FAAI{TIrvRP^G5+66SG}ToLy(!jYW6 zE>VA3-DY8q9!^~jMfU(j%JM;8(zL5P@ys0AS|mLeb!Co`lBcGoY+F;VIF?y z$2hOTJJD|6#@DBM4vd;87kPnU z*wX1-mY%E)Q3Vf-x_iyKt35XT`Vc}1Hi{L#E64n*V@3gcmud2V1g;o&Timz{uv(!^ z;@^~lz5hs8!K@YgzaOqVb^xZtCY!l`#hV4iECER}MHncMw@AbWNatR4$X!-yM|Ix? zSY*Mm3W28_*-*^WM$Fe*dzd|X+5ZfGunN0T{?uf&*THAby8?{o z^;LS+FV?&~p42VbfZ!gFSO*AcZ72$L_CvxBwa4g0;x_(kQPFJCr<$&ky9S-g2Y_kl zk)y+acZtkZv@#>tpFQ<~`-zxPT$jO-%0S^^f-IuO_h@uBGg~~y!`?%qrxv>3!=bavI;%#_|U=vGO1vIE|-@Wme>(hV5UpN1JBfw7XW zMxEGJ_^w+1diU> zk}x#(L!Nn${LD#|X1K}Z>6i@czn<{GUeHTx z_pSe^?0S=L_!nCvaVZXu*Rb;lCgz_`x%!IFBB{TlK@%o0ut?OBPr%fVk>5kVqW&+m z*viP(22iWRCP3yN%QP4}>(Aw_pcq+cob4zMR0Ix3!XzsMk7m z*vp`g4<^7&Iof{qG)q&R-QP6KWox>WO_C1{Ma>a&5DBvc>JJAm2I=cQaFcQIQdWGl zTIoQ-j3fM7B}Z){41tq7P(y-aZI;!o7}k7xcPh?RjELb&5#pV?0Ai*eUtS;f>h1s6 zulD~+*w}uB$Mi||GyCTk4uF5VvC>4n&0Y75jxH`3h8*dWeRT|`^`AX29J2fWX)yL~ z-Avg&d2S;Z{(EqLv>&_xo&$>j3utFD;{WTjF8p~G28Jx_)9=}1*og2VMcsp{LN#*C z9-yW|t@3cenh1)P$U8LPj}|kL0h50HVbee0wCvMhb`!uRAyd>NfjbVy2c5c*z`~saDC9E=P^#Q3RG$YS^HY!#KjItE0?%j9k@qpPXPjN3q^Li z9TL2&M;eqC?Gb0@|BRD(X#0Mh4ySU$Qp{}8PpfzW#i+Hu!&NyBHUXr zv{3xYa^w07m0}WZW=G_^`zPF|O*&HQ^6r(%SlTB295S)v@}EnR)+CB2Mpdz7*_e-h zC^?CXxeg11468CzwrG5FfOORA64gstuZo2uXdb3BHy}5^HOJGgH^?a8AC#+J513cm zUPdy(4*(1qwtw+SX|U9i&G4*H408EL9T-OZ{(1!^xhKgx;vPoQa zXk@whgnUDCDd(pDuGcGuI$aO!0D&x|+zzoRoPW`2!WsF8znyiTV62|J8J8FWvX?k`Q_KmUhACE zx%nh49Sfj@y47`FZ_BAZfeUiJkstB5q%g6tpR3UFnj*JvH#c!j-DL z=Hv6g^iUi82}4q)H7LtzTbE8Q+Z-qN$%X1caCE2^SY!Zn8(BvR;05ey3bu=r^;57C z@lMhqL_R)e)3`?VVg_ZIPX|(cGltz8uW$vraf!?EEc#eF0^g7j|K7zt$Txam4@R~b zu#iV$ALdT;Q1}1X#C!jXtGYaBS>>qVhM(uS-e>mt1c3gjloQ1saBni7JxM;3u2rdf};}E^ef)$RJ z(EP=pP4R)Tb+e5RX2<;nqvgYgPnvDuBq#cj(1=Ftw3ZZD3w6=I9eVP({h5Mcf&dx3 zZxSvD!2Dd@OP%?p+o<_nV5Dq*%oF{>D4oCz0LL3V&|QyX+d&|`;nmuQF7%tzLGLsO z#5Xi=S{csUNqperZOl?}AcvehSK!?!s8otL9-YV%TO;!4P z5E7FucN*SDxhewoxW~vCQm#LgW11F;+L2R;4NjjC;I#&x@_EcjJbHD2nZEwZrawfO z#k>SK=I2uZzDKNpk${!0kc3(gOlkt_@4+KS|ShlnPqhf|}09llIj=f2^R zfq!Z76-Zrs!^1&YG5_F30OL~TWid1nK08=Jh8H&OZXb&AU;p)!0Sr_Lbt84`R)C-N z3FOoNCtiYEJmz=DdH!J?LgQdp@|pEo$;P7c8}kldsP*v!K7|QljZi9pX3&q*mme;x zydvh)uRvjKRJT)@gFuP#lBR>Lnl_Nh)yBcxf2`|~fi#NPKS#30KO*st0`$2P_Ss0C zGm#zu$;^o4@ZbOCtZo)r{9cGBd%-j{{c^0tE&&BnA`(B3qDX#%sdM-ONDJ^bz*G{w z04{mZ58qlweR)z$^F27NQRb@PGx*fX-n3&$al!Uw$scpLwK=>UE>MV00OT*1_3a@i zy4JSdt_09O9Q=Z0W$w8Bobl9Srmz3C)3FpKQMIh_Pa_Zc4h-1OX=pt9@9XUzRz%-? z_y(KK!G!+$cwm3rkEuFGjDT00v)*%`2^hW_)?F!Zn*Puss(6OPn@6-EaMcQa6=pYe zs-%v7mu9!fxOw7*1UNyCSyPppr{s-!GpCIhd>C{)%XvZteSdk@k{=|%0LO(;kE5pO zfg(AdEVJ?y7jVmRbC2n|hz?W02;VgiIZYgB(s|@W zYKZko6U^5%IAt1X=YP_a z-2sb%XmT5@BPZbBIwyZ_jaM4@Dc4%|1l@#JqX_85)t?W`eljLP<8bBtlEXPCf;t_B zcoOUwo&Py|OVPf)9F2Q*QT>(JHffD#B5e>a<9DK)rnuL7F_o*AdVjn!Q83q#x5k%h zDpqadGQESZgi~K^2#DQ~KtBN!J3VIXtG*8-2+f~0p;g-P1^GgcqaXh9hr$8(%kIa& z^$66sxcuaz0l80W2?z%a^_}@yntjD}CdlE}8*VxT>6`W4D7G9ii%honb3dyV5c2Ss{SE`K?S2DT(<+6R z7=Y4wLd?&MN<=Us77*mGf^IC#TEETx#ZEK%M3M9v9aRTTLkTp{f!j3({i1nfFxZSci(1a@{HAlqAP2O2$|71i|Fh$FGl+GXkqUukVcb7}!FBB3X># z#HUi`LL%Y97XWM+QU?uM(glLT;;F=}!rc^Lv(tc(iaYGrzggo<08Y_Bol-2Sy(smr z0QZjm8ui9stn#sMBC#vZ6h1(Y5KHADN;`jU(8DIq$=lV{vgNr3{ZANXg15qtb72Li z(o$O{@GkF9C+f$!5Dx8`&`dFkqe7}Ku)HotbCACl8j^wl0vt_@pZojP0`?*O4;I)@ z(a#Y;apl{OTPJ7+^!{aLBo36m7d1|R7HqWJ#`xxAl;-=#Zu)R7py!t;;|EEQzm8H( zy*t7SWs4NNH=&F*fG-+%C;#);xtn$H$3t2s6$RB_tF%RRIS6(;eniae~J@q}m?Pl+idid&v zzABz^B0Ld1qW)}~xwncd`4V29e--JQu^*|J!@3b9G>sbLJVou+Ge-OHK3>g6LD>rb zG%xg*$lz^zEyQZ@!|NOtPZ_7=B<~Yb1O3nQmT`Zxj>O?tM zI8!6!u(a_?G8o8wf;J$4o*EFq&NXcAp-#}}GLI`wkqy59h6$M!qDLXNPNetwpLvGG zSEWf!5J5mHYW_hSVzuh+pVSO4-I<(5a52CEta*0qWUq&52F|a;HR#`(E6{>rV+)Y3 zX6hoxbgNLWZr-pGCgy|vWnv2OU@n7Gn^;ngMyuvsmI@8svjfY@FckR zx{Mb7_Raa*L*B-sTzNUAd{Zssnvsck4J!u~DHu2$TrQ=hlCA7-TV`1gx!1RMcU~K1 z4|m?<$F+jv$AY^8YDHVwcntg8LBk9Ye>l{1-$NPJBTN2jmI-B%Cy6vFiRBmt$fl zBZ@+ibKPb;x{*P>E&kuZT9S$kqR%7Z@vawHX9!tPs7o3BJ)mc*hT@4D8>AXPGw5|T z2k~-EFEkqeO)!8ZLwJQ{sbVN3#s7{W z^v=5rjXPVb#^|xt`%VL1`^6adaM&(Qd~|Ka6w1b4s&^#g09DXPV>jVdtRTpsYM07b zPKleug*mG9Ja;SYYj_5DAa!Wwd?Kv!Fb1-^p29va^v?$`J0<~|)JrXzvUz)-z)(Ud z*h#$RqvvL*DIcA)?iXdc zS_8XbL$^&y$#0``$O|MO_{5~$O%!?-$>K7U*U33iRgdDuvV(9QYwC9zRTpM;ZGgX~ zWLR82i2mIijQhC!$H@0+-ytZK=g=>an9hqo>vo>ZrraoAsgD!uM(#b+Zqg~^%v|ub zdNt$bm6W4yqJBs+%8-~A2MDlul@-JY`GqL|6#RJsKIN3#Z0HMLCeKV&$@xg0sop_K zO;5oP5{SDGYKj-&2&^wvZ`?>K@%QV?hdytSbAcEY-(kOBtdvL0f?umMo#vs-MQ*_n zjW9IHTg%nX&qPp`v}%b`U0j6fIC$q1=T09(lwEg4+fic}XdH;tn}$Z^AUwsMC8{8p zG>I4@A*V8}G_0km^tw41>SJJ&%DcPX#_y>Y z@gkz7^n4S~sgLXYV1On2wEQbl$a3S5O1pp>R={V_X-SjEfH_&X?lN90IiGlQ`wcF` z&x;?H44fsgyocMSoX=mfWiA*P8w$7yx_~Lt4IB+mm31@o8Wfqmswp+lUlWJR ztgERoi-@|BX^zs@6569=YF)k(y4{I=Rx~GDgsLGlqx*D)?R&)@RW5YuvbT8J<5@F@ zk!CL`k6d(bjMX|&Aa7SG+7DH0ScOH(si9@XRT^7J5P6o0H=iz!taXqPY#n-PVcrQ{ zfT=<60H1e@##sxN?fzRmwEH3u!1SPdT}BBoLcJcoXWlmJ)#y@aD56kd`ap>xk9#Wf zw8Bv_WgW*0*7vk}40!J&OO|rxL=couUQ>3LZX0LH8E9kF_sB~TG(+i+lR2>}44HGA zj%J`8lJlt#TFRG(8omEa{1s8EF~;`o`ygdlW_pk9_nwQyFu`kFCB3kajEEGI+k_u& z{u8lqwWMokskPmO35n`h8WiVQQ!VPL0Eba_v*+MXj(ydoDdy$?Kc-X=az{J4VQ+y{} z@WzUfz|B~eT+-h1VOp;*5=$+~ZN!K}CBE zR!6tDmfKq%mkwD)oyH}B+R?Bb0jRM?zvO6kY-}Y%wj@iX>!FN_iUB!>_$#mL%fh7U z0Xg8ajs=}sHYMPL3P^^nj2$HY&u}4Djh2^K$qF;U!}-d!7)nRuWDI-iQ1yU^O+W9T(4re23n0 zXC_u8L7e%$uM#jaAMOT?-@%|9PB#HEZfh?EFHI7qG}Hin$!3EfoK~+Y-mSAz@$0*) z<|JrV?BcC~Miu#E08g@EJgd^=&`~l3LN+d8BTi)5z%m;J`zk)^q~U14tt`PZo?SlC zQ1`ZPR>xVrA!tD@@0~L6Qu4~MFMhu;sdAtk6RhA{5u_agV~OW5hE z-)a#rXMZ(Kx7pgNL2%oIXXiad&urueqQoI7pAF5;n<-tt*gW`wC0uCB+%Q3C+1psg zZAu$mo>4vtA16rbk-*`L<((Vc?nFA;9f}elHkU-nfn-D z`HAl~6b^hH%!lpqDTQq}HKOmtuA9IY2N+u6xo|Q|cLoP*?fLDGe$|~MJbjxo(OgRm z4%e!Tq?kp5N%ocFSHF?FSqA-|IxNK`fk^)K=y3x_hni4V!)$$0cyL!rb!?<&AI z^yg$BhpA^lZz--r&mv~iRQLMPXhO;&A)P?6T4XOiw)i60Z!aANI{A#Du~+O8&Ljzn zgqLuYvnDHm={qc)k5})qA#X?8$&aP%`VQ1!sCuHdwcW4_G`ZmRg*FJ`h8q*Nv1L%; z2tqwB`m%$x<2IZ&A{vHd6ss$n@u#l4)_OomhDM2&gSSjW%F6_#>R;m8YQ{N> zUHg@^w2Uc}#2J?9M*chNO|^5MKZhpjgeHgY1BNZz)bt0TUv)I#SdCQg`8y@(RIahH zC4E^V6}4&{+WKOkza-t!veq+K*(5-6v06LTsa1QRl`_uVnKFeFqQ5R}8Gx8zz zp79IOnI9_-7gmc+6|WPWl$>&5Mulx*##YOFNSO8GDzJEKLn+2>SNh>Pr;i^-=~Ej- zA7?mep&2r^NhNYU^)wZOo^G^l3mT~ZR(+M9OQ-d@C7Yn>sZ5W)9wA>t>Q<5xYUz4dg_0=HmXpkaQ8kO!z)A4nO$x<{HYOxe z$qohM)pI_c0^R`1q3|ACN|HbAtp#LT5DC>61uaWCx8AC;*`6NUlgiU9?W71I{lB0j znOxZT+RkY|Z5>atR`~xh0AX?svl1k4>kSSXM@d);5Sn$7pIO}fji)$m?mNR`I>spw zRu3L_WGs3jsw!mlESKk?Y{C*W|5J&RfqAKe?x0KVEvJE0{J64*tTS;xa;{{}qbTIA z_?=s5JBFws!P?7HF6I%8CnL9|ms*Hy|5q``7-4SpIM9NR-sV|D=I!P$_f08yj%j;l zr{3eWWoj5hH#P)W1I0ctvvlIvErUz7cEKjw!cx?!l}^xdaW*W8z>4tGb~5wHolL3*+Gxm4@LPtORMuJE{~sNorrQ4;)ezEYg-Zr}08NG#qOVgp12 zNXDRcv&x$l7PI?|0RQi0hLjVN;8WI&**y$vW$@W6KH$VG{(s5QU}*8wSCX)hAHoH6 zN;I&@a-LHHGQ;VnqwY%a>hakkWJmvq8IHJ3-iLdVx)vd=r&0*w3R&xQVeO0Aa`UcQ z(sqBt7Dr!p(z{Z#mmYXxS%V;KMzoV&y9IgvxKhMa=B6Drs$3l6OU*IBG_kCJec@s? zXp?3mFi+g6-fTHxc+FZZ>)1ZC!Lo{kR-ZE?TO|&7RIF1$Cye-V$t!W)h2P)*l{z8B zcgZS#Et_OS(A=YkxY;6>H$e5C_WPL1Ce4lSdRK&4!Jd*UuBNh+WtbOH5aCP5;x67Q zJ87Kwl^)09mpQ6$8ph{`_-0jTQRhF%idv*AKirXpw?Z^o77qh%)ml#FfQwEp2CRq2 z5bC%+uU>;_ty>~H@!w$vx^5*G^3nNuX7{a)I%l}E@steBbG{fHnA{KeM7jgAeU$u@ zVBM8aTq@%jxV|Y#Y)c0O*x6rt1Chx@GnlP^`)nd{2URkSH@YW)2Q)wFv}x!}DtUs} zEODwPuqf^pk5og$In}^>?KL;vaVs z%tcr||1#3Tm%LxqLe{_9N^|cTSU^A$hf}uFTHsD&s-(Tp11=^wL7WZAD|#KDq=w8+ z{f!03a(mg`e#ae_NXR}DUm#Q_LZmC7FVe&?&*+L#!heJOo7>bdDCk#*yzAKUCRj`}njP;m9}v&S7D0w$N3 zkpfJR(SkG0X_JGLfVt6`r6Wi z%##i(@bwqwK#`MViLD2?m1TBpy8rYGM{}}{t4@yu{kaet+-+UaFJ<{0X!D4)FcxBo zf!UHf86TJ(;5F#<28j;_T4p2xzmA8tn^={<*3+0}3$WYCvr zSV^{J^kE@i7s{c26W*;%(-S(o>FQ@Suu9$j$Zp}Rr4;wZ%vu1>< zD)*qj_mS{EBW>kt4F7iNq3-zC*o@_DtmU7rUli!TL)=?2Vc;MfxV2c7%oCXPUJ9mG z54En3;{w$QNB`U}m5eReOD{`iIlIe@J54{jS0v68CEg5#qTwykA0g z#IAP4(~h#)n8O2fz%j1?f4w-9&XY{gVjchAuq*n)e15XZoV~`tsS|wCmviLS2`Q_ycpf#Hd z$}s5j^iAeN%H(Hm?&}aF!k}%G!ll3KE=V6zL!LWw{D8%AK9XrA7%}9d0c`pU4aok#;Tz z?FSRfN&;Ouad-DkQk%Z}P>?abF&B_~{gJxl4jcPc&<3)jznj6Ot(}Rd;=|BbWj}Hj z42&9NY+yI;sIgs%SQIYH(XHJTU*K|~hfQ6L9lo$GzK6Sh7SZLtGAM0INmvSJQkcKS ztHM&1UU;YniJWx@!dlTQLV2 z0(u!IdhP<|a6)EsQn44+Mbcb*zASos(I4NVHU^F-Q(NM%+pMJX`sY^`9^mFys*M{v z(4r?WC0y2WLp*a@y#g5&RKW(F(1lJ(cjA6lLSnnes9e~tO$n4Po#)4V^Ik#v)mN%; zZIYqApMl~`RfTQaKvclhL*Ft;S-RB_nOc<=Ijq68T3IjF4fHgYnGsfdQr zNf0DkjH-S~^$n@6@*9fKEsDlm@DP34@*-kpsw&n#G3o|~cqI)A^n12$6LWKaMx3SJ z>BZ0?g`BbL)Gyw5n5H$1G)ldBw?gLsdEXM{W}MO+3^bo9jGe(4MBLm@kd&V3_n_d;r zNP*zeE9IhFSZmfCp~!{r3-2Y|1?#>I-p(~5PLV+qRW3^5EBqPNFIcUped`ZSEPtz9 zCfLVU{-OR14a0uKFTc`sm)7PIh^@CyzuznH+sOaMLu}Rd)F>!QFED%b31UN`!%Xxo zX*IITKiv!psrFowmd!Y)Ml;tl$51%=SzFDF{F_VMQ{6Bq#t+RZ^@$iq|c>O_`HyFX4e zX2?wJvAI*#A^cUbJcG9R2j=VVOW6wV;ixvr(AVzjStFE8LdB%p)Db1ZHTyv3)NHuC z;@4kKq!oZR18bFuiGcISwGNrh&4p1$Ucs_5%_P2y>H2cnl^ zhuZsmJj1JAMrbOM`?jk~93If+w+n3E~7ddZ3S~z{6RMKilUJ~@l)DmT)q)UVk9SEPCFkn_C zCK~+NcRE6lKAg^k3TGtHR1Z1VuMoOdPddTg1Sxh zE*JeaX1dmbb0seoja;SIKcTIy+H)gphl}_OX9w8wd-_AA8Y-@TDctwAd`Wpo%~C>3 zY>nitWPMCT#-{j2`Is@Zf+S?49O491Q+`apf34K&C_s0)T|OXDNEL)$_12m%@Ls)E zQaE^Xw#w&Fj)ulE3-p!_DkUlKX(s>MsPiNRCiNu_i>!ohe4aFDjiZRyT)3U;vLL(H!V+UNKJ-&Uf zmaPc!$NcqfCX;XWMQ}F_Wq2gxf%nmR$1RQTJ6xesYGcxa23E!2=iudhTY5jwp^sy| z?tyH?E|hNRzKq{UP=YX{hbf^fouAiFFTFo@J#GHbH8Sr%q@{@{%np!C-^%URHyEt@ zthFOJLY&M^v>Ee4f52HT9bca)X#<+g zgs}AVklEK`2dh3^{cmx2RrKQ4`K@{iG9X4YoaHHpn_N3h;)|q4t1m$vR6MSjAmL9+ zbpK&KF3{UCH_dIVFh$o$?WL%Fq&1~RNz+Ld zvZSaSX5X6Kkg~Z^^gEkG*Vj3}#M4oTN3NB*dgO>uIS5`809E*iGF4;hfSU+Dz2{Io|!0XdX zO*@$9lc5jTG^RAoj)g$RYDpX0uY9+zmw2Dv_H#pU5_dMy)@CU+I=>YNweoHjuL$z$BPdmvDrz%9h9`fOY#MHA~+>WN2*QaC)`j4 zeL3@SxEMCq_U$XteN7BD%Fu)?(Yb4!ZI5H;oK}tmv~2C7XWE_YQi4^pY_x4QKgfcZ z_-#q}tVAU#IraO!s)!vbOY)Yck#n*Mdy?CZLf@!obZ=9rgJwHx`flTD70O9Ob&>`( zwZ9A+e%u>6Obb5#aU=4%llB?Nem~B>0cd{X!e<*Eqb&Bkq9w^)xW6aX=j=MH#22Md z+Nka1X#@SP)Hc*`eY@7lBxcP=)Jd2uYWyk-deQQFN7c$QvS?TB`n&2OFigO$qy+vvhQbggQWs(n zJ*4O1_S4OvY^UTfPx!4}0GL^}?`W30M%p1BkD?!chv7b3=={!bJ2hrcL@%R*iU#RH zS;8h%O2SXl*}mkcnw)q8>cbF;nXE&4mfCMl3X>ioz}`EtHzeZ6DLgLmbvjPOlj6*6 zdwJ_#6?-YDGTIN#ZKa$!I0oGFH7|vu)jRStkJkpge!pND!Y&C=TvXO>2wkg2+DGeT zHDFu38SXrnd|aUJqB!1md!O5ao}P=n@emdq-hSnB&2GeOQC`?fKH@SXhHkwy`n0O< z;}|q4$pcj0NU~tIFg}BI^%EoY;`9&=a)K_B>oQHkovM>8R20q8w2RcdI~5$~e2R%J zwoy+X_E;;Cl1G-XHn9v`&20PR-ZZV*#!t3qTF>#UCF+*ql^(`0E1jHem&tkjhmaD& zBg=tLst`D~*yA4WHln?6P>#Y<7a?aA6iDlenQ|eeW_5jML5Qi;&|owhGx;%s_Y#Pm zYU*8dJ#(k>FYnK4W>cB;q88Nmm&0t6v`p4@bvA2U|1ubFaD1+D{+@Qf(*rraKGR6t z>pd^`r_X<2gh!O$7L;SB4-LH~{~J!?wmo*X15HizMKKG6d}r9t?=;m0S$$QBpcWy1-ldCQyM z=WW?%()Q!Q_BOryIsHF&tnf94aPP3t1MBa#HN#3TuSKzRI=abQ-#h3&2Q${71;v4% zIGWV!5)t;=1oWTW%OTm1++83-b9wi9(uFkpN?zo=f4)r0#^uB9 zRsvPP&4>J0w00s5?P7jOBt$j?h_Ov1+_}8-js9v~mX7WyB;trQHO)mAr>i9Q3bp>p z8rU`zIpisxHGjqo^f2LA*Ya#6seJ1TqCR47c5oH>sZ(TIev>u*0bNCL`x-~noU%Yg zaB8MmYr)1sL)ZUqgO%2mX0FvX3(d2V6QI^C!CA1Yr)Fvt|C_LP)QzhM_73Qk9QpU^ zbfB`Y+r^#_I6wB-y(3#CPIyQfA`O!%ywDHK{Mv7Qvh%yzG#Qua#j4-?Z1Tn_e_q+` zXRA*a%Mzh?FRw1Z@i(L2%|*!JQ|yE-7ZCH)myv}&(O-T3oTV8vcun7ZL$BZA8XN6( zW`Y~k`~LRY`u=hXyhrzS+s)h9f~QEiu!mY?mH^UFRc|JsTk zo+;xr4)@dnxA%V0hy@n!2U?-l94;MlXHTdDjEz+#W;Eb#YwDb2QSxG#x~VOEQs0%< z^J{stS2C(Y-WNS3&}PBTGGZD+==0Aa*~_1g&>nr}y?Zm^^5*JAC=TX+@=yd#eUA;i zbIS~i&+{<6;y>Z}^hFj+JDrpdMxB4)ko#RRl)c+}?uvJ|G$aZ8$a7tNn2y!Jq)Ptp zkbSU}xM90HlB#Z2C9Ss#pnyKj1!vdW7c{gNW6o?^n7dtAp4bV|WgLh?*_Jc*B+(@B zWMbvP=UZ8evaf}isa_9ZRr4Pl&)0Vcgj0#aul2&a^oGyy)XG^DM9~g!_sh4n(OwZq z_*^B^D@~KOe}`A z*rQuPLakvb<9?w=*~AZ9P5Wj5`HJi1CjQH0PU07FwaoLeMy35XRi_Kso!@4nN!Bzw ze1`YJV+^Kz{J!w*g^Lz%KE6Ngx>WY_R%~-ifpSnsk}p4A>=$_l!=O?|OV!lo<9Hmhi}evdp8oZVoCc4gdO z*KuY<&Usid{NgN9e`#B}++&PiAV!69&OeFgN4w}&U6etQs4cWt5viz_2g5G^qpEK` z^H8ui;xx4IO^rMc0plv`)XpnZd2InZ{=g*as05_-m2^T@yBVG-VvmLLA=`K9FM8jb znc!P8u>T}Zs}Q)IVE?pTG&;=SZf)w6BXwi&s{uH{G_^Bo}$b%)!1^PODjGUN5zJ zCo3!5sf&#sfF|_=2g370M8R!==X3nCfpY4O*(6>+ zBALNP;Pn#MNSNDH2iQd2((0YQ1UleXURAJ4)c)X{u6z;@|+_VBE9f?N>DzCAVArBfe>@81Y?UA>Ti|F{!5_6k?uvz+>ozG`T`=$#KhkAygYMG$*CX}hUdGf&#fUFmZ*k;@-OAaWQqK_tXp9B*%;hz=ri3}D2k|z*rncK_mRRRS=YCnM5D7I zY?MzLtDv&qgV$;cSE7F`4Su6^+u}{_ zJ@#W4z7_`4x$R*tkyXirJ!4?)QjBVp#Moh4bavy~5z84ak;|sHWFW+}v7Ipd^HUQO zlgim`FY1Wy1AKcsiJ#Ph;_6+Q9C)9`;27$BB% z9p>Nc6@K3pzKL?_2#}G`AL;Du{QI``0SNvDs}H)W02an|-~7P8bHf+KsMj>Jwl-cr zEhKMi%M2V9;pu<+EAQuIpVUr|$2ynGP2vY8;CKF749G`fRsYObX|~;pTmILaDa*?v z1S1pf411pq(4S=+C?9 zlqu6OoG&apQmU7&BmG65`&DXDQ!}P0Kd&9#QC+S7UWJ)Z6)yFX!@^6d1E*&geAxLq zt3`&+2Arq}huofD=#~&|e@M3(vb2MVAHhK1Q4M}=pvmWL@)gLz4$&(6Ea9kV+PIUo zMs&Cx8#y6FY5q{(sp49OUuR5QgcFx=)^gGTz)+;mCj;8ks)AcRzsn(MD@}((tF!tA z$vBs)(@jqtF)sh|Zi~FmcyZhBZb7|2hzwl*ZX|^ipi*IS=o!{2kHyCIb0cc`v z*2-6vv)ljOMfXJdmU_qkkS>u4y|$13nTJ#++(wwYUo$-5Z0FfVY?qQO@%(2U@?uG9 z(ab7bRt!@tvBaNJ@7BFgN-#@@LLN8wcpFUf?Pv8Gsu(=ZD2{(g-tq917ziQ8R33ox zI^-#)nA8>TNW8Ccd}6oWHnuc>A^Lh;v<7dqyWBbmKRO5x2zoqUm0?93a4qtJZMWvh z4%;>BBAHpB{U5H*GAOQa>DIW1;2zwa;O_435;VBG1%f*ScXxMp5AN>n65PJcIp@#4 zKY%J~sG4DBzq@<&vsSA*c3Ak6uC=w00;gju9WOhEi-V{#mhZG8 zc3P3{OBh;NP`?&Z*<6{&#MEeM84;ll$cA2o%;s-fVJ1u-)sQ}2Vl@{oU5sI1R{Rj` zXR3FUx-hVYUs=lcDSM|9z<#N!vte%B$};T�PAYyr7jJM=STa*2Iy!}8Nh5Us#i$dvgoUE1 zwm5p$zH_(LD;uSf7n=KIG0;XTNp{aWa85&VIUOOv!^5w6-Hx9yg&IwJbn{fb;#AtZ-)-kAl4ue)F`hfLU-f5>g#9CaX z4b2|9)TNGEZY>tO+AWL$TiaHfxLQ>3<0sQE{mnPlztbPtw;KvqnY1qB8L$0p0R0JJ zovzXGv$ae=*;^PN0&#nNKi^sQQSivU^Y~f8w)mQZ^sfd(Gs4aO>w`qlynINHWDN01K=E zxqAYAjqz9HKE2|KXUYLu604^Bb|9wSJ#&plMAlPER!jPP7dbL%@`dBuC|Vq=E*uKf zmUOfFFDlu4dAQD=TuQ6IV1@?foJiDe1wp){y4xUz=sKxUiK_5RB09}IqPk0Hir{~( zsszg^vlR$Au(d2zf3Q2g@u~F~J%SUPk6y@6IZYxZ6p2{gGk@H=#5D!jm9-X7(cMnk zXZ);^dQ32TCS5&9=pEd}Tr^x&wCNE0>6(>csV0T5;v82d+&tI+gtw^Yo``$lE>!M$ zCEM=(fGjsDUHk{{&rntD@5c!gTWvA}#+P)uBNsGnq1D$}S(d7-!e+Mg824o^{g))% z0b9Pq5;o`UpP4#cUj_TTWhguwC%mfMhBcXUWz+Bx2s{9sma+PHd>b%Vi;iSgl-(u+ zBZQ+1mj)gzO8-kXUQY6VxBJf70C<=BcMo9%xV@a1$V|Wq4~tf4f%tl%Y<8)zGA8bK zqx4_CZCrY9KB!k{4fK8Gf5o{Rr}^4dL$pVuQTXdzA~~wY=8KADn5)9-nk-N+!FLen zz@scb*~BV9z|#M^f5jeU*Dv9q_u&!SoyIPpMlYe?sxLsBvwRK0tAw@QM1C=B8k~3i z>pk9o@G4puL#+5U0v~l3UdA?xYUz(2Dr#^y8WR@-IXFliFV3-`zAT~Xf~8wwu%*;I z9cNLfTsRZc&QCk7S3Yac(C^rH*qi@CzG&r4=jCl*rWaiQh(#N}dpu&D%22Roq@K50 zOAf*WFVe&yv_LNTNj^ASb80wN@jYaC^=OS3C&ehHLpPZLB!Ch?|EVhBrM1S!fR0EOcv zF=`&4oM_$L6TJ2iTZgt(c@Lge9KkaK6ksLGF11siw$ z(_3A~!017C7n%KI6jqljJAw3D!JDOWn)DWu-CRO=B<#67B_!}Ea7=an&iS4;3GGw7 zrp-zKl2ERJ1*pY~z)J0+rABL9{-;0uBV%J@(q6ax_@BQ#IzH~Hr3Gr%)gvquzOVFbL5`d|EY(S)!q2MXMIo*yet7H@B7o? z)8|6wi;f39eD8mXpFjCtmM8TlEcDqvH?}%lc0Am$``)ta07};DzWzH|)0zW(kz7V@ zLBT$H1~rfp1DV#lx|e=IRI*nl9KHs5CyfpRb{hndh_Jq|R0 zs7$ikowJ(F)jCj3gg6z+u3lN$^PbwGGQWo2a^A}t|1?KVIJlXBo0SX0y~Gfxt#cgr z+8wb5(eWI|o_L@2@Htq7Kzyo-+UTDn z_l7Lyf;-yKiNDBLlwMHzFA^u?L;L&6<^pbM^8o7sx6qg8v12Sil2ank6|vxGhZ^N> zl|&dXflEna3E_2ybF-(INZuQ;zoJ}O(PNox0X86w&ra!q2|p|S?bMI|Ytm@5KKdy> zUbLQ8UcRJg+jcmQ@On`(#`-cO-fAF^ul3_<*9 zwQv}ig^AvHlrHxEGh@uW#Ho%<^nEJbpI+7`y6p0oozo;h**3GOfW!BuvPpbdj$hDp z;LkR+DCIVk6HUHgM%&hN66@c*KEx?L5U%<|mFrd*&58b;wj}&z?aEOcWIMy~(13{S zo@A$c&BeZt9k21|gDeMGmi{TP^TZ-w3}G!??aeam^jJ;z5u*_s62<%eEID={E_$h zNjj!WV;na}Wwx#!j}%0_89Z}AjDT&5bo_wfP_Th2#YTN|=UT%z5xru;;WD2Qw~`uS zH~tK{KXOG~mu8*%|LH1wpb7RqFUm5t3Z=`Yh6cs5c}k3M=~kNE-QD_z2JbA^4lmln znp~d?o}a*?#b+UnC>1Ejf-0$}Ay-3m456OP`HE57FA&&iQmkk{LQhA}JMWOUA58yx zqL-rU{Qoov-G;!^LF-2;)&I_|-WoW6PL z4qPX374l)LRNT-c(->G?$T0r+y^0=|yF0>l?@_}mK$&V2xR*B2SIrYk)S^gj&KGm| z*V_GV-6QQU(1AAJOHC7T{2SwHxB4bbEOm0uT6|Jpj%Xiyzc^3>PiSbP=*6ZKxi!E$ z=n_6TVA>sH$Nme`#d+qsrs}oXO$w>c_@)l&j7JH3Jpj`*rl~r|tsR_567% zovpVeb-lE8?Kb(GHtGFyAF{VgNBZ^F;kN$S5PG+d(ygxAv_%46=VbgwsRt$$c$>I? zf0S!rQvef3VtP<0myxm?Z@%a0=$rW}pMM7+n&%_ra-XMVr>`f(+Cxj30Iq(MRL^8T1lEHFe)Q%j9v2!@WY zFlcDL>!7dqWUb-8O`fLnPc!c%mXoK157$WOabyC2ge}oyt;IYu-j6gmS ztg%`YZkf<-u$UGcpMP`p=all|J|0Ox2?M&5hlGPVlqvc0Hbgoq0st+k8C&V9tC!zH zc=U4pQB{Pxi)_dMh6?z|&sF~gP`Q0~O=^oNuQA0Tc!+4S#|Xu{;vwe~?tFaDE{?2G z?gAZgOZ54S8)7O;B=qF5?dxjzKk|8pxIY}A=;wRhQFa|d>oytgFE>Bsg2>3o_I*0r z?dXrkXmhwdPyHXX!8JRZxD@TZ2!o~bVSje?TM*yQU@~8M{r0SoE^aBNtJbh?ipH%dqcj_1KCORTgOpfkDW;kIk5o%v~z;dc{vj{-XHUk~cH8r&7Hxj1*2-Muq@ zO6hdbJq%$3Q(5sAULglG)pKhfIVW2T9DiqXfdKJNM|6;+pDLG z<$0%(%E{p`TxAan^Vcb7S6D4QNSmM*UuL4sgO3PZFJ@KQ^H&TFIWoBpGD~LdYAShb zz&hogRgjVLAGh1oXRl@L&uDnf%dfLLe&nt??M?@J{3~fL098{<|OoIfB;;K(yYqTe=K+ zUohW4qR*Pap#|^QDK*;XU*6eD!ztjqt8O2H%d0>qK|yuTEO%R+MC_iZ2qUmW$5098 zg8^`KWj^Wj%r%s>fPq(_@?vZlP{F6|M(N4?g}HJUgH=Wk09Oa;MO?5Y+c>)f$X}QD z)Mw*YS?Av*h7WJAC;}x!9Ari4z_D6a^Y*ogP=HTng8Uhc&HhSL#=%ptXw=lR_Tghe zly}>h>}o{B-fLQfVAZ zvYUv6LLGKkf%$O77IgGSb9Qh25_32L@bchW%BXhnRGR!OAV7Tqpp(i8T%n{j?UBRf)vVlQ`)rd5LH+b;Fn5fHh5u zwnrA{Xp=|eDT+PRh;W(*X%EZ%POEC}>NYZGN~nN3z=t&Vcc!XcggTv`E$4uVteQ>p zHq__;+U0U%91!+(Kg%;PyXSw$WEDH=%!P%8cDfIuLCO^s73n z^QX(pnm}~dRFl;&e^NTu{HsY_1z+%-s5|5I)PNvCiJx%s{c+X(|4Qn4Sy1Q5%_ukK zBn%};O9vXDmg}4gQgn}P3=D&F=-ntRr>>1T6vka~=5}k}uos8F!AhnN@J07)7%K{W zsZ(d5MDaG6hG0u65%Lvl;IMsOr+8ZFS{t56xo^09#IRZSig6~9CJVifO5idSi!=|DvvFAg#!2P2OO%Sm%t9ZqMDf@+f=dq_$988(~ z_cDHbi77As58!opnV0*wj__>9k?7KwGN&)&B67^Q*8%17OemmfZy1`Ceqh6?a zXBNGFsj@b16c=vl0~-olbr2zq^*-~6rR^_pR&c^EtU~iOlNYo`mKrukDb;~jDwe5w z5;3GlmMqO`m2#^9abp6N{9?GHwY{ih88<2zCFg)A}kq$xqTe>K;TyuH#TRYIS#dm4IO&UF8HWNl5lQgd9#yMr9ZO zJynBOgaTeRaV4ELY5Gd*yqnp?uId1*Vfjgb)ibcxNYA2tN-t-6)%#%`x;vBCGqL?+ zdD15_>uos;atk%<5h7M1;Gy%OLt2K2fgLE1x7p3EolybHGeQZyMSasY0e4xL=6w)C zO^f>)9hl)c`Ij-&J~+1Wq*K5RP4%}oSq~Of8BjHiblW_1ml6w(e{$GMMh#ZORicCe zFGHR2Cz8TZRP>0MWt{?CT8CEoU!0IwZsbxk5BunYKAaJKl+vswHkoU;u4Dm~RbHpM zs7_hAjUlDaZdFx6Cky8=tu8GA*103qV5`JtzlzPCZ^$c{^e}5I#IPhFeRY-k%+r*H z?xyY~%9d#65V=VNv^PUiVM9}qkFF*Krpqb%SFG<0a>84-okiqve^~LR#>I3f2adWG z(jQSXTWCz%C?tY}PPxc!jpdvCWF3eLBYU z*eFJlyjkQm9|5gU{~R)AO)5}zLu0SNvW zcyp+Fc>v0&lS`Va_PDaj*02W4#aiDFpN;2*rp}!^y5LVAtVSq7s9VAh0|v}Qlj{r+?Ez>-9>By0{xr! zeWd65u!>faXI1Y}`-MsN+yv_aqc5~XESzavp|WZa@z8q_YUyJhIz!a7#nh5dLHMcB zoTGkho@y$rVCPo95``HmeSQ)C09sjaS9+*~&@gC$$u2sB!`!8oY9UEg_39#>u4p27 zg1{66t{+YNfAu?Jwc3iDCbh-9QyUY|Vc)lzaYIdin)BOF zKrv%rT`1QSc64Mmn@DddANjUpr{c9sON!oloJVv=E9Y z54?sT_?%5C2Ni*g)aL?rDKWE7lJfEvrXvp#mFqA-GP7y3l@I2URO2^m$MjZsDYcckU^QQz;HvKSK7*#q4#!-#Nr5ka^=O$*#vf=l;$j)$j{(12%_rd%QLNW3 zLbR8{_sW0E!P!d-^z7LJ7MtrzonT}b4jIgD56I{vb^F?zzL0$$HAXk&dVrt)v4-DTT?Z1z;``AE^^=f%$Xr`qceYZNy6^V#OQX`+YP95%40EB{uYjaTV7s zv}Me75bZg4t&+&%dWZQKH0!_@6*(9tcu_mY(g#&;d%FL?5YSCJo4n~{s$;hKC!u2B`*dWpxJ?P_kL2|7mN z7ht7~W+cc&m`l5PM>1%ywEBf0S45kVWUGmBmgm z-!6sLrFM7bOOM4idU$FFDnPJYsxgAzd_7=ye`wqM0`vA@>vNm-*|@u#(3CB0XMg9c zi%(K2DP^-V{D7?oND8dzg;f2xU-W8-+H1XmQ;&+T--v*DFumQ~TR8`$?9k~_@+ z)0L?X6(+~li}~zY+_P_eD%Z=Evj(ZKqNNNj3taOnmdVz{Io}^lK5e2Ro8)nvp0uK* z7e7`(^$X?PY0037`tvES!a)5pzVxnMzz$2OwcBvgLQT=U3zB+(yOJk_jd+>KJeP+g zpZhImhWNLViF?Q8QJSz_F&5#8ZKSLG4YwSyxAiWSxo#!>799rauva)pb~ptTn+d6@ zPD0=#@TvumJEO3)FmBn?_&CK&MA*Sly0d03E8BcstaOF4L6IY+aUL{I%$dMg8yFF)hcpHH zG3Fk2xn8&>QfY#eQBpcGqN5%U7W@5Du zN`S>ut~rE9$q9~?fr$G{X{&MM&E@HaU?q5mL2krYNAgCcLX16bMZr&+pdjPQiZ zg0h?G!TV%X!NSj*Hxam=ru>@pWD`DSF5c7m>L!zsw#6e>3eUlArFLk@WLB^cOT?z6 zwD`vo+rNoen1D*5i*gV?uLSlI-EI}AVjcyfQLEHw7i)wp&Bb2ul_iXn?3B_Ew%mz1 zV5I17UOAqLCj>W=6}@H&;BNad zD)cvp>&{ICn-nJxnJd!{ZEU2W->i^quB=*C{WVgnDmi@*F$A}!zDQ_Dop$gNWwLvz z2O{AQHtV(f%LU2V=_=UFP=(29{!aZu9ewugKkflzr^%0(v`1d&fufF`R-#%a?VgFt zWACWhCpAds%?;;RWqp*ajP)bx5X@gM6cvE;!RSX`zzcW;dHl1wg@B#hnYE$&je!ul z6L)4ggI}cCB#fM;UHReVPavv*Yjy`?h*oHJx>f;HxO)y0S7KpTG7eK{Sfhicl2C6` zn}ZBlUG#J<7VhA;IQpTa`zzi3v-Yg0Zt3{(h-lz!Qpo=*k+Br!_T6un25xT20EGtP z@3t^MKL8+`nr$xU`{nm0yBnUD`({1|X3YnwmTt3Y8~yt4`}#`sN%|ibjX*__gj-eX zF!cJ$1KjWwtDvEvKDQXO=tSwz4}GpVxY>B8;JBpu5lrr$6K3zD)9~*beue!D;m=(ebyJm145+0BdBY?GoC=6arN zJ`^@y#@{FfKcJT_DY36M&a1S)zf!EAa^Xb)o4rMalWa-Of;8$!UP$P-=m~{m8-;*p zAn2!_#~JRHQ;{>{oxc*Zix)e65ldDHUSGZdO$F&!*)yXYLfJ${rfomJE9hG(pVwjw z=|18(=7*le6HTaDrh8DDO{-)F;&3kiEi-=~&`t~ibo&thYahP?Ee0@k**drN<^DMD zdTaVSSVn(ZLu|97KP?P0hfun)q6JD8;`tWRlzU`Y|7@ZL`p8?Zw@0#5bfab0SFL5B+GRHsA)k9=TFqObw_@q+&S^ z!3tp|9We(%`fvQe5VeKMtvqFL){uMNl#;y#D^4K`CxX#a^wGmKT)H>ZP#?YYaX<6V zZX(tDSC!$?apZLJtPqlo$xQ!#W8D@x3Nh9hh9fvOjI`U74cfuVy^v^|7wNgK^aw!< z2^H>LRH%6j<(}TLI2ChC1e)Ylx^K)H<*}>i{3pJ?cmi*XWj9X&pXx6&5;3f11F)5-`08`GDo2iqPAMv8i>SVcWH2H5gRx^aJ{XH9m zg_ZSs^W(+W?BQZPscuv{DjKMNs_^a`KK-|S|7Eh^3@0;r86-2`o)^2`!xkPKYW_Dv z{Io^U;8FNs{qGl0H8PH2fF7S*II_037QT^{l|_Nk#q`U^jS7erva1BP|UvsQtrhQB`+W zg^;6|3jgWXy#!i|hIM6p8bS`5bx-dwOJ{dl+!7PT_QaWI2$#GfW={5 zZdOq-2fIbmN$^YuOuekSLExQr}tT$ujZnTy1>BH_8 zW^e$D&tSAeTacO1^PIm{(ve1Bbe|SiX)AYlbc0$2GEscq!mc6^8uq>RHa8kAQ9@}5 zVAU(nk$h-=t;Uj|*kvwMkSkG^MU5Kn@WSv#xY`FvNA7QEYEBph)|j%2^#_a;WH9=A zDe0;{*GP^9#S<^Tz#wB3Y4U*o!7Pn$Y@)6YdLI{_EBF{R6oC?;%gSD>r1FF9!{C|x zRc?*06J*1d;MJvShc53p{)V`_cvR0zl{ml4*WicMf@;{3f!Yo)IEv}dDrjbG(I)7n zVg$5N?*(B~^Sp!I#asKyqE|aOyI(^VNih0pHGU?v$c*>KgYk5=JrTWUb-5A9KEU)o zF1MJzX2NB06HdVgU#x=phK%wHaLhsnc-GQ)o*@o|5i@9=eKm?a)@TYrQ~-z^;mLC4 z*Oobf0Kh-FpP{tU%$qZXvHT7L^m*>%kV1S$4xMYaw!o83cG_g%CY+hbUZV)TxMpOx zPnC@*1s)4rg>i3n)Q1uKxPDM3X^N9Yszr3m{8SSE{3xV}gP1tOaS6SZs9vu}L?K?V z02JD&huqdVB(~y#BPb)OG4Z!QUZ%`Ea_iX$JT$=8v0aR zt|5TgRA@gYG7e^J&RZ1E$}nkadODEfQEw5sg7X7R)0zpmM<^Y~^6^X}qL#pg*)LJlR=_z9Dv9ozVQza*ddUfwn; zXA#4_U*@Twg4a}RfT>s)w(Mc$B$dPK{;uej~0rEZ$ z)CbIcw8E^~S;c{5FyetpSM5E-uRKv-Qap&Mh?+FB5C9T^k`fGYsV(SIqAS= z31=dfFBSA#2XPiRJDHrpKKo+z$gu|Is<^(hI2`>21K$tJfhoO^sKH$DFs8o5($dU-dTiQeyl z#Ag#Ls=#K%QfRQ-lh3fq5OofiN*wefG5OXiqe2z$=1B*NJxCb>ruaK_)EOOriOd+P z$=S_({YJu>V)&|?+q>#ik2ix9hp}JDajcxPh?rgZ)mIi%YZ+tk;1~UPus$2WStGkY zMYnUjpH#j7N6WQbq^JE0Y}%;odiPkU&>o`Te;QHuBmj)R8_nB+C*L+N391|uvJz@O zoxrSNCOmTgACwd~ZtA|}2hHJlfIuOa4q`A{C<}C37pm(m1S&t3MMETdNobFYlYa-2 zDKHAC3ccn7#sZK76|Dx7brFOj_nHUsfTyUC8+F)W&5944`{Q)LDoEkIH!jJAk9vjj zIbr1OEfv>ksO%-5PKA)*ODwv>4yMvpIeq_m<~&+i#vC zlMmtZxFu$~4&oxB2at7tj!D+X{>n+W#P?fQDJD7iwQ3$tG4Hfn@S+=1puX-CY?3rO zru_<$We9;A&*Vm|114Vc2drOBlQ$3+knP*kY2m^Q@yBB5f~wN)$+v}XIYbqEM()Ln zwJCcIKKrI$9F4L=x(Cq04nKG=avD~QKj@0TiF|T^+$Oo(OGe$p|-)etSN{ zhOUDVb`4+jXTg+$huV7_K$(}5MauFZsQ=)hh*I9~?1^?6i=j6R#JTm7wv zL+P)@r>Qk3cF~o@Tx1I`)!AE}1T*NTgIoqZ4*jm&8#6PIGT{Q`V4?hGAeRiEkPO&! z6$!SvnYi2QV#=q!`oq5<^}hT=wI^Dh!>zDVX9H66f!8M8*a?gw z)LSDoNPjXTm3&u0W%3Hc-E&Pn$(IwiPbGE#fXj#y&v}YzW+-~#=+8>}K2`KbWmUKQ zxLR1({Gmj8Si_2~_mN)Tz0r+{!?&&A)$p@zQK)ovMDRvFaX9CXVscVXJ6QoVTp$r_ zgRLYSA8-|yw#9$ka|C9f+;bW;*EKK&>{Xm+*Yg!{F$h8cd5NW5FxJLOu-^^1A1A-= z0#RuKTnm%5{(`KgQ*t_Bl_Vi1|1C54nF6Z@rf`(tW`qld>M4G~QqVyX zeC4x6*D;AS$iz}(bj-8(zPVh?(;s2sKW7)Y(;Aa+rQ$s=nX+Lub*-W4-Y_7}dRIPv z*Z1fwDJsTrUc&gI!rqepc+pQEebM0@#7{`1WJI+c4uvKWa`=L5|7Ee(Zhuv7);P>& zrte;?^K~9~L^42SmRC69t5ezG*} ziiiznDDOS5p!)F(dZ>~V398fta&IkRM<6yA7@6`w4ms6wF-!%KMeAD-_IjC#d;|Ag zBc=|n?@vZLgN?H0JvBsUf$W3Mx0Rv{sc$Y*Z6eM$P8y)5%_iWMh7vq;O_e1QeoHt6 zowjBsH&dktaP0U6Y2?6QXo;-0>_$mpi;+9DcFf1tYcKx)5|dV036p@+!)pgMYYV`w zLAJtZD!2GQ4nM|%`Cqrytq%cf?Z#1!&UHb!(SPKZ$DSdF!}9+fB)_BnCkj3Iemp!q z4)ITj^FJ%PoUcH3`+-A0-syih2L%N^=J7x0sXJ5X-$`f~glpDh)eB6h82v%N_L#O( z`%|YGvsWxEywtLRS%qqjp!r2MB{iCkv4IT8Rt|&!m9;ZeClQ-BvuJDnt^`gwAq6DN zHc}|gw1qMW;=xnH5!(F$h2`^BDtb!JqXv~@>H+^aH3f-VJVJX`$Y%xbxrU);p(}%z zG5gam7j|-;u&A?l6{tGeKE0+vdcJ-y&D4o6koO$Y+EI|xYYXoS_LJ@T8^)E}D z-jdLC99seuObYcwGo$7eWrHL03?DDZc$tkATv~oyDk1H zTMrebzac1Q?_3LcrIUpE(!~<5jx=M_ND+sgmQuNIVrXE~Po*k`C@KK#8&i)mtPF`D zmM|Ea%bX;Fm^~d8vRC1tjyjs7R%&m7XmH;Cd$ZR$vwKIgx>8Y|8&jmaISOx=kKa+f zpp%@#csk|&JbfqCJvWy%qr;zI+prfF*KR|rXbzVaVMPJ;m;FJJMe?Kkxfy>3R418Q zGm8ja%(&_=LnLfvB}V3nI@Iph>mvk~CPabpu80c+szdU_C}s&VPCv}bPV!Z>WgMV~ zsH{;RuYQgopVnYD*ucO(YLG7>?w1WD$6!TJO@!%z7_H-2+@www!n@6v?nsF4V8q@x zN)wNR{q3x)1-d^EH9s5Rzb4qNsEOC$1y+Zr=PD;JmjdX7B=AKP?O zyX6NBbO3?2{=2ng0x)v`4x|F%xafaeF%m-pHyTHH7ZSbxlX_No5QU>Du{sm&N&F(D z=L%W~{7_<)?o5Wwrq`AaTp?yC2Oo z1u&$p=yDDsqEb!gEBV8P=OQeS%?c)LS%p?aKD)gJ8%qKyfo>^NR4sW%An??wDq|I0 zY%^_DB?fp*&?e`LJ;J(_bj%E$^dv1b&XPFyW3Wo8NEAAh^45|lm{^J?91rS`44l0 z`J}2#LC9=FWr8GyD$&YaAUoh~NpsD8I*4Uu6@oPyCuv$t7+vV6Pm=It{8Nz+2IP7gW*=WY_8=5~NDIWTXL%Ji3JjtQ^*0U}K*sRqF|VQ`Hr90jo~3|44ZVdhfG=j&L7==X zQJ&E!vLs#^qF)-1n;SEyJx{x&8Qqn2=6Sf7s|m1cV5M;-#oWSSSHXaQbW2N$2&w=L zv&DC#bb_z22_euC{>W;jKwJ*wjNgK6e*oL_9>NM4%2|>nI_c-6(@hnZBzCY&;=|9m zEL6pkn(3}^z&&bsB+SPJqDtw0Qm@Y7XZ0vB4r zcCY`9*0eQ2oeDsU$T`t6Jx!7QQzqRY60u-<+Grr|r@%uH*V)DNX_uSz`I9V?H(=^b zUO5j8kad1L>MDwcO@0egTG?VELGLK6ia@bvDVRy(g-mb}RDv#MZONAlKc~$Pn9;~? zP2l=w;`0V}P_L1>#5ynr&#A-^5a6{qmvV}HI`b{7-$3Qf8l9y8FA*PY?+xVH^luKk z+qn$RXGmei&I_=vNzm?44V!e37c$4u$dLbcabxlkD^m|BRu_>tptX#Jy^Z3fWUnoj zzq>d}?oXot?i8&ct|4I7%Y@*O&m@M{Na`X6ksW7i!ns5_}Kit<27bK(0MT=v7Xu#3i zg(TjUODY~n7=GkM*Wx1)jr`X^_Ee^?Q;AsR3% zhOq6NRjBr@;gj8mC%lOzRIh=PY zpAcav6!^2(Ir%rVhjmwiPa|wn`^T}oZ|YaCE%2(*s5ipAjf5fE-~{V^MtT~eR;%f! zUm4+s^bYYrNW18-I!8r+91R88uf~T!e%!bTW+8Bh-S!jC+M?EN0Ym*tey0T1BD}(; zFijteX1Vq6Ke?z&UH65+x2Omb&r%@c-pCu5tRr%xG!dM;mBDdL6<^Pda~5zXZnV`f zw*>0^YK)TPTXrg;7&!?N^5rz4#rs7#n0=xgi2wenota^a2 ziSPU9)wlCfL)DGxajzml3k?-lAjtG60VlymQF5LplCUc4+3^i4w7Heff|oPwbWA~o zsMz1jw&0vhh{~zG|7OtN`% za*<*cpj!BtyM6x-ux#37f0OQcnu@q*9r^N&UoCp5G?B3GS}$YrF4YC>X=2lUCL$mG>YvM)0k= z>QN6Vzfs+0fyTI3pqS_v4E1CpvbK{dSXSmB!h6fDjs=j6f9*j)Vc-r7Tz+@d3@h@4 z3@8nT4|vwsMgp1Q^A5~47@pojBO8ee6fg_M=sb7sfWE4=Tu4f02ORpwg1kdudt!7n zon6UZ1bfJW&}N_NQ?^Bg&ODMF|uq^@AHeRq#6l*JccJmm>&f7yFWsBNX!yjb!TGgiop-KrBwuEZiu;ziu`YJt6u2P1$4q7p z`!gF&*N)A()a&!^*VE?@gkQ}~B8Fi8XZrxG_Xn(=BrRZq=NGB|7-aA4naJP<%?ajX zVd?)|YUv30qDm*dFS~C&V0MLy3l-XI`cTG-v+9ME`3X}(O7@hhLf~n(Xg&d#=OwjD z^t=!UwQ9{j$`)s1)+aX_MSBUnWCs2WaPA0e1+FvM+Lh~u5u z>k9Io>BR39S9yud{1(b;TO+f%c|uhA?sI(r6KfH0aAz2koID(3wHQB>{Px$xid%3w z@#`vn(sx?(EMU(}Y?W)??;GRLdOveI1AOGKJ5)uX654L*W>uB3t4WH#;R8$)Vsrg4 zABy=2FEGvIYh<<03qfO{5Mx+hiaM=u$ z7x}60%LVvqpldNAc5PSg@+ykdo&fsZx(82dKg4%OkId44-$uUC0<+gGEr<0;dlQc% ztyGC@>7CTlJ!fjyF(peRBYEIXY`vMH?3GfJVGqnbg9PpM53{BjrE@^fhoSLe)?&`6 zifyi1rbrucGkzas7c`T8`Hh3QK~H`$5ldTDeH4Rgu0izJ#&8BUg{jO{MG&u|8wQQ1S-Ud;eI8hz0Q zv@h4^syMa0dGfArqT*;b#}*1=i#VHjtKV;>Sg+)V$}Ze<0;lZJVS@>si8&X7|7|Le z@^{1mGe32fa$5fi^6h zGC8+OK9%>2#|BOtfbI3YjFxvQx|Q&F7Y6gcO<_JVd~C{tY(*BtuOvBs|E(!rB^i6_) zijG|WJG2BwV2ji3Hc})0o-#ZxO}+PkR-8WCVqmo+cM*eM2CgarJO;Kykj_3Z904XE zM{(M7Pg}(-!5Bu7X(6F&LKywyJ^nkzOPm?~NYaUlC8ej9_lD_+NO1_r>o zfo1@GtT7r|>eMAIH=7JgD`{y-IXEx{96^PAMdm9HZ||Qw2z0b))xFG-{+CyX`ZuGl z_CM3q*RB7JOWglWi|e1ixmlC^@C)#x%bd6P!z?u9L0_$Lp`;ph*_Fvr5e-vlntcRV zZOX+10rgfQ$L=p@DC+(b_uCoD(5l-tjH40$oiv>A>Hw?C|0Yki>{nlaeWRK7H4;}V_c2^o&oXigfAI7$|U$e?Iq@3_UQsg z{OD2-_wKClH=$$n)l*Sg)N_snh9kWRUw(gvp~@JmknMezY^d|vN%gV6>1D0N9t-El zdM9j9HyA{ZA8JpKqeH(15kIl6GmG5Ii~RKjq;PXt5$9+)Zzxkmfgu4(_ainq!=%$i z_wBxOt9E&(G2p37+4q^Vr2uf+`Ob{XG!Z-(jjZ@z8C%&nQ59}O`HWuO^-^lR@bwT; zXnHy{-Cxg%4FIe*Be)oyG4So1uzbPQo3vB4FXx}aMf1OGAttkO2kGL@^tmBdHJmE@ za}zzO(VkBB1M!^)$L5$RlCSVDE0AZ-LX8qo* z9h_%I14Uk~olHe4E9HJTV*1Pr&1mdP)4yzxhSfrhGXoS||{mET2q@u5SB@ia! zuyhovK>xV~pX>p0#CK>QN3q@afJaMNF7*46i>@FjxSK)s*yXTMKb>glqA7@3$>@^w z;AiT}tvy)clg9NwCQxw8uRkETvNH%U-?2bU(w>+7$iBG%!Fmdn|AdEzWhN*!TJ3$( zTfJN&+Bqd3-ttC!_=a)8Ag80m%@|8fiGsHv$35tY?8)kY~!rH-*?72e>#$8C!^V;Yd!ax_nh-;lo7@+tg9@6 zeMq0-R@M!^4sUctJJu9`DztwN9)MSv^VNQgfb1p#U?!*bSfRRByr?Gk7@Dyrv|2^>TI>bpdQDC$_RerGYkSs%ApgPY_X$cmf;qsyH#3_(_`*ui>( zxe9Y^9klo4ymXj|zm_AImVngm@0<{XxQJNG>SaB$cZ~jyJ)VaYsL(+gZMXw|Wi!Y2 z4Q;VD=3DE%SoJ!We4x+QspV;U1syE7WY;|zBi!|n)-fB{^=rDqKG4}s(CyEaU<@4V zf(AX2!pVA2%oZd0n$rAGTwh(N2$R49U)Z`_QO-h&d+c4t6x~Pne1cx^%v+zFHKf89h@i|) zu&$eb4X58giVSeX+DTJG#^4v%5N%a4fJ9|~>;9mUjW0f{F8EE#ny~60W13qkAX`;+ z)B(AO4cKEC>FEe-C|?y+2O5Iv1_Da2N$y4y--2$5)WHw<$^K;$GAuq>eoT7IUtqjc z5l*R1cN|rlN*VDi%6OCXcTrp_WzAd#8fcC0sRx4 zX>YA7e2OdyGh&|ucmPp7G}y21wcl)mq9{(bSb?B2fEzs?J{VcCSivnd$Q5GNWkszE zvr}at{*{QInvVl)nZ~t)ECjnKDNk5PhO0gBB4(VZZx6sjktsa8-ryXnWb<)b=V{r< zb-0RZh~L-<&p*x+hXQRf0-a19^wQvO@-pt4w~gdKJV`1{qxh-&T=3ZC_AM%&_*-}5N!o+!NB^g;W|jOQDRwrr80NwaAHUF<0S8+ z+e(1Om)|+M#xCEF!aJyrkU4UYnR9x3_HSn>a5}q16L!dv)iXtHQ4J!}W3UglDfSl& zZ2u0s=|A24&Z%*ISIo6$U!T$aymdp?LD{~GZ0WDdVDuIcX7~$tjeJRC3_sF07iUpA z=24cT*ZLY4Pzh|5t310$2H5@fKPU1Y0#G5*kJ_j!ZXx(Fw7({t=ImXiqG#VPi{_l! z3U;dbci!?QIDu{%!c7JmsTXN?FuC87@<1&5AiA2OYy(I!S0Ko${>H0S)%#VzN1sqa z;BN-;jw_n9TzRi*y%XD|Tf)gj17{xae9Mu8r8#cId0{u|UKTDZ!C^zVgQ9mmO5R0NKDm%!>8mhxr4Nw+=TyIPGr)`<{$hK4< zbX_*WITXPeWsKE-Xk?-l!}&qM6qJAuX~`kN3iRd92k*4Q(sbJyXV+b%SL?s*_Sb9y zj+;EdlPc-~fK2j)QhGPYdFwk>waq$yVEwt=4Mx<$Z@W6T1bZA#T-(w!oiyuIvi1`@ z8!2b5w)F3mIt@P>->by5=Ys7%`gcEweNH0AczEnt^xc0$rV-v1HB?UCI z8$y#-;5{abEh)-^*~F#fBEM#UH3vE)t$7&+ql2>Y*0l!Bq7Ft{ZCff=K*RB_$Y#I2*Ac{HJ-xuWVi*b=^YYt9S4D$&YS!Zh0_Y5*IpPW zg-^f9uBg2=MZ;5GAIyM!u;b_$JSrZyOrj8KNZZgcysoXGJPTDZ+01Mf$ren;%J(lo ziz$Q%P%ZH&Bc~u4gy7(eqmimcjK#Q#^l`xhsK5%!KnGtCm4c(feEqWa&aNqzfQ7l$ z)FXiZa+lf522OJW`S|3z(jC4;Z53a~`(wN%5yTtAxv*%#*(u-JQh*%dvNq^Z@8D_{ z@%st-&pi=qxmCo}b;O7R)=Ql7uoI*6&0`EvwI{MlVzp+#1-51-SfhUAFXw)=)KVZ~)PcdASRnG~q75aZ${`?PvpgOR#0wrrCsqs1t_@Z3LRWM?=z%U0* z-)=?JgsrZQHw7TI?#fR>!;)CMbt$$k0aipZzdt4!x)Q4OIDIoSDh9Trwumr!M2PAu zIM^;Q4r3<#0s1>7shqtft_JX6lLLNi^2*t}aw|#-pjKbe{hlNcG=e2|11k6~UqH7B z;BM5(3ERG{67NpHpnf$KMCOOGZZZFYl{wGH3hgdHN@7~idxbeqJ@gUSpM3tf@{Np& zp74WxY*c{>@YMUXZ5NEV<%<6Dzrv5g_nov>=<7W2_O-yFrP4%b5+JPEyJpullUv{ly?M*c7**=cR#)(4;lYW~F_vX-NaX2Xr_F&IZxzS9FWmv>~iavCbfjD5WQL?|E^#o#tODWIN&R z`#r4U)|Q{<(u*q`z<7-^(?7S$bJ7;G{%csq;uY>*!EA`utll=DMX!?1kLDJrpc)~m z5oJ;laB8m%WIR+BqDP|DSdUiFoE^Xap`S;zJol+D=hNe3JCr@}Vy97!N+?EPZy& zUv->w7aLfcG&99}zTPX!n*(tbRWOBf238-6Lin^|L97B7(?p_6TxN<086Z?5xyQSB z$^F$iuIBq-;{!kdN_w%OOD!AG;h4ktfEn6Mag+eKJK9ck)k*-@a$%4aRTEywDDI>} z*@iUFI}qLm7-;0}txI=RScR-CGQEXjI!7N_M^Rqey`sY~tFU>-P8BJVDlv!B-NY*}n&VEGUj(#FBa7YsAfa%eWBNus5uc zuwsvIB5j<}is_$AC$L{QsvFX!Bq1YrKmmIJ859`4qd+4Wze0LxrzrDh;DKG%a7FM( zpk$oXhd69}+@?ih(mO=DYk?r1G=o$H+O$w>WOx-GuvcV8Y@WORGG{Q~lQS|M>V05Tp?a~zID>^MA5Zg9kLpi@$fl!_dJd;%AEgkUEG{?UC%hZ5 z1$xgNpS7kOG7RYX0nw9SJH$xEg>&*k9|6e_Roi5hEJ<6xh4&N5a4FaV7Kg#f8F-n4qb|uO)_OvEl;JKV zMk|*|$?&QCB@4yRYTvT|3OO@N9CBn)Iin4ilCa_oHJihXpcO5+=YE=Pt3Sc7bB*Vv zrWEDpz=P(5SJ?SV1#1z#c8@{Z0hwj0cHGGpbPHU{ka^R~ISdqDBr3 zNfoaq9>I06NB-g>xKa+NNAUaE=y7GQB)oK8ve7ouJfG_7>xv9@G4k(doi}5XlEaIrYtKq9WRrqHXu>nIa_KtpG`R>^*H%1~okLNXEHm?I$Pt%&_#t`S75g zjrcGlWry=whiFcTRKgKh#~*>BrR>#QWfta66*C*3khZodnu{t_T=_DlXp;duB_Lui zqa=tAC{*UiQ7AyEYvDY$*s1D3&T*{#={4|Jp^{x)&Pe6pb7TP%|1y3fXZ$S?1s_&i zW~&ou#lvzI4yRPUlGWJ90~@3tiR`W)|x7aUieS*JOF2~zFb`o z#A#+&upIO_aYmxX&wue}{Sh(tB^;`D#647LijY>dBVP)M2>>h}SL!Vmv9oft7Bw54 zPb9|I^#M=nPM2kP0z95zg2}2j#smWJqkSWt;>o!d73)`psFF;jk2D~TFOS{lJes{I z>>=Q@;qsDvYbNHZ3Wik!5N);tcKkqVPoAFr4Dv2F7tNnRUr+Q6WIuhNkq21vseaxL zX1X*l&y+zNQ8T1Pz)eiRcf*4oIK#YmtK1XdI$?jhcc?f+|J^jBHLiWLA*0V;F!@Q& zc2E%WQV^)-2b{;{3BCBm{l`7nQpLYb+13hKTcl1$ju#X4ai->+R8B2{ZNRxWj$bN{ z9v-sZq@DBM^-t?j+iDFZlT<(0HVs`m#ekX8hZ*)d3hfEk%RP&cuID%ZhS^w zbJ^HyjfiRW)aS#=Nt3BbS|(Wv7T+Y3s$+Ew6$84yMP~Tu?zsi=LHT}`RO|_TBs<>k zDYE$zrT}P}4vM)@6{|}tog3002ZOjxw(E7-75tcddHZ%RB?JBtW6(V3hhV0qsa7Ey zqMcBRwkk)nE1E8{PqY!aMmzH2zv?MdeQQ6f5CPyM5ya`w0#?mfLiB8#X2{`fCd#`C~i zmA2_l5)J}&m|3TZX=jM#eRu&Qq(3bhRN=`Vy^-nsq(yLy(JfERWjvfkq{vR)lv!ug zb~C|0c_~mO@#DFSq&4XQhw8+HpHmZ)=kGP=Q9>y&S&AUjwB;|Dd7&L0SKO9I&7H-w_=}czS1MsZpt!nT2MEqgt!0RGflZ zG1Wk#41*Q3Lbj6yaG=uE9YLb&OXDp;p_I&!OmzkQ*gWH0gjnvOBDMq}iyUQ6kQ&3cjUa@irSJ;TgRBu>M{UYF zA6w-}wHnzY)g=uZf=@&zRG$5X>PhzNfB}7kgp1t2@$F8abQD1oH>k-H(|s|r`#M8( z`aO~4xE(Msi6*UuvT0AHXe?z@KH5mPA^94MxP5D|)E`GbSbUBqr;|meO2Mm9Yeii2 zVx_XAeb`S{)e|IwtCV#i?6XBh?aol&qPaL4F6)StCRS&aJV(V!2PB>TX}FyXxDF3p zTOz(iq*8L%uOIUJwuRKb|byBG)YwCmz zyvA5DDtiM=@=r$LO&=?;^cuYO4FM+K(8@usL(RY9a;CmCK=~B!A#0<`dgfnIxYVRj zkqtB()6rZ^!IYvpo!7IBev@wJ9_?i}DVXPbHrL9*0Fu$ictH~S5v19#@|Ir;^_K-? z&k%YU+SQBrwB3Xv@q?4rYcx#Zhg}iJe0>Sl)n6RtT;-(c|8;w2X4jUrX~~!8&xCI;EZsKx4u-&uNdf{d zxDe)JV_-noh`EDmoRk%xt|lt!%^=HkiK50E5bTZqWjF7ppESh$hamrO6MfP%5}*5$ z0Alp+Wnou0O_*TP7)xOP(+_{HFwR}}W`hcYDJysbm6?vCmKtMYz`gdGF}vZnchC1v zgl{Cv9XnUrGS5GiZo4C6k!-J(1QMc@=f7S=(i1+6vVCUW+j#tUv4MhWSeKwSIiQtg zm8-mskBX0uWR^&S;kGu)LPxK6930#a7)F6y-m$0ow3qpe_X_XdY_T+>qA**;4Z9yF zsT;df&;a`qtD~T8dNAV(3;hdVrMt;yy=}NP)m@l_H-u5XBB9oa{sV`K3z{Z$R5eHk z6=U>50axYc86rq9Bc;$FRcTjI@cz31qDleergpbU_{fhgRUkG1;QSY!CTaf>%QJ&9pH+QxsLifh2U}#k3iq? zVQ`}yfmOBG3SpU^X&7<=yYWAKwrc}Wd6Ql8T}8GRGf=~zrF+BiXS45nC_FN(shTv5KXo?g#}`B zKucCnE704#fUSlGk~_iZuQznC^lmK6f}9^7exf@_D(uj5r+@wV^FyGbf(Z3^k-0`3 zO7|}a_-|vHh}CQlOPQ4TJuHut__!#ylccDA|F9_xlVYdecBs+-uN%{_H93~}DLhmB zhxIG6j5jfDxNLh>N+t5dP`vt)ztE8_N>F6m*O?Uj)0Qy>XIOS_n ze@fDhqcmSM+jXCgM}+a`b8`800o0bEfkxvy<&9b z(idQ!)k~;$T6X+ClCqGNh?J#>1^8VDQKkc~2Hnqsrad9*E)&1D6BnHXD7mZF+~M^G zSAGcVj*J~eYO%GBlX!MjK*EEk@AQWL!KgVHc@IiMqrt3&ki>j|1AzZw{U=`PA z(=$LhnMUXz>A^7qBCQz&pk$re)EwKHI7m8|Zkx(9vQ4n3GT{{05>BU+2<7LB_qzh> z=79F`GDaTP;AWp6mO)d^Y@+!NBd3ImqZbYGqYeMQ2hxV5d(;=7AM#k4DFsx|HnKD$ z4WC{7+i}e7T1%y`$Q>0`1ut0H=tksLIqTO3->aXfb6q_Tk9g1yJ_T|(pXayjl!5>& zAdBLcwBP4rn`wZBkVl7>R$se!T0$e|mkUplH&M@U(F>Z?)i*aif!*Ns8jE>d7pAHp zse_0LOukwmMu34|j;yI?w{){WJ1Gte{&SUD2TMAy}{K;5*1x*JAL{q|}@$ z_xeI)hkv$7H5dhF?>u}F+7xl&7$0P+C;pq*K~gx8t8aTddlpVsgS1gI*Py#j05G^t z>yu>pzHoQAZ4&1*DNM`Sq60NO<9?>ba)6of1g1V_Api$;oS&Y353v9+_ND;w z7CuVCfmFKZh=Vu;z8CJdHCWw5nMW=;ID=X z((AF&vhh9KfELCphLiRw?gvg*@qA*+8eQ-ijYKU#lZYm8FDK*rsUxtE5xdMXaf^jU%1>-O;b98IiNx9s?J`U*7q#eH z1iX43qcd_y^RHkV4X$MoGn3e<2cOXZrYF5?hA%ps^B8fB>I#8n4ZVC`R`m3`fhhs~ zCv>;-n}xlSB~ZGnNr(ISPuhmk{);J3D|5vtvrVV^X)&q_U#;UWkP|g(D+HLqI~35C zShPZ}-a=Vz`t7lRr;ajXYpC#;4;1d!5^RBvpCClv@)<}^*4(OIRU%jgUhR&WmvO*= zgMZn;JVU;24pzl0HdSg~eQ544AB-hG-C zXFqrP;V0+yqBbsI$O3Myw-S)gBIyX?{y>qT4mbot-d43zGOg!Oa`+^Wy8*Z)3M|nT zBqgP_i85DaUTlYho(P$c`khTum^6jd7;V^Dez_r|nnUcqdmhe-rMWQ){HQ=!`2cn3 z75%XzwR%^bQk>!B2f;$BNT<-OXE?Kv8#zef+t(D=nOcoHR_1fG%!HX&p%`zUn03SU zTq(AutV@M?NuINE~1dxWVHwwUf3#@52|U_n#Eo=g&WsqBo~p(oZuOh4fs zGIP0|t6dn~3``U%6}5Mds_t_ldDO6_ytU%K0hG`QsQtCN-%g;A1<5PIu2jOO#LLDe zWW7p9cNgEn2e$Yn&RhX#^R!2e*2sJvlsO~GlMcJk&Cl*5c+v`du!vfqDY&BB#t7lN zH|a90u`j)B`-F1Q(>fe6U=aH8db?D_r|Cc@c|D6dT~e1(t}t!Pc${GYn207YKD)}@ zUffkaW0Fqu2s6Ha5!r;Znf(#bI=N^?%Dx zUuwr6o&aE<-2240C+2mp!)(y&uJAiKP!{NWW^1(Tcj2>He0CG3Y{l*>D~pY)%p_A% zV?=;WgsWP?6W{~Y(EKb7=GYOyQ6LlGB`?t%W#l z`}V*}fUc%mzqthVM$%Saq?w|$a~`jF{&$&xJ`l@sHjtNj(5#J}TQJfxK=7L@Ub!_6 z(hVl5gpk)KG$Vz|j*CLc?vyHY&5gAkf6KXBe8@xrc%a?KO@m+j+^DMxQr7Zw?xl0k zHx1rIWX511+yom?BO#m8j$)N``lqU_%Zf>_@^FMRsSUCw$!LBjt(?EoschThgsfD3 zJq8lTMU+V?kPD#5elMb|ZR$pis zM3fX-*gT2Tl> z`=xOR5%O)lC;CDY>uy`AhI|99K&Zl5-4e*fs~iUd+{?Wu9E_uAP`1m#8=z|GjAWp_ z2yR*%KP(+}8&&yvyM{zhCdk@`5Q@)6G<@*|d}{XGA{LManE)ndj37s&4(LkJQi*?0 zfnfUto2Q?Q2kfw9aMySVJ=_prd0`hq5%({s`04k%1tN-yA$=zYbxDtaaz)S`@zwu~ z?$jkDj2Dx#8c0+J>UI%_kxVdX?qD*B)CPtGJN&WF(f+4ZswnKG1iVjZpZ?x1c>rjI z#ZU(<{ae|Xg*qOn^k42!5D2=heU=kvfbo6lQ##%fYemgG*YXsf!U(xdyULOFE8As$&^TRz~EiHnPriF6n^UF2Mk{wmh;jv}YvTk|NEoWM=3F~QAM$oe|w zF5Of-m@9eNVA|`}z{*ENzq?Ln7`KLNith34K6lAX-ETgaw5fW(u2g+or0~h9ET>+Z zafj=ws%$G4D?Ecliznf)zz{ThuZ6~HPNN% zoUTJzNz*d@$PC{;#9tJL87x{VgU&eZ==j$l4uxo(UI6tHFn^*j)`e z@x7u!?Zx&%OmyCextve&BoE{6atS+8NjdAW1ezaZL3qh6&Bi=LV;AA|Ly>xIguMF$ z=)EIB;ww{>=^e7`^f9HJ|3W*vefhcijMS*xORgi8Z7Bq{(~OMSe_P^gBVJ}>;D}^E zFYrS6BF%gcUJLVh2-oOwO8LGT1;3yVnk3bFx<1(X_L0kOVcW)lBr)P9PU4pYr|lMk z`gRr>yiTSt%8+{4`Ltdwi|c2;=PpG_MYpWzScjKAY+Rl%(<|entgck@uSil(U%}r| z!r{g)iJVV&F~qLuIVmDpfV40fp;wl?CgIKKO^_@4M}6honfF)29TmVjpdCe31q}R8 z`&I+nMOcvX3<1$9%~y0-oau8?@W$z+MRr4&F00~Ojo?wyFX+y!CJDPeIZd-vmZPIj z6>)ow(%NzU=ip-!B?}5DC^TP{4}+nyaHB3FJ2f&z zXH1NwI#cNtkS-AUNXkI~x#j3{@P))fo$oN6uFAPaKEu4p&BU0|>df>}Mqye9n?K3Tk>hJbdUA4ksWnFD`J7 z09BO&#*6jki#9ZM;uy_^B^$18Nq)X_pjf7ujg?gvJU+*N-xOA)VBa+C>mE8+cv(YK z@FP1Ji5_{sJ+~cRbLexBrJ}6r)3h9Qy0^BB#vy8|RuV*YA? zheJBS-_T*t>X>g!Ewfzk1rjDy;JrGFjS_7W_a9hmGYkBDCWnIJ-_G1YB3HydCK`C+ zQe$1ppWDgBYZ}aif&SH{IN|l6BbKsqMmBQ&v(;;nPz#z#I>+M)pU123dMuaJr)`zA zM$Uyx(0d-7G#ER-8C=n~lD;1~E1^->(GhV%GTR}Ly7%_vEUJUfm^Dy$ksLz^ zKNekEme3HM2!jd;wlJ_GNw}n;{3nhR${uJ49^LT)Rv@ICY^G-}P2_bWZ_BJ6B zV2!`O9^;GHI6Jh3di6+yBL_OA37t&NK(tisG-110?Dq!@So3RI!l1$>qNM874Cv9# z-{f_B@~Z`*n+m6MWVvPGVC754rzD5X3u(YI-1F3rplp({pSDxc!Fkm5F$N-STW({C4&31!8_-Fj6Ei*^a*ee>BN|{=5r5 z#EVDG!NI}B!eu4zETgH3S|4E)DUHK46OvYs<63`+^q|NWd-M)>zyeQl_fTtmRg;~> zn<}WWE{)nO_;UeaTQaC9hRHB)Xz9tF4ufy=YtxtMlp!-d1XDytrftFiQLUmtJqBMYU>7j-xcn4AtQ> zGZ#rYr6{K<9_J?80ZiEf(wJZY<71hPb9z4vQT%&w+S-`#=D|yun*fA(9E`F>DPBGl zi93!{|7j{)>)Pi{PXlxkP@cM^c^n@9a_s)rjvr0K9!D=5 zA=$2JQiVwS&L)H&JM1~X*lNA55xn9`(Mj~7A$Z8EITs4zZLgPCn!T3#B@fK%=t25` zGZhktO@Mj56B`Z^isbHI;fU^p;-|N_x1*z@-rYFiSO9VWW~|`xa(^~Z`}VswyZ+4% zlf%VJTdxIt9Ulr*b??E^W(nQFj}}jG67z~4FCXt22Bm3_rm#5et`%QYoo*!NXUuM! z2c62GNHrQL_@qkI9E)=&1ggR#r-Qp9M*#f>f#!p`SpHA$b923yc;vFfv6RU`^e zt_ZMOTlDy+Zc*Miy3^_HZzU&y9Z zZ(eZ-dvd~z{BafF zLPJXpChAo8Dl$F62>cY)Aa%s#WH4%q8>Bro4oO7dzO1x3_Q$AN|xs8*@E zv(LY}en&nQ1CL%5`5t7^|Ff7ZUXd>L9z^30`(=VbXsbZ*k1E=i1xdFa;+5q4Iv;h| z&hW2fd|477EJuw6&&)efj}OTGtGv=PoGsCBDW+;jgC%d9npS~=okKT`8Q>+3az9d6 zUO83JCqy|xjqo;HwI%X@K2PiftjB{@nxfMe?BXublWUXIAcdC|FAcvBwycFgjBaR4 z83z*HJdV^#F8|_WxPK7?Wqve=?w~b}duxC#Wf2P>n>e&et?@aV{n+~+g@9cpi}0m( z|7VvUQ&lKvXLm{qJzRlX`53Nn9GA``HoG$Co5|s4^=`<>4N;!$crvG?wMEHXsDN1$ zs(H3=Qo_G;uSSBr`M|r}Q6RrlxP6V(7G7c%^4xle(W#+-2m@6M*WDGw(lU*WMY4M! zE^*yEdCog)AC+1VIR-(bSz~}Ui%L1efVV;w!rfYldG32wUBr=-CaX)N{KDTx2MSnj z^r8kcyNcMMGdRE&7SMwB7iXZG*8GJO2Dn_~y#k?_fa@C1Bo6PGFcXQZpnNj3*_uBe z%J}&U0+*wFWi!}xPm#%0#hxi~-ID~@6WWQM2FV~bX|ZAtEt9W6fN84HI1*#s^>NCG zIk>{`r9T(-z&TLHG zI@j56qo7`-ks_;lax(;+d6Ma07_7!R7NO%9dXDP4HvN zcg68-lP2Wl17S)*m~q(cD*V9VwwSM|*lvoEC^A(X5y0YxS@OLZ*=R7|?H37f38|L3 zobjY!$SWX%T=>nx%?&aF7#tjfHEc;3yrST|fujACNphW=r%5D}!LNlr%e%aLwK6+{ z?x(HGH`>AKqw~xxq$r{W?3GBEt&lRXBti~(yVfYl94~ejuCNKK77Kd8w;O{+*1vAN z7^nxF?C*7ze+{m%y{Vb3+~j@nYdki-zGv|!s+?^Z8mxHXABlhaYsi+&QHczmY#}Zt zroIc=yVwmXxr72Ol1f%K8VSfA`thO#Wz#=JI`ZcINfvozWy-~l0GZ&2uBCk!0R|G= z*^BdArIsRWXiyA1iY6~(JdN2CC5Kz^TUbyd=jR#pLQZJ&8zDwSd9)v7>s7{^jVokp>%@F^O-Loz;8&vs2*Q z2nhRgQOPKG0Q*si&sJWP4$OYzT}vS z2)ZWt8q5%k@yzQ2n1_LQ7AaL?eK}uOnSzZ;5Se7|Oc9vO${0u+9n(&A2kG_^92q1R z;^NN2yfflwYf?CjnYw2#@!4#^IGZi_WC($|E8w5}WVq>b@e>sA(DU*3^|BAcbQ=Px|bkjymo>Q%gMnpjnU**9~L%TUMFf6Dd*B)I{XUlcCu2H z`-F398M|kyV+mu!-|<%RRE?XqU*y6#)G+%M*>IsmURsb)RFIHVW*s>5e~?0ooZlA| z;iPL9{IKU-1gExpM82cNXv+t6^)l6D>q)LTh11ajCqxBp;t}zpBFr6E&XW=7`J-N3 z;h}(ztO!bNfCw0_&MKFNi{K^Lbp-!vDON>BnR=o|Y1J(o8X?7mq8j#Or>3?qJrAz6 zQ@vDHrPoHCbbjh&EJ#o0*WM+Zn}KFLFPj)&`K9$WoES;DyyGqYb9zk8H~M@huaF|F zfe{Gpl>_ddUMl#0A6u5h>t#^%ozlpSJH8P5U)a#^D=j`-8~*;X%G{{`J=uVQE^j5} zQnmc-s05uE`ei#tf$hu{gmYw~!!cHmv&9i8NvQoDXSiHGLvgwH?~4pVY!}caMVUteYRAG zrTn}>*HAe7Z1ZhFe)qGG$6EJvF&kpK%Q@A?ylAQwjEXcM%f<_B;xYJR92Q_!*-o%X z^1>qj;XViJQhG?4M`@IAzle_g`#Yf#_G<@)Doj+Fohj}>`cKipk<~ZMbOT8XHB|QH zdiTUyukoHcO^D>CK&O;A>SpK^Z`~tz4^Nyvi57?V42sDLn8tBKsc#&ix&^5j54M?j zM^F9{d*8uGgw7M_1wl>3*Yr5mi4*Tn)k~Ohna{mns2F<7_2-BcNMC;ar1+-a(~x@P zW5_dV71-6V6B-OlltJ>{`;&YS&lSPTl-75?^aol0v7Qz&H_~(wv*Wf4?HS70zeMnB zEYRM8pS3?N;n6qI?yZK_dtpS2gsXIiYGR6&G1|A^I%gfZ&3KFp*X|w8Nl5Qs6yCPSAs<^$aPJjX? zw{hTGZ$(356?p=H`8^^+`Lv~OpY{7Y$|E9dZ-^g>STc5{Dva^m$x|mC%P_eW{+AI- zNAAYj5a36+RBc{sL)?t~3cn(CsgJAYHXrc@wN<4G@|1q}p@oiAXxBb%b$a4nxo~s# z0asihK?5K8GQvb-2^@%+vM&d33}N5_?>(lA$f76chclm;oyM4vK{T82*>*9&hHHtJ%2FA;S-4~NfXdh;qfziiP0#LW{jB0|$?qkRFk;Z09TJlo38D6uAyT|O_&}xPWfmp=v&ys@5KAOrky@Z1Bi4V*n z!>%-^(fdd@&)x`f!O?h7 z)~{SBeTm$_R_Py&3rnpo91)~2q*wbUhZvMHg2mld)1J2;@lNU-1J=tooFb7UfOuGw zJ>Fh@S8OF_dNq?~p{Rt0f%O=cSCf`>`TmJjhSiMq8;MPo(%O!EsvV~y1lB!1neMbN za^Sh5s(-_QD}Bss(U<~Bx-vEMrL{Tmw~(M~9kc~_bp+t^wZZU{)E%8Hqh zwc{>i;z?{KAUM#C7PQGy08J~JOqZs38LA{>Uu>~`QLLF`Yq`&4!Q{oPm(MQ&+g4HaxL<%CH_`V`rPja^I@KdGwP4AOEHeGnm z6{$B@BDi#p^s67$E4RKm0`|uSa0PztEuqGgqR@$R#QUR17yKZSa$r-$W|36kR7jiA1d8^j*om;I2!)zb z+5UN;Izx>*SQ5<1)`YF@v26{_GR`rCxNZr#wNUXF8kejkro*Wpdx#U58nJ7g>i_bu z8{gFi(|EjK-mTZPU>!sT!p9Nc*ZJclNW1f$z%o8MkEe{JMe1xzEI}OK2UAJpx8nsN zq|C?JXb3PE_2ryEeAJHYLU84TU~9kD{Uv$vOQ#&sve_TrAcL!%U)Q`5$ktBI}Oq%ov$;p>>ry$X8Qig*TBae3=fb0arvD=m%k|LX>j+MEfBgDzjB2um!q=7!0iJQZ z9LTodpLvlw!Ef&jZTcn}xU47p#Ap+hv>0bIlg2xiI)xU%5S`zivFV!~oA)* zuP0^BRY8lfSR_g*&wtSemzng|+7M-hf7j^Mj*p*K{Y=Dovn*adh@0s^!eyUujNO}Y z0V&A9g(X(p7$_1mbqFXv@;%vSrA??II-E54+rQDe{Cyx|P$%#ZeMdy=`2*HbU+l=& zMaq9U4nv60kuDa6VsLYn$+BOj5=CwhB{z3|cp!%AJ(pFTt%$tB%Ap;4H21;1jIg${ zLsnADuW`vCi+wM3y8R3R5_cbdP}Nz%?mw{f%ScU_Ds++~CNy(v5L+%@UmLGr{Gln7 z;{!KL$Mo+pqLLFjvGSXjS)x;vga%=lPxaTF-{wB5Uv23WHG^T)yc- zxu!KGK|)}j?!`if-hm#DJTuoK0pTat9pqw^MTZlyY*S{3tg;UUszzX`jb9qGVEFll z2NHP{j}cmfW!Fuy`T+xCfG)#RTO|-IKMtR10TKy&tsl=5uJBl2)+KzeW%67#&!ah6}$9CPw-5grwzaUEK7dR3*==+ z!9Yr*BY(w3!<%8vWu)z9v1}~Dj;NRU_y{@EwHBLEUk=3Yp(?GgB8cyd zXCReNk!QQBBBcyz6<3r)g2oA}g1|vnmTza^BCk?a;2iJM*xt44V0L_?OK}QM$Cinn zl4!!mGK=KK^_wCG7pu^5-I*#IP-?(W-E~HL=_-cBO9zBJF__X?eiNz#@*RZAodOEl z9xn1L-PKPzqeUhu_M63#n+Rk~(a4s8E>JFS2Ku{sR#~4WiOvm~)p{Tczn{@VNk=J0 z0#~wCE*4S@0#1Q>=Ta`vXg8crL@is4UekVn=le8aWa$3%kMF$o57HD^>wi}XUkc)$Z)LVE|;5kW7rN!cPQQk31c#oG}aR*YvH1DbcnK6-8PwuJrh7|laVzW`6< z^Pe-2_L9Z>mveQS%Igk~>Co)p&0p6m(L3R~c(P{CU!uGC{(GAG9?6 zg+!4aN$&;$H$pW-w%+Bkn2tr+&&#6P6YUJkd8ZxCn5exP!th3=O@h=?wT-p8*>!( z6f_}~LPK1jpS6uLfQ4TCrRIFylafoN_~2%Kmdeim&u6=!tD~r&Ds3%+vKepZz(HQu zG$ghro!w%uiEl;xWmU0VSLHmaaK&P_q5C_Xll_OY#z}KMreh$!DeuHWK0F*esA?Yl z4Q#^U;JkyN{P4>*)f-)z)w!jyKUaYbS32R~R3ql0~x3Em38&kF@8 z*tU05UPRru#mw9P7MPI$Ad(Bt&XFEGNBxC?n#1@dS zLqb#w5OtQe$8}PIc=9|WpREElGzV{pjO!(ARt8KLQ`uT7NQTAh`NLP^H0$?g(oTl1Hq%HmZ#bn)^y;g{wlH)`@H*ug(r4#}krvO(V4J&hi|MBC)n+Q_ zz`~p9lOL&X%YHl9m4as}Ua4&<%v`~WT_8qytht5suMRB~9LM@m$i-&u@xd`vShE0e zVmGB+T+G$T_O6Wu?6g)`5|h1u#y)f%3btJh<6l{RySEgcYnjweV&b8=V`j%TgHGUP z@ea|cQFDR={jtN=W0CuTM=_ z_92q#u8_p|biHbx{+Fz7#)v^2{C`WPt#QoL5zI^%)bzjt56U3_%5f_TF&Q%xJ=mJF z%7`TX0v1m!)VEI_^pocnfyrsc42Yc4`zM3vs9ZfO0e2M45~Tu7F$*kSpYS<=$pG^O zA69t8e~@} z>1DxIIwVYozc+ua6G$Qrz}TAU?m_|qHJ`WynSthu9<_r!*^N?FB|yUY1k5(di3Z!T z{+dgnD1huX7R&CvklR&~Xg9l!p-rBsNkvx#*c@3n>)d;tz|3NvOSf};SBoRrIW;-x zG$6T}=gdR@dcrIemV;0Dd^$eWI zR>Es!y;HtJ`O2!wRc?N1->1~9|G7 zXZfxvk=GI5hW=gV?QiHlKl@sj#n#YYzyf6X0+a(`IH0~O(L8$Aa&CozFFfY-tczT8 z##xyHYP$jnmtd|GV?q&Jnyns7C31t0Huwk<*aphf?A}ZjA1s!9hB~HC;hwvxrr?9e`IZ%I#TFPn zBE|5PKeKc5I+W<6#ih{@x55g4cu~-4@VK7DBVvwp4QrDQM+^-~?7u0~gecQAjZ-fT z14<<;JA3e&V^8)UISTZZPEY0>zx!1rRvq3%)=)i$K9*w!-XVY>IKNj71(Kwg4AOW? z2eFu$fN)M>puK4{t4hgXV;WyX1>zv@)?`LZ2s0%Vyki%Cp?TN9MWzwZM41!ymQ6=| zTK%cKk}XQsDb2yk--=jiDr-olVo_Chlhfd^%uaQ1u`R2uL}jc2R=K05j2jxMR&fd% z64^)Ytw)k=`0a&KtO$Y8+W5lCc}jXK9fV#BEQbavn$U_3W*0$R_37=r0VJQmI4k89 zGzK9N*2L1*a0|xfPn$_YTHJroY01mN@|Z-$!Wc&!{4PNqB5PcJR`(B}Y)A0CCD%9@ z%d<-_)6XAJqdEIq%rgsF2oo9cf2caEsJObOTQ~0RPH+qE7Tnz}xVt+92->*2y95mc z0>Rzg3GNOFE@$Wc{+q)EjL|?3=-z9usyUyUs|*W4jpC2FGw;OM$(eBjZM?FJbIOK5 zj;FPU`C>WiPe2Mo;m~b+e|v@ip$R{1Jqn?t#JWYsR;{}T7Y-rD%43|WLY*ETtN!k~ z?0mig4#m9te$U0xS5%}xQ{0h1Vs5<>hAO0FZ2(@bU>gX}tm(j*x8<6*4JDeJ@$4O0|L={nKO9R{EGG!gTsR_U z6-FfVo*c5`+utBrm9c|TznwY+4L_Hl`qjIQrFb-0DQKvZY8o)*u|a0^*}qgo4FtB- zyq_{Q$uu0-m#{gJb8D6#v`dVrR%vgDgH^#?BOCM9{ z{#5twvr!pB`2@6nrq9rX3memgW&XPd-S}xE`Xa(VE2F}Ceis(D>$9julMzWGMizb1 zIvy=};mFC6cEt>&b8!u9)HRMUW0SYf)W$V%LzH_!Cr1>eN`1bQf)?huiL{}_w(BC!*pKAT58BOqMJAO&)KUo|3_Pp z+&(jU6kXjn4a5ZSM?2GR4Iy2h`1qo{1(lq-601f_W0GTWESV7J;Mp&c@{VzLKh69c z#o1~rPC?)?W5X|Hc(n9x(!KNF(!|!q?Q-^kGgbGfs>#^rZ_?UYi1+0WS+Ns8dPS|C zUGQ{wW8v`(sHRV@LJmrJw|aKzg#{e*lIRInl7Y_-6=l%LJ>{-HVp+$a^MiY;a56t( z#J-~D)L+KK)=S-Qg&5gnc4odxwdc8{fKjR!@sE7N1BMc>4;6(%aZXKPUyX5)~Gc@OaI zax<`jpj&Uos)Rz4SVNmwcmXdjBG-UVwU_kFz{Cy4yYPBntOXAR=B0bbvm@$GiStbs z@ry9=q8t1oH;pF$P%Zw~rO%_><-fliCdyD9)$vuA6uK0e75}^Rj$FicO}l*ufmgNm z<=4!JoHU$#@5E%4;3IIfvz{lLSUe6P5eXmx@YbcKDhJ*qKfG?fzj7@RkdhAKXd7II zx4Z)T7dsyeIKKRtANkbs!-ldt!{%Mulu|L845Zz?6RX%m$QTHBev+BSnwTCK;luaX zV;X06eYLO)9d8&$)=(dZm*tFafaQt?-lNYj%U^IMt$Um_PM@?LOE|T|gs`Yl=|PgV zD&|tqsmpW!oR-N zv5NbX*|JRu<>5S@RPyg2RSj5n&9j$gl}t$PG@2<=(?wUEqH8d0g8-=drK5-}!$_Y# zU>-jp8dk1D)8Ci24p3Muj_br&j8Xa6J8>i3o_z3jMB$B8-%)6vaMZ||XxK5|l_+R} zT5QaxmS*pPRWOuA0LjIR7OMsOEZ}Hdi?Bmbc1gtE$0nL}_Lv7E#6A-LZO;HDfP42c zA5XG>Vh~rW-tu=>(VO#HKga#Ovxhlwk3*(0!_w5?F!{b5m>;g|A=9~hF89HsUgnil zi7seSR!g#idil~&g9(69sHCbit~1-2qhuDTDf<;!c<7>6pLvF+`B!9x=zC)ghY_+p z=x+M%qNTT2ziQyP`1;XB6O!bKn=Dys%u*EV5B0W?w{0BO0p8lhj7z2_+*lO)FH0fr zvlod$yoT0av7O1Pm6V+7C2s|Q9w1d3w{yo066t6hXJF|YI@Z}>_NcTXO z(78nDa&**244?lopTUnhhYIn+#o)1c4_W^^-Mm__5@}5%!0q5L`0c_&TWhlPYrvN; zpZNLtuO4>e&6a9EgO)EXH#-9!nvI^DIog}%x*x&x!###4()Eo#mWbnuW#1-I2iMWB z`|Y(%ELGwu>uPxQIW)GFNpw_7VkJMx+e9{q6+P2V3y_vA6%iP4=2*Si#OytOlY;_e zb6zVCDnqk?+>pNztTd4o{NKr3Q%O_Qly%PGB!d`)-2}ve4Q7C{;W(V)xt-NomE-Lt z6;}+Yh6NW?!|?n~xg+=7?zV}vO7?4LSO%|ZFOQBtJ7mQDj?!k@KXuSl+1${$24_Zj z?QhIiEI)rUo2I>jpC2V^Z|9t%C|b9StQKpgGV$wDgHu@Y$1`v(baE20-hYd>3c%41 zf@P4=nha>&R6KjDMEGR`6#v!OWSj8?ksrMCu|Nd|*8{oT7i8wQ*hZkh7{vOM-@X!l z+_nlXhO~_T0%u)-ieCUJ^MVo;+vniDn!5pvBF ztnzWQGBEWbOIy^x^_&=q$Xm4|t-CRk@o0$)+3kf$f(a02Pao}y1g)(;WjtmJ7$5pe zulD03{jQ!xlLK^%pj;@fbUawG(Gn44nOYmdmoeW?WRL}8wg-x2`_m!!@6IbIL&4G6=3uVoSL3M@L`04HgbBu@v+uPUp+lYuwgW<(GmxUJNmKp^u zq;`%-vTd}S2H8?3MsiXukUE^3A!&HEjd6Kc6Q5SiiaC>?k@FWE*Kf)+=jRLLz8DpbKL>u4OoeG3RzQ zy1T|L0hcZ4G_33wSuEbLn7*9JLjHN#`MUWYinO-F$bzIOsk@d${xqzQoHk(dKI|7H zc)Z8i?4J#+)`{BSj8J&A^koU0HpbUoornE%nJ%3|%YY^BgszZxQt@nzY`PDDp|46n zEf4fJ#{zgiLKFSz>-<@stx?;EmYoFI)HEkG0eP>&A$1}<(R*jexz2pI&y^xHO-!+H zq8Z!v%>#9fGs?Yg6?RWfViOA;OOiud464A78a;}&iag((yDX0J#1)om=*a=91e+#p zskC7?MF$S$%pEw(kd2*PtS+8Z2n+>>N}eiL_~Qp2+4J(yRW}scR^u46IIvEIUyqfG ztE=U&P5G91jo8A@j9HFEl^Wpf>Wwtx?d2SU{ahdlctbU)DNR1%(rfCHGgb^9!vm)9 zR3-3!LN{4RPD^{1c(qv4-JxInp-?@M`Unt8bTp3uwdg$Xg(VRbhK2foFn2+ImLne} z9;8}Db7@`|22Qh9VnK%9S{1Pe`=w}nEXo)fTCo}M7Eq~y6@%XVXrjHRaB7;OP$)hSaMA8FSDsogNE03S|7SFPi*o8K zhc_MGPSaI8JtAgvjLuqQ!dY%1?S7{>Pe^inJ`o{^Uc*WfsGi0=L@5$fRad-`y34Cq zYl&5S#37!UX0Bp9k08cwf1S0p2OsA=Pk2D2JQ)DSS$^{aMw$ngoaXrN-?EvB%PCOZ zB{V*?#KBnHmA*TY4z53(h$?5EgN(Q^Q_PU3DyOwrrS@^PA=;-)JIA!OpU`( zU~rCFjK;u)=A3gcV#giVG_JS4F_3GEk)Odig^-5&Lk!~qk?j_LgC{h4Sj*j?)PL}= zGh%ppGY~+Fb_07U6>7bQ9Rik225WVvRdh$k@6;d;_HgKO&yTcX?zNzUREiEWK+bDx zXQtINur8Bfp99H=>E+x?wT4+6^?ozdn2T}H53VO9hWjb-%0LXKIo;v_W9XCW@WVjr zt6wz;c(yWlR*-_Q-!I-d&U$^PUpT)Bb+!6fuiB;pQ1hSH50$>`;(;d36-@d~Ss_Kq zv&->Cr-SIRgqOQQ?x?9EVayBh@Apl*7}RUKX!KDUCX@u)w4Dbm^r5RG}7(O}7%x6dJNLz*v*VYjUtK ztT5ZTLmxnoL$NI|!v9`h|52hQu5E*Klmyo_W-kbf=V!f@!p#?mNOb+tP0pTAxOkDFvN5#R?s=NiRD3%sX`6nS3&fyNKVOWE zPleOn<8!eA4KDw+)Q{szxhi`}otGEZ{#B?#V@@pH zC+v#M!jC3)I60z{csUQHxL)Av#MDzt<9Zw@1Sw}z=p=zq(!>jPK_h6KZs`4z>Stc< zj7y^|1cxrP&Pog5U6*xE^>m7tY%hWSL_n0o{2-C=2t*IG5c?At!=L;2 z@dIPO92;5#33d9+zSw(^?!Ngl<*((wr&*gtZ zflPD0f+(Q%AZIBCQv-`+*({1x3@pfPzIYm*urV|E`DJhP*BR^+sB9ZowKI0~Y;GI1 zgm!l1rjzLsa`v&5Sp!F{w&Q)+9ckR<`$Jp(;!88L>n)>k0Q)LH0Nk^`->0dnN>!k0 zyTCMZGuwQ6i#2bW=gMr!GQthI>%U>Eamz2UTRuXgDLx#&rDAkVg&N665J|zJDc0XV z2z}7lpkvxwT243$z6q7M(?SUC1Iv~apw$xD#p3wp=mc}{DUq8(1*6*r&`S;=C9*Q< zq9|n56c_~iuvSxve6!C;DscTG|1DlMwjUVin*tx^q*`FpW(Kq(hmX-WFmXx>l zAI@a7(6mc{)<*JnGcg5QzkI1aaK6rt+Y(mM#m&86bV?97Zh}R7r*rfScbDC8OS)cB zN=5J^fKi$A&#(kZSTJ2tvVBfAKuw%SEIYL>1I{ghc!Ixuze{Ukfzw5+8#(}gY=b2{ zJTX296VQ8l)jx=3$lc~yv;WDN=#2~wNSz5LEwVuQ7t`kr(+_sh^6t0pH((LxN8w z<>Q8o%Hx+xS_Kr>=1%O8CSBKpSjDDrU(sk+d!r9X#*W{#!YpuLCgjYOB%loJvjV;d z95Vbo%EZgy=&(*`a;vSoz~NT0yR|Xa!s&*LH1%A`Psi4*4eOyh>xk&LLk(bQ_+~pR z;(kb;%TkyeXv!lHXDS@&+bF6S?3&7OD~6)9tdWHPyz&;gz;&QAWU0CZwm#qGn}1S^ ze7ihccJcCj$V91UcZ^~z1sYVVQ}b6KppQjz%@U51z61FVO3h+mxFoHYg+TW>vPACf?O9v@l51E zy$#mqPq}3MLR}uz@mqxIl;Yvf2T$UTs(Ce?vfZQrtkoJ`TE1N#8FR3&2d4n~;mtx?xF;U7LsmPs|uk}T65;gA&wRyN|97-m5c(BM-= znL<$_UOVKGF9lkVP=53Vu5V|0`7)L7x|zoH%jh!;U@%*w(s?wxj7@%|Y(=Md$|Pzw zK2*4o5O6WW1R$}Txqh)-J`JzxvJ#5P1_n~6*2~gefER7xI5~!AXL(3H|9weZemnDq zSsWjAo9G>@dJ|?PZ(SP>aA5Y}ry_yBKQ0R0E=zU;ci)PoSN`rTutTX>8HU>1UnTM)(28=nf5Tk{S~e{m2gGGAD$>LnAplgUQB$urbOC zn&SC&Cr!PIM3gN>hurlhi(re08Z)L{Rsc2!Bt-k?G^5Y9Uo2<5Jaem6xkqG&wnG(f z3LD&*`KF*cW4;Gnd3_)_?!>-U{dPuyC5>M<>r(RehI2EO=obauQA+Wbi|?4X+aeyK zW?CxUB05`0dofHs)q-U@c;7UL!-JSrFNO502$k3ZI^cqsTiN)if8|U<$oL#6rEb8i z>|HCvK5V(5O4LL>V!$y}C0G41m5wsFy^tb?_Bk_@ z&-`dy)F~W_YC^2jF`pecrXpV-<*>=Ps;0D#ZLq?=oGX# z=U)KM8%~5U%c07-7#$N}Lx%#aK!LvD5?NcG>m4TGerhTaiW@2~P)AIh2kHBCv)jog}vUFG_`nd;$0poXO1boAUx4;0ZaFA1vfv!L7JX$*sq>Fg8<8OG> z^&~kxhX0v2Tpa?l%V&C|lgT;G{>e+911z15*PPm^HFJA{c)XKgWW&+DEJQK*y)pWX zbSD+(gN1_Hvg*6{Vm~ZEMy`y2gY=oyRwiNwus3Yk5)p*{h_|>hh0o?0hLR>d2>7!$ z0E}#AC(E~v!J2U0|E;BilMd-T1EP_O zrbxj18f^^?mC-iSzlI_)v;xJ(wrE^B@A5Sbs21xP>>ta%G6TiH^c&`LgEUQANtrj6 z)3F9z?cgo@x}{LeNaddJl7JOW09-*^$7%HIuQaR)JwLISvJkQeYyWTgIC<;sJ&0 zt!yGR8mQYh4}sPj)Qz(_K4T+wOL0kJ`6T+S1j@Jl^HcmAvVkc+$9ZisE_qa`FCSt$FTscUNX3Ejauqw7j)#zRo-o#G^~c7s zF**Bx``Aug2FGhBhVGkS06Lnn9e(KU)wt%20x`YG%EP{Dk|ykzz|rkq z;!x_+&%BDc)4OyzP7Guh6DU3(unanGSD@j%mgXAh%WUREvHK~iM4q6+&^~VIUO8tQ z2BcC6`BDkH?f1cD&w;(tR?_6uSR!?Un}0hP5<&Rkw~-IOR31wS2?-Bz|9hdPr>8;O zj=+SVlGeD6h6_aL_z$`@1{9?N-MSwd<{Ud2-wj6HhyRd$6_^B%%K$y(Lt;oiJ;v&Z zpqbHHd#>g7c`0(Xq8oqKZ5|PNRyD@JcvS^TCn#mK_s@GS)wwIE^=ztoK2jSf9bSep zH9vtsQ@@~3zxjdctHLy|BY*CPz6PZ7qX4Qj)fBE2U$o+N*`o$h5WJ>fiy*874dT4L zRoZDq+47yOL(M3qT&3rv1rBMT;X$AyNQ(<#!W(0h&^a@$w=TGq)p}h zH`J$cxzo*;ecR7VZ|V&RG|6t6NlTXx4HA8U=c(70eVdt7~2Jg{-Ts%>Z{_c>+4WG zihwc^>0UgutumF)1Z2DbNtM3}ET3;kAikw&h6Fn}V=a;@iMGlL<+>0fMF^@Nk2YO5 z<_cEF{*hB~y=SYOy&qXyr{s>yM89LFy}~|girhnVUj)}HacAs zE-|)v5DGJ9!Fs+KU#z3fA@^*LBL)qiSTY@GZ<}>K^L96$O)eq}9Rj9ADz`?h%D#jS z({L(o6|}Q`Aopc7RO$+c_H+UJJLf6OE~m{k@#Q0F@*jsUDMIa*_o&@fdXd)$?o!t` zU*xk<7gKDdfw2IqCf(ZI8>jgIutpUOFj1pAj|2r_Zg_R91?*LAlhF={w2#xoSkD+^ zc(BPwz#9zSU?N3|Jw)HTPHuNY2dbU=O&1~1;QFv&i_CXbz*9Hz3O6{ONcsx!c2pz8 zLI?R|JXs-F+%}o*#Y8>!nGD3eR+55i6JK?U?jRVVr5+C8J>{%x2PLrkpUjd+g+dMu zLxy(c0n=-K7NbiKn#<55ZmRp_?26tZ_OH(mhktcnPEG3oCQ~ge&77wMIm2(aXi2Rb zJRU9nk(jJd{*02$i(p1)_;}o)&2f8Y*$&?7T9%f9B_6U(w8(cdVhd^mQhVAwQaB2e zlNoeGteqhX0M+Qoq1un{{NzhO`Mz%p5_$jBNammF_U#)Ot{Srtf*h!k&q7m%19r*w$(dTK+~B!343`mFA@bu-4A>U>Vc+IdWpdY;QqWZ4|X6 zg2io4^4#t&>sV7F9~u@?jqU1ebR=v*q8SP%~;ek`B}C0+g*yU-p_mne`*cek5e~GOu5t*u~?Nb0}Ho2(N#YHpc(hxk_0QC`r%8Kr0TB_kC{))9Mdhjf{?>_ceLiOx(@< zF8vD+G}n4nt8;IsEAAl8_Qi%$0Iushli%XN%&mozB;iqTuG{g-+AF&HAZCxRWv$ed zTJ;V^>m_`MAPsw?Pw6L4&Y`>oHvyP$9fJ$9E3ZTIJ)xCmxeC+}xKQSIsasbPHbA<8 z|0alBvv&80#e<@?`%aTkjqnF6@L=1OV5nwxM_tSZQGT=Wa0RV zK0|Nf56#+c;H%(pcD^@9u7B@DbwtI^!NpNHeM)~;oMvnJk59W+XF!FD+v4)ksa~yk zxQOX@GuB$?z}ux%NTiZhg12v4rx~C$$eAkWGK!26CPq<@Z?21GCSdWB z76SVsKpx6zuBK@sbR)oF<8Txbr}5VZwWuaD5H=jM#@Lg>TzKuQ)~Hc8Hfnj!Xj|;! z;Llvq_^b50x)7)7QJ341X6oE{O#0mZYDJZznMl#5@zH(WqO+^QbFb|QEHEg%q#K=v zrvJJhL#jFYoi0xpW!$>Ht2r$nm1#^&dg$1~lvxwt>_kR8xJE5F0o~i$X!50F)|d=F zLYq^@Pul^?`)gZ+10z$O%e^;^k@=kBMH_`6FQNL7=BM=fiQh=i-`SGYd#hgQfv$+& zL~;;s2G9;v(*YG@9*$dmp{U-DgKq$8yxGuSOT*3_x*Q2U&P7f_Tdwk?- zp<}xC2pOYUp}(g_rYpOh%J?yer4vACjj4;f=fUwc;O0T_90@I_5}KAYtQPrj<9QL= z=c4$r_u8NWtn0%$+f3KfWu~YmP*9sjXp>vQyaWaUC2w|V+0*Jb0ibG;J<*NA0sg{F zZDr|yMT{mrzkwzLQjqclBAe=i5SOSMv~_?c-gxvo=Vw_AY;es&8$rcv-M**5tY0 zC40yJ{P{CJK7KdL+YXB<@UigsUoZszBAb%6wY9+xZyy_sv*Qj}zOj*lXBp~kT%$D@ ztn28!iP2)HdTxi2kAiZ?`1*0t_|rt~m{^|Djwd(<7Ia`bx{39y*I`EsB4;=*hpO4G zULoLd_eMOYUexYs#5nQ7)&(UJq%}bS6GCFUZ$FimuL3kZn^mz0#gSaJ0cFX#7s54F z+6x`{KGy+2FZCTel>V(=XVY@lqr{Sryz>@_eHm4*&_t zTbwrIc8B73-<~grvNvBWi3PpUflRn*9Wt3JZ?1eCdNMDbzdIRzWr| z!wBoU1A-@!WlJHP4#aJ0eG{3+Zr9DwkKdr`tK_${sQxCkR?_j!LH(Or;YxA)08({< z&>8rre~_l_OCXI`<=YlZ{jI-rA!neptcBh~%6Q}(T$Nwl+246t-Fa=Fm(YEu(x`w|)!6<#z1QqE`4 zdL;}=*Yx?Z&;a5r zTIy`L9{^{OQ|^?A7W56)Q&gmC7E1z|JWrOwY^wT+JtZ);C(!q!FOh;x0I<*;#sKtG z$^jUWv{Z;wd~4F~X5u?@6QltGI3R(zjjD(30t3y;GQEn`4^_}&XS8p>RQCc87*4F3 z8Ax$q1BQI7F##SU$vED-6KedO3D}mZ#?OA!txAz}Eu}mc!KX=E2fHX$#P5FdtB}L` z)N61s;F6h04qzDQJJ*t2IG`3<>-U*$2H=4N?^p-9TCtTji;UxvSr#IGLCFTaqe8MI z@Ay_!po~=@70-Z^Ho4Bjx!t03{+nPFh2h$llpaUhz_FelQR!;>{psQl$lo)fek`E| zT?x*Ly$m$@+2CKh6r+P&)S}YWq_Tsa@KEAdlk+f|Oxfl?hl_KedI_04utW(f#k-BUQf0s- z?R1{XXni3Zz{`r*fb0b4URbWtH9kCGttiTjt0j!q|KqxVpocQ2+w2MZpbGtKN*HpI z!eDyt{jGjdq|eIF$s}yn0FG*}&(ow|e@Y6Yn2n^P3BPB{&Ghe7T6mi>0 z?NWahrNuh2w#=+d)@hV2H-ABRc%xV1pM=Ht!CYPGsbvun7Iej;PJMpdx|Er41Lj!Y z-+X;^2r?GKJZ|J^X=yRypAoGJRjdc9yf!@WUf)lu>jr=S@@w!o)p|MKeEWFOc9=IO zP%94|EYpvs5atzLgHF?-*-dmbW-(w^tXfGos=}<@$u3>K@|;5vZXUul?}nHNuQ%{C z$Vl0Vn90lC`I$}jS}G0#Wc$NlBx}uQI=Y7$aUDWw4sorMVeyEws{Ppp2pthqfgW#v z&dkbyKRZVU1h)lbZQd&Gml36A*gD48xGo{F&5?1I5935fVTGmEi+F>nQBbs6IrqNW zkbq!#j1K`+D%;g!W393!Di1eF-#8n9PoqD38nA5p0+uZ`xQ<^&5Avl-FVu&txLUt{ z1^^5!oUHDUnOB)+6wtw8YWNGzef+!*i?a2~&+=l}GC!?Jyqrwkpy)f!xmH2a41U2v zdSwv<*&0bfKe|fpY)wofEpBB7wUiia?+fbr&7Tq0N@5??p>O}XLyL-1GSH^N`Z6Y4 zA_&g-qc&Hr`}^aU-miDZ?cNY!WZ&!}aIi=A+gW58QyJy}&GbaAJYeDS3&IGD4$9Kn zC$VQ>aeLni37h~{Cw%N7>vhwPmvtd9WsemzZq_uuoTQ9xj>BHqO>N5MCCvk9!dV>- zfm*qLkczFJNU0-e%(XmK+2T+w$HpVVm6Jlt^D>;hK{aM7wTjMUWKeLv%f5nvSC&nz zd%U4TF|PKqa?OIORSy?3J3{X7SAHe@8z~LK1e37DCo`c76NlMsbOWiTOwPfT%wC>EB2>VMcg3tg|OjDW3gTDVFjfQCRh&&@)mr z9?e5fSv6F1kAK8TP0I7BAKr@@xB)!1MDn>k*yXbl zN)Np}V44JAa!?KcAr_j4^T)+OJ4)Qq+?G0lz42ACfQY#K}NcX8;3-g zDB~R`i1>55rI_NHI1O(y(3GdZ1>=i$m!yFrx@a)~?^vUkw`lT8bP>Q2E}qPL(l! zA({}W%4&c%a_b}Fi=CmyWCr7z68xQ=&q8;SDSqSSqku1&s`$Tterwx5l#t9Da9<< zZjOd0pSHYz8I9aEL-@5X`x3A#YUKLUDJL68C4d_}BnYtsOp$>Ago<$;B8`|gG|RYG2?1sH*6d z`l1@UIpu*KXtn?wbpQmywy_d8WG{pBN~*iusO?7&A%t@t3oF0;FUIyNSx^76E5bQjebuqz>24jU0g=2BVA$WAzVg`*`DW(1}d>T zpb~R!gnZx${ZUdCJi{sgNP`u_+H74~sP(J)TcNlhDRl8dPEKSf%ML$S&4OB&yZ1fS#`9{LyJ!lc)+Z z2-p@T$v&l9Qpp@ra^|VqxC)u*Wcv@G0wH+o&M3r6uSqrrhWsN>3ZYJj5p)aDJt7B* z{FrsvSMp6a61ZE~eHnkQFsex82R!a;a%3}ml>K+GyblF7qrU0?F!l8%{8xi1%=PrU0?MZ^2~>RG?VAxu>_oH4`{Bj+|RwIAyfEa(Om<3t;jO|?*W_7~?D@B@iP zMIK-0V91TSUGe-jAQN=Weopra8a%WBVmB~#sM31Q?wQjJTh!-f9*WS(Vj@HTqy$Fgyj+ zC*$ZHp!@+!E{P#X@A2+fxXPIPfy`g(`cV_{Vc~ieK)tm$?wPY8ac9?n_G0O~N?slUNxPxRnlwg<0$) zDgr;hKmxUSNuFgI@e``)EX7U~fEaCc5N& z8f^zn6@(Otm$vCGiYWZoB+k@Gd{9n%3DTH_wOt0N1$1Yom*H6r&;|)Bzm+MU`wtadcbocC4jhZH z#}4h6@^))GqGw`Ck`a-6p!j@-EGLSZ0w8v^!$J2^V9GI)_NlsyrSkX1dpuoC7;+BwkgZx)0sKz>uo9Z=2o3)fY(R8m3q^4hkIj)@ILWZFF-8O2cqjIyU}7 z(?tG$`sKCGqprFqEBk9UKen85(-U67&qXNV^C6!Au*L6EM0nNyRduj!3LpRgGd9q9 zPl;V9Q76=dJCbu9OR3=&XdvT>BcQ68kLk=oE~YjL_QAPDfT&}NMEuGN>smPlK!Ogd zwYnY^!NhAVz49&WdbmLV(FMJe^*pGeEmP zapVZ5|BB;RT!VQF#Z99(m0mdtbyfB#hH}9;PQ3!qh#7qEx2|E*8aaDa*r0i*HcU`8 z6QKNk5fT78oxoBHexxhggxk^T`W6(rR7?dD?W_Z+)T*6dPy%~%gHnS>ZwUkVAkQwH zHQ22fXJ+YA-z-kn&$@g@|M@*6TMO=Yq~(xNsS>FYj#-yyDo0a65>TsI!TU{UsTsYH z#-!uD+t2Vf%VL~9e*RxVIyC{P%QJ;hL#UGs*dlfWX)6Af>QIMjLyZTM9#{%=htgnpqNKoAlb&H9`Y@lG0EaSbjJMXFXt~c@O*=BJ?Y%QEsYolxJ z4x$jSVp$Z>*{?41gXb~+0gi9r*4O#JLWd|^dm zbMq>+Pip-!`Mk;dKi}WK76(yfp4m^(#d?BtN~OHZQyAskGVz)r^0v|AZYXYpWze-s zMG0VLatw97#uLv}=ln)BhxXeDy z!#<6HCderGLx3N1Z#_d6=O1NlwA_H# zUy1g<_7Y7)ozqMH{1IqTw_|KH5sHy}pgSl>V#q6_nLYeav@;V@|7{p%Oz{#3Phx}f zGvotOTjn<*gNRQgzeFS&h1j{7#M1_jPf~umhj3v^N{`7j68jrx2LWmhg<-^!a`%o4 zD6fUqjO#FGtR5cD?1l`nTL>y}%6Ak9C+_Nu zCtwmT11_7e`T?yWFYX~cF_Ux75|5O*V@Andp7U+&4^y#*W}pH)Kz3JzfC#!W^WVJ( z(1usCROywerP&&D9#)k8_{S?3&ARYzgNlmg8Rj}3T!tsS08dCm3{-|JMx*s&FbbwN zogz-U>^`#rKUY6% zUGBtqCy;Gh{SW91#jafP+8mdQUR`kVU}i+B9E7G7%tSQ-B1|NY0pnQdmIgv3_0NRn z(rnc_Z;*ahBVLa<*4vFk%nkLCZg6!i=tf=#XMu41m=F?&bQuYTne8}h>VtKJ42rzg zZ$wZeYI=&LySUmF;`efFoR1(0Mg4={wEMz$?M;axe7WKtku#NN#e8MNi#>rX0Gjnyr&IP1Zzsd}9w~x3y8@NqP|ow`Jwff|^Yh19kt#W~LiR0(<-l zgi`|OPk$;9H85I|YF@GO(nhn1EGh)Id>fMW2L?ugJ=2l9CN0@f>R+0pM6R;&c+xK1 zg;_Gw#a0N%?*(y2fBn6^Jl)#ok%?bxz(pEry|2VytI{UX&60NuG*p?+iC4<)cIC=5 zJ5%O7Gv8@c$|m^yLC-eH38Y7+Dc&ZhD#*=fAk!|I{J6#|iat zDh^t!PZEpkNraWel_sl6RWz{P)KaVQNwNe-!9ZN))Os``>XajN9cdA}qqShUx6g1M z1!zo9BBDuy-kDOA=9E!WV=ptn+%(GaZs3Ak4GuTuR&_b|dgC`*ToDaddfPF)!Evka zyQxB=iV|mfFr4qOJT-rg#R{yUZe=;;d`v!nJqTD9avit@dHD*2VV@oBU%SYt3GqSw zU0%~(xp>qzd9N;;KjFOnKaK0=6gkh*PP-VAsBTWZ&57X6#}@gKUQUn}*h^I{Xzw7zg`c zR!J#1Jm{foxGH)I3=aSMQZ3>)I@PajXFYx>bGH<*uSqS>!js>J%4TEUP_L$WBm*>y z-R`)s8g+P(UPa{&+ICm15z*SZ;i{FzzXycvfJEtspG7w&Q#Vy+aX#b;Q*!JOOQ_SX zOD)E6N|YH^x=SZ2v@`t@&C;ABK;j4}m0_H{duy&0 z8n`0|eBr^d_|D%sj&Z23(Zevt+V9aQ4o`*k-3TzngJ_I!%+|CxTlc@%-hU{8Y z!uqAMP82H#Q=jd2ZD;(gK`b8Y5ZQI#U@|6}q5Z5FLI#`sV#GvtiuMDlcnyLmfnDsk zD-#>T%?&=87(}nbg7@{Yl9fYfsI7ey3;mG&4^@0W@L%BJXvyHYN8ydi95!J(EwcGDB=% z6jO3eB)LL?3~iwhWYJ$}mScZnyozyUS)l}J5^e6ku^mKF-o4(i*7O9frWM3Nb+QmW z?t;^@J1P9 zY@$Mu{{#R7T(o1=Ji-vcH5SbCyfXQp`O}M17#WLsk9kpQ0dNOO8;$-@{JJkH^f>FM zJ_m!xw;ESwz>Kf?{ozwg%wk5>6OBo;A+AroE}2py%#5Rx70$$ok!!weflzZ2g;wRP zUoVe%p2l!^P@_r7&K$(%l=zAfRc}fqh%@j+v7Xmr)F%K@sujkPx}=6t0b^puChTU< zRg&>WEAh@w!D{3I@U2^^^aIof0}C3FLml#I zxc%4fWsl{0##616K4|nu!Y*wfd@r}wU%ajBU2D-ijw;N<3LJ+7_5^2(Pst8Y)}eiG z5{c@+j`U)QDbu_YjXFAsXmDMF=bY0u&-xmto)epS!c z-!OLe_#fkIFP0(J_+Bkk4=F|Sjfx|RVjM~Xh^;TATR2-0yL6iP$K}KiK{KOe4BSRL z*v)jE01pg@FAZ7gsG*5e7zAtA&T)L=%qtG11GOk(C`&jTxY4{A!1}6uIVIH*>@09_ zMoa|~Q#P5pX<+6*sn>!szhkmU(4=jJu9%kr%xkB;Ai~<48p2|OuH4BeO*{a&*)!kM z$ytPr2~5AyA^q8379&o_Yo_m!t;)Z8HnSMbP+`PD$NuEv09Z8&q;TE|s}Q3&Qbcw| zj$A(ohdEg#B^_-nq>^{0%5+RO5T^gdxHbNV>IS3eH7)=*teUN<{@^#yiTdU4 zBRlKlq^OP>d)H#R=>pyir%~;k!UnKHk|V-4z;Dh(KaU@Dr>~n^q3mS1a=)0ZE6gwsdqH z@Mjg#6ahW~szxl}#pi6B(a$9jeq~G!XWW1?ZL5K$A-9qQ;`z-=(NQ*pyvH%0-_w6?s?75O`};F;>$9dLe)Vz6$noCn%_J zl~5b0GC&Nc`o|~E*l2j&_W^k;T6G0-pu>g1>IxL_b`;zaw)Ovd`^vDWzb)KBknRSh5u{r{=}@{`N;*UsLOMmdyHi1sMoQ@# z0qGLy5)h<2hP#LVIp;aIKHM*Ne<9|X+4I}6_F8MN_kCRhQ#=`9pGs&> zlPz$6=)aHOQU>TvSy7kRGK8m%B)1KQ+Z2+XF%Z&;Q$YP}+tzsj!j#x9bB;LHPFeUY z+L>ZOd)5?s!VeYg-q6t+=(qemP9Ml>mN4Gp(WW2p>VAuwma%cJlzGc4O4aE<#j?w_ zW7pU=R(AY?OKdqtJq5Qu@nU!q>S*^HOH-2K$@&Xr!hdgLT)K0=L}e@roSZ>Q)a?Fb zYg`Z?iRxBg$*$5Ism@v+5en{BepTQvH}-nV~>?%c&L!z?6y&p26j z@$54G@=EtQ1X{JxkiEJ>@=8;C{g*hBOlLPHk0P$NqC&&2T9U%M8D5PUUhP*u5|CX0 zzv-~Ov`E)`v`og4)x+mL(AGiM1Xh{$esUyaQKi8o%}Wk>hry>hub=@RnC!muAc@EP zj(D&H%RIEN#_?!r-3+3N%c-7%EZ1`b|6=QddQ1J6g6x(@_;kqP~i1!p-xWyHZAmBr%wT$&~+!lXyZ z10*T&1lth~{WT*Rxe>`mS^^vSIwe0ohsym*i!t$ev4GEI{dlc371Zv&|IzgsWioROES_DVSic7wDPf@3i|pV-@N;QR)h+@G3D9)M7cWtLZFQrgbq z4BQTZ<)-h)Okw56-s}vj1C}~d*>GJymb_s2nNyHM1Sw0cR4!8g@C zkVWlsW7a6hR)$?hZ&yAhf}{g`371|s79FSN!`BhnQVFirn(X%k4ZG^yoRY!`%H35hB`4)Kz|{u2D4iN zk8SUe1{su->C6a5@_I;cm?o8eI;p>mwtLCfitEMLD8(al>Q6A6G+6`C9+oC%d4xCz zTGX7=fb{RTWc}h})MQE3%^Xb%!>6QN*}=fvN@tO4t|Vr^oVIWmSZ)E1uXA5D{P0nZds!yJIQ;F&&(srN&RxmGgd9Xwf$~>$5VJW){7H zbID#9Mc`(uD9ER{M#KP|#k7pHFXBAQ__M^IOY+0D?;e&YlP@b!+PCx#S+K|dSd{;K zAWN@XAkpeKkX!|b*AvmFL})CJxgk?OF?dU5em(~!ni-~^eLALM8zxwOJ_8t5m}E&l zX5AZ>eEkp!oHL|_G_H&@AS_V@%6sz3bxL?y$;FwY6=Zo(NLJ8R>hxat&5O|KD_ck^ zDP@=p2ytkBuj|DG$T1gmzIGBOe~lo`q8Mb2EJ(5$yB1TA42<~To+>28`z1hsE{{hS zJc%2;8Wxss!89G_={dsoD;N_I!o*|8V5LsARC#AO-igD`VdmdKh&d1Hq!I%Q4(iS~nEU%nh(&j{Te&wh& zYwCr&C&i3r4r(yusF&7Yh94vFYg(G@vn+G=_sh&{{Yb+drISiVwX&U>q|0pLJ{K9t z@d^WSy_Mhgy=Lsv3_~=-&gca9>|Q7J|J9N=U}fFtvMc@IvGw7Qfv!YSKUlIqAp8u{ zro~mswqPPiSv(@+Xqc9DxT%onj;UVSo^b#cmB2i6&N&Z&q;k0bg@7Nzb1#k*xm_NmC3JIBjr-t^(rEdX zPJQQj|7$&PRJ<#e$J$ed{?qPmv6b(|*ZZBXm_&b^ji(Lg(+R_#RjPK>pe5Z1Dr&JU zFl)lXQJJO+PdsH6D;k0G_PJ%g_!JtE|EUPQKW}B$1(cKu+$~dW^ewY9MhZ7bH!=RO z1c7*%U05E5X1!74l(ZM80$~F$pgQ^a*3zI(#(~%1W+OK*3WF&`F!Q8E7qZ9{0DAz! zBE}f=lp9vGC73Gx^Lv#{iX5HBZ?T zxs~T?Tb#ftBLV$WW(cy9P;R5i2a=i}3P*W5Z8k2F>2+WH^E*l(YH`iMBI`|2={Hb?`iNmjej!XA+y;o^&nGghXuRPDkoDnDvA)=>=N6%H| zdYJQ9MGFIi2&#DVzSi?btfXqZ>Nx4MF*kEYI!~hcqr5!9z>_YlZ-Sg}OK)!M_I~jN zA@1j!2d^H0^eY7uYH>_$fL?)?aAk9UjQuQxPXN0%7}mJfE2Ox19ZRf^?V&{u_ZSO? zm~WUL%V9S@B=eJ8A_1_s#H-IQd?;q?dATx*j2}HE)n6_%)Tw~dzW#iMa%OM4>q($D z2z!xJmPL)DqzbAr*2MGze~ZB;d;NuH9(h@<`)M?pypnC((NNb$M&4}ti*pPyPh=x3 zUlEcaBr=V7mBf#7z0tBMFz=4S6pJ^YeN`H_l4yJJ z`Efl9F?2b*E3tytqK!(D;#qo4YSxY+$7$Rii(|_{&wqP^4k3sP6Kn+M6kK~1|0^(8 za3Pf$iV`fGanlJI!-m!VNebN9<{vK2beobTfvp-W^z+D1B7L0668tH+{f2GuYK8ng zQ-h6&y#|S`e~9(753B6+Uy%z=*E+Z^`t2wnYOQW);9^`G4-|6IS~@{=9?>t72zzsn zblDhdFrkcnl?pVMb)j#3Sy|Reg26V>GQ*B7Q4$j7B3Jonok+1DF#fbiWXq!k9n%@pWC?|{8;ni-h-FIq63*vah;wTwBzOjvI&rb zf?p(k(qFlXh*<@NznFqA*X|@z`z`6+0U= zp_gVQjX|B9rWQwl0xfZFC402+L-3=VlNDi-h~VUr$!HWn)c9!H4d4yh62@kb&{}`S zeEJ!tCv&Qf1W981^mmgfB-rf-88LciF%;QUjAanhNUdcvN<%w83M)Qf(}{FwDymY0 zDI7g~Rc%v8{lV_bv$*Lf!4YYwW;xf#^EQH;n>-noMA4IT=h6>GqA0rE)G#YuB`k}! zY?1}eha%D&7iCWQjewbOpX-%pl4!9>$OM9=r#R|@-wfF+{2noeMm zBAvg=1wY3o*fIKo1e3Fg`SO*MPl#h`o8RuEMqh6^rkQ?D`mg>$lq-Op{MtCfoMg<@ z+C~=Cq9(nW??}-#Oqq$J+(%M-EAi$K*)cAakM2$N<^Z|Xn1p@QR;uDa=5VIo)J`^i z<@DV5Fz22&YLU#zAIxu3=u)U`GS3{dKEN;n#?)AJ^``!sF4{nPdmrd=K1Zj)wu{*y z2~89jK-OEXEwGqmAm|~JIrw9vs@{g&?roltQOVKwLUz~9$vD@bF5P6ePU54&jQ{5r zD!`NkX@8h)HS1*=?C@D5u+9OpfajSTzH^P+PPG%%_b5`fPLjW4whNZNdZRt()~aFc z%Ov&HNy>YwH|T*yH!O!;Ml7_t8l-Gu`~~z$TxD^IAzDcH+C^S@ zR7SH?N-QdBX?%T_96^?MS<0`d3-E9JQ=j5K-LRB7zx_%=;*V?}1sE2DHsZVuklNao zEW{`RSasQ7(uIjB#(ymS;k*5(1ve}>y*>I1hjhX(?VQjRkBeFzIWo-<8df$*g8t=P z0uo#Tq_xF|TLQ1VG6o$yotXpvN+7_vFIFc5i2&5n4gD9uM#t<#(Ig4G0ody~K z{#6_r1N10TK9)|Q66EDCp&rVVn;?rMn=HkjA`G)$YIVaC_(+jW<&@*yhgVuj9rTFB zgqAR*LF<^AKv9;}KSk)TA~~1rc{@EScD4AgC%Wv3!@1&WkF-~x`-w&WE_&)YVz2Rt zXk$QBtTv&P41;Y0V1Cq?+z*#%RV94hJu)E}N?_K1=sZ4aus&mT)HfdDj_J2`pOw#} zS_(tPvuaUkJAd7t9CFX}n9;U?fk_$?M$N<)8IFNfKFlmgUzJj#_?^r~BOu;9q9B=D zhM2gt*9W(V_;?`cQ}1_jwer!gpR|%O^zv$U92>q7ff(0Gwicf929)30u5gVHejP&( z3-RJMSA3_Ma4#M`)2UD4Rl*8IsQ?P=06(3}i$=Xb5y?a*Tej;r7IeXKC{`6~-oN(4 z7wi(%phKC=6obbFoO&4+D=zc0(Gjct!8om@w-A*w|NXB$1@xYq93<*wu6%y4 zgIaZfs9B7>&kKDi{S?QdvS7vocEKBU9Xk@VtKX=y36-SV&Y1cxPoypCEeuTg?!N}* z=U;zEUp^HW6>b0Np&xhjo=;Qd&>ma0=ZrzUJ}L*&@zeM9w2>j$boM{k&ren3e8`SGY26li%jZzyjKpLk zi?`@Lz6aRF)@P<|thibgBlUTuf6%#Z=Z zvvh#?L{JKn*ZcPn-HRWRJ)nOH@GW)w)Xh!Ach~{Y0`co*yy4EkT$;^lsnvv@4D+4`SQ4C5h+8DeRCaKK zSWU;u=IA{;yI5~%XBo@UCX<=Z&R`%=$AWK-q9QBZWbjMz zMeU%<*5`6Z0c!?`l^LVep)MXzMezi8MV=wj2X+iv3igkQ+!^&GbMD>l@f^CQmSi`* z`~hBC+#`i@Y?xtDN?}JbJy7ATMw5Ib9Vg8#zPL+$4^(E4lM&1d$wK+J=@~e(bwM<` zM*XUVGJ74vfYRptl_&7Rjp%&G)y7IWoljV|J5pkaMx~6Eqlo81LmPq*rc|IHc z`{0(;l%5uUUjIFBBU@fOa3iAU_D)wZiYZZPqu&?>WRWGD6Ld@2*J~EXJCz@n2o`-K zG8WoA>w5h_jg?u7H!ViJG%Bo=P}_l38;BOTip}X7-~V6^&G3pZi51hjr_Yv3o z``6Ab+W*vIGUY_eY$_69j|8RuHm1QMYDHDh`C%xB_I#x8JgelC-cO#n`x)|ZFwXsNErO+;jZUoNQ|^s z(Tg0BvMNOsMf3YtG7(7MgOCCQpM>{(1H!t5sz<+Fn|@Vmedxzn!a@uCTd~PZI)%N` z#DU%Fd0my!!9;r!9mX0q;cYKJc(Ou1(p@h^kuhx>!6q9)=c_#i zyocpYD&;!T<-f%($jHca%W8Fy4QmTh3)qo#3>YUPixLc7qzzqav%`}G|6s1;+4}d# zGGv;}Br%P~mkr^vPCmW1N)g|azk16cnFdj2wIJbvNIYrNC@<8$Jb?5EfM;ek%Bbb( zxtWjZ+5FaLM+woqtg4B0l3}1B!`3VRF*9e%W$3@&(csA)G?CYqF(O%8+HX+N^;lPD zj=^l6q|}Vrw$+5IIRwoyI-%S>LqF~ozIgjg?7RbSMb~d#7XrE4c>7&=s}B~>QN=F$ zRN*o(ulyA)^B%8W3<_rLAi@r)=6;h7gjF+0M@cT@vE?AG7ey|1nN4r1&vQx!^EKSX zvbXO6#9IX8Bb&aYQh{yRUIl8oEj!2| z#7ct98e129Pvoz7f4?9wwj`T@e&-q6R1fgqAaQ*g z{?!t_ZWvr%7kJk7{#=t8>29nk*>R*N9+u(rs%6e9$YT|lVAJwAr9Ly?E6Zj zRoj!xohfWheG-62@X%1AO&Gq%)_kfX9}#IesJG{Rr(^iQxrUdQH%J`5DlTS;x^|R% zD*_O}aFV@edLb;9_3xv~HYS(729i!lZv`pcEQLQzA3m`WhVcLCx6UqFFYYfJfW6vx z=$o~=MNRT$8Mxqm@oT8`3R?Qd-POL|S^8Is(C+U&6gWkpdg#Vf(w+_fA19rQp}|=a zr!3a;?I%><=zJaP|58$+QPz=6OV2xL3+Eoc9T#>GGZ~x(rK%Uy!ZTkFuMXW0hx>jZ zzgwNGN=eE?uFw7*YW0{{>M^m#!sqGjpKXBJ^Q1&|)H_fD(y-|F3_-Ln5Nlp&CTiYe zu-a``z=AZ4$8`@!u_=_&m@4|DUqf-$&SRket?ui>e0azMW2(Rq*;_K$y(({^rSxOU zH_?6!ht@a4lSx-5H-0|)?>1D7PV^{^v;At3TJhFBC{bHZvsgtMigr?|BK-~fn{4GK zANu_;^Krg_j(OVsnu>5)FNLkkt$G|?5MB{ZYm3pmZt{=mcDLa#|7<93i*4vewI!56 z=eM|xLHkd|>p$zIo0yqI?`hwO5yyg_L(_TNHT(Nx?0XUe8H+Ff&ZrI>Uo?K;kyxOa zO>N_B@lQxIEhi8E`*J?E*`Zqb(Js_p;WfQKbD`~=*?_&PU&h&@j~KRXnbU`J3HC(u z_}{)PPNnSz!|>747h^7-X-n_vH5!C{n!H}jZ~w6rt{`gjj>wDLfp$8danZ0hVxc;IpELo*Z-yy2;5 zU?8QdJ6$^9FpCgqP_NAW+R$?(LLQRe++a}e%CP!6hGcM6hMlx)xhu5V9ER%~dmB7r z-lH0#8BNrFiEyvEv-;8i1-UhNsw&eUSn7W#ma5|+8QvkpINt?^nf1|8|~ zg?#Dw4$@`l^ZoIyAwW?+7nTbt&fo^Dr?d6bh8wO`w&P4`Md360lRI{A-;z>MvGw3_ zGG+}_)8nJ(ean=$+xEWxA(0Ccj5%SPI@arO5;MaT)yWdxbU9C4Hj80-66|^~F+mJ? z9CZ+ixL79V_iAR?t*orL`CKxFvVjB59n?X4x-;_*M&qBgV9!tKaeV-Tu0{*yz!;vn zfN>7#RgH=Cy-Npx-&}-MUIV1e3mRWy1_lOl3W|;tj+aT63-|3z3-h6LD+}IxJy(mj zeumzE>l(q7-Z=mtHNulbo;*F)1C&};PCT(7bOlKUJ|W%J?vS*yIj|y%*YYdS^3~7* zBw*2VW5L07^QaMea0KWmzgyLwBbX`E(6m zM$I-fA%wK)eXS&s+Z7$@BA`N^qrw30Q~%uz1AgL*vVnNv-z}9I5l{T5tp)|>0MOEZ znqk}ss4n(P%d(mACbJovX0260hFD zd~c!Ud>PN*qZLnHdbLb4mdNp;SJ_BoQXVWq5LZ;kCJPgM)cT~ZiEQC$`*iE6z{97m z=qA@IWCxR#ek8!5Y;$SF`y15L(01c62lQea5i%Alkz6Yo_7xr3?hD~W%qm%X(&HmS zY~a%I!8<^|%PFu~y%H@6i0`)pQ#e!hL;cS~?>xxr>gprk$7GDByYrFT72k0E51IY% z1qdgf9v?4(@M!v=4-n*w&}4`7HU&~MtKfjIXR}#tCW>Gn^m6Lc(b194SCe2(e!3V6 zl`Jr>G{1%4G~S%fZna3z1_0?2s$sFK9ZwNnP!oqGs#13Mes1sq4#3$pZvjIH&|U=B z2Q;@lekZ#ACq6X&_rsf-gc~cqbtdyC_L*8){T8802ED)k-+G6RD(fIl_fGC8fm?(F zzRm}1hR5veLI^_4=X?oG+#@H(P+EG`5R5UH*6lz95%G|C*^w{An(}|542RtK1Gq`U z{M!d_zHTx3+-#eO54>oAR{v{n&FHV+0PO%*SJ$lK!m$w#b1<$mcjL+g#&zdzTzg~% z_2rAl0VrYHz}?Oc6Y*h)UE}C?l!=bQ`BiG1LYkYrJ4e(T!Suc=4u{>M2MBbE!p~RF zH(!W*`QfQZuks`KztF%S8!7>#ao5FEWaOKg8e=78}rr-d6)Tzy?O3%6^(tOZ zqwGBhB**7ao;)NF*uRH}QKpYaN34>E!p<@?y$HX@>}+?w%HaVrGIAqOomm#bdl!#cr<3c&02lU032th~QbtD3j5X*&K zEu4ulCd$ju6U@0y8=W7-`YYv%zuh5UxEOM$PgkO+j9%$ytL#Sb_ky<|ShG#eJIRu6 zsDzv#A+Jm=EY`C8RHKhjR96dnknu#8jG#Rv3kJ_IRp0wrZN6Y~Gid@Cy8rnn!;2V?vqk?lvRGJ)eMM7 zn!iNl_Q}@@iz#g#UK*s%*V1Jp;x>*O-y; zpcQ^n>7BFTx#u`WdU4}&$0A|e?QwqUiVsHv#5pPJd!p9XvKPTmmC-7PSE64tg+e5C~vF)9m z57Ut5Sl=D<{-@q&yC-6Y@v)Eh=6#L^74Q$Q+HS8FMn>>k;2>l5jEgkVv&ZZp+V>SG zWE=lyWelM#9HumQfP>1oa5V4C@2bIn_5mg3p|SU00la{-AAG|jHNc{BJ;e3)2d`~| z?_lIMsjUzs-8(UnWSvpe;J7F@e02Sx=N+Dy2WeY;?|T$wrj_L}<>#AV~sgl%`x`qbxtJA;a)YPaDFb&tJ)E-Mnb6}|M&cMR~ zuJNyc-ooQ*b}`1$XY~Oj05OT5Cha_iy%$_!TGM+kLfl&MBvyCw^w{q~sQu1gxw^Zv z4M^qV-=_x~@VJ%S0vG{@JBo+l>mS2qKU*DUk8cGDg8dunYFbJyr3RbcKBPB0|k;=&UcG?Zs=ck)iWy}b5; zgF;RN-w!=NNa6Tj7W*qCCg1MUz>$GIX6s>c0$>JFe$>bBdO*6SIH*aS8X4n53b z2N>7Ix5v37HvCQl91VGDkC)P|b0kHmVc_IaZHgZD`OW76d$tg`uwZ<>GYn_H7YH%- z+IoZ_)4&tiZzuiM{`ZvdRkYR zUsp$xd%eayIzJzMC!d(szlac59N=nuc;Q2hpf?A{lFe+9?Fxt;dW*$QSPb9JSR!Ns zho`3}gz!d0!KvYQ=I&3H3qLMCxES`Q2K(^N1qr3`BL~Z5`|=v`eM70e&=+svXV7`K z>E)0IZ`#S)&U-Xbxe;=WVXD4=G|#)4#RBKQxvy@H7B&K>kwgIGoCF zft~T}UlY0HyXQ^Anv8jO+OILtbRewWiZsn7K4b~-k}x5>4)^9&D#Z6(_N0biWOVP;3-`93*Ww>+#n0tfD*jMiLMPp?0XQC zoddYJ;`)vEZWG$fYtq|e)mzt`7$vZrq<}jJcw?9laRb8bHn|*29r`5(2U1E@j=tM3 zd4Q^w5|hi+X(4o35=bi#A*@2{46_L0Tf&MS=1W{}G@Am)0JNb9lz}b?!_P5ROh(TjK=7NAGFRLO`A!Qo$KLBFT BYFPjP literal 119713 zcmd3N1y>wl)9j+bEog8J?(Xgmi@UpPa0{*pu0eu3!CiuDg1fuB-^u&QJ?H*{%YlWn zGtA7+bU$5PRUN6UD20sh2>}EGA+-*&bEUW8}N(AO+w2}&C$Zm z)7Zrvq+smkWasE+XKg~_VeaB;?dZV9$iv7?Ph#cf=H$xD#AN@!J1{!BSTeCgOE&@s zfp?PDb_Ib@jsN{Xln51DgCIa48F3MHudI_-p9F$=@6Qo$b*#t9+F*U~DtPw%GaQ<5 z2nn1j359GSg`m7nBS-%4oZ1fmia{bJ<*1sS)nmHw>LRBT`oYcEUw-#9E7^Pq!>$Zf zzh@FsWCW~KFiC^RgfS?Dw`NJ6g3cs8HE~+Y+RFc(!26wh-#1+w^a&ZC0)ngy4!V_= zO{r5U``ouH+-$iKS?J}W5A}av;*aSe&+j1~Hp7Yi|L=<)?TgvK|J@1rtC_J+N#pi8mDL}E@czXX#0(`P~PoW&YJME#m7+r@Jm`3|;$M-wOOPqj99Ixwfu3Fc9 z#h38+3*w8_bAKGe_ow;k>FJ`st7D=A1xXtvo z#dNVa>5rW*533|_iz)cLI0*?-%oU71U2fV=)->o@^;~}yBrg4*2jI;1^~#^P+Xt^w z0}=R&7~D>vID8c(5OUb6vB%$a!RzSgfP-d?{arC@W5xa{)295@8zsCCF1#;w^>-b; z@3HQBaMkfbSAb9)0Z*_+edP0bSMFTP?VK(PH@DXxN;-d`&B0rY%)`%t(u4?Vsx*7N0|RCbss~V+2PycT3H#TcrW$BP}O18 z*O67#M0cRmmV@dX&xCVk%0AsM;v1hcd8bnF@-jOhgQen$29}mSb-tcDZgT}(b2)Ex2aPrcu>IbBg75Zb1lg4lJB25WcXJ|v z0t?HSQxTQx@IZmtG7$R{K1&*sun-+1DQ%5VAlH_S82YLQ6*Df&%z-}yC!asZsSteg=>n0M^Dgf9BIq=sh~?YDM7u%Ld0GkeUMp?$K zb*t;Po%DUatb6O8J?F(B%{VtdBVV?3bfHgoR`~Ha?E-~$+hSpVLI%u>>NtZ_5;0e^wnSP%;VyPITyUdGBP}W z^S=-bbYR%)9j)mfH7{3J`tX}GGKw4?-c|8&iq22^1&BAC5BeDbS10EHrT5G-a66~D zqCOl&{f8D#G*NF@HW2lsa6@95Iw+w$h{TKrTBg+nPa$Q&17m${Z<*$7GKkr3*xC?d z5Z%fx=wAytz8 z6gu?%W=Q*xE#c#Q+fD0HzfM``I)aUW@TDsJbyOk80l&(XK~#`xLN;6FF)xmuZzW~v z=1KTF!!H4-vt8L`=jd~R=U~_W#A_(S(jqP|TC`lm08^JDqFuW3L#t}2D5>3IFRYu- z{n>zRb;sAPx8ttg)h{E}dDB)#?(VZ{`osIz2WMxU^0vfd&3Zx*+>Z3a>!~Kku~~DxrIY1IL5C8=*>=FxDe?&n6YuO}{)7@tm}eo=uWL8h_chr-YPn z@Lp;?c-Ddg@r zMDFH;;=Apo|5VG}+5M`Y{qi$WOC=L_7tZOrp^f&lOQY-MYci=M{w-F1?t&fvDPb7Z>^Ecas2Dl|HAjS74$O_x9Q4#Ftp zXmBFvqXTa{jrZ!}-8T5w++CH81d_sE>kT8`ie;9+h$4t?K3fkPORGlQEpH9(KCXJi zbFG*XImg)#`j`56mTo(AHRfDm8t!RpcB%(Br(5P%5?|jupH2>Q5UBx6tr{g=Dk9&x z*;F0fawBbWv;{4_=Fh4dx4yl_O3eES8!aryMuq{?1c=F}vscIoyD)-i?>fiJY!1QS zb9`+i(vW;JA-?%U zkv*ATrm~>ZudQibpO?>YFCWg05`!{T;Ap8Dn1+l?7^tdMY)cZ40#b8z%kt<1$t&{J z3s!ZVmhyCSJm&$IHGy-mwwR7-JL+zK>IB7h-h4})sc^R*5* z*pP?mc>ho-Vn0j}GYd=5;-dD+de^&QLp(kQP*Dz$saxnl-E+v39hxrMX^-ZUoFfO! zW2JbLF5dH%cAGAVbM@{aOE4h$NuRO+Sw=)xo3D+@DG+>_KRI`_kdl6WLG>!kz1wyu z|K*A~GKOKdn%4;ODr-dp>w~6{1DOyRuKh0jv>(l>M59h2B2>%{Sb6M%;{(f8NwfKEU1?8p4@QG3t<)s&= zGw|I1zU^VIsZ(MkDED#9(m`iexTrW2wqg%bjCDcoM4)EG927_pU%$>ZZ`u85FWG`b zLli>hUyg%qO<1n?vuimulJmr6;Lp#N8o1KTTNYW*lsKsqrIxT*be&q}!g|-5^OkJF z`&t?4j3|w`ScoG$tVB(!1=h}vg?QvVo(wU!46uQ&E-czmYL?&S>yj?6I%6I_v*)#Q zOc}}52(-=fqGPQ|8r+UtgCPh`aksP!ZT$nS``vpE;f?x-E6RpOBw>tEFFuIQ%Et)` zvyPy-%+J}j=SM>0o>bY#rTA{B1FcuE$qLgcj}wL0MaM)|9gFwo94kTAepVOq&3-{=Kn5GP28> z^W})9{boka>+Ny>AADSY%wF%o>3WbT{9{dl0q^^EojdsU`s_&S(n0LMQc|m8=*;m7 z4SMNidI{dY4tR-wM^_Sjq(C9$4Sjp__q{DQ98gmd2vhRi`UncF_B*v*==9?Qw(i{H z_&+!k4*nugYfp9l^O^3n-srSm_mpkdqh(8bP`}oxI-s;HX60+*_l>a)D5o-v)U@3u zTCB1xBfC(G2MFQF!Mv>UFH1@B_4I}#=0^L7%;8$z2AikL?Jg#zq#IK#-M<`%!S1!A zSo;LwE+@F+5-@g>YGXQIm}^1Z<&6L@=V7otCvq?an8Tq>L zfoc$jrG?D=J7as;Me8MoUOF1wL%<>ZF+UxI{k940{Il}Q$d)7;N3RLllkf1;a_;Z? zMkR#RO1DCG$tsXSB$mS0uhjD?6wI-hRCqS$lW195H~p$Pu&}%4UFi4p485LxE*D+( zGDa+HmUFN`37)I6_a~~$kXeTHha)4q&j`~>71h-~on1*bBpY-e9H{;wjNYMDO0CMS3pSjds@ag8R%&|55JUTKKY{U?d8G}4#2 zzZOS|7QFgi@yFJQL4n*m~@L9lx{x|GYR+L zaDd+KHVmp=PnkMna2Soi>fg)CRkoP85VncYZ!*)}t78;_^1+l8ps_YjG0soyB`H!L zNMd8XhTI&yGInHfZ-S^XzW(9t8HXP0i^xkfM!=8qWW(z*7KXnump{!K-vsQpH5XhqI0kN>JKNiV+?!B+b ztZD65g>BOmY@i$9bZmzHV8bZoQOsM?eGBBT7eA)03aupEf>j9fdtk7cKu)iB?{ht^ zl!vTy(EI)(Q)SC=7M*VR^~9!{@Y8}|I_X)9k57h~i^$W;a_e#xlh2P{`~gY7u!m0l zmLr$4pulPZuS&7FL2Xu2Ba>YO}Hm)j^5gshtmVY4o^1@GvdAeON^2(QYfZYodk|I|HuXsHEt>&yHI|-qv z>BG1RXAa!nC{o$LH?qT%EX#Mu9IC3pr@`>Vs=tTayIKoDso#`1$a ziU5@G{aChmqoEoEIvWnQz`Pu<*9}=(+6PwbcnF+*Hk^U~U6z4GT0rVgYXdI_zj_IT{MeomUoNBSq>VldT9PD$;0Ro!D0B>Sd0uW-H1ca>sDzjuQrR5+wf z(U4buzojA^+cmm=AD5Q?G7g3K?IvTN|3p3t?siY(mP{*E5KW?Rh(tlwm~hXCp!S-; zBmXOiLwtF;0Ez-3a2kTz$$~VdBShJ9v_clLTU|^!h8FA&U7P3f!vG@S*22E8) ziM*d17qplBG%Xb$ME9sH+J1>t~V#+ zhio#qbZT8xSj2f1=iVf$KI$tv`h+Rn5e#b{3B9tVl#48YRd?`|MdlbS+mO-mS$5f4$z z3|1QplYqWEF&ac=V%M8yAo~pk>R$-zLJbn&19gZTw+&y9>#YRkK-4rLktmlIq?-;} zmm%aQ(?hm@NqQRGwz9_yq%5Okyz*ni33steN}(B~GIqoZtf&_(;9m<{K>SQdZN>lf z$cq>p3PSs?prZpjf(7mEUIv7-ys)sk!BW*NrObIduSst9wMNqtiMgyNHnk=}Z%1?q z)7g)m*7(#f7E4`isw*X?QJJjTEX5Pv7ex-8GS9-Q2WC(wl1`+NX$LYe`nBH!(kDO{VJU2m(^;-?s;lNaU;mO z%qsX5lFZ-tW&E4EwhbHtv9McbJ2XCunVf3D)Lz+lv#?m&?_~odnjn#1b8j4d%%1Iu z#XHDfVkrrIg_h76Y5J>W{FqUS(99D!yk=)lN_qa?+l!@rw%ozrLPID(T3u@6(1|%NFWUg3pO($Wh#@i5Al{r}MDl7xg(Q+r`JI%2SW@w8SGgwl&Id)Zn|zJF8LA0gG)xC_MZ)vfJeNvHHhVpo{l%G%e`dvU!F# zG7FRfLh72W3w3?J< zb7V*AgVE_hflUO-PV{ziypm{Fd~)C~H5lCc(?E|X&FC0fGjhn&@7rynV5~Q7Jp4;_ z=MopzEXg5ousai!R?z^#2oD(Foy%_iF-(cqVLdhm;jvOpeYOm>SYY&rBq^5cL`=!2 zqQ!U*L#*J(3sdx2PTKKk*$nECwlkrY*;am?B|q=}yG#wJ`o*r;l;_K{uTq=wKF)eJ z-h4M7HWJ7UIIK0leuL0*$nz3ciTwmfD;dOyHok5mfWaQPb zUblzCMGn@|CV<_e`YuP1V_}P~^eex%gZNja3RWtQjIgjY78gqfQxtcL_GU`KecR9%^^p~ZteZFuxv)N%ls|Q8u zl6Ve-w<2(SMzw%=%jgOI=@)QnqmiGayv7Bmq`!AUPw*M+849^K>8-t5C0_ z5|*W4Ecd6DST`PeoVsw(?`Bx@t2~)Ef|nsd>{z4mHJ4)ZiD2j}%GS9`Jp_!;7t!vk zvlz~kj1n2C{gya-)%u&qWYqJN8zE=*tI1y`U)Rk3vmSG5U-rf0lhRAqaHbtDSfvB1 zg7fvi44=LG_+OBM`9F}NVK}O|clwTylSJ51J<@tvV=O5Q0hYWt*OfW_v=cw)RBuNG zeFu?@R-hp6q>zUP`S_a;L=A0dWUU?OdEjV_|Dga>s3=2D$OZ@MS5nVRJ$~ z*P>pFm#`Bq&$N55T(dt3`fLFXT`2d?&@o@d8b5#(lZua6_Dk4d^^eUk`uX6;u{%b2 z!B<@HRk(238O5%)Yc0usllSw_mGv?25N~lPo&`OR3}hubb-oal*#$S=eo9>B3vjGw zku)~tOTz<~ zwdb2y{-KDJPiAs}M;abbv35MR3FQuqeMacY_44ck)D5|lMcaGP z#AW!~s{L_+a>g9Qq`PdF&iYX-ud|AuU*PUAKyH=-$vB?L;nG`1;ICJmB4wE32<}N& zFoB=;J>axAepqT+!*=;~OIKaBM;WKm!CBFg>3wZ(@j?1oM&iD7h(Ef0(h)=4<%B*g zn8x%mRdNo$#8RF5>+qdQX~9kOwshABkKwsI8A+M4F07F?DYU+z!}v78r6HvKxtA+@ zxKU@!QH0v!Fww?rf!0DB!@UPOIM=B2q%;MNX3JxSe*+G`xt!TyEmD{D(}jlG2?JEZ z#01aPU*F|&%D+v6vAjQk${}&cLOEY*x6>clEt;xF0I+rcO0n1d z-XX6>F@atVnPWc%2L;Qk$bDkuLm?qU2 z!H7(IlZf5q;s@rO%KBhTX@4!kLMCvm4ZXGUubkgqjhsOgsZ7x`e-va238NEbak}B| z&vsyp2y5E5yD+WMn;Qb6@yWLQt2hy%+Egq>1mTRqZq%0v$JrfTXh#~3824}aI~o*h z1WOc4b;bL}(UvA|3qGI2SW`xi3x2tNPr|Wn&V;>U;0W!Gq?z>Ze**ENF@u;3ScBuhJ5(7^%#I@Qa#E!J!Rh;$sq>PVYGnUg$G@TwH z$rrERD1opHhdbvSQD5gCj0-CF`^5`})Vf+pcrs`|r?5vrIt32^4GA z;gdoi`bi^Go65wT&woCTsZew-j<%SCNFQNqkL)S78A&C<2cP>q8qu}dMScbi=GWEC zER1MQNyZYYVgwW$44hNvJ~#ehxc5wPvL&hxY516rqssx7BhRprE6A&XEj}^rY9~Gp z_ef6?K3j`86wc^T4l1h3qoL@Ym2}eA5L|X6FkJNwXf}9KR~d1UxoY0+h#7765V?@o z4(P{RQm)jf62@yIYej#pLlTcn6_*{XwAgT@o@UMI*GH3D=m}t|@6g13ofV>pN65Tg zVuzlhj3HZt4xBAnBa#wJ`SH{s=`R!6li}XUz2$^8?SGiiX* z^WxtNAP$hj%76Aslk=uF!7j9?(u*48XCubvNnd`1#3aof-4w}LMB}26_8p`{rV1wx z(v(|arfSm*f<7OU?UM+`S)*o6MZ->@bY{Cf#VhemQKtP~LI%N&Mgu|0R>1n*6`XO3 zX>47=F#r}wiiQ1zmrRSFWYD)n$YbT}@oNoB@}b34ogwMwQ@O*1P1GUTnOH2V34b-p zu$rs#1MlCtFkW!QMysF$yh)&@mfrl@C*lwn#`B?Mmuk#O4v%4`whlM5GZ?Y@LwhiG z$+Vot_Q8T4Gs@D$Y)Z+N9X70m!4ETAgJQ~MRFj6j&Lv9gu#gV8FW8}t?=I*Tx&gvF zN2Pd5x}a(!1dR64Ybc{+NwQF!Il`fjUb8NR>p_Or=nJDbXgl^{UN8lXnH^9ntHN@- z=QA#e!(IqlM>qV-O$+ao?W+ATb|caSMPH5JOBRkT0~7trJhXt|mcSYU-%W7A{(%?xOiEG`c+^a9TLpM;Ibb z6A7Hm3P1Fc18UFcrQ_e>BBzi-?HVXEVN8qEm0a3m9m1DrD+$Keurh$@@h|A?J^#G6 z>h$qsHTnBpx)W+laV*HOlkL!%3x}BmecBQQstN&Uzc7*lMF>s1f}rPJ9z8(9_U-XT zMoB-(0Qx}fm-sZe!Nj zF%-Sr?gIthl#ddjCf~$c8l}=jXtXol=ChhwD~2sFd;tZTfe$C}{P;1){jBX=P&#Sn@&38%{aN!@Zf0E_BzOIlrVEMZ zcKE6u7J7aeX`%G6uZlXK-b}M9|K6r{T6mnd<)(fXV$UK-covD(cH0-%G{JmFr^l8V zuT$BRfsWM83-TB>zTW(E`Oy0oHE%q?=D2-SE+7i-Dx4?5M-h^s*Il23u&>Zc@|JaJagiBoMni_1#9S0` zPrQ|g7#ZF*lON}V8W|Ty#L&SXqiLv8Yg$AV9by^3PUohx&kBidwqxYF-pkgN+0z_0 z?>KIT+d|lvhg&q-#2|JWKNw|`tMObNLHW(V#Gm$6k0bKgc!dSpJzu!+aU&{drr4A8 zwNGa9v48IvL@>h-8p;@=| z`x4?C{g@-DwSp`Tg`^BPr8*c|ogk|+)522x1Ze-RQ^8^KSDayz=sO5u7d%-=19VuC zD$jcn96V)*I!Hvj70rj&{x13A5BMlgqDK>Tw9udTmj|gxdq|I^isi)Z;xUhuQ?^i~cDa3|uvGM?)S+qJ!;c4I zks-PX#!2sbWwvZV6&Yl-AA@}10r(-G{Axh^6<*u1yLI0K6vNI`hO#7&7vvjB5u#R% z{C%)(N_~+n>+KRLKbiORv#TA(uh-?08IyHazRI=>SDu?UlK8yo{M*}2?gqTO`=jtW zxK9k~eA)p?uWRh&_tywg-C%DCM^vC(q5A~MC?VDfIICajv1S|`$ zzt+1_Xav@~o^$VkDtb&QlJ6M}!CPsjSA>eib#S7fwp0yq`ru~c* zdfOKI9fB$t@$Ivc=%1|hsrA>@^?}^i#oTF2Fqmm}#eDmxyv9zNhc*+^ec((7O83X4 zX^26F)npPlvQ9qlpiy_i0x0?9ub)ZkrUUzD3rZN?nlR&8xG}?p!yJ}T>Y6GYsXMPksh%1XWKYQav|VNa*JoTk1m@t=$aSO~y9OnjUrJgH(TsYuq00id#C@wZDA`>* zt*KG5Pyc|vW4?Z+3@@M5d6n`x*=&jK??B(f{8Jistdu}^=P(+Psh@WPd1=oP5h68z zm-{v(gWam}rz{rME4h?Jk4`UzJC5*@VV51w(E}5E!njnK4JF;*Ilq5c)FStDLXR4K zU9HTAVTNq^n{7UfitDTJq6o{5H9noC8D>izwKL2CiisiiHivZW>OurDUj(pPr7mc? zx5v+65z$AO{)v47VbxKi?t%n} zd^v1B9#ekEJ8}Rq2~^s%W~>!ZiW#S?Gxgv@b2l>H&T(6Z`pSsOsVH(3HYBHUn@i;& zrqDwVDt~U*+if*@=J?i7BKgC@prGV>d0Eui+1cGV7oorX0;*8ewoyF^{`>WRjCarQ zKuy|~tzBdpczSBxH|#Lz5*?+Vo6~|!SM({`>bi_|%quTP+}_@Pm`Uw~?rUyPIosX( zSy2J_g}UqCJwzM$d4*NG<{r|-F7}K&+(*)rxys`1Wq#~fN9T!}!1~*u44IeM1C;F= zv5B|tuCSmWyo~S=h{>41z}i6JJ9>+!bO+tZY=LTD#1uM_x;R$j>x*%B5GXdcKU>xb z>Dm0gV=x30vSDY;(Z8V|Se!o)H!TXdE{4fWZBSJCCHE=f;v3n@az>JLp@r3LsSzki zQZKtZR;ENIpCo6YUXuV3>bO$P02NjxXqlqDz#V26g?R1qEWFJnzuC-cfc4(8T-CVh zc4LYG1q+J1BAn?XGg%XbgDJCunVSlHo_)Q(e4G~A&@Z^2;ye~ZOc6$$t6sAFYrDpY zn7YM=grB0NI_e769=xGXzwi8qz#rWe?c(2VFo9k{=J)(Tyx8H2tTK~!H7QaflWufg zvW&7WV*Cvm&!QO?PR)_RADBS^joOrgFhevg^y+>?6a;NSnf~=0m}KWqMh6@U8Gzqm zN@6H}B2`9p5&6+&l>E2e?5O^yDqyz&%_8X$oY#p!WdAuVHsK6VCcuN)_M$`mQua{w_} zh3Cz}#{{=q8o)mhv6de-9J&3(93C?Hy|mSM)s>Gqxp)$wYI<>Ncz)|^=<_7>A(S9HTBMdtMlI(MOA$wq#q6T zIA07lUnM-TRg2C_;UZnB<2^}H@-mD$@($Q_sV2HgVG}$O?=xGt^9Qrb%;{3era`Xv zxWnjB!VCpuS0k*8BGm1)VB+)bXA>uZd*_x8w-p1Lsn}=|!yXz-yZzFI=1wSFJ7pJ< ztNwb5xu(QQ|T3YuXC83T|Q&@)?vjM#kvBO=i-di!U5O0^M5LZT2C!%0J ze$;Qw?|8%^TRL-92b2S*NXI8z4O(J6T8wOxEKWGEUmc{O|5DTE2!|rT(sPLK3i+Lr zG^oM+ZF`7+vrC74ccBW4($zEj&8t9&Nd=(u_TR@F zy2Wko8^D163f+?0ND(wi&-F?sQ({($PZ5kv-?mfh$rP%B)G)S}F~*_+Ux$N1uoRfy zuvwZX=Aw-3(A|}Q+f&BIehyPr#5E+z{?DDI{CXu|tb`j>V{a}LH(Qb+nffh~0CA;? zzML>!5PeM2%-CS}2)QHQdrkf!H7Yq-h9pmdz%e_tf*fk0dv%Ts?F?o&{Pz!BZ1qlSx6UyyvZ`wjq3qi?ZhJb65RkpvcWDw7w+rzV}WYz3$<<38)qFAk58+bD1)xeG(Pi;#gye3$7< z9?n_fTU#3MHsP@b3U+`03)AgwVUWN?T7tT-xi*}TRz{N>dy4;N7hQ(yf@OJrKU!4X zPXNIW8(GN!1vKP|nBQu2-~eW{y@C&Wrl-K_bWtQ1>JnEz)ibKm9P}#&LCthhwVm&H zGq_nmcO-;IT$5fYpZu66I5!!9Yy?p=&Oo&Ywnz?N2sKW3)o6{YAiMrqFqRCUGMyGo zKWz9kY2Ou~E;&H7ZVC@cszwkADG@OZpqfudh0(OY?~PjRswzV6t3s*8Ddhh$4@{xa zfm8KNxntUu13W_g#ptvSWI%sa+AMR4tLE-{nFO%BH2uE-kAq$({i&?ksWB6SAv9Fm z(!xpFKOb~tDBB?xis90q--Q1lTpY1bT*wF1FP-ll>(2sDKJ!)j2Zx6}pM@S}yp)(6eNeS3Ax6uUhRz{%2A8=SL45kEg+i4E?O#qUw9*n%n0(DG;9f zvh(@i{CwSM)$ciN=Vr0q^3}||0O&cFjrmRX@Qt)D1evPno1T&OS#A`g{mwt1`nSCy0%{<{RY}HO+NzhB&VxWj zhU@Wvh1yTKm#$@l0<*l!P|~4q{IM*)6N;D(0Cb={7`Men^jtHMx@H@D9ZI;8Ewn#V z&JD$)3qd!U#5L{SbdjBm4!H~@q46oAg0}F$-2S{6A<{~WAocsH=+-zTZu=G4hP8>V zpKVeZBPhh#ozSz4GWm^pMu?7gKlhXji^;YbA0m~m0}w++Apjc^;rjPdJgTfM3w%OH!s1K;}GnBJyGelDghpNm2WmS`R7U;_N-Z4SiqbC7>V(OZI&U`p^#RzBSVTL zQfRG*F@Ufl$)6;kN{cV4gMJumS$1CAqp%Og_proUT-}XL@}RMVxuWDuv3522fD6%n zyC*Xk4KrpfsOr?ng!*;L-3$vm806H`9o8Y^L6A;3Wig^2 zhBifesXd3UJ|LZ=XNpB)5cb10-2?7sGdKvtvpK#h6reOpgCLyrcBNe7qVNK(iWFt7 zKxho?0)q6@q93QX_YZT@$Z5(bW*;6IUI>;upEqbj(l2QhfJ=WxX8sYXK`*~gd5m1< z4-h7RD5AtMZlL3l7pNE5!_c~+;mfw3e)G@`5l5!y1M|BzG=HIJODCSjZu$4V(7QMP z^%$GiVNohGE33@MK1}>f5r;HX-B=;*Zq&l7!O5-`iCW}Fz3I>UoM!& zZMP+dZUE63H^* zNl_5)31k#Ah*$$kjEuYkqK5H8t_}Cfv=+xLlD}CVH#h*EBerkCXE2;{Miv0bE zXQVU*u7*{AgpQobBq^l0;FT@FmF~u|>9OfY>os%~(SW*gfHpCk78?f!EorDh&ubs( z1}AuC(Jo}aHRE`+h+@p#XhT;QN;Aq>^L-;jNdWpxZ(INM9hZT`y1nVMRZ(!e+(m8` zCW9T)rj@=&B=I~z^TC3yG|}siSQ+>5&>RN{^FMt%b>Y{Nd@}Cv%dl7p$(kgSzG4mN zimaH-Br`1|;V6&J1`-$^MaUPS@;7Ob>~Yc(rC^NHj0Ls0Jl1;%-1 z`4=sgk`>MqxcC|q0*ZV!bp5eT_4||mU;$O?tt<&5D)xj*Ei3$j8ruXQX-9)Mphec* zf8~bm z>e16OV{PVNNk(HaCH4*z5So2m=AXERFc>dAU55q1;UH~&q5cYg-NX08DYzw552fZv z=1!Ps0F|egjLasTd25hK8LR)VnRxNBdRT1(8epo;dCkb^Q!6#^-HC-{W{kcFpt&EF zR$$L6L#ob$8~k#q?PQC6Up_=&Iyw?U+7Awcy8~TYqtBCbCrbhF^Gx2IA`Gw%7U?eH zlD3-gK>H|s?P!QGNF{ST3FB$t-pnbZWqeZxk;s^PLc4{)6JJaMy5&$2NhGb7?ypKL z#6RnIGj;pg2q%jWqx$H7)YH!89fq7+)b);82EHi?!Uy6BwQk!QK7aB*Zt_P2#*&!Y zFCYOd`i9V2Wol#uiWhvMe%n!c+bO$q1?2pZ12pCiQ1_)61c;sy!t?xRAw-}Q55g`2 zU@ShKCWY`nT0>@ckF5bA*Csr!tTvq2xhz*ZOhX(#jBAEJB$8h3bC z4wOlZ&@1U$nJGGe2R!0?qV`U7|9DI2*FXRQ=*6jflrPoj;bD=fR2W^JR@x*%n6%QP->E?8S;U4|mwbc??G%Cv z?1}BqTc0C?tHM?0UG)F7{A?^~UQ+loIbTEo^tX{pr8!$51WKr`eKZN9?A6(=bKDOr z1{V8Vq2RcgZQ8^Zz2d}Vp6huFvZsAS_gnWlgV?iLN}-ktjD@;nQT*$Plq`c5;K8DP zhA%%^3;SD(F|$R$Q-NZXz}!-EmeyP;&i^|V_$VzkaR=~%aGUpPE75L0qLUDKu*CrB z>+Hj|WvR+?odc+#52dz~AsuGpax-z0?4Ain;Mibf-m(A~xwv?a^yCWtl;(5wapU7B z2drur7zPx08;Fv(az8Uc>O2Doz|hhm!0u$%;f=9S-$&|@N=L+k3z3b%Ol?J*X|*{; zH2_CCHuxb0+XO+wH&1WhiEg?PP=RI>F%xHRjiq?X0r&Z(n09}Qx2v%yoN(#~(Z&be zHZ+<#!-bhfiZQr^t&I!7VO9H}OMpNGk6oJ~ZjK|C zyZ;KIkLkifcQ*(HU>(8s2DC3kWBL zXFEkjwt$Z~J!^zS&A0?y)`94IV&R_&L^}+&LmfETsPU0eYnONGI&YQy;6UUFh#2j^ z3Q!aCcN+rk9TvW_MH^WoT+?qRhw12G;_>v0a}f^SPD7-r;FX)6XxzWPdTa4L}zlB2-~6gyk2yaINB#c9Kmb0nlCXrBZbV) zN{jw-tZ%ITglT4I%qG6|ApY0$X1WnTpC|HVr-JY3hhxI9L9?fT6eH!&B!Ug27{nJT>JwJRc&X% z))^1mLT{%04;vxe-d7atZzq#)F@oh~UrP5JqMYPLGl1a_d&UD%leD>c zGEgqKX>G6mG7IxOC#Xs4Nr0IW;vM4|qlUgry^swMv82wfk_-wKpO2)P$axKa%8Dj1 zdHPfWCL5lKtKvNsz!AoRva55BB*H>~E8VOm^)g2L3^aktjfk-K`iEZOV3ljn+RmC| zFXZ%s3WWOBu*Ac#6{pF0B?$6Y>Qjr!00umPrKeT(V7C4{BUWt6fQ;gq%?dwW;UcsHw^5_>#bUR0meF}eJ>OnnfgLYhv8g9eF~L}J&S=1^j#xM zeR{+BM6|^V0!V+Q!P?dWsAw{N{*mB;^6Yyjo?>9=o&G%awE43G;x8e%VU1?GG^RuaNatAm~Uf_S{ipR8O7N( zAj-{q0gRmU>;UKtZA$h@e^mKlWmfP5fAEiBmDM!#wH9)^bP&Y*_&WkksK}VI!GOho zo7@2l1kX<%SrwLWPcjl-1SNwZF^Lj+=ZN?~Pz&*d6Y1XN6Z7C82|lutDEWpiDBKAT z9L$(5#-l?-iwk$m5i9`j_>m zInMCZ#{vEE*#~qvR2(8LU-2UmUFgX;ji4pT{|h8yfET{xTb!##zCZ+~E_-t-0_DFf zM2&zZK{(Y7uerm2UgT(1{_HQ8_U;iaE-F0I&r?!w&WW}WQa{UJykp?>V!TJBNP5pp zcRAPSp0^#_UQpQIwQNgsj={=>A{vJg``WWsi0G(E~d4J zC3a;OdtM$hbB1|oI94LRkFRZeP8{-!@^$Q}62^qA|8|v(ao0cPW`R9aR_5Fe~JHV8A{DF~?I`8{w{(?sc=U6Sk&V&W z8`XxaV!tctlH=L>S0~aKkfEVhNQBiuZvrS-gyBUmE(v;o`3LUL!4l`qfH&qZ?^~7? zrytHk^L6`sY9w9zRU#*KBQTE|Dw5@lx87Morybd}v=}~00wxS&R9ild=|Gb-0!CP~ zIPLGag^KmA82)q?e^p4J0;Q)Vt##pk{w6t^Rm8hogl)j{Kn~p`AFzs(r`*2A9@*B1 zUd?!QLrFJ9mUS2rQ|X@!!k|?9W{r1k#d6S`55p;s9ZB9=PxNhkL!AidQTPc5m}NGR zR`k>;JZBbpf>WZ8aX<%etqMfLS*l*Q?v?^;ei|(&B|jiCzor_FvJCj(&F`x`0+kH} zx<=U5`Ic%oKR++F`aXSV~0_V;QY}8WdG1FiuR+^D%8a zJPP*1gP-9=p#%BVplR0T$cU7%i)s{)3@z9Z@}OIa~l9_F0$n_5K{fv(k$ z?G2>fD%s!?2MVe=Bc$Iy;H%^1AuZVd4_$8+mF4$^?Y@L`cXxMpcS^oANSAth7r+15;~Qh|@ttvm9{v-{(D4V*jQT2`?6NQ5;50hqQ`#T$nLWvBU>~{`OX2F* zM0R{jPgvfPuFe;zk5X? zdr8a3yx6~l-)UpPAVa0Y9U^p6>(QN|a4e1AI!~q@sER)2#u7bHq)+CO`DhsS%hta; zegsVB8#kqRR|?o|L90nRYBI)TCw?zJV7rNAZbNa)@cOc(56_BvM&Ei--g&xJ(^(`?el5iB4jL0gv^*6S*3MVf+33W8I4Ou0NM{f-#Z~f|xC^!x|z79@)Tx)(! z=g`P zsj>hVS-dWVqew=-ZTU-)gpyDtdo)LrlB^*@G&2Pw5W%?(KZ^zBo%`ZNb^32>-0k#F zV$P}+emu#!+J*(jPKEoVtCg1Icolc1gn(7v{UEcsc}|tUB5guo-N`qz<*Jgc1Ziiv zcy_!u8jV{dsYM(Pv3QF$cIASh7sCWlhm5MI6^ndd=4MYUmF6h$0SF?PEuH0l(J9F> zb$TiOWvEI$T(m^K=>3oMGWYg=Zm1aKf@0EeHcr2QjUWD*`X!utg>?&Kw%QgT2$2#Q z7vKLDcCh zH_zti@V?1>N*6!pF2e>l^|9VD+vHadR%AQf`z<=;_Y$*~IK3-%bd5L)VCX+YBPa?@ zlfZ;AxM32VNcv6SsEn+V$!@$x8rcSa77{m}-4Hy%G%ab>6!yIZP0t%)$}gP#6*+3( z=EGMdWTlq^m3LaZ+x|Y8tX?(S=AG37n|6AY;i=-&bcXv;$=@gMf1)(op!lYyFkM-+p|@D=3g>dQISZ2Bu>c$HtRr z5N1N=+ zUnUZw)}Ry0g~zv)BRGU~evM(9FTwY2!EKhuqMyJ?*MIS>KtE?I@G2l7yY*oxR*}G9 zj} zmg3KeiK*JS=uWqs1g784Cb@3E#s z0lUkH^$UB}=Jr6I6-|!vkM}h4T&We16FL?!zry1m!S69(dXYki)Puk@Cp51qnXUL$ zvm}VMi~_;l18Rh6p2G7wFd+?6?&z05NqB^8b(70OPt@pw)1i`QHH?maHOu7q8#1S0 zXdJO_7D+sYtsD|$j5ya)WxY0ZHHg5!NK2qMh&MA`;}MtPBp0u)SYBP9l$q=q&{BQD zJk;5f)~)hNP-G1& zw4gvWyF_y68B=ycG+N{+GCx2_QRm&qlschQQEGHBZ`}_|)M9%TDn6~ToTf!h=>(2a zq;3A}Pf4rc4kA9%Wgf!Ru6Y-WbS{-yg-<#b5q?}m8C)Ll5IXvO#1q0JNJb(%RHRCtKb!N(0;&G>r@e#Vmc2ik3h1_ zXGCNx$`{(x#cjAM-f14f#5kYQ^^>THvN+wl$nukapwpSt4ZZ&hA^U?k_)|gcWh!&o zTc`xPj8Kib4~&KJWX+Z-(qWQDQ4RC3-Ws<*{PenjK zd~IxPZI+%Q)~d2sf;njVr&vG@D!r?Y;Y@lQuH9VuDdk6m7PlJHER~QDCCE*gA5qZC z*8#RCygTkd2lSifHRkfI)#*roTsJyzHKDgD(o~u3pqa06?;dfh$ZQRArr3vTzIYuc zrzF@>FZmca)F=5-^k8u=zdqi2p0{`ax>3szNR;y&F&W!38bOn|TCno{Q~B`($i@&) zeaTc+6I6c!&w)K({P3`{*yW6l?{=!<kT`upwJqT5bW8YuTcC z)7n3vxBBD7EDlafI6TKMEr>6_Wh&CnT$eLwvtmZ6?*dB*^`=PSAvS|ETNUHcNGvhB z<}5q}`o`Z2#6t!p)hlr-cxHg#vl^p9$VCu{>(``}P`VXhTO~{^HdWyT&X5xR+d&XU@?V za`EzIgA1eAC`pINZ3_pQu`(-CzLQlWcK>bk+1X?L&F}q2s6R=}#KesGuDgqr{7pTI zL6A`5$?$o-6-O*ZOvZ*uK?f9~=gdo(z0dn$muiOx&DQ?SxMXj1dUq-CCh2pnQM<}C%D*f7dQkNBFLlxl{~bD23IuhF6{4;Dr= ze`*Ov#$2*Ss>fb}g7L`X+wNnMd$}n;g7896c;`Ibf@FK&%R1=>5E;EhD4C)%65w^Lh(hK@VhlgH~DzIFXpe6KmE zY?{#mk}|B)D-wOMS1QETUL^RWHa#5HB~p3RNN2*mo;f9UINF!G8|1wp)nD#LpOQ%@ zJ8C8_D$r84G?-$a2wu_rgxYTH+3BoRPXBLV{W3|yv#0tho55uqg(OR6Z}z#Zo3WnEjIStkw|!kDU7v>?lr&3#uHlqoBqV2ObtgBn@6=bXt(IA zP_sT#4zloSv&69TewT82%%wNQY|Z*0O~E{)TvLRPD$D(zMcw&Hpv{{GUU@B&*1d;B zUpy15QWTY#15@%y1rw4p642qzktq|)f(B74{g+3x@V~dRpiQHtJ`0zhVJ-O|`Y^vT z2w5M#Ph~`6vh;WvQ?45$sjC}1q{ufQEdgJCNZ}hX9-#_bFE#}k^an53#QJ)~xRuk% zCrr68@|VQgbLu>A@QQWWC+v!k@I}|9XiF_OD6TARl5-3w5r}y3xoD-FdQUyfpMGSx znh;^?;MBX;MIVx~t8h8~ruy8`g8n^6d6+zQ;;=b{o9VgT)AAPQH(vw6{0b3+Y{4^t@}izaBx6b|rfGV&*y;d* z7u)OU=4+6l(1oH@Cy4MG&5wVusHEQ1ihYWx1I?Q>TwWI0or9Q{V>;UK5YX`n|I!W$ zQcz_g%i!m~0WZSh37IKXIqQK)?Pe^)9m!wSNw?OX1%8D{Z}8M6Xs0O|DG5R={o~|% z5|lFF+17p_Y;fxr%-niM{W5@PYQP%U9G@<+lV}gB#JWmmjDJBN74NBi^PmRTFp$Mt zFFbL>in5nma~Myp?T9_kpzSEl%@)&ic4)}g!YiSticSq`*TAo-!QN!y#_)4*2qi}u zw5KJFBM-y3U%Zl(9Y*M}@Hy(XBhM5Jf7?0-95a{`!=9)5K*)FMT4p2VCOsnaad#@g zp@)H)4X6+Fe`?&gT~Y_?t#DD;S1Aq;bLfk8vGzypz|Bf^MJ_A~W7_rZt}&xfZpX`g zUlET6qn2Ugf%MN1>l!7lhDx#U(W5x&Qa*fvm?$W(bdFZsC}H(h5Eno3ZTmtK-MqD@ zL(M8UL+&AIGhJ!gQF}1YSL=O}(5{^79ohx=W~Y?!R5r>voRBunT#een?uQg4Lp|T(L?4EUJvXPE-+JJVB7LOHjwy*Hc-OD$ z#%Kl6VaKK5%p#CsXHV@`(LtBe!he77EKsl?P#L!GISe<|Xu8HcsoNF<5u4QTc1b#p z2aygFL8i*gEjRz*ZC^4N_3{9=9aS@f4R$Ndua$HVgIeY5#Q)P928v0oO$C0}v*#D- z@`*Y%5L<#c#&dYiAsv4aeao#f2!=zugX9H(u;D~K(dJg$+4>UnSi^s2#m(Juu*T)M^@<$Hd5+x#O5=IRCT&#U~JuIC`Y_-JD zDf73fIW5@CM!L-g;LZBgROSvZFUoN7FH>A@E_`Jqj8r-2wwB<5h*?Zco@N!9B|&Ct zK-ieXf)P9zs#aViPB!b=ks7Q`*v7kavhjF*-g1hjnI2H-v$Ta)iafHzRxws_oSiBU zx$4i~)F4Z844VfFHdcIZ?J(xzSJcD^y+2xMS#_)TsccvNboaql&A25pE9kcIP~peJ zO?Fh;7#CCaTL`)kJ}wY>WuClP^!l2I{p*D%Z8sY5eTC+DNpio?K?<<`iS$0_tU^Ir zXSj}*&sa|Lt)>^KK4l(mx3&}0I6SfG(9CD^M6M0BO5#7d8!Tko;?Ky}ZqDOM&AZw8 zu`?HESqCYXPrSx5y1U@;>?qX<0028vBBS_V%yIrF)aNePuyZwQc6`apt$0A{S4{aaoL`56>>_S~Vm0O()g93MTvwjMURx1QmLGFN~(72?5QC3MS0>bvMMv z7m#vxo@ZvZysAiysBc8v$?wUBEu$rh>zr86aN*1c;RL1rYvHvZD$L7AyEVpC8S>)? zhJZnxK{zu5gSyCV

saz#}<+h|nFSp+`(2kQ95n)}aCm=af$s-L-dSv5Aip3Uy9n zoHuV9x`Sn4>@eyV$J||AjyNKOE@x#`lGuStz%EQ*ufJ*AY@Q|iw_lTBC5`X@qya#e z>k?_d!~-i>Gz!EmH>Ydgf!=2QzgcNdqUe8dR%U_-JizRo^kIbr%;}WMMIsU*S~ye1 z_q)BJM}YWM5M4JI2L9EBQ3>;FfP{{lZVWgT=5tDMSLqruw^{oSpcPjvl_l3&9$Ca_ zx;UVm%0tZWpIVYY@mg`wcxKAJnrIY%P(sKK8Ar2z4Bj>1M7l^blP#+#*`j~hMQ*bl z&>LcS;|nA&e{i;vM%RvY^+=SFI}sO09eh6wv5LS(IKpU(@eH|iXXL&@0+TO-eA?

N!aw!A%r$SUn#kjh zDH$7s@Ag@MPzD|WUO%eJ+7WMV6Q|kcH8vQ-TF(x=-lTTxeIZ>z$V=^l7!dlFwM9U& zzWX^9tGV$m^D_&6G$kU{aoemL8)7;zw40UB2qAi3gbwH@<{*(nKIPXR6Y6Nn zCdMivjkLpu$q#sA-sarx@bM@bE>Crwv(1a(%bh1V`Gazncvea7*9tAqotY!`0&qioQI)LY|9Y z_U#%;ep~ZX78G0K(uMX8kO@%lQV9Xvg=_STMSwKeX6GN~7YzhRvQ<#PEWKuBQ)=RYsntI^O z-50B{T*k!^elov8}ut{^_B7Jz>LSf_WjD|;fA?hF8r=^0w=o&Ax8?1FSE*S(-7we z`;m(V4Msy^Vv+o_34xTw@D?;}!@F`Iu7~%zmsvt&Ia039&?FXMze)Rg~vW zXH!jT1WLqg*yRm%X_q(?9?defa?`RY!w{j>WMRV`gZ^yrR9hHWp|L!{nDLO#>d%f-7Hag2|lqvOtd@6fJ3AIG4`zaOuuB7nt4=QpZ! zS^~m}0f=PRln_`PlPBexR#dqKq*?B-dx(F`?`6~u&8sJWJBq@&@bP1x-^*5Df z0Fa+}$Mi;B294F&F&3vYbSl)uK+!6tnOtPR{FUc~SA^0PgwSFVs&v2LrXp7S;=Oft z8gb|MU&1t}!`{6D0>{PmTCafGIy>pL@CS&&69+=Nw$EHCf&#VfUSt?u2t_|cWM9Qw ziJR@ed@d4+3DQ<>I?|vwR!wDr7WNLDMd)o3{J9O7=?6-e{G@lO9V(RV47^SkyGE)mC*CkY+hu2u1f*yp^52cax|kw$m89PnYa-EwzcwY_ zMNJdrW_(MafLMvh)QN6Nx@Z1_%OS}rF^=`{>YXMa7XP@|*UXGR1t7hrEK^zMFxibG zi}bWpKh!0)#jR{h1$sIS5!V2VK;ptLAfAjI{?XoQGG>d8h6)EC#tZfB!9*P=UuLcT zVN^QPzfGakOIo`YjJE|Q0-yW<43O)P^KymfENy$l`hwc0r-l@iW&1SS&`uUt5 zoL6w*0>tn7X!Y52w{|QGrZd-c?^+^(&*Rtnr7-GQa5T6_-FUx$f4)$Go4%_rIgkB0 zZ;uW&^aJzOQ^3!^`YEtuFbel{HX7)Glmi-_kkLegIrYK6fsPozxH!v~EX!P8_B&bY zMq+4aW`3{C;DR;iWKB>h41bvq)m>@2-_=Zty@6CLxwcl6!^P(NbZEmz#yhiu!!)Dd z)(#)AAT@}W_wT?zLOjPZXd_()`ZinLZkZg0X%@73Z`h=Vqlq&u&f@xwRAk)R!{K#y z<;v`3^1YDmQcH9;e&@i3Lgre}Je(9MN9{w4oK&D7R*7x$={gi#-wQR$gT!zkx7pTj zYt9lx4H99<1dOC=wT3m6%mT!Qg|aQ%#bm4JBG+G#;{uFox%?ccC0BkXes?9YFr!Yr zAc=@Z-`Veq`;#;M6FofyQ)oNz%P|TIK7-Hd(u!Db;va$g;P1_U7&Dv@RC;y>XB0j# zyg}#2T~n}Zj&9H0Ltq?J4csMz^ajn?w2a+}m)fI!h?`mM@L&ZpOPZ)3QC^r+0pQlm z(HcY+7I?+zt2bIdsV&PzyGEIR8?%5Ge5}EWL`d8~7HZeos-ch~yhMZ3fe+POp$OB) z&BWIW!gjL|gFUHIqa_Yq$_7)^768{n&I`?tPfmOeDlTFi{GM6*gv34xZWZH1H)(`J(a*5sxB#^>e|7pBqMjhV&q%P0IW9H7X(n+yBI-0wIJ+K< zM0D=|^_On}L=LpUR(NG~jUWudY(<9fgt*%Wm10Ge_HIJS+iBb`1APfd6B{z#Vi=X1 zQdKYtOAKGNx*~V&$G0-I$Lg!B`P1bCTcqVK6-H9=5kdh9xOtv6=w*g=m`I_g?4}6N z2JE$~rJP8Gwx}DrfHjeqOz@m=q0RX`wv-k>5W4MTDu?MJ-upGh-)h+FM#bSd%b}{% z>}B5>QMiXpup*!Yyubdu#9S&cQae1^1T|U6D+}5?PUF^fy>s92J@&3AJYZ>iF~Buk zO&|OKyPk|iZ0;&3o%Cv_i@$_tE`twUy4v!zDCe^F)3A zfuDSa%kCo`UX!4L9GCGUr8{05ss#vwN|DJ=llzc=RB_v~Jw0sfiHCwO`!=g|c)PLW zeEf+Zq$cyzJZ|D(bh08}-yaEM#g(K&xvVdaT!YEFAC$}fYPGNgzHc9)uX>!AnZM|| zd&pq54^d!GT^k=R^n|5eg2v*PpMXK`gP<0jMuS(A;sU0pQy4wj4%76<7kf8 zwt>dhi zu3H^f`(9VI63|pzut^Syo16)J?;0C3JdQt&jQCek=hBq=K4sD?!P)o#jk?hiN6h)Q zSH#7ykM2mFkF$7g_>RvDIinwv;G?4vgN!hD>rH;@QFIx#{#JAtYdJf{K${jvdY9H} zs@a4b)gO(q^xS5m8H4b^^Al)XNrUHQ@3k6KVP&7uN)ZC4-fpIHeO1wrV2xGfM5N@j z92baeP*2=jy>@HRaRs7)=C~i1_**%5$G8Q@^Nr4`&A$~RKEX+xGsjg!h^7r^W&yLRCU+| z1VL5J2H*|ET9|c)p7nM?A2jEgo-tlePtVEj|8{ny04AxbWHGJoW+EB9`T$f(8TpJy zOFrM8q~g!FCt_RU*)zlR>S2@c_xatO2m%6vx&Hen$rJBh6G|YzK*=DdMiv6qsxTNHk9xj1B)28Am7NPN%=8(Wwq{E#R*97yWd}?fM)=b5>Wh0 z>%MUY3p@JBA1>={-*xe&dSUxiXW+;e_qEJ24IDg?pg@M zsA-j}ZBb3}P|ThZlK0Q#Q4TjwP`KgC_ZG@qjJ(t-#1gJj9B6FYT1skndVZ-1oWkQd zp76IHTjDu)lyugwteeC$C8B!2-}v>9=V2uu{JA3dGt3nS&!u?JcRO0qWv&7px+(rD-L&O zLl8|5zno*vX_2K^V>0?0?mp-xg6d8?02Xf)jgit5z$x50D46)#PNE6FVz8Z?je{kL zaF|>c5Kl(XM?mekK+uH@AR5^416IH-x9(~XJD*dOtG?>Do9mZmqzH2uz!LyWaQoPD z!qj?J0eET**1vUTX~W2=uwQicFPV|TR0(6nQ9z`d=3J(z<{`P?x@@05MGfUru@?sN zMV1Gs_pfh0YGW(fph3XIr^sM6#(K9J+EjH8X9?#oZ~*R{&JNeq7q(|Yto^|Z<^}nl-Zi+_0zL>4o5_%u_KAvLeN?vvl)yaXOlp71n6ZNl(ZiW6y{Lks?E3NA;Z79HKtS=h ztKRa`k4eRq8#2`4Kn2n$AQJ`|^fFE9CmzoGw_86VjrE&yV)7C18=a6IVDp)v=KD|P z6KWQi72&{i9_g%sSAXK+WTK{r3S?q`=@RWc?5xw)E&c<1IvBn~AfA_}QH~xljc>!?`i8dF1J%0PJtBL?!W< zVyUlX*a|ai=w0n@f?;OLR(~ zRcbd9*Bi2gqR(9?0_=u=`IJZV^6VLI##! zq^i^U_y#S=_(H>oZI(^Gep4tS3C*=WzzEK6|KUN?F5x6yJAC8&PQCplB?X;XT>DwC zOt?3T9M7$hh()m0~s z?<#Dk-dgC2yU##qPf&*)zuF-1GVdmTlVr7`9rckPP5N#nRou_Q=53`jK4YsI{aM;@ zuH&U@3uR;qPksulMIB+Z*}1#^hduH|W&TJh0rUgs4_w9DjYzGtbWNs6we`fG|9tb2 z&Sj$d$9we>NT@!enPmB6m5~O(t5ECT|&&0FG{B>wT;0q zpzc&SsKR|=@NHFBE6k;SPu5j0>#e3dy@D?Eh6n7wkRz&5d1344fp1{G^*=3EJuCi# zc5EW~h?D=aEm8?bt16I!wl((RL<{KJiD{6XDHtn3`mfc^XX*ZtU-#IXWakhdG~%*_ni{QI+TB ze9~hxLVd&X103=^MmrImOcn-&cp>#W$0S1c$JX|YUwfoNUzVdD#*b70{Z3 zwfVLF?Wg6SiZBom=t$d)X{@+V*&epcW~~|N6_x@4_o}U+ic=0cuO+%+`+?Y|fRTTu z5MR0vi(@>KoA2>~rHb~fj5M~>HBFA7zmt%t5f^2pQL9v(HwTlu5uGHV5no_jyaWgXi zROy&$8UVfTceOlJ0nC8($Z+eNy+qcSu4N11#F;} zQ!pk(NeNkYvioJlY1NqzXB?Y(Dcw)aJr2PW!u$G4QmQHQ+y-DM1Gx`x@9{Fk_uLZ z{k$ihuPL0Ywm&=!gCGK*ocU{Pn%TTt8%%1W0z(CpH!P)wkw$>~#LIMku^Ea`=_Db`l}GvKm6KQw`1kkVXxSLOlctr;!K z@R!qBPT_gXP}FKGXZhq)4J?# z5Nj7#<9Qzi7_a^c=BzgMpStxPpq-{NFVQRS>kRk`f$K4+4Gd-d+m3#A`ZMp{3?xuz zDCDI{b(aj*VQ=Cc1oCttBHazC-+QM^ToXEjO`W+JG* znzaw7Fo(&Pa&Ljuto3+rly1S!WDpWcZg)o+AvaDK7p+Mx3J$Q-Q*yP?{W2Mk z9<0ijDz00NfWWoBDAS}@YOR#p=sFbE63zqQ&K3)FqG8Wc8>&XAGLHS7CbvyQ^#H?-jK@va~0W{=HK28@C zm~Wnoc|j}iW}5wPPhQirfA9a*i9PRzdH$E}1@e4PdJ&5cL_VEIaR$OnNZhk^U4DAA z(Gvz|U|`T=Cvl!zy)*$DXsyRx_vXu2nfe_-QkQ5hW?Q~_!_aRPYDUYXZ?!G}+GRp! zEPH380Z|hrhVNuBE_2>l9h?U#`J-QM@IiG+i1CZVrOlWid8ep#jmGsIl2PMU54+w` z#kye+5(4MB@A&}Q@otsWcat4YvI!N1v)G&BXT!-U-tYs*N;UTFN`eXnu{FeCt(vMK zIluHaA8lKfWsK#IIF92N(n$tI=AiMzL-6VFf0d!R z(woG}?My4cZV{BjF4zW_^2Todo5)gFRH0z%SmVU^2DFT-xMnSHagh&3`@XcvzhBw$ z>O6mBE*h#y4bxKJ^9>&lB#cz7@~RD{N-WCUZ2Q%?xXtFllqEOfa`Ph743S2-*?%Nc ze!YS?ip1)Q#W!^d4QE^c7B4-BXgaV677Yr+rx z9LD&zRk=GWkGU2q3By%sgn2S0U!cc_zdM7LM~(Sx@Y@L2!#Tn1N zPO;0Hv=TZXS>~auTh^AHywC5l^m~H^Cs|W;{n6>&YG+LrN{Sd~4_&yvkKmNoieJnu zeT-&TWBZFz(da|$maetGNG=8z2$dxFPh3R%xlayg|2W^}-1>QMuf`bV-0Gq&89#_g z=*j&h6OBcW3WOytXJ4A`wc`)U!!BkZmt!HKX^#MYA z*A$O#oF$^yH^ceS;&kM#Wxtl{ixd+J-keM86sVaVJfDC}0b2pb46j39+RN;cNJ`iDQW z?DbT>JUcC2BYq^R1)-KG+H1a;Uy_{|5QE2um{h-?thvjh!nFqw6AJoKXVaV7ZL=n> zCsl^K?r#Ox=hsmw5*xZYee`iA+nH5~n=g^SX?(e9Tdn_Yq(p8vk!=D6${e~iTj#MS zZSu=Xt}F4r;KN{ldqi@b%ctg~T~DOe!p5zUkQup(ZJL%sB-$q_@>a^m1D5Sn(MPTF zi8~_2L^(E3GGr@f&I4I@Ni>T)V7JF9({=8jfGSrB@mmxhIPZ4D*2ilFX8n-BjMh|D zr4s@X2^#y)n!oX9p)WSVrRSGstUbvM%O|45S)B8L|K?q(aIz*WBs|E_2&r+cs46?+ zHv~4on+g!&RF*QZxktZU6qgo03);oF{@<)>(ap{L|My)|k?qG_0Xp}s#c7$Z@wHn} zwG%s?RK#|*!qXsU5~*J4I7FenzM8d=hr!W=5hPTb`crQ0JlLE+dV|CfMW#!shWi1C z4k=ER)PRkQGlmVt>o8b`p<~RyvR!~R&bM;Wj<#v!6gny-ttq=74 z;S5OsN?RJynPMEW21L@cl$bavz=0M6J?+7=i0fmvB62|Wc$T;Xt4l?;2r6)gQVf|6 z_KN)pAcmJBClA$SqV7*OhB?Q@W+B4Zt28-1$zn2@$OZ$5ET%V&R;L!`#~~?eY5wSdB38fF=D=?6*El}N^t61ANkfx8~*1#w11)|ZC>%X7XiHS zhib6RkA-{I7QHF4FHNxc!+7hsUm^7J#^s|@b^M{@TuMtE$E~SDCOi;2KVYe`$Z}<5 zq+<&fLSpT^`(eZq>hFVl>fy9}r!mcRY^yB&glRo9E?+;=$&#L~&X)GTDgM`37Jd1VoqyX^ttZeCxZH3M_kN3V$HqQ-QV{)C+{ZIkh-0RV6cB~x zV6I0I#EeDR3TF>{Imr+wuybnjtSqc0n+u?)dlUdy|Hu#(SE70pCR_leY$B|CP68DS zA)l(Rz3v~b^;~N+Hn9~H4Iugq*YP8HkHF#;PNIyMEc2v)ueAF5=-P+cYfk3&oD!kO zTpgs8PT9aVIWV;j_s)H%26w*lIw=MT(r+ddH$H9}OKCT#wUqV^wB(bNudGpA5PCBD zL1XVsreTIaMm{D6hlRU9#o=w~w2iz$8jXxob@vMT#XF{>ZRH{47nd1UB8I@?)_}#Z zuP1AwAaVXiKFmBd(eGU+!JPNIeWAX!-+iX+k?}ar#;VG(1bAf{^&Z-2>1q6Jgkrfr zD27T!(n=;k&~Yj}NWEs?oE6 zG?rn!Wd%Y`IK@Vyn>SuaGC}#@qD01tK!TxfoQ{Mg2u07^ov9xg7j)iZz77W&Kp@2U z8>n7vD+juwpJ|(7(a_+`Bd;6Y{P867!2Af-$1r7UM+{E%8=;q4#g8R{&xzK7tt&gE zL#4#RtG#r(xzSj*Y=86v+j_72(pok#clY%G!TMad0Bt&@4C{)FII=d0F=?jOZ*-lg zQtpAgoyt?nptoCxT7+SRSQwEW9tM*VAX%_*K`dQ8Kl`R8I z5EaUg9UV|EfUO3$#dDMtigcygHY{-x;m3w7=O3{%Gm`|*xMJLOVc;OZY{wi9ur@aK zu_|6jb((7q)rZ}ok1u`&bL^nh$a}wsb@2uI035peGY^z3NhH7dJ`)b9-$xNNMWk&o z0ALmqioEZrkbxvvA2Z0PxOV79b|e1s^^+Ue{&yi}JyvNCJ`yEBfL(>rAlhi@uXOrv zLe$Z`+L)%otFeo|u}>^6lEh#yj=?b>g+(^7o%Z<$sKXzJT?<%9ViJ`ILuf1FLX*hD z3@lARn{vZJUl+rShjf)mq(01F$UQN$OE%Sf=*q!iRN)Xx4=^oU7xIgNCLu9+fvo z?Dkt8=jt(1_!n?Q+iJh{fBVxj=Edf}(Vp%98xoOUnu2;@&>f>r&$wn{Im^32ldr5f z8}(N$YORh2$L3GE`)p+v;!8Dd&P+C1X~b8OaLmg)*sk@6otZ0%mj5$x=cTkYjW-p= zkSh^l0y_X^*z?)~HMQ|_5DF7YEr}wdxnj2h%e_DZszzq&Jib?XrA7reV1th3`j|>c z%a1GariS+$WudcFZ9|uwE>v!y46HfeDy5R~+j>df`bHsEvmp2q_QMl9t&9(4BN1}J zQ_`0-^+?8V@Bvj9D)wb$G{Lm^MSoCx@V<_iJk-v;rkT=FDE~f5kXiy?&hkvu6qY5y zjjf4{%6oU>=$JKjn|KY~EX8q=Ff05*3>|%qv$==%{-4i#JV|^7i!ZX_g-?<3uE@F$ z%qupum(CwUTMkIHjflbw!9cEFR}wg#053sC${w#a;6M2jJH!oe^4M)*~N>2Z*f6% zER`<%)1oFKZ%i=03B_RJkFHldqOh^smid=_%roB(I3WGSvnGfR1 zW@ovSib)<=oOEf7&jd{p)&K)VEgB8NPwmnEjc^SPb5|oSdN$aFaL^tK+uQ)>FBrE{ z(JbsEEY&NYOKSf19xoZJp_*q}S-q+&&BDMLq<1r7SP2xbEZV9Ra(~ibAawu&#hK{@ zvWeQ{NG0XIGjbEee>Um9{0-*}j?BnSg*)5#a3Z4>+ifj4pIb#%zx4N$fD9#XpDh9~ z2BmIgV#_C%oD(Spw>H&dERKmnu)2PY){H2?Wqt7N@QbvUL8|H79HQAP!YkSSNj+f2 zwJzcXg%6N4^m~#?YS>f1sTyi`i2^jr1w3o^l6fG3q0$)2I@)9F-PGUM@$6KQ@3td! zox4baqiit0sn1>_vsY7C1_KjTbD3PzlgyPtP{cJS$H(&rSqD$GFR>4uA_UuMUGaM! zpfN=}x+WVOjEy`?=2IlWSo{u-MEQ#1<)gq)0?bds^YUKMBmFPJ+uQa9P&fEwx_`Ll zK}4Fj!I|$87g`~D!h<$94&U>z@i!D=B1g4a*2~-JA=q-a{f*j9+)v0azC7rAKSl*P z?Ehm?7MRzD(Y*_&bMEL6jJ;rv*<)bQg;diCci@9LfMgR2)$r8-E6?WLALDdQv?EVb zYu?;V4=b+3cdENY=9zqYtCk#>ae}7Ww7zw~X0g8r1)GWI6JSq09)x%-ATWO%oe$rKS z53R+h)I~3ZC-xradX82M>$1ayPJc}teSP>wKmjWRPH!xglH({tQ?(kY#{IbRMN1OZ zLX67c1By?>R(t_w3Zg1X%`}a53avcp;_(=kGKD$MP~}gAZoworzMitAsO2EX@bfn& z*WAG?ZZ(KP9!Zjnz*x)D;ZFd*cCfC2evY{u{mHLf%NovWMrb6KGshg>zdGQKa$df9 z*pp0tX5=_KFK`qT6vTc2DCey?S1jefeMR4kDMc6vkoxE3=MR7_wSxbX+_B>4(3)&i zLt?PT5Q{_@^Am0Hp8Iu%efE;l~^*ye^&u1h6E=?T7YT$YP#LRQsLnqmRY zEQTnjRf0K-i(pa9u}f zS3eYkN`XuS;Zu(ts!)ffZ#Bq%ZM(nFE{1n#qF-iZ@-gTdnP?|S8-eC|uZ~C@@biIf z6>4LXBJOMoAA*4)jv9#Ka0LJ9fTb12f||jx7Cy~>5rKMO5vOO@A>F{ck=O-BqF@?= zRg`iTgsB8`jEcz{kJd(31^D}w1O6J9xLPL?BtaHA^_Py#eeBkviDqY~dd+6cRg;7o-V?n99PeY&eKC?yn z^Cx_m5m}gEHUa7RZIXytzZ{cV@*y>*Jn=urn}fl)H|n;-0~|XfCJLbH(@^s^ z!RNgyo2%#!judHl;jk%|>0qO@FvZ6SndZs?Nz}TGi|U$0TMi8MH&i`{h3ugZ%A12f z3?4I0V{7ZzFK=2|!0zW+a;L!5U@zicwFO!^+=`hg-NmzMU({2>TD%s^;w9$v>4hj$ z9smXKxX%zQ95+#=>`9W)8t6WTA;4C%%T0(*qa3uS!a1ldY6Ow_dh6lI* zFodJ$cqrHaDuEo!kQtex@89`9#l{VVhu5PjGhXXzJ;-1A@J;vJ z(L|Veb=6YwPf1w_hG+;|tCHC{bVTVj#`UlqBdWs8Oykf?@Mjl#vg3Y;RF(tlJu()` zk`RgdlhSt$(};fsv#GJG(OG|B01phA2cf*silj0ucrs}W407Da02_zg1o3iTv`;4S zV#b>*g@d0sK7I`hEL+$O)T_PB*=!i3`1ZU|`Z#b;6v)8(Wq?;%QKtY^vl#j4~I_`gRmA}+Jxj6q*d^%P6YUKFbNLN-> z?R39hd{I!3>B{T-aWT{*f9iiO(M_Lei%9g%H)%!OK7D$5K<1yWy)o=! zM7FPvY7585retUK^nryYAU5KRvlyIvswu*unpslb`?{6TqdN!$=#+;s`9dH22ig-E zz$6?&eBvhQeTn!A#&(Sq;~JbSORf;(tJ)1@-9zEFWk4TTW3Dd zn+On~J_Y$QPvvPbvNqr?%e2&T{Bip zmYtn%vbrB7G5);ocO2PADhS@$c9-0v*(MeI1Q>)W_zvMY9HJ;=3Qv_70&y!;3FGp! zES!O_S>Cqk8OTFyC)sFtX`M}_&0}6rDY{bRq`_mCJ!;h+;x%jMZs(69Dp!fVe^NC$G#rGGT$|ghW-AeK#oU*^qzs zI?;4^<-K0sCq=3*^w=bT_&oJdceER`_l8yrH|JFW>&Z})?HM<7Bbr1-nZSC7sD@49 z+e>N8>dcKxB}b4?-gw+)KIGC&QG#!ndWHrmcf6l8^~lQ|J<*QtvT?wUMT29lDMWzF z$1`r_=A8I$BU_+ZLkr?aFQ9g%>?zOp5UA zhzz`LTUn+1k1?|<^JxG5_A#;ws`o20i4VnW3`n)-4AfoF5p6|mn!6lMT`JorF6@*3k-6MLSh~f*m=w@d({=z}ga_3RadaUIJid zE~zpkBx3vPH{RD5Y=PKO#JyHfOcG`WbAM~FH4p8~Qmuz$2GwE%E6aas+*6gyK0*LG zrNZMyz(*N8%=Vr;Q^Rmh_XJk7>TLj_dZEP}444R*$^`yknbJ`*sx0xV~3Lo8Rth>ARWzR_LQ&QUd1?^}C*!P)m0cymbLWjzQ|)l)F3vxSGMnkz>=sn5ju+# z6krzOLKl^{^WE>o@JD$bu+?})2Lw()UbRh@5gBk*JmG4frUe}d~>TQ+xtPs~TzXzd8|_cBB3ag1N`#v8?A_n>})ME)?=1=147q;E#oF-Hsgv;0N% zi&m@Vz?$zFoU%Y6g}c@_Ke9*tXEC_bf$0-y#R|F$_tE2Vv*__mfR8-;S}zUd{*{^O z60Q-IJI|oC1#0J`*olOgyS9Y_A}AC>^g&_?AyXM)=npgW=~>!66ak&I=n*mNd3@B0 zC)PM?-Sl$Sm`5y^ik)~_y@K6=`;S3`Q&HzcckVe*%moPZRqMBsNWWLC?!OfMU_g%d zyTp#a1W?A`6!B%s8Qa^&f1*mDQ02zh2eJSFDqL9K$N1<3#?-YoJM7-Ew?o238$878 z??+T|p!B6jv#u0CmEMKU(ud$&Y|5j@0hz|YC-ENjCPzr|yX-2cNzMc>c8L!0{bZh>DL=eK6$Uqtm(h85n-deMNqG} zbw<#pmf794t}}6 z+|3O~V!nICLb@RImw&c^W-)v0ryU_(huKOs`hOaD0gxxqM_=E~EAHK$%tuHTJY9v0 z#E5*{ii|Yd|FO!}sR|Q$8xR@f>3No4`0FZoH~Zx&v*(#;-?^<~Z5fU{ImdwxqK2{U zlhgoLEAqZ9DEvB4*Z4cF6Ed`u7`tJwhhHgl=oTOw%k4w|-KHgLn>+?4}1P2_;a#z3!Uw zlX`eS&Ik?Aj8(!Lm7%tY=s_+$*_Oto&${bSVa`gmpywhh)oUn9_ll>j8MF&P6HDiF zk53nLqSH{<9Y=*06N-k=8Ua0p3NmJ)!vh9@F`e`G4fE63$MLTK$pk9AOnyFTO=B(0 zem?jonyGU@Ajy$kIieU;=$_CvRR;xq!VNW`C4_!93kMPpK9hA~8M8ZiS-AAf0nnzN zqm#@3BEy42U=UXFZfmb*IKO)V-|zoSY956FhGk_1)zr%yx5(R*(SH!?vhI4;*!ZL% z+c1YN50?~VQZ>%^N+k#_AV4ji{JtnjN^UB_u8K?eFc53?0MRUX%45NuP2OSWhl91R z6dCgXzM1(SK>P>5gpt^e$irpr^}uo6gyPrG;JdEOl)gk<>0k4OmHb$vfqM;&D?#_- z{OV9Gv-nF!#>*W7X%u~x`&|b9p2~=s-Ad!u4T`t?*V@2z0ZwxQFG`{W*fx(q?{7Dk zS+2CvfiY@+rUpj0E6NL@=^yJ7@w6Thko8Xzcd9YH<50_qvv*_u*y$P@-Va;YRT zu0|jSkzDzgO1ow=Z!TDc%Vy7cIBF_&36~=}jGS{jLQGNAy;-%O2nbYYIW_4u%dKEW zSlmnVt^4V6V12;Wj8JyV`|H-+*(|PdEywcr?)0$?tv4#pe_n6{#F~U@uV&C?2p1F^ zWW%AkXq022o4`{VV1PLnX{KronYt1^Qp-R>u>8pH!U@rX3Oe$zyfMPa*MZO1Tx|xE z8ohtvqB8h7TSs3pJrkjpG?p|J1p;UlT5oKB759$t7b=D;s1NMrLj+E1DSV#4q8AyO zsaNFGgen7cvESr^S^*zB`A|;}{#|Gwfv|shfuta@P8hwZZS?-ZOcIF z>Vx-EB#b+Em(;86A8ir+-Jkil+LXsHihPy%40m%Y7w}H z0zL$9m3@w0-JujTgEb0aqIGdUUo2o~#r%FO0^P z|I6Hvo>&tam_1wxaJ6UjUJ;1nV^HhYQ@WBhISO@z59UJPs@=B6c@agjEg;5i9>?x^ zF*HIL0ghvk(;}K#e6~$OexcG4=9u(xBclCWSaFup({QmkvU2T_a_Lg!lbVfL4jI~symtMLQII0}_#B8AmHEt5Y zzj1GjaH7hc-7tqTh`Yi^r3jO!X1|~^E!*VwEtbfX!*ooCUkaTQbS!ABVv@grEknrY zi&$TieB8jVD|!7ur8c$r1u|I;lF6Fu!nEiO=o?gC>xcjIrM@}%U$m-PAAwH*HD{th z@WRbYhaQVgGxP}|y?dwTp*&e~EeaG6r5GEz#UV)Js6i9hdjq4^7L>}bEDE6h+kY)V zpuPhnvo|<4a9IwNozWV;9Oot?8MLl4%#;Ecb_GcJC@mRCj!!F(k!mCh{j5qtx>u0kU)k`O{qvCg zCmh=3%l+%ERl}Vpe}7>8M`GyJ_p(DB_$pYd--UC1F~sKGRdXl{%l%f)p{xt$M*V%a z?s6?kF|{+Cxz^%BBWitv%`^XcE`$HEH`~9^VyO8wM2thf?kFhKx`wb$>~>kJ@exX2 zX^+R$2U(Ew!_ zB(|w=R}v#fY2HB`m!gNu%Y|l}#z=o{8I)6Jho_3Z{-2I2!f!Wsz#huS?+?y@>Ubg9)6Z^BDCAMahYZq0j#&sa zo6>IXucVkwBuY+9N@W~OTBU4}UCunmeEsC~8y$V_70?f7q&MWwJZH@uz56kLSzZP! zh}55x3;WNw)?ZXvLkgHqx*oyjI&&7xYUb|{YOEDjs!gfb{#_nx%*U^|HJ+TO3B6bm zgxB6r&Rmgh^9#Me@4oJQ=p1YAu=3`p@#nlXmt;w@TzlS(oXmi)jI>hcac?d)-jig} z$bF*lp$&rAFtFj&UhfNdurW4^xQ*0wmbCWplv{2&%_B%7Q8wWi$MX-&}A0CRqyVCzzMmz!gJ zmc467%&$q?hgX2kZ+R*cK*E!@qD8sD`g63_`022oW+9c?ihtYW1}br*6g6y20vs;h zC^dw5d}d*UUB988flBA>kcob@;gUy;s)oEx?*+fa3=gVh8oT%!tC8Mr8kSNsKI!*# zN*Gon$IdXKZdHLPbZDVt?lEp}bXILy98Ad-^haWYs-+@*TT1@RWKajx3OnBFh1cOA z2KQ+5>*(E5=}XoYvRsEjLjB&an57?DDY<%NR6nXKFD35Glr=|amNQzNxgm<8FUD6x zriF6fF5szo3!m#5BpQ6maMjsviaf#ma7&t=hiRL!7>LSa7Bjk7?_j1?KOlk)YP-Cm zI^*#@wfl~G^L6tP(qwbrt;6#+b4xJp^Q#WBrVAzbD`%6?3`k_ix3efxbj#ztL!2O$ zLOwNRi2fCYTm|Y!)3hoSCH`!bVU90tTASa7ARVR@4O!uh^8-qXn|7|=-#MI^hUG9T z{L-ml&%kf56)Qh!($%@dgB{*G-kU#zyAr9%+SUu+rB~*nj3aMwMZ4$oOjoG}66iqP zV$oMd8>vOuWyM2@ZBJh4zhY)WNm<)nyJX z7bQLgq==CWfyxICxe1q5SkAw(bS)6he$L;gRmQK|&9NyB#Ey4oqW;NJkr7o;FZ}!J zY#;5Ei%Sitx*I?v zF5c~h>d+~Bl1JgJymOn>%$hhDdbN$Yjk*mC>{4?eV!HV=&3FUzU9+@GtK3&3=6l-e z*VYTs?jvN&%~g3_gJEPB>BZ@zbXR%o3^3#S02Fox$x5nd4>6slN3G}+GGV*=aV$I0 zcTSf&D5T)xcY-LyD)#Qpii+mYVY)WAGCL6A1$c$r-mUx_@ixiG!@?RUi~&BG`{*hQ zv3~a>LVS5eenZZIB`K}oO5MuM>Gfv^#M5-OY*Ra4#P2kyF6TcEGMO%PWrUc9El(wi zA5e}TyV=hA0gAp)w{OF-k7JM;;0JxK^9GK2V~}}Q6|3JZe0oD7)G#jM$%bm_ zfzGqm=&N`!D-U5gR<}5#UR%Z##28ui%Zf;R2NAx}+0_i!LtL{zBqAYPo zjhMG-=^qzQ)^+eux-mmqF`9w~*7z&YLyX3ojX?Rpukp)5Lq03|{>La`s~IR96S&cA zwV~J$6$%zvdrD}DeD1vPhfkjm4q>CBa?yD?p-N^FRda(!hL5hXe6S=K7?KjScM7hR z6fAF{EG@qOEMZqq}MPo5=36~g8x@%P)YpWS-%PAiNB zDbjOyDi|C6xh7X6o2q-h?!EgBvm_np@~gg0*>4@bi+G8A!XXMzPH}|kXhIB5H2=|} z9+?$3O5815-D0rA_N~(_bz!FM-l>c?@Jl!A-;7vFDNp_`@fBRDUWLC z7Z=R=yKj1=W0C4Xr%Pc18c*tTHZHe`R#kUmAO#^DL?-=(M<*UvZ8qzfexJu_;4Jf; z>0uZCDPXnZw+{j>GUEZQQk$S8Ti&0f*95566!#NubpavJ>T_o>UKHLbqk)Y`-Ke9t z=Z-?L6XRC2&8Vh34IDh|@k;ufFu@{@Y-nj!)`8F%!L_pTIr;qy%dc;Le=mab@RBV% z1~i>Go<4!`6b;%scnJ5~2U~^^z76yIx#*|M^Q5gy!U=-nyl0rCrr9ng1Y6SkjF)Wv zDR#~jxmB=6vsXM!Hz55~(W&$AZMfq}c5_lcoCVfM`VybBIWCC#e8q*KG_GXl^Q2oU zUFrD5)dPd$+r_0xsjv0`O)jq|ql4}+-o#}+-?JE$-2rRU%t8-=C(pwT1!<4CoZzO+ zUd_)$q6B+dHxGiILXA|*SR89%HFF=|Y~8)@9R8a$P{O({pM?&VFESYph$Vw2TMCwW7R!Z?A{2lRkl26uOzA06>1!*uQ*N z4v(@h1v7@%$f31*nRCR7&aX++(zuxbv<3JOH4i_m1(OR__UC7*S92RN1stY>x#ZnD zv|dCNSb3T_M60KYj6V(h@xdo5mZHBM>ZL1WQAHbBLd^cqp!&>|y}ly(Nhe%g?OolA zg^=QrZ!F`d0R+lB3rAPIqvM)9bNRIUUnab-#k}gt=2gnU3xs!trx~`W4Uc0#*TT(r zzf$(R_J&)x85nVxrb^sVP1KUFWKfqPQ;)Dza5T^58H3(m^>{OGMe_2DU2EVvIzp_M z$DV(F8+T2^h1?luzMuCf^+U-X8v*VT=x(a`X%4g1+1;T#_i(`hnqRs^^8zgL{2YHq zhZyOv`bK2D5S_-0k~~A&=_{H)k~4_F;jfrCKn6Pphe77f9;18ZL z3Lv!VZ?xoKg;M$^RLP#VBi5~!FoyJn@ZkWxh2(h2&NRTecUG8jnreiAIQ6}c&&*pH z@hGzc|9v+V)S||@Rq4I>E zOP}X_&)O-P3I)S=#9HLCNY$2KR5GKeql`u9cSY()D>21IO2_mpCG{)t+cfa%zTD8v z+(nS@|41$8Mjqu8Fd>~T{C)l9TJEsvNaiU*j!BmkQx(?IWM`f1r~!&7I!7gGYWQbB z#$?PC`-5$y?MfztiPPY|#2f4hULK8#3N%>r9j+co z3_rB|zD~~in7zlTW$;K=S!GhPsvc-4_R@PH9Ew|jN5j4Q`kmW=hE0Wb&wVr1a=#uF zI$R3iahL_VT`xLcKp#6Ur@WYxKVBj)!QHf-wDPC-`hzbrFORd+1<7DSEgwf6MHx|= zQt*N67RBu>efhY%1QKVb6B6j(m!oOh`g)}iY@p*GH(?qUk0iW3X!8Gk`QL<4htIm8 z*}33n^8b&00whx`_*v?R{8SBe&(+c!;o=0VL3`pVh&-rrn3Wk&CyUDR-f;+q)h zPQh`pZ1x)2!d#MHgQ{DPV-RXtp_RKt|=)Sk6f)SzYZzdt^$AG+#;CC&!D8nPt*8NOVK6 z>|U_XBdV)Gu(3)Piw>E)%&-z^yqsj8VNnlyU&Vv1U0S~f)h|ZDI3It?qD=;ML*I|p z3x?+}kPXpjqSvtWws^1uA*7L3yo6GrG)-cB=477%^P}+_JRVvCK{tp`zlY3`&NN^Y z1rCd@&n=I)D1{lWO<~<8C8YR%D>$HG^64+Kv9&44*eqN^zUjcOGPSZJsngV0E%x9Q zxEvJ9;s1TL1d*svqP@mr>*joIDXN?&uU*b!}*! zFoXrEQnjc_pE)TjhqF7kg^%Y+4>=ndvB-5O{DSk?{x=2kVQt5_WJq-@gd45ofu~D9 zz-mr5%}6GTA#qL6Hl%5jsPEeplf`;>!CQsSt^2Ws`H>*O&alb!2`5DbIs*sW;YS71 zfSdK$LCSkWGMeO~@&cP3Ude~r#h>3Zeh|?!NAD?v!KZ5nyG;$s)zOrW zXCanb2n@_qM~b!nf!(`B4_MJ}&8fKHbS9QmxZ5C7n*!$n3oK*7lB8Cg$_Xdh+)P&< zwCvxg2h;93W$`GG{rA>;kb8iV`}}29L9SCh<%cX0Dc_R# zQ-m~ovEWor6`NCjT%EC}|MVuyY$fa6I!rIo#rqc-g`M7VHlpyTQ*V>-jjyb%-=`B@ za(p_$Mi7b1<1X#ZwrP}5=Y*$RDF|3f-4wKm%pPIBlg$(L760;kXSsxZ|0Pf=#iRon zJ|%jSKU%H)bS|b&w}hv#&?4a_sg+>fR-8O7Dvgt_lq4p^Q=w=kx-%CN`%V@iC`xQ5 zVfO`TSUw*U$DNqJ?=`fGYgm1@TFWJ0E*cIM3;u44R6T+^?%VD0Gc5l3b$)lA6HZ1e zC%sP%2PX((^ni=FirCAk4q2+vyY7rV8ee5aDP&WHZL7C|%0 zU6HIWK$Fo+Y{QDps~ovxMn$=njrK4DR-y8Cu28t;tfoR4LW^GYHH7K`$J&2=mKYgb zOM4W9TmW-0c3JA4pA9zL`Zx$u=_^^M3D7wYRcJZ*Jb%;KfvYNY^!JvV#nx~f8 zn|Ne4h7A_N<`~W}IkxhDFZ+~!v%NCvb$iZPWpn7mOM>8ES;2g})C-q~P(4npAWgWq z+iAu3ZjCz*$6PZR0!hiZwy`@6F3n+mY^}`n1efWS@x1XiFSuzpqo%QEoVEQlotz&P zwyI_v4KXRnPz5fgMYe@Y3%;5l6ew8-1RFHm2BkiM9KhtPT9ew!WJKr|yRUQa*)vJa z1vR8LAI<*ZSmi_D)T#O_r)2l%8OD6>q@w!jaGBMx5|3+-gv4_szB!g*f97({>JkoH z8?EWdak?EiRHRhUcK;%1O*1rwrrb8wc2jzx2g7s=p;G#QQ;iObFroQ4eNy!p-WFBn zuJETa9o81PV5Ev8oOzGfYYVhr^47}OzPi<@+MCwTe4_mmt$Rn$uo~o(z-|$Gnuypq znR$@tPjT^_y)X#8ZHfvHx}s8Dv>TK^5?Jn-FYBEbU9S+WBRYx~zr1oS zvTNy@#{*qd zQYb^v>`BchvS`vSs$2ebJ<1eTCAY4oVDzIxHoF07pxU2xxHYPvK?Zvw#b4v4Y~Nxv zg_HfPv!>Em?^9>84`ZW%r44bvZC#6R9*49yu`?Aup|G3g|O-bPS0Vm@3H~x zN&;C?nrs)QV+UK`PLEnoZ#h=$jyxKHLp_^RU>t7ObrwFy>b|FJ5rc!|;JN2;Ax!=j zYYHcD4Rk13DMxP3x*Mv)yc9_dP5K-}d=EJaYhK^9F%qN~tM~AXva7$ChdZz~6xwIy zr)7P6*;?9BKQio>Uo{j7-+nYH)Wpx2PjQ60dui@^057OhDJg9>PyfeJKFYdhpX;I)&1fS6pg5KHMqU2 z!esK1>Ktm1MeJt%aGTF(sJ#MI9h$-ma)S(PRf$p5J?JN5Qm=;*nwKp*)~xe*nQ4^H zT{ilj3>B8o;c$-7+hj;Q1H?EJkyt-llWD)~{h5j9pC5NLXn_h)yzIjLV_AD<;Hfgq zovw94ct9p4Q825UT59D>Tz?)G7Qf0)CLbPsyU>3ag$c9)0H90IC0;E(ADB^X#r)c1 z`DwePblVG*03}__Et6?=jD@drRjDRF*;nWQWSQxgCvy1i@e^K%RFa1cRr79MceWB$ ze1~~cN#|39d(~N#uX@>gA-nZAjLDVvcnx!!Nieqe@JiNkhm-suF4;B;D5qHHh|3xV z5$1w(*Pk(eEFTz@u)v>A8hCXTUK2aUnXHFfa?Gq$F@gduz`#)D2%eD-w@(o?+5QxD zo|d_!p9mpqu$%ur$D~>?PQZ^?@MnTB7HsP}$h*+3IW?2Typdpj3aQQWS&iz?j%lNM zj;G=9)IvFf2%$lBY7H*RFNBljVomWUf|InfmZI+{lIhcQh5^%rxz7((?KjTr4ntTF z*l$!F22xj{G4aQ#n;gA$mPL-tRC<+9GNJPnR8q|ilCQec>{nT8ZBW6a$Q>8o4P#_J zj^ke^S`MV&6xF*7$a)2=*vaY8kclASVA*j#SDf)k)x=E!!H#yan!1Pmt)R6_B8w-Q z1Q8DV5WAW@;RCR;4}Ie|*^6Bb!klWX%WOoHh)iGV?V&U%k}B9v5#_f7pWV=xs3E`I zMFe+_sx7#Kdm)cRD=lEW^~%v4o@}R4LeFoDQo>yMPW^!&k9{wwV#RikF#wJ#)$I9^O>wHxSxDTlhm=uM9i#*Vx0wggv~XxAU&l+_aw;{$BA}q|y%B!W5DzgOgXkrln7_Fqd!hWrut{ z^Xz7fjZ-wY%esvW<^SKo$2Dcgm0?<78U@A-lg{=!Ep6@pRfy>S|GgfwJic-Ib1Ia< zIamcs#x}+3m$%uvh$80}v7Cxt!`EA-albDDnYkTBKOa~H3yNZBYtDyd)PI0!oGBC? zyyIuTt5^Lke&6{#RNcC%al`D|+{P1psBY#Z$B^=!OZ15Zi^x_7w)HIhgr%$$R4X7J ztV$3mPOq^DeUp+xKgr6a(kiYW9Wr${L|s`U>sBJ9epuNRqat@+v0a>RsN-m~5bgQO zOD~Z&6bOuQMm8 zF9!XrA(3}zg)KBYGF~(Cycmi_9-rlP$YprW&kROg>fds-@QuQol7zfqXCxU0P{9 z@E$(Y@Xbjxk3}2BwOW>$j|KV_`1dnxT+3osXUS_jsZD-Gs@BWNP-Q+L3re9m|2`91 zQKp=lQw77UXG%X#qS6#C!Y=Ly78I~B*pJSJzx$cg-YNg4j(!oG4p$PL64R-fbi#=H zS(rh)?~a)~F*W2fT#<=7!lP$nTm+Xk&DGWnyN@Q`CvY(ESNWu4T_U2NBtJMZmKkwU zzA{S;F%BgVxk*%ba5`{=+&iP5WSimRp{s#Ywyl1iu$+dx{l4JU$eZ@1dty{j{foP#{wyHCf%H3DbZS4mTL6*+u@55;&XZ=f6Ehor%sy(btK; zxVaUk4sbM`)U~g(6jbB~NA)RvLQ?d{JnI`T>@aLQOP?u2EzoxQybh+4YA`n`FVk%( z!W;!>t}=(Vs07vWt^LC$2@l+Q+>!m=GN{oLG*q$gmM{^a)Nk8?;R zW>1e7EhzVGT(@lBT-&?tu83NFuB_7CWrE24Hd{Xx5?%0!W*Mp>Wf%UnucPMT*`$c% zB63s&FGa0wTcnVTteqyxc!CT1S{nhazy5L@-`LJuJn3)t_a~;EzM$`^$;i%Lt^vTJ zMIQyinzlhErBX6$GwM0B2lG-7P@39?o(%XrrS(#_*W<*6EjrFEuWChQD$I<+y{Uw2d_D087 zCWXsNP-UsMc4v8n?zLbL%>p#)5U~Vyj75YV3`|RJmeZqIJRiSLseS3v$sdnxv*J@S zUtncb7daO58vx-q>n5$sdS}o(hLlrO!=k}j_54GA?~;+W^(DN7np)ZTZEfH_Wb8&k z3ei+8m?Jdx#64PA>LJ))pDh6^Lig%CNtrDTe)I@fUG$9k=d~&@PkF@F=m@i^;qm%2 z4)SWFMqheWoQyWuxKo+#n|Wr!V-97}LN^UJu#qe$%)u4X2DXqaQfwRN6m8U{k@x03 z(L46SLMIH4a>rx30|CkQM;OOQ>Pksc%C29c8K9>pw}}*OjYEN&A++;3J2EQB*YojC zS$S5B)@I5DKkf*lX)T)0{VgbQ$B&+ZZVYk$T3Sp{jhKTAmHdUlQ@C8}cb`MDH?cr+ z4jdU_N4x%ODfG*584R<0aZa}u=}N+RIrFLsvNdk9w9Wdr)k_L5nI*D6`*SjCQ*aeA z4zAWkd1Fna{G?JRea-$>VZRLOz~gUE9&iy@V?|5H3YqbDSZFLeaR)O zJ{j`Q)4eLFMc$PSNtNm+>&M2fZkEiAUPB`_=$N#3cY&lr zKH4yGdTOnM!L^rfqu%EHS6MXAk~zmZhFhALaD!S3&dR5fC3Ziz(yFPp9wk8)QKe-m z^dn1`(G4d>P1`TE%Ghx8^U9R)`M_>&B|OBITeI$BQfht$6achtSw6}A*I8ZK@-hY? z#xBR+o8><2Tt70-;BfU-k$)Hc7SOkaX5lT=XHR-@8sJab z)}HSel}I5&(8d8gNi}2`Acknjm=%kgF2j5!7|nZhEw3_B@z|Zs-`mdIrx>RcHns9@ zx6GDuwRb2x3jHclK6(h1Xp?CjL<&fb^9@!(Qu-P+{|Zy}Qg2*V*(A2%Fp4`)>qp^Kh_toOZPZ3cRCz>CH+Y)Zf6SE^lFh99!MU zaMGtG4O3{lI}=V8%cD4zwrJr6|8~6NL5!P9U_2d#HB9gKnXgq1@|8Tk#Y$0q6u5F; zn>KkheN|T?KG}U3iPEC~l5|R0Vyk7X{a;U1Hx}+FUM~R7leP#&W2F8IJA(`CUJ4+P{TV;S>HBrP^Hy}$XAY#fYptMHX@jU_;AQHFvZSa z`xoJr37xnpvz2j-qOH}johfL>%)oM-(GTmRV1$jQCaVSITgH-u-TbQ8`Fz1X8&M9a z`OB^brVISzp6;&JiI;1wT^oLzo)M`e34-YAWq*Y@ zSi*IcWRk4Ey9k=UzMy_P>D2GXJ`T=oQdd;;e^9J%j;pOg8NH1MJKqZn1xPd0AN#0o z^c4KjT#xbK<(TSf3NOKy9C6mVUTwpa4echl{5%zJ4Qi#Aw#-hxWKetag#5>=?vSbF zS!(S%*EwacPYc5|(1_e{uoiBt!MCz$Ed9NHu{*pg9ijuyqT9MIB%@WduW9NI2b|e{ z{k?J}YUIDZl|+zcQveIf_tiU0ME%Y1CgQ;<5JS8*M8JJX@uOig!Z5(B9f$}o%JY~n2 zu(Gqb|8E>PvLCvNb+1^dAeAQP>E((~E+;rQdLyV4T^WDf(BkdgtK-CO^D$4< zk(rvdE^4ULwU-NpbjSTzyRXwySaN`$K48B$HE&g!q1f_>KNmGsbQ|_kOmA8tg13FlS~V>dk$5b{}CDNo~6zb z`XWitb|)tJhBqL_$KOir#7qjtO?TWgnG(p4Ba z(OHfmCXKOMERE_;cRIL`L^XE_B& zI`+o>6?_ z+R5GhIFK%4SJSHWUwtHrjOuaeEtv(;QEtcH2qZ^dY)&IVt9Fj(xBKyH5$o=bf0fBq zM=gQ*74pAis(VbvLJEo1OW1V=o|GfX)EUay4}R;#N%@1AqZJ7KiUM2YpSHpgoqoq&G3nMqG)FuiK~EPWPNwy3>*W&v2_YorM8?NFE*#6R<{n-ej1qG?(==a_>+a}p)2U=w7x0Sk zG<3=MV=~>Y*kDWIEN8$Y>-sAjXea)`Fp}1i?#D>PWmTqB3KY#;!HsCELe3&o#+$)(ALH7^2~DCiQVo&&x9=#b=#n%bLt^| ze@))28h6E4)iU;*J5u<_#}wVXW(wEYgl7?u<@VFFQ+_>9_oYE0gecw5FaAtbRmP})3T(KuVJ2jkv-qV$Ek+%@&x__R>f;q zNSJL5Ynk%w)Req+TZQnoSPa>@o8<5$ zC1XoRo6W?G`tysJtHVBU51c#`$jgMGN1L4Az)XAnsSu0@l{~T!k0oPS=)Y|4(sTz( zhPnS6P7=w$E}vg0lYc?NL0w(O_Ab%uUt94yeE<7Odf;u?uEHYCIJnG+KLIt>+EKxz zC}q*+Kf{r;(v@&J^DfYe$1!oryMMc>< zsLUWW{^UK8fa6;yvPf-A*m?csiO|$%yM&%Se>3MBP5pL$vz2&T7we}~9@F@fK;rC&CXT#IS!ydxA?<~6;|)X7e9RczA)YPKC=<;r8Kp9ggK@bkWOPk? zBhtXlvdJ=6Td`=F*+C+e^rm^sGG;@WgLKnmTbGDoR&1otNV_5C+Im0cBzztKcb#)b ze}P3Cu%gc{*4w?|2N&7%=r_O3@W-GXL}<1Y){L>#8eDts}XK(WE z@Q$j>F-|H5N_+^?PLg|Mv(^7&Wbz5p&D8C|I^rUG=w|4syj1&Gh87Evc5TdZrWm;2 zd_}7A)+^K;yDY=1dfOz~+VlTVQhTGA6SR;hlnF4W%{eXgPTu@84xTN~uL3U#K@<|K*vBqB}6sY10Ltr^ncPB95wJ|I{AUNXH zphW(M{E_-$V?J54dfwj1?N$aT=eq*?z6IdkcsGEuWpsGZ4ULMtt6>il@Gn30Ypvli z7!0$a+4y;nW1&Ou9_hNv6diSu(XvgjDZMfbK>*QEA!TC}T$|~urHHuS+H6wxu!lb4 z^+i*G#*x)@1oFpOvK#(iMu3zlYo+ynES+Ugl0GCZlpvcq`ON}y1PL| zy1PLTmhRrAJEXfyx^sbjZ=V1Afnk6dm|^xl_q>kyU7_X?V{r!CW-cW{-VkoUr9ElA z+z+@7C~`l$rB!cb3~o0$#~!vHT8En_g!}6*oK9DnJP0%(uAL>{0jbQhEwg2u<@#{y zc{f}^Q_&v{1(vr4mCGWNz&ofE#mo%lwyjqG#GW;fn)#)16{ z6boJ4%y;6it+hPo3gjN*oowTiiMz2|QkIy92$TAO93Me#c~_wCU^9doy#L^0u-cbv zorh2>ocd=o_d$r$k7uhyQz{KmC?Acs%T0AaA)X4m z?~?!AXOIrDR;VHxuoM1E*)UVr;I)}+e=hj33keMqL2o4h63<+{E!n|L*`{jtJ^tqA zu7yI)fAJ3Ty8UoCOd`trq%HaRsc3~ip6o^m9vdyz+xk3RWbeXO;UfO<8-MtPNGmW4 z4b!yxACZ}_37%7-lC2XaVb5frC9i|B+J=Trr>5Iucc|dW%?;$Htx>Ps6K>bI{xjKU z2~Hc-W|`KyCvU&8lWxCLll{m{1;6dP3l_aadb*8U0l<5)PUH>^R_V5S-pMI<{EKdM*#^DEgL*%tr8$rY#1k1zH5epGFp!7!zoEKkDx z${me&O*jgD#HV~t`h9N@vW%!%U_)|tF=imbx%_vmO-kmwie}#*_{zYvKP!eWDQS<$ z2@I1|$NDi>pk86!NsP?8)h|sx^Jm&@ED-b|&UyM!uO30sqTjD28>=7M{TN~+meWt{ zBUjqmE*F|PLs*G0Wl6&(O4Zt(%wp9FI1dsydm?>$Q%hsDRVytVGAfYb&o;Tts=t?_ zwc8~#%YJZ8zi?sd;Y}7hsea^UXlM7frt?pe#EK)viHCvau+<31r(HRgjF0Ul1!ZmC z_rR*gv%bQU)$4scN(dXsY04 z!Ic}0jd7L_X(6voTuPFUD_()W_CSA-K#Aqcv$S{2=H25n?g&DLPda3#x$ocC&Gh`D zwPl}G?X_(=V|tT%%E))eo3aC?1+W@f7>{E$Z9)`=!HIW~25n1o+->mh|@da4)6pG@E@YZ?PUTKeq9W;X8iP zpFfEut~oN3anzpeZz;ab&C}cElJM7W_9*k{sy&JGvo@!ZbX8TxgMk8>tTnUE)Iu@k zup5kT681bkW`(aGv9g%h%(460VypG^`H#wfYb>PLH}QRrt6zC^M!g#AiRF#TyxfC$ z6izDooDgFNmyxp88!Vx zG7|Mz`|hs}JmIj_vGkS8!tBOjEWV}o=YGZG{O-kL_qGAUlWcsVFYNlPhs`gx!vFCA zIausz4d*EU2Uxx^v9QjP0T$4bAMEIGx#b309iHu*A%bDWzK0&d5FMeS9IS}?f?E-* zv`NgLwOsrC%ix?Z)7Vo$faIHynvqojH%*O_$$6MY86j^SXM43bXaQMy?Oox0%ivt$ zeOV|~nMy>nLvdhRjlwolpp&|kxLQ7K*_xTY=xF_|GXgn3%xejSPtcu-?bk6=1LWij z54D|W#mvJvUkdJ9oip_PNgCA>bbaR$M9RA-Nvu8@3M+FDo>I%CC??HI6=F=tUe)XHXf`|dA<|6FVBLc?;Y=Q%WQ8?2?^<7=tar-e^GgTpbrFyH zkDIw4F7wWZIl>zBWVDOxC9rAg2B`ag|G`!J8@VmJ+aYYtr5zYr92yHE5Aq2dB;!?P zTs-YxZq;hEIzRd02bYL)`7nYidMoC4+eLNG20v#zT&N2_C~t{^UqPQ{*+gooUkA)+ zq*fx7>a)hMUd^BNIlN4-%lUC57Z%2ed?~lX^BL3h(}qVrzo}QBMUOH{c$V6JU}O|} zOzYd^r@!VN=>@2-Rv42h*)0~AkVDQh+B9AYtV9%9*&e;-A9(682rH}M7G{8IYD_b< zvdT($#wC0x$;r`4w%y+xUM(~J_j2#ggD>So!#3JcqN~&qGKh`D^ss{!fi5(NE4FEI z=r5Mp(`gtL!YS0>gX?IBPM|@?puWzOxTfakIOABdtQZ7SH)}J0j3rQETb%1(Zh)qu zWUJ~h-do2R?R)VigRVv9!Ew&Qg`GJ%94w@B2bzW{G^}PuiLHyj({yDm)?S~`CPby^ zhwc|b6ita2X~yaj%N6zB%1wUNg_YA};r2_)y!lr)z`0@~F2^)E5VQK0J!#^%b^hNR zSe8}0tnC+*HIwu zM+p%lb%f!>{bnum=Ix2+O1Z24iL5Rz(rF<>x?{2>)0iM7yFNkK3@}Y979{F_9j=FnL|hcEN+VM`B(;JoZ;R{L$=IxaB`61ION?em zCUg9h*Wvw=XEJ++F$cL~2!YGf@gi~jYi{z-f``I0(wB4u`c4j;@e`Q7dg&+P+z9np z+}NVF$8&n##*zZ$$Pi)fbV?8*MPcZI!{n}(&tolAmus)$7qOD_11Gw?jc~=zW>f{ zi&8mp)lp~Cy7#$e;p-O=>LP^qYnyTg`c@NQ z`i4L8uQ83lufT$gBFtteNP>pn?(U)(3;+Dt^*y<`^V^`=>?O0`0zP~?eD8fkbaZtM z9a4$HlTnahQ-4Hyeh?Y-Zzmg$o}RM9Z{SacFHuqNN}%_k=9ZSG^Fh!ZuwS`jlk=Y% zerN=itXUs5eYU3)BL0~&T`A7gt-U|lJK|LLuMMBhlkYl-Ann;td)ZDGBYf~y9Q$YS zo1V}?6fqnyAeehgaCZd?wVGWRW2HaCVO#W~ch&B9{nXKaCnh?<>Ls@$s}J&Y^z?@3 zyapO(+s@fA@)LhJ%=5&16{h;tfQ5y{XC1@PLm(ZVDpkga-sIH`PD+po1Rn6RgEOq( zmp9J4v4C(6gm#yQfGSU|RJeAL(biz|#Cz?>J7jMVPdLR*(YDz=sW4+|Am9OOPp*UH zl8%`7&7>*<%1;Qs*lB3bs}VTFHzXc-mE7iS)el0d=}GS{bBtb)MUidk=I(1QY(q!| ze`=~m$`Fo|pKZu&-BG0oon*#tQjJAZ3ht=LXRJe)z7 zrHXNp-)f7OdxWVt*`6y&C}<9h#+qe3{9MZ3J8s6lpDWCvTO&&Mkt;9L)Q<4^A`Z(~ zJ!&*9|I{I$@MsqcDqMM)arn(oTPwa$-#Oz5@da}adG^c^Moz660g!xT2fL;&5JjMX zLyx;dL?6CBZ7Dt>H?(9CdBPS~M+r3bI)GXrBzrTq%_BjhZd24lQd7#xJFBCv)f)S2 zy@9f0XE8V+=3fnk$cExCl8=_!da}!;NcmfQZu{uyQzcB!U4en}r8Qd3)Fq+I;{_|!5wE7{jyPygKd$re_E!rx`nO(3Np;-&SB2zj}LbvDyB-z#5Z=d8uyXD-(Tl*$2$P+?SG;DM>|Wph!7efSn*Sp~U3d%|1bFUxDRIbi>y1Ll{2 z>puQ7_HQ_nZ>2w8Q6%&$F&hMtfX%x4e93vN?H{K>Met%Ofz`t#Tx$qHmbLZt%ZPDRGb}UM+&%2}a>bgbVhdGj=1m0t z+#GYkK830nP!=`~mwCr>^m81c35!#U!-gG76J{pb_yN0&;LuL}0}F8qiMV(1)`DIN zN$}LmyX9YmU+iLENp1(e6|-7+;N;(!po?~T+$o}bCu8C)PdyTpZstCqnt5Q`%a^N3 z+e9nOK+t@L{gXq_4z>n~h~DnzD1+IWX(3!@5=f`~`j{lb@=yG8mEV z*yjt5WaOvRerK~0cLr2UX8PQzX&C{de*Wn_!_2T|k z+PDR7&MgOJNra)JTD2QyaP!^vFj!kJSou@16Lze%)ED6e8HqO0$1i9RUfia2HewfI z)1tjg`1wj2f2-~$$z1EW*d1i0?Ljr26L<-i_r$>Y)Jr$l`C^^$*k?J}{Fnx%`?U*T zLt^r*yZUG$yZ|z0Inx{5hO}DQ!{bfJQ4imdp1xGI(}OUYDvFSW8s*q_a#eGTjMjzo z!gd|7w5k%KGD(Dq>z<>)2ER)qI(;@hJA+Y1zA&I-*%Eu)mnkO+sdUCC^HTWVM%>!Z z$y9;o-wJ8X^qKVO12%UmS5vX(%nNFE0zSYV1N)O&*mwv1= z>8zaP8y=fq+gkF!?^~+3On9SnTM|5Yaai^CCr{t!2`-7gbQn)a50oXc#V{^a(@uC0 z$oigs2e5=HbeH%7PI^8=xQb2E%Sn?~UlHQdhe)$rH>*V;@NC^}fQj#8*}nZsFh>mN3pjRD#H33P^T zod?w!q)_;OK}v=BsU`D!zaX8~;NYSvKE(2xpP zk)G#UU4Vpk;%J!s2x+q!Ic120^nqSW=R3NJqnXruAcE5>CdDeZAy>Y0EQ1dE(Kp{W}tuKgNj30G!l zNIW&$;y*7lqQGl1pDhB|1n$4U1u`S z#dc(b>0f*%9`xhu==g20S`6m*C#uk)K5ZBHy0yjcBQ++Lm#X8Gp>y<5{k9y8F^jP_ zV)(BCC;}!qh2Q~CC?L1IOSafCE++p@#n1fM=v5ebX1OFLtGT=+?OL#r%)8DYc6Sjc zKs8TE{}9j~h^~2!OAanUAlaNu`O!$Xu*kvZHax+45GaPzF;1HMPU@`Z4_u+5x=4%l zeH3aaw0G+s>=tJ)v}Nuio*9vKbQyTmB}h9IVn<=N7NI7j?-n_A5Qdxx@@0JC-*BP> zmhe=V)pLj{YG_yb!)$-}tpGQX+G^P>&ftdzf9dVouv|oIP@q2Kng+(zcF8TBEude^ z;If0Jea0n# zpI&3I?x^UWHM^vsPBX!G3%lT(h9nG-Ds_q42%sgBteEdv4am_m!wWBau9KcC9dPpfNW2G+~?wXplwHUaRl+eIyUvqQ&*BvL;$M8Okx$ISuOFFPP$2Z%tGx|tI4~} zPM!3{{iBYx_dNb3|QF#mw5Z^>bkor!5@GNSzd%)akrkPf=|>y;xU-(+@o}3qrJ0QFdjp$Aeh}H9AKXZ=X#^H(tEOpVNBWIfJEo6(nmAyDod3*WB`r z{WjeDPy5)@!#dxDgM6B{1jO)7>RM=rT^V*#D@{NAX2Tc?OgNsXPH&S^m?(9!`Je}7TynNq~H#nmU?h9xHq|HoON=8A;cxL25N zFiJND61gf?Jj=!LmEP0@#uPmDS;Bw5^zUJu>T&!ciH$HEKipNIfl8APurP0bL~9bi zytZO==dXJGoNG7c@MAO%>}n^3g#jl{&36Xt91^_gnVPhFCnvjW9l_n3jvHtE&)DpN z^wkG*;6VGl=m9M4M?Q^Gtqx!q!sD(ls_8($dgo)nsVC@uyfy15kEV3y@nCU%nj}Me zeX=^%C;H_0n7MeglV)AMK0u%S5PINq9-qDStOaG?w1MnR3b$@Y#P&r<1{@3PUEg@x zAjF(d!*9MsgnJzv?AXYKK>rfZH>hzQnnA50(NejcTLfikM)n2fbvsSp0~5=?77*-} zku6ZgE3n@wr~ic87_CLdWq$jhWMWJ$XOo}-MDugLS@n5?XkiU}{f<2+H}T&2OQgukyG{DQOH{@<(5l#{ydLO>J_K)KXlienk zU*rSpu8sXjjS!~<+;QM~=^i5Gc?oZc7^q{au_D>>DrnxYfsN06$nI+J3NzgEdl^8H zy&!p4jjpOWz@v3ez}CbYAC>786>oh&(#zA3wf65uV`J@pkqWT8thq&4Q)72U=6V5- zcF>RZgxGnUUql{e;-t5cuTlZLTU&n~BIgqkk!fl|6hFh?*z{cIV|<4K;*kZMQx-oX z;D1tq{uaW-)B^Y>pYpWr!vm5<&b-;r~Qhju-@L@ zER!{ep6+mPAOilHAm_TgcrZ-*dsmbvZm^;z++g#i=F|kC|ra$m(5CEId7u z^sc^3?fds7J#4kRj-;i~ON(Sqch$zJZCA?T=qh=GhCt)n@%9Or!t}p90Z!t|#R- z^DwOuA;9p&D*^h!Bc3kXuzs`4#kVNCMpap0HzK4dqGG-l2S0YzJ~2ferZun5hG@nN z)i^dtCEn~mD@fyp7m@+)1Ho~hRK0Mw=t=8K<|YwEq1vc34OZP+ySlY{4Mxzg-4mXXkg$>Dyp{h&(&2K-mJ zUd4V+6l$f7^cP%o;9{uDSgEZ>I$jM&#@p`mBMbf(YZ9VT+=-bdUyy^;IJ!a4<{LLC z%-^{$v;px{uOb`R)TkDy+0YLnCm#kDV2HPqj}2nu-ymdf+l;Fht@*x|v|OX|l)F7H!M#NMlXCl42AotA&8c+79OKE8jiX z5wfshHrIjLdXdi^U6_soLJEDq(qY)<5Rd9%+!2ZBQZxy6pbAn6i(%N%8=ImmD*a(~ z@7OroGFC2rzNd#Vcn0(~9LiteI~=Jg)6^CEzoC>zSXo3OBAnt9Ex%@Ena4}V9+`SD z`{tM`4~%vL_;7dXBVJCbI&?=L{a0F5@G33HkP;qWYHyEymFnT6^-{?yD8>lVig$G? zNUboE*XS>e>G0?QkNag$Jt($SP=NIL1h~T{viakGhN#9#8G6m;Z?`H@s{)`FbS&D7<)E-*iTnN^5>xX3MqM6Dm)1;Bq|^9v2}J{}#Mv z#WnkG-ynGqIVS;gO>rh0V>9*jxa_u<@6#5+_m}!|j6a~KIqfxhA-}VS>H|T>!MOj3 z7u9Y){h})2gmjd_a+~~E5bzFicguws?roX&3yr5?m%SD>q*aSI89QOGh}2mhdMJ&3azgXkEf z2iz;>Bz8k!vN?s1Ih-1x79!=K|2Oz3MLK%-j7sFs*PYR~Q-N+MsOAi)T{;xZLRv=V znR0qv7Bcv0!d^;(Rg5x|PZ7L$ms`FmP3Uf|SyR@_`V&u-djvnT8eRNZ2Ij7jBclgk z4mO^k72*_hr=yR3g}ei%y)#8N@S^+d01RZQM5_RT$MNG1f$K?zaL+wMj} z5cvhByJI(Hn_xf35F8w?R48R+KN;J8OHu7wzGOIm0)AxqEgi^ccxrrFR>ikr1L1M% z3vj-z30}bp29jeNpX4F#Z*{adJHE|xcl1{gVxox3Mt!$j(xf^j1)LT^ z0PjmRBCsHWxdp;Cbn7Mkn4}kcD~gi3q*r(#=rn3!#~DaEAp0A7njQRa9P@2_Jb@u= z%z=sl;~mqnjWXW8#G@^w+W3&N$qncOCd}S^W6L~Ue`S?#qGrC2m+o2F6{|c-Kk6>$ z2yvWN*HkWfymT5y!Vx-+tG}7t0H)E?82nDuXN#I@y}adk<5_)|O_G*edxD+7*3VaMYs0`3V+=7 zh3_f)-$Q*qin64orLkiMn{o=Az)U&ss!y-dKA%Vv=O2G{%BXVxpoA5ODGNH0qF@?~J%Q$bK7hc}b)wiC%!I z6?i1-&45%{tarF+8AVDmwX4mXogC^5l_DUtJK2e*F=%9E7I5qSy_OfK)E;`swJhuc zT#k%>Rhzhj_ygO*L(SRar>>Z9gztqv>VkTBWG~zJP~(AkapR8kSLnCaLC#=NO6NpD zgHh9GwYmI^dwP4wK~My3nPTcAtejiOE$tz(t=XU5$rEUkz{-JHv;xb{tKNR!CNEV# zBg!3&$~~_mq`9MM=v(|=`O00uC}!{MpWA_AbBcxo7xaVtpU!o%E2Xggk+rY{w5a>q z+A5?(CsY5f;G#jA1lAE1nU~xG{=CL2>F35^Ci!pEn5x0bEPUig&K!%3yYPE=@{PdB zlBT^Y;4NVsYH!Z4ARQ0>9T8`=O&grC53C-2Gs44dCPbVEZpA;?hTJFBLim=mUj}pJ2C=w55Eo4Qrs=yZ{?3B^0 zBFlz*G57jjJUE<#jW?tflD!1k(aj|5`>t;8A~TyK)hZT>XjOv6J^QyEORhKC`ywzj z4~|+SrN*dOo1Yc8=86;yBvqB3UO7T1&xgnA2qYXb&yybk{0p<@)oDfgue>;%3631> z_+T!y1-O^E!fCU1H*c#O6#%JT0Wu`}c|Z>~@ehpN9_fBK!wL0;PDk+lNZPPnvfykZ zmk}0dYXz)At*-Vk=FmaM2yHQ;E|K1!+Y3v6n|2VWKM0Y>FGmy12D=W;_njSijOYnl zdJ2w4to-dAba-R7OusNQ&W>qsjhC^xDlhR$R{}jO;ADYh^W2@%d{)epQmE>EO}$t= zZJ$6hwX|1e>*V9^5`L0eN7575KIr2KacX9DMZ;26`U#GG!LC&k39x__<|8hV>|p>0 z%4@6e%u*$7>-cI@p&fZ|OK;AxMwS~_pEfkggkXZUlP%g94;hiMmrFoucd-6m22-En zuccL6uKDczZJ{UO_igd^Stno@ra1&_9H=MMBiOM%OOld8tViXwjXC-{_p>$wIw9vt(BT~z|P zRrU(wc*U1P=W*qkfiy=Q+juOLBz7M* zishEc9Bf+6Hx~JC7n`U=VsTbR1Ju5i)x)VlKL6{{ii`Z>M4b){Q{!`bs@o3;@C%HS zzYbghC%$_!!lzBHr|yWiZAYRAYZ!1RE;#9YAr?I!3&qAf1*l5*V1*$u?+Z)eV8$09 za=?$)9@TB77r>EM9(%5BIrn~cW|Uhsa?}c`Sg#}Jv1I=p)a0kihdlX31R%n{fIJbE zT6;3McOdF10W#11+46SwgBQ58%_&Ydh~|20M;@Pyii*}f(de*rin*i4OjsaQ=eRJp z0(p?tCF^|lyx=@zj3WXQNXz@kw3T@^f2D)rPPcEZVmv<8L?o9iaqtmZ87f;xeI*wV zJ`tSNLf6Zb0JDw$s&lH1qhg50r9?ORqbSGHTZ+nWnnY0LbawQhgY=Ppc?b)R z5-*oWd9oMH+Ruv)^>2s$i7U6_VecYL(VwKeV_8K%ik?q{oAfQoxi>NBa-uQl8YAz? zVIE1whhCk#fBP%GQT)C)z*L>Hp*+V^5nPT&RGVUp`447_84=fHielUHJGEof3uhvevOigq;rjb^JUJ5%C6Qch&O%Y z$HqRiDC|PmM_TOMM_{=bXzAwQ&D7qh#bEQ+DtIS(D4?VYmF1N8-x}BJk8U5s8aNjX3h|RISfEe> zcwsHC{o~w3=EJBs)r7D4-8iyp80aGDN^x={6{w`{xdgb|`h~HHu*#V95DPVXW6361 z3^v6Q``_Kew<;hkB92eGlf*JrrIo+KV%;yAbbEe1#6#~WCG9vZRaZFNkLEFl!ZCey z)ke^5*Ra*<@`_Fp6rH1h(hL)|A9$Y}Pcap91^@5t#QG~sp32%HKY{qJzYg-Nn|hil zQ6c9St!KZMs?U-rL*rjAdzUZM+y2^c?eE z>Dn1dZ@Qe2y#sW1Z>OfEAjbxMAWuI~^)V4xZ4N=tCB6c!wZz08h%pdkQ2#ZnVzzBU z1tS&~7Cu~QOZNcwviSJ;)&u>MjpuIzf8qq>6{FDlcw}$k!Q~R`+El#|KPRQ>HE$16cSpZc*Ptyp6Kl2bb6}2;S50Zyi+0 z)9J%gcMc;5QFwOp_Z%p|Q@0*rOB3B0`@du@WV?@6q+o3_sJ@Zud*QOCEs2Yd97IZ! z3fBa(VqNtzR&PC^*%|LU79EL2Cc*mYqGyTjMhzP5iO?@M%L0W@%su{5wo{8%&{@-c z>;dE*fG%YpJ2>HNp~K;0207b(?`z%r)oV~O826P&b7kDZzL1z~H9-@js0LJ1Q)fwn zDB8#H8gIBC;`b;#p%Jycz|RiBham=TC+4ZhJ28ENU}CN^lZ0%;`;3h#nsLqg^nUZI zg;FIrqi2GgukUlpTT^&HD{K`TygMyvPbC40NHAQ|@(F+M7&F0x?JGU|3-WJ@B+l%i zj2R*?EQ|rpG2~TKv`KQ0^dWwpa}_AcT``-k4aJ!kz?=rjd?`&LpM_>tkfxOU$9GA_ z{hun|TtO@p0>Yo3AFmdV(x_xN`Pe_6<-3s?q~hp=50M$#_?$Jw;TmYlOrg&HdW^7H zklV54(EZInvRN5p)#Z(vjhN2heAb|R9{H^(suE4?Fy(LF#u_clFn|2KnAg$xMdEp3 z`vQme*rr}f_&a)Gr@>&bgDyHe*im1;ZsmiF`1sHiljVs)2~dL{z4&SwB`r>Ab)_6e zs#pI7Sr&U`cBt2Iz7KxlxK5Trf|sm5Id(ZgwSZ|~Q!ArsuC8xpW0eSWwclt&1g3}y>KmHM*wlbbF1lw zxGCZwd~QYMODL{Am4g}XK{s+%E4%gj&Y$@=L|z~{^HO3?O?NqYGFc}d42A=YXoDG_ z73}N(q4hR)-vE11KT*4W?)?(u5|OMrgg2gG9(~$hOcDus2(pEf5vZL+qU zV6Gz8C)_2%MD1GSbOPiSd>|MBTZsfhjCcpNtvDi2qxNU+eHG(b%q!fcFzVZ}FRPd1 zs#Kj&#*qo>mjS~BeoBU>HP`h(R_c;>@aNC0Vn>oP=aLQ zQD0Q*w4ZlK2d*VCl0sNXcB@w<3N@<*+}u-t{%P~swzr$;vsp0GqdhQ~%P@sQ2o}cu znlW@JRX7V|jl5icguP$gZT_vYrAM{;Iko@?AR@Do9QBHKezEk`yB2O^%B%36KS`4s zjiwr2L-}cVVifJG1!}1?#QsZGLR?UgL;fLF+Ty_;N%kR_84ELB1>9C(Siu<9zJ96lzehfBVEz; zvn5)+-BEY)eb4i$WP&_1CZhIhmoJX}#B`jKTGJd{iG82Ne_0V@1N!1UX^hgqMH2LQ z)2Ny#890N9#IK!$qAm{I$*GcQkI|y}(#*)r;i(J6!P-d%)uQ2Na|To9Icu z?BA`A;_PkmD|~_WCs~SxQpYv9oM)`vc!xeFxtbb;PKN8>-(Xwg%U`GQY)DoxRV98- z*=VM{g%yy-c=-|m-5k?hX`=L|K_MqM^GGkvve2~wO&-Pf5I*@P!NNOMY?8%+wP-_? zF8|T8JAy190(+g6mKS?=2O1hnYS(J~h42k5F;cmH6%u|X$~Enhwfj;W{`2m#RKnMN0@sNt(&+xHr; zDHB$^yiLjX0n(8}(eVM7lb;OvGaD6{63<>8^yvUPN(4DYVQo{x^twKr?|RPu*|i+i zYhEJw6DkjxzoUtS5Y}=>&^K77zOEp!2??OuJY_6XR$Zz_r`9aQO&H>JD3MAhO#6Wj z3C;US#6vmwbxYQCYWLs3dy5L3iAOUOlCYPrGE3O&ztm4xLxF}q>B>Dmi$8DRz5v*<;Fp*4q$qizRZL;$aOJefJ zQ=4_q6{cPsiN~VCVe!bWJQ_)U8rr9wyWc~}pDGQDZdK@kSGY2URs!mM9h;=B%?nL- zrEG_{VMe1{rnhCF%N+dg5rzgNne;pB-2hJ!D>}26q5pHkAz!~MawVHu@CxkbK!sHy zaWavzTd0&+RKiB)_6)i~pz@hQmBLiRNhY|fU1l6i%x6Gi06Atq}Ekg|SHP$G1kw98%R_J0B9hNvAKj{x~)vzr5C^hVZd_cr2fSq-vI~3qtOO zzXnoxWmkDj7)YEXA|ZH97?-NZ=(zm~OyBlFr8JCO4^BeeuDLs=k)p>1g=cplAWXja z@>xvHD^5+ik$VfHn+9)xh4U>Q2%(fTRG5{P6Jb)H6(A&7=Jx@DcLGcDPwPngP%f9c zVtVJJXo6iVHNcHXQdZ(Xrx5?PO2CrB-gnD!rlzq9vuZC{42E@1U!dL8=}{*292}Y2 zya2PU6STDpJV&A&I;R(cWZ&dGDpLKx*cT!L(1=`sVYP2`7J^C)WPNt*g)jnq=b0WJ zEguB~Qj^`E{!Sx)fb!+jvjHYQ@_pT~a{Kq8td&x5+O|hz^9{IXgrH&Yrg*vEKc>7r!?v(eh5fU3;A7`3H2BoXwxNfekw*iF*@^6~+(OEP>a^+`+A7Wp%#2@blx?(+2n~>Q?h7KoZ<+HK^Ga{4nFZ^G z#V+`Ixi3LL{M7rvBMvcT0CyD>nrGE7_3tmEd?S5wa`!JQ`-0Sq^it+2j-I;$cYkJ) zi`22dlapO$$@)Ldw6&6Yo^#@11Rx-%bQ_|1PYlSx1}(~ECGHQu{U3su0RR4f@g|w) zR`~xPp%VW?9jI%EO6D*5-Yf%Yr#OK2&TBi8##5?QwLu`U)7MMPWLgdlf`LIa5IyLa2(Llhj776ctW77p68;o6C(_pZ=^-b#CKDeMizEHm zNjXYGngR?PK*r!9U1cq=dbM^~ZYEc9AM5KJYV^CkMi6;l!u?A{%UN2@XUbPG&2rUz zd@dOq9U$IQ!P!@Co0BbeYl98sYpAf#yIk(6x24E#sF#i+XJ!DTL_@P^I558{oOL)T zJv2{EB@fNCO#jtuIhG2GAXR0)6-=E$fk~5%ksJ^kz+fcyk257^tk7gWYp`6Uy)g#F z;HjTQ&Bv^H^x@4q00hEuhsD-wzCX~?vCtjNco*~$Mg2~=rc-L82=|-E4sowUo2%x0 zK=xGKayOJZmFv%PV`uIK-5lE#^RMS{62MmZu~kamgBWp)4UTf3XlDQ(DNTh1_r-Gj zx}1VGwZSl@lh=nMp8`%pG2c2h+2}^4CSOzi!%LwHGZJ->5|ni}txIsc$RYvo0Bt@! zPC!PQI|rb_cl)bVfcXiu|8TBlI^hZPgrE2iI?}VfDN@x?|NQWU2%@|#?8Knp`N*96 z{oMUlIpa1lpWIjB{_|>qwt1ls@=LS3zhLek;uFaR&DS(z*H=MtoC*fG8`%&qkc4_& zYFmG=^nGoGOqDBPLq*W0mx@j1^x{#od4Q^kd_=treBrEuz8b#cDa(n#o685m?BNx!yRJfr6PAl(-0~rS4X2e|8HEaRSzU zI}Lqn8~_Hx?XSOetO&me*LoVkzr-03ur~-*X0XQft)ebHakbPY&sUmB6u7_exX%1L z(UVv=^iJTZ)#SFgsvYz^l>V-JaOS@Kns0KU*K2Y^{_@Jx&GQA^^ha&bUH7rT@ZtSk zBJo9x>9j6V3GxeWsU7~d4>>h=09R!=D15x^Jc3VHH}~(i7*%!#Z%<{seqT$fJ6nO_ zz96r8fE}R!<^fqF^lqe7Am z>2?L=QA5OKF&M$eZOe)ms(pO4yvsTv!hpas8*zT5XfPxt0znG+ZV@KxUu~eg2)P%S zv7_9nf&D(8m`gX86Zp#~y8YhrhofL(Lj4OY!JrhBJtT4*f`sIVDz;w~!Fth`M6uL# zs^GXqPokX{ne?&)|$AnSaQHb=~Po9oX&ViifDS_aBH5D&rHJ`nu|IHx3 z>#Dy3p#L!t9!gD~aZNL(+hb3MW4F%*7<>4&z4N?TGUDl0yyCex^u{|w!1?EM^u|HU$51cf!P$cX&T{} zbvtuHobDXxv_Iqlot55Oo=jtKy;aSUpS8i{7M zM%SQjzJvvKT0fN-v?choYr2!Ye>Fal`a&W{p2CW5`oP#L*%WK#p;wAz<@Nd?a0%_< zQd8`w-rox>yEa#|p^>P)$@^e*w3FYK+ceoL-YjpCA1LTG4>m8&+ht&mh5J-wo z1P{%K#AP+eiQSyKf6$&RkW7-NFYBr$u?ml4E*-W?zS@`x5q!`zcd~8U`+(c;4zFJ` zR)j7}z;-{>zDiOxbMl~f8!ixFjEs&}v9tS|m}so&LwQm-N6;7L&F&P3#oO1>pIpR9 zDYFR`dS@Q}43S6-AX0s^AFl66>VA1}tzw0}HZ%`hH=|lUjU{TxPWX+mI}~MA6B#Kb zs!EsrBi8!6;m76J;t^NmZysLwP?~8HATbGS1Z*dR^9!ybE_MLK8YukFkDm8jELSHV z_oIi<7M`1fm`h#MFDP(fOqfgWACr_5tOCX3+)X1g(PisvdX+kVZ@#%PB=;D>aDnX4oeU#R_N_5ntV<#Q z=kG%BS!sU3rbHa^;%`h!u2CY#Ni3@KNXtw9>qAcc(7+Gw=0+AoJ)_zhJ`!Lu`qfu~ zV$n&|_H7IUH(5()NkRy**72s$S#Ttke2ZkQ;`;css{`_@^D^VN^DbKT!d0WjrrsI< z80X!=v+}#kBoq6jbIQr(`!6L6mvv{tf^WsA*3K_V#nEe=D8)(D9u9Q8c*kHiRB3KlyxSV%tQ-S>z)J zOt>dsF}enVx^B*o4#ZCUJ7e!9Y>whLvzPQ{b~%k3*puAjKi-D`&eZcg7s%&XH`&4C zWd>?u&WMDNWuG4qlw*%QqUXFCM0~n4{t4$(r zoC^~xcJ4~1+~(-^f#h%Oy?;H%fl-Wlbwm>!kBs9>OT!i-7bJdHn*OdUH-@l<*;@c1 zU`t0w=Qo%px|))eMTZ;e0MIgnP8#Jj09@p?GRHZso`5b?j{Lli%af4@^)zbt>U)>_ zWro2ldG=2qF&twt`~qC>1SZM9G%ejF>ID%#p}Wo;&WiPxPQ)7~Sl(s%Fjl=4D`rI?{FF#&QLYz~v{K;oDJfc+zX-sNRUG z5xMQXszKJXRt?cZ-Bk9^ZI&Lhsq2Zu<$ots4AO~mooJ#moEudbp#T~t$BfUp8@a5p zy0tpicW*404JROw0+{2)#cDee0~k%d<#gK$VEC=Nc&qerjsI%?-PGDTA|&MC`HtJx zWq|CJGsH~b!i|=pabl$FaW}g)Guw@+zq7aHZmHf2J+A?0NmEZLcYe(u$Y}B_4g@Qr zvA%vJ&>YB)BYe@N?ATRB6RmV5H>$Z1j4UfC5eySxmG&_yQqQsW;wl@t1?~G$1e)%j z{M0g{hhYl)$BBYxZ&5GVr!Oe~6L`fGZD+r$xcDmeZ^evfs_ZjV>g`qS>4U!r@K{Tn zwI0Z(Dm^4zF?q0j=?Qe`@M@mQYf_Oee$_99uc6icYrd{JAJls|j?qRd?I`!kgA6R? z>S+&&sV7o-TUJ+&!~DMgZ8L@N{)Ao7;oyzx7vk!&sbRF|Evt4QMe&ti+2dy;tvNj$ za;@#CKd(w(8k5QAML6Qz+~53N#0MTrZ*nk4ED;W5ovL5^Zrd%CRkzY*dg5zHNVr-WQE{eV-(-!iXV1a2*HeVSjSnQQyTQyIQOfr! zd5#0&9>6F_`S#cEO;@u?+_R`T!3uE5-3TxJsExg`J^Ay+9C3p!3%@x}a!Er^TW0*y zp@Ol1rSl(@h+Lg?Z9mf!<3 z=Oq37+o`H7`VjyLY- z7$pAM>?)c$kZR-DpYIy2J9XqNoN!AroU|)_aU;Sm;27gW!@bSD`T1-LzC?fH^On25 zXCA(7!W;SMcP}22Y0Hj!zkB*+6GNpgE^Vz&l=d%5!`|&-96PQBb?wSp;SQhSj8UL^B zYx3VufL|X8v#i)&J~G<2_4-}#zGdpNMA6%N^Zxy*>V1@N>v2+JuiGcdi1-9ft(Lh` z>sNsVLNNIZa*^2|S#I&~Rsq8hGxJ3}e&6`Nc%-6#(yD{58jYu}vI0Wyio=(Iz`P`{ z>-x%e?o^(kXDa8(P?FEi1vE|bRc4N2eG487KaBzOz>;%tudG@)X&E0|G92W!?h!z! zYpeXVBG5?VeXCLMACXexw5e*mU;^y#@|DqK?qX*BM(da=yva*L% z;!4D}l+a0Q55yzJiN)LDqZfy&@Bj#-Gqiph__;+M*$wl!vgq;kgc*RmohlTTm{lMV;^ds_f{npS2JFvQ-3{8 zG&O<64WehxuGS^6*iD~}b$=w7+GM{fu&|ezJCw+u00e*#-oXf(cVlnIj1?MEZBoL* z(`40JPOU*E)i8cqIH8igJeB0Ji%EgNAN&2|O9h6EJ}O(uFQw*$S)>co-76D}msv7j z&n*}3N41jPCAU#pk})^zSMPv5yP za78<)I3wLH#_0^e_Kjh*Jb^n8rsbNYnMWeEr>M}D16>IDHa2Zhv@Z!bfH11rcT6w| zrsE*2U#Fc~O?7iM!L{y>9rmI9$YH;Rxr`X-$4wvZz+Iy0C+`j z_+X0|BPN4VBC!e{Nr2K`LXSgxktH~K@&i8Or{oS$b0-w+%X~$1{6PEfa=!jlfeUL` zz(B~w(ZJ>hE=@MBJ9A-n;yVZYpbHg{d4S372w`YhQfrYwc)s-t-;aj@P0_JV@%kh2 zVItPSrq-Yne~wynd7!fKxXXfC3uaR`g-4TfaZ81V7s1N+DG3XYbNRAAHS*X*M=h3N zx@E{2Y#m0W5>BM`-)sOH@vd3J1tyQhuY^h?!J~yZwrj(nbF(~TvV_-Kmxx)zl*OUU z6DVMHe)6Q{UQ;s<)?6f&-?i_9Lxnx}AOwnubIJ%w<7H1&b9h6&}^yqwGV_h>OH|>h!&I zETl--2E6|nW{9%;>)Oi%-N*OAsd>FAaLi}PkcM;{o}tN@KHIF7y25Dskh^m~(2*da z9JfVMad0O*k0Vr9P{}T7C5Ow=3DOJrY6-cZSr^U#^gI88a>$uIUlziLLk`ocCYU<-RtM444t=HkQP0(3-KbHROSN8LXyDmPB59&?l_+ z-R5DjP7c;H;C6#5k>|>~7s2ICgh`=LqN5 zSX{CIa3{}8({Ya`ajbZYrX3d_pHVWSuFxhd!7K-zT)2cB^JDn<3&#cv4Pyf)13Tgr zwxv0_{z{u}LDw-blUn}4YZ}c%Y|R_`1pEvpa!XFz)^>BmfyPdtt!Bmaw^w)5MR91h zLU)F9)3g9KJSGm<6n)a1Ye6e1AStK208~%yt39n z_vMN_0Y})%n=|nl;kE>G1H^ zr~}9;ehNQf83b4yj{~A==l1_wQMefAmiaUP2Tl`u)-3)HP3!Tn6KZg@>%Jgn(XN<1 zaP$XeAsveF`-1(uQPy)pBtWXK$}Qj$Z-`I% z$@mQ(U$}HhVhrLlgv6%eY3fD1U=!u8aAU@(9KHI0ra<5Y99u#ohWk=#x>|$j{InWA zx&#ZHf?8kycbs0qFt_l}P$2<|K!VOq5G{VEY-0zo-Q=4*zE>3gMTymNnGy_rEf>v? zXIrpO(E{5tRtjKc?LR!UQ2{w!BX6DEht{-&HHmb>D=Y*Gs%93hE?ILU9|Dev>jI5L zU%ywx>euA|f}DQt8sc`7BT^Z|Ir>aB#vOB8w7FAsd->#Dy-O;=pBNDbE{)TpT&lMj z@pd&d1eQgA`X_b{O}@G?n7ghAURa9sy+?dYIy3|9c7QLpepa`HG3F=Z$(@+u=RG7< z0MfgEUEa`{A~VNgIkFfYys0rCki;EcW*=Q}ocb5I8XX&5ncWWLRI>yWG?@)X%z`=$b?IS0XHstwxe0I?UzMfRsG5l+_K2=-nN()mJ)3YreST)O zwVG4-FzfH18jNVxg~oUMfIe~s5N>}A=RGHRm37y(t3(9(e#O1mjH{f-%~O(w#ozci zrOok4OnrxTGSiX*)8%W5GHdXXS-2)mIoNTsfj#;GP5^&YuHbJg)0a)+26~=@bqTI4 zk%B}sFujhl2&Bgw;JOvX`!agVGcS86^h@4l=>jZtgbM*8Pe4Ag{+i!4dZ?bP4tH(7 zx0<+?(K#$pxgc>GM_gnjHjs2HTuQ}!j4@eWT|exPWu6;gq5KpGaDyc2n;`1>IpmM8 z8hI0$@TaQ<{?C4w#vG*g?!V87e5oLrQ?%#$+9Uv29q{P^CJhhXfd6kye$hw(xC;kd zM)RaQ*fUN&I5GM%ABDpFFQOQG-u)wqNHU{ntUF+ zFt6-=_)+yC52)$U1*y)ydkLh#G?l``Guadt$r^|9hwdh;UKXyWsT$O5;77=30TUs0 z`Qc~35K+$O{GWfC_WO%WQF(+?LMqeEf+3F4PFEK!1`2%YO6xUoY}Rsezm%fRQ5iKF z=xN{*t!<6kcxI}00cPHsMCGriBM$d1k@#c97FNK*DQlwR@~gpytXK2ky=T6$Mz}_9 zk+7BcpzefX3s69MOf)3R@M}XIC;SFHa~djMR?_-f8ZQhSg!zk$$zS-*fWO{5yx0%s z=HPEC=6=qnSdI%-Eki-3aqmk)>B3;?*Z>$<`Iq+=IM5OdUyH)yFhfdrLV5;5rhM?L8od$cMszmIawUCPUICz4R+EDfNipFQPo%e z7H|z;(HW%*%D5nW(vwFY?39h6x{~&*?UJ?6`RH;g{ia`SlUNd()QdYJ9fLC1V?eQ1 z;Z8HdcIo*g#4hPHgy;7@-18!q5Z%eWn?yae{i2-_?s^o38k|#J+&!(G>QbJi@fvA) zprgV79rF5dPnR6)@>_)pcHH=oS`)G9!DKXVo{pThcx+4Rd1>}NFlX+8;6e2iBTd}9 zYSCG}ae6q?fp zB|MhK2mSOfG5b_WAo7?{ZfDgIqqtGo7CG);3`FxAYphMOMUgEYuuSuFYq`Xi=wTXB z`;Ku3wv9_s)~$6+V(d-Ji{9$>xZ{Bv-!a9S7S(Feol_lJ zpDPA&#pkS=6VtXcH&39J_|Qm4`5gNn5QlQsfWv@S_D&qhT#_W+u^o=$DEXHmKNT44 zb-+|$3ZijVAg5;=n7nv5=@WRVdUt{I0TV|H{iZ4Vd#r8{H*;23f3B>y??#)tIx{+* zD%rAFR+`eNbNwBt2es7to^y1!s$tm6uq_7e&tvBX|4_y=%PxW{ZhKfq;|E_@Rz0Uh0T-8umz2K7F3@2CAH#whDe|_jv-G>I zZZqMZxN|-K?ne!E9|Ug3F6`X%hTV_f{}eED$2Y*JS<%Cx*uyX7v>++m=40MiR|f7* z?VvY}L13{Pd}x=F_306pw>W_?hx*RzYL35w3uE|qvG`6G0cA<^bxn$!henNHXej?k z3<{K=by!%-6?z{QCFOP0DsT57AMT{#k=mi=F+?2xFYn^~y;PM6la^6l7k}@rDct0> zMwqtcPD_E>j0{Yp#>|2&TI;5}ukm4!+tI5e3GWWn7Gsd}_$dTs&??*KkBb`2-*Y6k zMuOk>+%HvxD(SN2XYmn}hskX~ptj^`wF-oTN^g~be(iy=vkyyN)$_vugm(u}F)*sl z&Gygad6cUL?a@T2@KerC*ZKeGVylxMA;s&T+Fw`G?4C$;1A$a2~Au0C2>`8H9Zu&kg`lyv6SxWw9`O)_`E2~GkMMcBh(C*iZm0WH@8;y z1@f#?_37&Ay{|SfM6K5w>#8vfLOjNjn2VpxwA^~W0GW0lX5ge=wC%gU-a8bcsjRiq zNuDIMoMI*%ebj7JNs|7K+iO@THCc0Huh&q~Y>v?BKhOUULH`f+d|v@1gd^Jb)CGHN z@&OTEA>J5&fvucHN<{N+A;qBFT5|-+&YO673cOOsAr`S_NC->YiswJj%nVbcL%N$V z!d^r4C=gIzZ`cNlZY}I42d_SVyK4AKH|Mie{U*>=qoODXS>6Yb=TUZg+Z zmn^N+^B>N=7Fvnz!8z(qLJwm=4!bT|^6FA>{7USrjKw;tGG=gmb54%*vd~gY1S}v9 zPqww$`&)_qQB?Zd?&bNFIMR}PEyMuJx$HqGQ0X4~O^?!^t)(S|)8;o16JGH=YS9+ML5h2+ zXnB?RkA)Y9ET=6;JvLnXeiXnR4=>__3LPtX^e>V4Z3MAqchdcrLZe&nSAVEKsd9uZ zm`7ufn!B?h{5_z$@ahnZMPOU3k3!doC+o^N;{S`jlmExy{V)1%^#4WQ{hPG{nV7mB zM2UagD|lcd_$LgNO(PGarzXKvAGtWEoS5DnEUrU3>AytX)1=Ahm{l@kqwnwh<9 z;TJe!HofR=I|ch=f{_;-Hlwu0SQGvnLlmw=b_mQSxuZ|1S|Psq`ZEAi1}a(hL+I0n zyn!y|-b1!7r-Vy=B}A4T7;$7hMZbb=;0Q0x={#D;8@=%H!=h;#*}dJt7vA9-f_hNwcuCSyTKsWHyD3c zo`tyIX*AHJJQ0i(OG8#zEng^k|52|d^A`ee0UuoF64+3;v0yd9Eq2>}yixs9izl}9 zOmramjZK_6+c#?}0&rIYc{7Nl=E%iF1jv>=CjYz^{!oFpOl={UvO1SSKjiK5rZEbM z!!QMZLgdV^iSQU&Li*S!i?CeBOArCESI`W8A^wDg%s4o-fGMqzLhV)4$m-D;ef9@X z1HjtFzx}$5OD71HWK?(@ZfxNsw(Z9&TIP`xR^yNz0ac1)#L~Q~Ta89CQXZ()c;}Pa z4pfv-5?wL?-L9N3S+M4@$Pjg5TTo6Nl8&0{&hCf`GzBB_kIpV8r>&Gc z-Mn9ghK}SxZla{1$Ie0+_{kUR;D^}xM$F&ZLM`fQk(9@2#b#8mj$blHZ4Nf*&DA9l zg#MP7`10Aeo)=yw});(Pt@IoZHFMc^L66cLFZ zQFO3`97pKKT1yt&qWwm0){t@iYj9-e)=zJ(B5!ep1!tEM>?%w_niEt#0|2*&$4G+~ z&CZ2h+wQ)ezt~#6%k~i&O^y2%H}X#JHgud~{(0~k5JjBTn0}~k+!Nu?WNaw_+=g`G5 ztNB0xZIPTJUkQ#kwa*XHDz>8qL)L>(nhm<>H2(0dUXn@{o2fle>?_lVB8l zYS_BEgqPIF(pH8=@c+uA4%dmhE~sD@n_(x`Ma1`KHUoV0F}0lg1)uMa@zZZiyq7?J z9u>xK%ML3s;7Sa_N+LDzE5O3};Ir^3*-4tSteOp-7W^*c=}Ss8RH%kVIbnCDIEtbjgD#g6VocBmS(Lsb18;|#UX>`(W~?NPea|Z46&B$)zOzzZiScQ zgm~_nQ>>vjvoTDXU~CyJa*;R?1bU!Z_lgB8yMVx)0Q-hshnkDG@49Dp>jD%qEGE2l zn9pP?l(WV{#p|8-`L&J>w`5q3P7OjdzXk(>P=tWsP5U@+!-V%)b?}Zey^YcCGg*##MO?tLcrY?G zBMAhPP$l_~=!Q%oVyPEV{ea-dBfS-3<+$cq@_nXU;|BL$Z?sfGT%9iNW#J}!(LlKw7aagCPVl~r({!}m=Brtgg+@05JzJ6p;+7AJ^d z8U$XVMI8~{&1C*4ja9P9ng=gY%F&%T% zy{1P`GhXU^0GQ(P32jwME{jIZ54s>@7LCiX&xUdt!nu>+*Pn0@tXUC$-ULV=POC#6 zW2>D=AF;6LQsM0zswYC*4&UlBT|O z+nCQR(R5%)m$b}PvTyY( z(vh8G@H}a^rfQr}zy7boYc3G@#kAfL-Jcj#ee#Wf;Zh!2NT$2pOQP`$)!9=O^UE@8 zylyyaVnzJ1=1VViqGeD{&|3*IO{ZV_3)iHc`SS)v{fj~@{o5bAH`sp;^q4w}DPt=u zgnve^zpq>Gul4H=#Q*S1{l3q3?IKN5xrOL4LccFyd31mJ9unX`eMe5AV1N^+dmw?%0$J6;K&)z8&E)9K?*#0 z*5PIy1#hgYij&Q6%z;*>s6>es8ljkUch-l*CaEsu-!N_94eQ>W6zf(({kO6ukA^|G zLc<-xtvKuVDn(zPj0&4)?v0^N@(3qfxdKorBT@EHtJm4Nz80*s-M$K1nx%V*2b_${ z2s&pq*fQ~Gb}T}C>27HClkE+CzN<;~ZxABwe)37O)@ZePC`B}0-!j{k!J;}+lg~Df zEAHQ6D({k=bx~tQ?2qluLD=XVNc~%kTwh`%NFIU}NNR&oDf=(X@!h7wngbkS! zDd);wN6!=)ro@xFxUL}+l-5VsiK?{aB?KTp$5WBwc*YKfu!r_pQCZ{msH#-15^)IO z-wibLu*`OWLycl;*&)&<=L|D)iP{L|>egb`>6O7fBQNLsgs8=lh2c zlygRGXr`XRK#YH*=za{6-=S;o-tJTwan?J9xGR@uVU=LD53W%r;ETbv*cXVDqz(%q z3}X8f3mbaFft#G;QefE8H%OSfPnVeWJ<$U!n8JyXRr$*&r9(c~23$%EqS8T9D|t}E z!Vr*GOKv?Edn}Xrz)?lb>WE-D> z=@Z^I&0z4IX(5yqIGtN94!)BkEZ?%|vO1j)F#^Tq}lW_(hL ztaAZvzrS>37nm%1fF<3VO?~nMV(^evf4B2u!Bs}X+J|eni$)Uu?J)}~Tt0ZeNqCQ5 z#j;&CYApAj75S6OTaJ#$l5&%q7MZu%_q25L%WLZp-%#>M-m@ymdPG9I z|D&A!jwpt8c!L_5OoB92w>WObK91$O9Zax`Awp9OAAh0ydCS3HfD^pYOh43P_qu4e zWAIw$8+`HHc>x7_dAoQQoIT=r1F{1!g|4WCYIk4j85k=p2i)x8_hZi9{vA#AzZMkh zf8kU#tDQQ_*R-@8J(j7vSvHXm+}v;^B`06r%qh;f0bnR@*He6jOkNiq+l>S;czZqi zQvsw#`Kb7^X-3#ZBdM^JFXkZ5pY4xr;Ls@jasl@77d6oKG#%v42SzRU{TGgJ zb|~Tkb?<{-1SL)Q<{a0T7^)`ZJbH|$Lwwl+ANgQRa^s2b3Uqs^g zEf3pcq6>U(_L}#uA(g#>9)8P*8vq>9JhZgiuYWygJrF zjvHZc7xamY>_FfIg zFVL85XmrT0vua-&-q2)O3J7?ta^8tmMDBUxW_*U(3?t8Q7&!>`c7a|>wL=1Feu~VG zTpRMHtCAXKq#vh6hpD2juguB#9v5UkRKSZn>j2I5;3-hHy|2YZbz%n>;f>1EBv~vB#8+($jU#q5<$ZyG8MLEx$>E}And}<%m#$~S6HG@(8^$)%8o@=*K{3ipO$8{;r;*D~) z+Jhz>`4?`bZQaC*7397`Cs0ci%}8=#5@%0t-W5+)rSrIbmpV1Vcn4 zb?Iw5)dGb_)^}o^A`a8MgSvD&m%1r)yldK#vjgZGGqBG*;}}M<1I$l}yMU?-xK@3b z`3NL>deqOXPvp=3>+WS_jAWI02VFt#h+?G{5}cq&_w7r)=KE={dPk@PyZc-W6PEAa zyJUMI)Wh`9L^_%89?(a5H2HgY6Z-dIWuFu1?yh!+InlLj(23Cp+vYq z($jrj?>MwU+1EkVt34tL_EuL{|0>jq=OdVc{h+@!P-gQ8b)T0Dw~duRN=*3y{!w9s z8eT~ZjXb3+UR2YFMFkS;B2d~n$XM001xc_jWEolm4zWzSqd%(+2nKPNr{)`C(B#LU zv`d`UMj7ZN7yXu@OL)DTnH`pQ9pG7M%x3b(GXUNObc^_nv2}7BTOt4g6f8o{H5pS! zcrEt&@h+0ggC@jrHP~at3T`JV_U9EuVk^Gsm+nFJmTz1gOuEJJ6F9t|HD0O9p(bb9173@9-{PV?p6 z3j~_(Xb(6%;z2Wo_p=~p>_k%3`1+u8?x&cV66#AQD;czp%5_N}wl1$W&Kaz#AC(}g z=Ke*ZMNH&CLZNvJPuRKV!?0Ef+#xpt{(HbO59(`eZBJL$jUfD3J z#LgK;wg!l|d6^eWh@Xm+Q>4G>7aRS#;1+MT^Xw6JpC}Y32f8?Eg2ZYFaxCet6=70D z282eNZI6#nJxzK7m||Y-lBIf-sp$7#s5y;OwM%EbrL&Oiv$63USHqxXx@lj6=PHk= zQa;B@>%XQ#DzP1TT*`=|g80oB)&>-Yu&=MLEx&!sy9n&r{?gdYHxuCB@C#?F$Dzo` z&@B>q>0eiKE{O!Y`0s^!&Dh30?t~Hd&M8y2dYd8#MRoNIV~iM8 zZ7R6u86(Yv%5RLMLgUhN85~s;<{*Kn2`n)XzH{V@O1GCLw5fauDnwK>O84&T*VD_~ zS7t8wM3R#wRBP6x_4y@4M$N4);RBuRHHKjUY^tHBeh-|MU0g4-q!qN+(56rCPH3}t z=6L8kgDcTFfzcS?ZOw2-)bWpGg>2)TD?;Vlo&IL+*GB3-T;`xpWLg9OLid8CFOo$N z(ofC(bWR3Yuy43v!4c~AnUPvsDe_w}vYgq*5r|=ZN&*Gq+Z1@_8O{s$NEMVW=GTK@ zJU~iDIa|Tn=C>|(>ZMZD&f|K3Pqo$bh3|#%dDWtw z#+TVa(6!-Fvl1oU_Mc8y$sFHIHGSE2MJeI&(&q$fjgC8|C^gG`0#x9Hn4mBboy9j# zeJnqvc9jlUTVKENB0+|=TW(orW?O%zs8_`tl|_xoce)UALW$U8{Z6})a9M(pqOWXru?RN!DAWDYQMP=Y%?)n}UAGykw9xkV+heNWhNFPjpGm`)1@$DToe z^7V~lZfk?i!S9hScRR>fIq0T0<1^@|IVWgJr%1hs^!2tjwK3DJk_&ykf{__Jp`E$| z$5ZLlLK)AMh}a;15myw*cRq*;NXrayyAW*Xf!1e#?Q#*d$lxwBsJ}m7YDkR#a@LLJ z*5DX!U8sJ#?y%YNM==!WGbg^KfUyo%QvyjYUbN>J-LkIP9l(%xq0u>IgO{6Q<D*R9mMPryWFE1_k}ZLWu5cB`%d7N zVz^b>yD6Ds)@_l;ODx6Rm&?;$YK*sh5l0v;dU7N=m0d^16o?W0>Uom;hRxH>9TMn&JAboZzzdTys>b z^;2U6?L?G#uqE{NNJPSjsJDGr+pm_}KYXc7tDU{ucnv1c!&PFO--MOnxD6nz{w(BP zno3gBkCB;1w&|NqBSByx?UMvKo({~7as{ySXcvM>oI4BR0+Kc+-fY{BOK;$vBtV*v zHE{GRpOU;ZJtxH-QW<@j*vDJ9ixXRchTK6(+pUEr(trpE9e!s)Sz(>5GqZ+qH+#b1 zCdM_-STbVbasQUZxIsLF&Rg}xG%0$Z_MnJ%{4g7iFcMPQhK^&U)G~&;0nGE z)Y%3R>8N8ed7S(JGwTRoi_=|n8Xd7HPyl^RzCz7&k(%Gm)`-#-{^&xg7FCKY5$JcZ zvo2lkDnZcT?HXXPsV4h1WAwxX%K&tunPRsfxl_!8C8IA23E_r*V!dHdG+EJW-KppG zrk=Ea3z{hVHolD@b{q2dZclZ(xytNVvr)5F{bN3%XE(0>^-8(ADVhpOi6D zrB81*z-wvJQDBpFCHD2`_DQ%1!=tsdZU`Vyyvg_U$#H z1~ew_?2FTxB~GdZ$M1bzUpBu@jR*Ihde+N(wX2Yl4=#xbKHDIwj^L~DUDK(H+L$s7 z1mojS6MV1D4h>Nc=F34u$Jhe89R|1JFau5m-aliksB#`DnI`VM7yjNOK1?7v_kn8@ zJj5t88uG&6Od3WvLT!B}+)tl&(v}ny6?b1AucfIm@$vDyh2DnV@!$V!y%4RtZF$ct z-rU@{e-L!Vyf>`{bkozcdV-*YQeS=jGLhjpeSU!C0H=@Cr3W}-VSBe1^?^K?d z&&K7eiSEH_YS12^6TcbmW4Qgf?wnfq^v+afNv!~5=vsq_1j3i|an`LJrtiemsQ%R3 z`?!p$utf6rXTKrD4`rwmz0!x!r=?s4=oX$Z~&>I zLlSL=!&+Vl zlgy#HOe9vbCgnrw&xlk_N|5iS7({-EcQ+{gDn~YD3`})YjZZT#npLGr6s1hVZ_$oE zf3aD&Py+v1jXi<4&^1UJE)SS)MNhOxe{x1{!Lrdh4IpzJzI8_U_>8d(!u0h`s`$$n zIDD}?lysTfp5;ff+lv>73VBjFiw_b{A{-X%pX9y#Orc3J&BKxfKhx@uLVo!JB!QX@ z4;m(Rnif27V8UAXHLMH;sG`!DW=p1LIb>&Zr`&8(V$zuva}8r;F(yvZxh_jmuVG&n zWpZ-n4|+R6-CgGK!=hL9O8~74!_Svl9Gv_kG^QUZ0s6J{L%_6!JVy}Tlx)mn38?!9 z5|Z)zZQ;SHp1S*gV?-Jet<0nq7VHs`ocq6YQ0;Z=bV=HA05nL9~U*CQRSQ2z8K zaQ?uXt!RF<9~9OhrK4Sm%$0ki4(?$MdD9>Poj{EO@0QEou$DuL7g)LSG+kDV({ zMMq{V9rM>Yi+OkKL~MlQv3&h#bQFkELl|m#l#KYbt>JsCaS6mlmNhNetJK5a{S!bP zx%nR2#2jcx?ElSa&K*y4vJWpVq&z+OUcH~@vfq+i7fO2@f8n%ooc~VwtuQE{rS(-g z(>^G}hD|{ik`r^s)S7GTKtOFImbxr-s^SSy74K zFT9{+Dhh5EB2O1;U;@&0V};b1>p{G>fXI5Yl#z&|{^?!-QFN^Qm^^I%h&^f>%tI*t zocP!Bt5P&Q{OkKNvUvGY=??3T<_GN&pglikAOMHJy)|3f{Dd>c3cc0HhBkTt^yPOfR1bXyC}%fr9S$4 z|7hut9AyP<3LE_qg8~bauW^c5Aq=VS=B5^YOBTbe1+d9 z>bKMKq71k@g0()gab?Z8H2PcRSnPy(2(&KU+0}17h>R)kzB?4oOKPkM`GhtEsM%NiY(b}W*P>{!A*>h@ih zBS4mIxRe$&4Hn&9H+vuz1cAb`vcw)A1k=n69+e0$%PKQ!gj9t6H54%I%5&_C6S6M< zrlFV=3S%~p#llVBwuT&9eR!*V2=wOib}61V%3A|;1dZ4tpeE>n{A zH;fqlb~4SX`ASeD^IcQGguM1pNsTHFE~Dr=taJFO^oqq!^c|CLEBb42+hU#5(<~lo z=nO>v&~l}$K)Ddc0!>foh+@r~aAynA1OE>i^S6!`7enBd02NN){ZTV%Q)U?ww9}XLN(h@|KD0amubx861M+ zfdFloRbF_u8J~&%hOVWUPCOnF=gbl-h^X>H^_1R}uueQ8&FzKfyC%PZiyAr^%WP}b z_jrxuUK##B&+T|610PUoF2!CRRqO`m^N z>9hlGDAA$Un77QL6emzYpufP%br-%V!f2<`1b~|%O-692(J8Q}#{KE)YrkxAs>6pd zJ+1eQaW+xa_A=P#G|^k>(jMZ1wr`P`9AMb}%Vkf#)e&qveAMDd_m7_tV{RUVkGb)U zrn1Nh^&gy!NNWQl-}@lgnud9O0&)4xn=i+@Ul-uXgpVe#4Us~dCw;|*+5i(bEV#~! z+xn8F!Zc>;gk;)K6)U%}L^LL-SYqvs#3Rsxg#*Xs)d*SFj0#T+V(U6TqT(qmS7=qtR?YY$KQr(Y zXC>gs{wa@xWZWwa=A6ZWHn0c7^&!DrNkS}}e!b#PUtht$>p?6#3A7(MasV4#h{-D65@(eKf5F9 z+5?{4$O`uQ;mDn>i6==vB+Ys>N(O5A7W#qF3VuF?@Xg?isvC{F3kZtqc(Z5$vkuKi zy6273K|RPWbM5Jm^1Z+9*?kLz3lrvDN$GsTyYRe)>4to&#D9|yA3l0RaEPKLK2nRg zPe`_iNvs{LurCVKh0k7h(0L_Be}Uv7LpN4zcc32@4{1hBcAyWNEr#*jP#lWmD@GUp zwwnXvO9KMuZRBOk^_u>mhTqfT%cU1wVL!@=SCUpGPk}3E)t&Kw=kTjO7n4<1!U{K} z$<5)wrpfi|>CzwSo%_^JyM8%%{1cx*;lq?xnBJ!FK6hW=q6=9R0qT;#{Ky+ilwhQq zbC#Z)fby)vLxkGZZy8hN>P@4;8Ck{8r%uT`U9lTQz|?t=FF`5q^j^HJ+t3K{{geb{ zgCFo<{Qf>5kXjDRJKH{-SC4N4vO6GiRy2>*=ovVK!jV@n*f46>$nAcV#oHQbrcJ=% zG#375QfH~aHko4xiko1!#0&LS?YjSTSfv}n-fPaAXhSN?D^s0y?5}^dTn#%nU7H?d z3D=#Xm#Ttfz_3V4^ebwEYY3@hh55bvW&%INEMO#B) zt)zOP$#B+vf)bkQ;92hqt*6F9KUfk5Il3B}@~{KSjLKT9c$;SL5WQk-dwa8iu1*SkbI@ueF|0zq$epb z6W*qP@SEk2jt6e-mW}{=eCLa7_XX2-9>1zK>K*^p8;CHdH76tg8?qEyd&8MCebF~$ z94$Q1i8<*>tt`)FGA4$Hc^u0dMa|XC5Lk#k+lLU#l~RmaF^3y9Wb)Lbor>8zoYkon zID6T*{OXcLwEj2hVnJ4f>4n2~WL<$Gu)!b(A z!+@RAgh80j)PN{Hgio16;>SmgCfQ>zyho3evuJ&{cY0)JqXmlCT9+4_Pp-(4Pkdv-sJqh@Y=hq)kcNMYGvE#WQ^9a# z^Jmho79C&x?4|DSJa(U6Gz)7=b#EGTPa4=@*f90F?s&xK8T*C8Hpt}u2cqDb6&6z3 z-B@hx*!G4as|>~YgDf1{l#ucmq5m?*J&Tyji$IVR$MXZHlwcSOQM#PjbgF;0W35=} zG!hZx^21N@6uBFFGIC1ubB+7O6;9H{h>31N*!h19sjk67A)*AWwf&wtLmN71_jhR6 z!Mdlqq)T&TME6wlP1RG~IgeffGQlthUHWRV{|==wJc#XO9uB0-hX}G1Cy-uOVn~T; zaNWk`Z>*PIP7Ji=#W4fC1j1! zHT`58^pnnT`o!76GL0F6mQ?&U@rT<0gHRc38_vdme^W{u$H#ma{=U|ZiOQ=v&*TsM zaJ4Tr)@Le3&e#~8RCRL2IIJkM;0?S;&R9+a!l3?V*pl>_-~^Q~-kLJ`u%Ej6j|rhp zX=%2hxd$d11gi=s3kj$HaSU#5S&wi)|HhyaOj1&C?bFk9#f?aYOhM;nA@E(744Fu0 zNIj4u?WNE7GK7@q4U8NBzX0^sTL^EFRysTz?*4S02Z! zYm~7JM-t#1HQ<43m?+3OB$L z|DL+aonbSq0;jlx2jz4?ItlsV2V$UJ;vZU2X*?A{b_|y>E+|<5kT|Kg16zLD<0cUZ zx}*A5?fnrGdTkezXI|*ZCWv#i)e4OgF~Jcv2b=QtSv4_f0M;|Nl4qA4bYNH;zh2O{ zhh5gpES5fkflDa9BStzyxNSWpsK#EuK2fyIawH0={8Jb1$0ff%Bz4oHf}6S)+>7}X zCwyR}X)>|ol;E>4hB@TNuF%Dr92|HM7~Q+S?4-l z%S^US=36F;a9vs)I=InE4YHqwG1ZADVvpROJJ}>sf$NMGrW8lnzJvsp2LmRs{`Z8# zYTn;`07A}qGMXETyyo+>qP!IGQi@>p0 z;Pe+bnX?5;9wsp!Qh?Ij2so8W{S1h$ZdQo4_=LH%$3(@N?dYl0`Zt$Ny2c zY^Vn6yp+yxDV3@dP3N&%hqSg26A~dMC{7?gG3v_0@|E7*()_co#U$qQr_ z?g<;a?)s2>0h3f$u8@E=m zAT)C04O<}S`yU=qlW6Mdi$Q8>2gVZrcxqk3n)+sn)^#{I8{ro8&y*REO80|US2fXG7#c*e8lws!jFp&(1n) zcx&CJRbSo-{(u_K=$(PeJX$i92{O>HZr8$u1s{h@w%S zoa{--dP!%KAX!$tEd%D(A zVBVGun5q}|28|7fjAf>gXYW^psvDZT4!vLjlX@=C2l zp)FkgBcVHLeHW37`pZw5@|VqEDqXxD`73<{WG8_XZ8x!TsVtk627sK0%7R@x|ZPheOTm4J*!&v zj(JbOSYZIfiLB?+{FRfVmf`n^*&oLuFs0Q?NR4h$qz>O`uCMd13{xA71fIXo8Fx)8i%nmr$N(!buLf%Eo`on%CZ+B7tw>JZ&`!V8|em#KO z>pQvs<6iy=4Le>Fuq!pmhhR`!m0EN-?l?6r=Wl9A(=8sU=O6~-q@mp#SZqq${ z(CsT?27ehQeQnq9i%}KlS;R(n@ZVBglC|aOW~VzMRuud^L%1?cQkTCcx=Ry7JF&ra z=Pf)g;tpBh&x4n@b`Wi9n2Mo;SQ|IWP8T z=TLxlKGpD+3-{-r&nBFD5xbYyd{V}}k;4KL%Ix8S{4EbkPtOZ>k0$E(d3sprNJ5v8 zxDv6>?6VR6Py*BRrxVG=*n)@-io7 z2-}rJhgEB>C;9g#1|QKEurz!AkNZTorSs(M_chou*^ooD_0sviPA4>9xEvqlDxvYp$8 z^sO6FY8RtVYMaC4lOOg*vkVtDYsN&nBlG7A(S4mBi{^|93F<^M7NrSD^uL`7wlxr zY;ZT5E{G;o^>HupRLanPMWVh}9%l_#Buhz-#q39g8~uFp+2ceAC~+C~S|^p=d$9y| zcCsUL2*PB;2nFUpB#SSfb8O^jlg&#N4Gt#B>%+p$hOr}TI1Fe3%Y(A=-UH*C4cO^J z6-ZUYmv~)Z%ERl>v78Q4`3?2ah&#SJr>fm;9#)E9Ds`!yPDHb^R@Q+K5q9L<>8UgB z`pXh^oYnYHY2XZ&s@digv1$I=s(;-<0jl~Pv)dcC4+VB_SX7gPQGG_~H|4C}EXjgI zjektvRL})ccy8?oCVH>{x2gE^;e}Wtj@XQSvBH^*2s=n4ji+kN{#YX(TiS7UX!T5Q zRQ4J5os3ZjdeLw)>LR-`P8fnx_4;CSozgH~JA+=?Puu%V%D*OL;=W|BFWs+qjx}5j zThu?%`Wn`B)@B^O?Uz~5mAWzDYwTpwLf%JpcM zbeRZ?C^cCtzd)6M9wyZW&w_G$soMz??95-u`MSBc;|xITWN;2IDIeUGmX z3MpB3;tS+Q>^cFkFfVW31FXp%f6-sO$mK&s6BWmhy6P>3JzIsW`A)#u1SkNbRO^BZ z_IE}2@0#Ww&Y#@pmIS!y%7W@zRPX15omsxJW<0NGZ;4-Z~=GRx_X6 zpI&H>HfUO~v4=Um=MyDH0su=f6`?M~)-?-_IV646rA7dRKY<2=!^FHOPfsAw5I5~A z8idmyV`JP#tj%dOw2O`S?d{_zw0<^^+G+5Vl>Zjym>MBoPtsl|ywwPh{+z&`An6f& z1g??TJ!i>JG4c7maW$c)LC4(dTC6?tl@{hSFt)>NPaH?;brFzgZ5z?Do}5*Xz|o|# zHFozu21h@kgHYoiqI@K2rsZ7ld2&FvFPQC#eSYumOSOb}t)HH-JBLUXAM=&l;u%>L z%K|wmk$5pVsmnwioGq97)3kAh5zC&9SS0Wf8zGEgh!T*1Rmu+ z5|eswTe=Zt8c)+izy`G|-6;c)b=--px<9j#{pOpE$*ma|NMiArFZhy0a^O4gAV@Mn zZk|0U=KTDK1}Sd6i1l1@zpe3piSYcI6ihWmLz^o68s};_eh^5GO7+6vwQ=dC)p0vZ z9c;a{lbZrPw|1Egdwvlri*ty9pXM(Ds~dR~Bg2i^iujL(3!7y4_TJ=I(4|pE-P^Ol zlD^u2s6X^{dFu+>QV*DzZV92Rrw!1HgCDlH`2gfPVhO9Xh=kykp#63Rfiy%6e;3nD zwBK&c`wl70#?xg&ROM9*(badoQ3_082o8}In)KDATS`-N(NxI}t0`HfUGh&*$a(8` zBCuslR$!$Vae|K6Z17)EKL82S2%!7teeu`d6!JjNCNyhFv0ont#MM=;gart2?VZ*) zxWJcY|JT5)WSaEfH62;DW@Ka@7_z~B_}aQhME#9^_?XcDj6KyF3vstjrb)(`8;Phx z{=QORQ~)S2%MAxnf76=Kd1me2+60FYGM;H>i?xiWmArVZn)iSW13RO1_Um)9@mbGH zx1Q7mx1HVg05(DPEx4|88z)F0{AS;`l(gu@zBzy2f@6TqsVyKHOlj%sZ*f`HLc+N> zUii}OEP~m927t0LpZCms;RPPLPRVG0M||_wcH;!Zf;flCqZq3IrLQ`^D93mGeAfa4 zN~ZL}=AkqjH`V#B9t{KMH)M&zt?J&7`ec}sj4Ir+!6F>f)Q?!s)l7-#ensu`?MJ53 zlh-Nm9`r+wnM8d<;Zt*NOp6kAVNK}*#<_Z@fG5(L6w5Ohd=g6*Fx2V7nZ_^zEOEBk z$(L<1b;nj>@D1{#o35D}Cnj9Q>3NWL^I;pCh!--D zr;K?ms^}mUdCa+dZ;yxJK*M5L(!@rPwbij{nW?yDV{ z4l{*c@T}toYg;CMbHDOlGF>7r@gl_Ic@ib0C-}LCTZ5t=%oELOnDh6jn0|XMT8A zknr8%<$IPmr2Nl(T3gk@^~%pvVn-l+d~&O$T32Zn-JduZGK@aD!o6qj9o;Ez)>XZ7 z?S~4FXK=FK6mSwTsHQ4PNebA_eFyMAi1AkqjB!R&`E0XABdt99Ao7yZPlLmHetGEx z03%iZ)t-aJ8k5LHX^H%v&KTdn_f9^z2sjKZ)S(YHve{P z{=wW|lsSK|OJ;umR`CN|0OvQ<07l+|Z%Sa^-mUHJ_0Q7y$2VMC{Lh(OMGY|O$NmCB z7*ttV|J^_y?ss?o_gC|=VVg6;-MZgv%lu!CmsyVZc>Eqq$;YQBlXJ>Yw;Lg!8rOF2 z)IJk3f2E|oO!zRfuY>5BDZk8R}R-uUjS+Q`Ye@{-HhzuKV!Wc~*4 zm~O&MfI;7U+4uH!g#@TnI4I9^{4v448?VSJO5%tu`qHZsy7>noZhv6jk1#L`Sw=5R zOP?UWfI&9f1^0JS80llK6n75zY+7S+zJ1UT&j^6hfcPPtCvm{A%U1bJl;IikUQ0c? zE`1uH)=yq2fib==;wWWo_9%~P0;^t5%NP*_-8=>nY^al)tY=W*r!{naM~u9yYjEml zG0jiWH$+RuIL4~fX{?`r`$mjs<*znk(ThTO+r+?wYt0GQK7Pa#85{lb%f4)0HX##9 z09+5CNm}K{F(JeM>#e6Wu2!;Vf*)0zDddLJ{?p-BWw?D=XRR^^1lqq|Rh#|V!(=%A z?w^|OrLY@m(K1`; z6^{9@K?FJPbA48Ph`u7=^6!TtU%Ee{d({zl2c=8GR?^V05XB$!(7}E2b{#+kuYCN6H67vLz z^hRua52aBG*V!(&OAD3=WdN9S5%WSlT*7+qpLE`$nea&#jfj*q-jaOY9_# zL0Z+*PX%fwbdj54Eg$?vDW4xSG_ni?Fj{ckS9*Ql4tenvW1A47YU$0Kk%kObuw-vc zg)Pis?Dx_Au|f+IGMT``?jFmAdDRNNN7$_WKztVsH_|ta z_+8ah^`$+I-`9+0w71+XxnAzV;(Y_E>;hhH(F(@zA$t-W3wNp(8>*N+Q^qY)If{ny z2V^4q#_x~9V;2vEd)2|osRLSw`lH2mAKo9)eN&@UDEKxHBUa2Lo+7n{F*;Fao-o1H zBfy5rxEjThNs}(V5(10Di;RgD!G014?FQz7bDR20wC)SE`?8$JGKWQCV&aFCRV>6H zWW*o?!VW=1nO{gUrF;K-Sx zKe&!(cq!IWwgDI1P zjj1sA*x`Kf@tSlaxb9QQemxK?>7~0Sd$aPD$f1R*?Tv1)43UMzOU z3vr&jQZXmCZn&hB2eQww=Q)powNj|yU#lggg?&wK)3Gs1uE?KYXv;{G=&H_9Og8&T zgg9#V*}d2TK)AcoPcCqzcf?8X5L4fQA^gAq;3d?~otR35T_~85zr<(;!xn61v}#Nt<#|ZC-F!-m{Ee0- z*RLiyc27?tC}C=@S3xLvOJDqPAabQX5%AX&d`zL3SMib{f3ZnS`86Ftj;lKg-a#uu zMd8df|Kg|F8XKE=u`-C`M)rni$&0`Ef89Dvc!qzn6GlaJ=nyyriRqK&yF@N&llzl{{op67duY);`pJ9#2Liop9zMv-_u+T=!U3IN+LOtW^q&AJaqb-zw! zzQ}~{b_yj{?v*JvplbGN+jmFPef-P&XtZ@?5@ZtGfWD=r^60c{JXE{yzI2u4#TEjT zXEWiF2aS+j-z=YiYD1SLGoIWXb7D+E=5->8?o(k`i2m23#QdL0062H zL2CsXNJj?o3)?6a`7r6G>W=FG)eI*AaV8pwKSoOsCa22okc1`*Gk)*0Dh4&6{ErvM zC6|wjnc>z7u7}82>4~TK=*nGYD%hI1{t5%m9{4si%A+Ege

?u~EDYj&zrrAg@PJ zU%|i3xBv)8#vZIj5=q0|ONiRKv8n!j7!+Q4o-^jbu;{K>yIy4$dB>}#z>p}Q3;ASioCGNQzMByf?+YtP$L>T zPqf8d3V)@sJ#~e91u+4E#2|fJ+5>I-S*g0W5+Cn?3L?-hJDLW1As~+t4R)r6R8HZm zDGXqbwH3{oI{J?s0#LW|tH)c<0xcYtuMMBI(z&Y5)lW`~Ei(G6y{-2RP@AapN#LBH zmd$?h!|75}LiDTs9N$V#2(c%n^?+*b*|L%IU+oC?vMn13MQikH`^18s(b@U#c!PXl zBvxBdn((OZ)BXFykHYb9^IXh(UVcxj`CNjob(SU|r%Pf}KI+438XbITZk^gad#PDc z@n;qP#h56Z=_@eWEXd6CPh0YE8tv03&X|;s!JIre7w-|rFD&P|{9%8y+?DFY_!LQs z0MRNWb_U0Qojcv((~Y$LsB}jUCB}k4utlhC8E_N5VxKGmHjGlL`?#cZJyIkqXRTO9 zD3szFYjowFS%v2rjnZV;MC7yIv|+gvyky}(OoIz+!kduR>~IXNPD6Oe#ztAm2gPoU zWUCj!V-+&y9JdJS$!nqfVR*XK+I7sBLdf<^04?YmjS$5my(LhIM8o9P-~-vB#+j*= zMt@{xp#Zx1!)9K0t#$W5F8yv6Xxw87tkm{wY4Gk*Y}U$SL?v;GPL@IqHI5FVy-@gxGmPBES*yiJBGm{} zX*g-5YZ_$NgjNy2g_6T8#`RvwfHL*)^MF;s*#oh=2Y7qdHUy zXtI(~-ZRLwHdi;}VPEo!C9DA}ccr`{aIXtNZ^%{ds( ztweSP;aDy?rubWZ{X(}smLcV2K&L%U_Ao>EXA1HQ@8sP)&i}q6)ly(q5&lj$he`f2 zUkY#Ho6C8Y=u7RKdP1%?w`WoeMx2Q2SsArkx92-HedYKc5t>ZgOQ}T0E=5Zog*)WJ zO9%@oO%H!VQ_jDc?;5`z`$exmb*>joVTnI;f;NEr?S=qxtEYj3AZvxe1Q7i4$vS}~ z4KUP1%UDAr<9)3ghy}bij+B2$lW${l&tR&$R2Es32HC8H5y>ZFp@E(xIC`U2hTcM* zmlBfggM|1a#uzC;Jsx;NdZ};gx)|kI%s{n&U# zV+_T9nK!7Sj1_>RAHaf@a;ZT?vcqU6gxrAdg+wCQ8Bk)QN_mF)HFMp$#Gx}()dt2W z5%hKkPeu6KgDeAqVxnsjUz& z!d@I&I`Few6MaJXxp#I+&9x6GY`F-GG4o60h_t0%#8H;GuZcxX?)71!=Sh^&t>gm5I;@oUHhBMB&YP2PW1{x-VZi z@apb^(a>s9aK^o*Y z=vzAOqyC*@tHHlB`6(Z{O3%e1Brq-G$eb)n9%;2CWDi1Blq+b22usqMFV+_ z$#yQ*AO+@!3eJAT&8%xhNr9Tu z8Q&j^OQs9g!Ol2ok4lh)w<*PeqGxW<)~ib1NXM7^s|~iA9w8B64M>_mP8^ZN_+-=e zHui&1@e-dcH0Skse^X#GrF->M3*fvy;7?-y)!&TJHlB&};s*Fd2LPt99uy@8h_X66 z7FKuelb3$v4_1|Gb~eOJ-+62oX6w z<$Qm^@tF$Mr&z48)l}fqJC*5igI;2{aZ+U z2V@WCVQKnHTVX_G1wQ4HadjiEXh1l}%oTSAAK=E7-l{)VRUu5!?cv9``| zgF2OdQ-k0xj&n&V#~(ZKpZ0ZV@ynA>q;Vvort8-eRmM(P0$4Sm2vfQ>|UpyIo8y8y%{_og+JKhr2Bn^^}KSV~>2iC%aXumBqxn{N{2(>%)+FSwzSw4ZuKmaK#< z%WNXgh|O3OuWveaxrr6%&?;}^gpR*Yv~+9ISf^?`5%EU%&#kO8n`|z_6Cy#6b%gHO zuD>BD>7XDo8t(U_oqR!#C7G$ocuLT61s|j3;BO|<24ide@=^h{Pr*tRn;@@vq_CI* zyq{d5Brb)>#)T9LNuex_gf1N2pWIW^_AVgQWi6}rcRF2~P5}yoIXOj$o5?IBC{lK* zQta3`T`cH7TKEI> z70aUHK%_lp7njS|5aznGRplQs_3t~PuZg1lA<|hB90(G1ask@6v{&#M`@gTm$3cBN z1@$h5a^8KiPxOmu^l9!{TT!Aywh2Sid*O;kj465fF9}b-Z94L4@H$Y#gyPq?*|By4 zMri!13Df09FSotd`he?2gu((s@EcWyWHcO44&{bNsXojNoOgu&pcKXgAs>H3l1c@p z_W@FgwxIK;B~X6J{=tgeuy#NK3S~|HPq|qaN?gu&L;Tc9RPXjti{5wh~k2J%2MQ|># z;^_f=X$%;He0LXb%?G4H;iM8_!`e))uyL-!M0}^RQ_R1;B*OE>|?F zXLxVsKNVwlh^JOg)gwMmK>~srcN{&i-D85Vj}BlJi^Eo@r{O5h@g?Vx`~gk440f!M zft-osSIf7op~8Xaj2-(tq}5VuE?5B~>P zd+7AD^p$T*}0S17#JF6#EK<_U;QZO5err zI5O4bC#aP=Ybey;sb3f?io&q@%2OMs0CY4U_x}2PC@0LQcAlm;|g*$*^xP~Up92=!!;#nh@M3(`LKFj6(-vozR zdV%;%dwY=t*(U?yFB{i7>jYCt3fM$`n5*757m~z&tJnaD{CG%k1UwdIx$6^;uiD=}~so5B*bloCF z!hhc4^lGJtlsokkYFHLmw>uC!#C4Icq+CJgZS5D8)y$mBz*v^pt$;C+~qSop!> z5|+a?iPxVHDP4d};_??Ul(IuNrAEBeUiV#b+!YH-Kn8_RvH<@!+~;vr=2C{hosa|| zozp&FN+DU>4KgJ4fcR)se@Ld}19+{#+|BSrN!7J)5kUuEeo0za$(sL_#T8NFaR>~+ z_j);K)uo#i0p&`E0Tg)iX)ieG@%qgjJczj&MN{6v968O1N|oT#E=OQgkCR5u3E6_w^QT z0SCnUZv!>oF04=s@w7=I^Vh%yFNh832@Ft^vi*|04@~*g9U9qU5`|y%sxUxow4mJ` zPXR^>*q#mzb85t8vr#>xfQFLw&#~&GY35vdw>Ykg z8Fqdl#eE|j?j@#Y^NzJEQQ9fffva%6?0yzVhQoJ%`=2fj0E}i(H+~Uol8Ja=b9CL) z_$)LE=jg9pjYcl~+D$Q;Q_y}7))*8Su*wTi-ECXsprR`0rhVy|7qJ~Caw>Q5hKm79 zMe7*B>fw&;p?p+ZnPOoqPYWSFl-m&+?}IBDE`x;w#n+;)P9tj&@Q#;K9MDHV0asz6 zYTNObvpgcnCT)s{{%=|{{FCqq0F@km1Pb?F7aX#L<(3PQ&v9ZU`K*e>6=xPZ3UD++ z!{zYAcBF5Ce5C`9whKH4svb+E70V8lZgN6JI!-mEqk|WX7#8NDj|hi65TUaXS8@QH zmi%?yhTXeWo+Vj0sSgOrY;ux=1F*#>S?+XEkTs5%=o$f&r>{?@a>|(|Fo$D#*XU_U z_6!a*LFzqkJCHe&&)D6G*A%0dI5xD8ku??q15V51vX00{UDvusEMrP>@#~vR-70m1 z6OQO8F-9P%n_^f4Xcssa$r=c^l8ZLNk4;=UD+K-MkR64iAl7L4k6vvG17B|wUTVEe19B^m zh2#KV2NWPUN-bGd3tIZ9&YjL9N{FcIMHRSX~nJ7Xd0p=G?kY5kdk0!vFwWE-heyq{tvy4BBIzz4>kcb12e|=?`H- z&4gmgn}WQBo3w(swvAG46BNkNN_F|vR`z+HpBQ!?erhSbM#HgdVMYykZy*n)_zv` z`{x}FkD3x+QrI?p@0F?rQCW6>2T42?5YncxJ~GW$D>qBWOqQNj(p;`UE_sdXJ(W5N zC;AH%wuS;L1~JNrxW&Dy^{`NhmK9CLD^a`FI&vdB?@N=K<8^U${q<$gk@oDt{2l*k zkebgHmNJiwa$8*E^w0%LdjjAL4y#ZmI0Jh`}WlYj3a##>xSkyIn3!|=xZ@t_Rwn)=T1;?Rn5(0^JQ~(S^WglH* zJdu6?HNp}G+mkImG1sggA}Jx0(D)@>a$>+~^$Vz}P$frLkpL)~;xCAsv3)`lfWAYE zUncD;M(KoX@J9UxBxL03DGYd@6%7?%Y#Mzm&@-ODGDdZvn(0UX@q z#8jH{^jUPtb+hp>ZXEEIS`se3Hl|C~rkFKOjg-%ZZ|T}`|5|FWSawK1WHdfPVJF_7=pOKOH->uq`5Hj&KNzr*HMqLjR)rhM$4 zylofUk=tr|-+1*I=!Tqk^vq?}2QYxvJR%859=OUmpmrnzNFV*dJh~8c-a$U)=DgXw zc$|znC|K)FT7?udM5LAjh(4+}72`(s5m6d*=sOSX&?tP`FgAN7yz6lK1baYCutFUOxD?pf6)Wm&~?#ZmGJaHOm*E?-r^T zAv&fC*5*#2Z_aaGZkBzX)xgRdNAp7I*XVnow2JMr3vK=&g+&->bQ#M%mq+wL(^e9a zn^uY?PPG#xlM+t{@DDqzX@UIZ8MDPvSG*iC39?pzAO*a9CBe!ka6JS>t3cP=(s>_f z@^emIH#D*+$23CKrB{{-OUB6DEO6|P55s7v&q;53 zo{|#xmmfZVjIY=skOOp@FS6lJEX_9nw0xG=(6J?j+?zmH#rjUc3itt!ba~;ZtQcng zw{Jz)k%A=QgL+9F0^NUmB8iHMB8Nx`_&y7Wy&S5VL7^L=$G#PHcHaLsLN9Kz{RO`k zFcKEU!0ar}OO}Y|ec|>Tp&tR5Qtn89<*UoTWVInW?x`>%0<*HmQHO=Pd#cOB;cq)V?^^-Z_YD%^U zi1j2$dygkmFk`-ZwnS+{DOktm-(IO+Ke7%Ft>v0&cChBGZtVg|Eu#UBBSTgEndVY% z7=Iss&pcg|W)=E8nxuxZXrM;vQ2))+mA$-@WAh1vx6HW)mKdb5t>b{;v07-wfLH*O zRYU90Kba%CkpI1qVH=&B0f_iTZTn5CQ;&`~WChU%M(=sbj#Krm3#Nbo-2K5$?(y0O z=Rma4mHqc|Qg${Ex5&2`w=KUeS0mcht9`nIn-bn}k}&F~4pIw8?ns zYTZhQ+)4EHuyE&Btw;nyH0WBv5Ud{LyBKi3tt6CPZmQGY07W;QYI`yEtjGsp&$*C+ zU;?6kG>1}+;J=}B_%_P$FzSX9$U*~#R{ce*1^M@AARG?1IF@C=!)Kc48W{JmsI0a1 zk&o838FLtUh7UO(4Pa3z#PQUNW|T<}dHBjV{>8E`G=$ZD3D5fceJ$j{ie`ttzr&KP z9QA2YS%Z!BB$^t}&F?5!4MuWu%!rbuNNe+FIjRrAon)4tWy2VbdCl{HuLd?Q4Z0MJ zGAXgCk7)PQ!u(e>I0L;9U^GbROi^(t`(6%)TQZ?`Ywy}}dy3FrGeYL$Y;&fe63$+S zBi`fTnj#ws`Lg3v0Eq7|(B!cVr!ey7flonlC;)D2dXg30A}^B83Xg$AXsyc+i;kH9 z00+-~J`ETcI-jPM(KN*eem8Y?i-bN8>sjy#8Cag(YNbcecuvwGYrT|F-}4{@d%6yA zYiXRo5*aFK$vj)aB?rTDSy5!YF$3rn&+od3L7s!d%U&XP>KHT2p!kOuOE_QOu^SgW zAbm8XiwFR}PlS>pJOkqf8SMe;_Uq4AB`xhVU4N>s)I?wS2h}EVP0)7@m(GE7eKHM( za+WO;>v8pBWVZt%kaiW=NH~y=lA>MZu6Mggt31!Ul#u$5q5Kxoj~&lE5(XA@Mcj#L zC)*y(%OIeF_xAT^7WSl`9kn5zKp67DE0)+jRSdasXm79N^Jva9itnD4@7@AZV}Gkv zVlu#i>d5q)_^rMfo>XdfFECvFSFxhur;m{Y=#_x!2%&cSzidNBy=9vLQ?8R=?S#0v zxa&vY-<)To=I?-crHOA8{Sx~pzW;-bfaX=Tl8-xKMfHX2scHPk93b3hzip)SFX!G% zL<(<*X_ax1yv8(tzY<&I75hFwCz258!hK?u&r3ldf3@mf!)4*+4Xqs3+@*0#)~03j zO!G_+#yS-K3>p?X?KGQYG*6Qz^SnlJg&kM_wk5bqjXF0qTEXo>EMn^%66cx^Z2>?I z`-p2xpQb|TL2J*>+uftMQqECtLcj>PXbniD0l3IgF(|dht3qQYJQa)XUGAYU02^n` zmtAfVQ4ht!l$O(!a{`0$03VEQld?Q!)Kl@H3D#tq<*eX-gty1{c9E&@)|?jU+VwJL zIX}Pd{U=r5%f$bdh$;7c!**bWV0-gsQ#0ogFWX}ay?DEo7&I-w!&% z$7zzpbd5N*H8ySh>nWh2{Bf1jFpph2sHxNFq}E=#EDNlmDj%)W6t9v)z+my z+KnOcKaUw-#1cP#d?@#Z`kJ`4Ax=&C!9aMneXFCf%<46bKSFJY@ zF;)3slrPA8`8c^Lwz}feD#>_N=Co;iqJTzA^6NA4YH~vf<%}MG%nZA-lyFyUIW1t7 zRa2FVATWK^3uNJ{8%IbIHXU#x ze&9iScyh&BHoh>B*&W?kL1+g1ce93^X`ZYQAoi=}gK;n}w1hxLo16RN71YN_KnT5k z4?nC{5zZ6-F#X8&CP$_v#zMSt~COo7{z6x{`9o|$LrugSn46>dKP=86cYXRND~1@34aZE$|L$-L6oAxB|yyR{Pr3&LFr8f(ivb$Pl7MC zKx+zsmu!+D@xyxZ008{x zq$xzg(==Lo=Gygb#DC>{`VN#*fy{^kJymtFyp~J?G>lIbwx~!`%^9L7fa+xiTp4h% zl1fQjXyLKp3#FGEP3N4)3;rUnCftKhL*?3hi11yfD@rH8W$a~Q^rrA0!o3WYl0bN; z(cjJeD7gQUk%Ip{8-7 zz;FD4f=_3g2U$*}0_LlZ3^!TXlxdY1dK7N`j~8iZgba#%JzSb6a*Y8}T$Sdyedm+J zuesRiGN<4WMZM8rv?S+ff+r(GBoJE;;LD-MPsy9*+NDsU&aBduGCBMfhG$F?Y5Eyn zUUZ7ulGf(mbXth|3FR_c^re)+l{?2!3@m-O&&c&OXaCH3S#s>3r zk$T83KCee##hS!Rg`gzZ0p$H$hig(x4%p>LUUzbyalKE>DEl`ys0auN|BR~o;*^(f z$@yK&IaXvD{6E($eNt#cl|tgBLz4Y^m9xWt`FWH8xBG^#_TPBgGdYYW932vZ@O%*a zmuX>PAx@dWX=?zbU=Uz+$yrCiv@5j%^!e8m{=w|>^FF>H6#!>CS zQ&aN9M!fOZ6u7nD52bU$8W)>iDMKYjW-aU0qT`M| za=s=KqJf}=IUUXe6Je!=*1tX&P|0kiJ7=y;{!e9Z9hFtvwf$a{lG5GXAxNimcek`k zcY`P`-7QFWNq2XrARW>rCH0-$_w#(?9pl|&@3F7pAIfm7Yq8c@bI#-V%{Agzwy%+@ zKXch)oM<*)Jz%(2!7}d)F$VCI3E2xn*btV~yDm?XQ$PLfc=)5k;f#7HCp`^~Op*WQ z?SPr1P(Cg|^1kD^hGez6+0~y+VIkY&Z#|=J{Ilfn=lQiIB-I714b9Pqi7CGTR>W2f z#lYQ0IzY!z)b?3i1T+>0E0ea?y#mHnnH7@#99h{r{zR!4jVswO(@4rL5oCf11!${!2u*XM*hVcGPytp*};;Vt1HPNp~^-4pPYw zdMI5H)!chhhL#iHD|EW^{k#_{q>mkM$PR*jZB8O@7c#(|C+ zaQ>#Yf%q$Lp3{MiL(K#LU)Oa(}ChyFwpm3Ipo_?GH)}s_hS;tH>Xiel+HM_&E(c zd2%50@qbgc>fxH9Kfk#-A}8sd2vREQozg7=V)k_YG0Ub&3gW1`N6t>)M1+yPL%YMBhw%sVTjm9NOdWbA z=SDiQp&%3$#O{L$?(c&h1;Diquotary(0s zA;U`jg?ij9j#Th`0b+Cn>a_kQ<=H0vD>_$%DD;ht79Y4yjqB~W?+?sZj))x6*+JBI zl@PK9U3(fSys44tUm*(W1}g}7J#y9`N0PErIbm;4%A}im+P)YecNiP|)&JDMVY5jH z>i)9QAX=-fjtEKPR6SR`|o&&UgUEc=y76@ zhv4O)Z}dR!Uw)zGhkU~cL#Cl|r(YCkU2?W-Oij0Dk(rlM^mPL@F*C3Fp&uvp(GTh~ z(mkA?iSPqdi``!&U-g!d_l`MJ1uF60N%;dw5~H@B7?hR` zQ8!F&>d+{HB5X7<+VFT5-~{ErE)-x|WRA2i`)cjPvQ^9tGesRbCXj&|WgRYmfO@P` zv94-MQnecqs9wIlm3~oWj)Zqii8%nucUJtnhDh1Enujjyn$SZQff`mcAvLNB_Hbmj z-YHLyFQW&*x5jp0bH4}T9_o*6S}Os!pQGY(bimi*{RyimDc$-u(l~Dq>(KmU&1}i4vty+unwK%PN2wAgNgDsz zMH#u(o#UMM4cbsKV5@9hC4d2IQ6$kx6V#W{B9tj|B`C{ZBI$pZQjOg3#)owHu(S{v ze?AA*Xiw4}OI&vB?@kl4b-A#8v0o(l6cLmFap|4`;>*-oim(Kamdn)6>c7SN*lhEg z4ml{s{WHpnseU%o$jhy8VVd$y;paGhiP`IAp?)*&Ns|LwWX$dUsKmzLLw6(shhrPKLi;r&T`#+9Hpu) zx!0{>skJb(kQ$RKI0XulkBg=~`QBi5qUh&3$H!9DZblf{V$4_iCe1a~h+rxeW3LAW z$OWL5R61k#L0?De3_=mx&UU`~sBD?|-U#T%b(0_bK-Hj9ROFg_!IwQs5-rVHe|!TxG$h2C?C}QXqO77;@xcqDS4DnCf0>(!UD)9v-BiGOTPbz zKqjx%{Ctv7uicHhj2h3d#s57~9+dNKvBR^nN|_|v;8B-P7(PvYlGS+MChyB=&Prlq zHc*z2fcp`Oev?hilLp!D$6exNacPSsxwj@n`3H<~%_jTT{>=>X`xL5$sFQUVdAKmv zf*~0t?#_T7_D0!h>3)PDSpQR zRR>q|Vv#BM65gs8MxVKuao++t*9XRUCjrw6`#QzS%2Q{O#(q_C>nN6mQ|uDkyw2JQ zkGVhYqav#KB?3N>?N@X4xow@1IwE}mI+&Nv@x?qKj}h2;niz)IQB3~aMaBkXJmZ5~ zg*bs~_1Y7ux4ahV;NoVlqqToae>@O-t2hl_q1-z`UMUczL*XtkqxjR0=PpYCE9!kX z6`A)h%0%;d#ys~<07h!Cd2BfM`C}wSGU5o9ce1}-(bWwia6p&_*6G1AB4ZwvlEqg2 zk%fyC&ql!xmpmgc3%t2z`y`;iowO`QXCZD){#uc7WeFIuZpuN_Y!Ew4a@#Mw{CcM zj(PWX4PIycec5){z*|@7a&#tT(SOO^}Tyy=3755jB$e7qJw@SO@1*# zmW$SR6=M^U#2%d(%UN?J9I0w$2;SLGdaTeI;PjhOjbK26gm6Q5s4@RZkS8lro6Sy% zZ}+AM$`rQTOb5FSFc4d{?4uFu1^#IG;wE$rEUCX)3BWWe-iQy%0Wl1A7azv=C!qTR zI- zvwaqS=JjvRrZ45|jomYCWR*3$JQa-~%yYz3ca2-q9L;2+P|*P}EQr6R z!vtu!L1xyOF4s3d#PtD&WrT5ryrRqbwFh56ECSWQ$47f2P#Pa4^-f1-==Fro)ZBw7 z`_KdplSV6v)>?O*+P71DT9H!A+MzI3TRl1!lU1SAakSMVwam(!>qSduBAO8~(}PU> zY=knE=0(RAMNIu8Kf$5Q1XP=q4aP8Q8ed@`{SM>1nv?8--l*M7FhWZg3H}Mgm2A?m z-e-Cu8%QP-Lvh&IRB)%OX`+*tGiX~Mg>J6Q&q3mjpmww^(?o*WL$3&c0mWU-p>n8w#G1_W4{!2qxC#7V75k*6Y)xLjhn*8YJwS0%?*d zk4c&-VMrmh9W+fWkAp(7Oa?L+vsmD3wQso$*E482HRh<^qgti0uWO}wq!A#A&66Ep0`8Gyx@$3qbYz| zsS}`NHS^w!nd}B~4X#Z7Ef(%!+il3{z$0|5R5*#hYHJxV8JOWvk3V{jeg=rEHv7kF`eR zp-gkE*Ah_T2sm>SFd;?*V(V;$zvlsUSaC}W3(zmNNNqqb+$=+{F-rEIE#sLk5B z4B^q8IKzVDC}l=J&wnYH{-f?~DOtw~w{LK+I^;P{aj=W6#2)5+{kX=)O6n$htzf>q z=q02W^X|*2_<50LV|wG-wN7}0Wq7>b#n8*@q|6rg?+Ad=dZsHd0(k@<>3F@emT?Ld!f z(SA+}4hE~ywYvY-rsUus_aaDXD#p%m_cV(->Uu(KeJcMhJCC+RfU8m8zH7(+UYcqEk*)YMWQYS2bTxU_!JU+m!coQBXd`CcEK^$)XQJ#rz&FjfeP zlSC#dJeo1EfVLpD*Ms)6Pp81*mH41OhB1sER2f=TW7J-1eG&uM0_b>^WwBxNce2l6 z6^3o0EmC3$^-v+_9g+c>37G=^S08DJlhzJHHnCgq%bbjdFV#k)X;qNG+JezUqec~A zi%-t8Jb`H(%@5Ts=7zhOC$0Z|=gaK(k-FNE_!X*GNX(et`T3hxK?sYz6xIci8NJLF zZ*^_$PIL>=Vd!S-3L7UMm~gW5)NI)qiuj<&riEWa`uFPVPsz*%@Gex&JYC_-;eVO8 z`GEL!d6WI46@UHS`tU#t!rg|(n@n$56Zq_QPNchq&t``q*(?Fvvr)&?apLGChB6FL z{G}?fYk1^tWaG1qus!kJ2hR0ob4&%*9fIQvqNEJ#&*SiozPx)_Z#%_-+BK6q-1tW?1yJ=&`Nro% znK~85galtecWgH12-&y4d?DEn;|{oYIRCgzHhv*fV|>~`V#CYw|L}_&5#UW3gb`}` z(>lCBqsHg1jmG+#HyE2pmZ(`~aD+Y6B8K*+;;|zyC%PCVu8a{Zc#}SpDtYi6`}Qx{ z3u>;>92pD5{$5~s+lRqA{>|RnKb9?Pi=0A~%Mn)JoT<#Ln_WF>NYjHyQAYGV9inOe zT5({4JUB*Oc3ZaqA1T=swo%nSXY$qx-9|bno&x=Vpsb#uf676eXiEwWr4)YC_V{n- zFg9zl)zM~&&&5X(QumH)5xc^moL&9Ct( z`6dE~LFJ7n_OD_c&5(}FbXSC{DfxD*>Bj+dZm->%i#qW`*Zds=ZS8FM*?9Q1Jt~bC zwTs9lwbC{ksDEMu5*CsQL-4e!weQG2Q&5jph|z0U{Q?N$;$q0xQWo_e5HfpDqE6@7 zV%j<5)Hz_;1l+h?cSQkQSp#`uCK(czoLJE>HCA7WUvi^%g~Z&}`MsJi$ZV246eIOXPs-0|7A)WNEPm-6V;^ z$u91Aorg&<3}w?uq!TC&Km=>O6X%z|KdkVq00Mx++Z;dx#dHQe{=RJ1rosyW+X{JPhAZyBBiaB33MMXFx0>)FLMR-KW3w$7 zwIe2D2RCUgPW`#>J(n9t(mN>#JMDYS99 z;&k<=#wkW9{Nst&4TS6$Z7>q~z+H{|rBpMUN4G2z)qv(hb5yk{l$y)MhHlHmYkWyM zEwhE)jIIvX-T!(c3^1FWadQ6?+M53pcV;NGJ^_V*mlRS+C0>I-{#AQQ`Vg=6-XP zH`?Xl*2E&&C~fv4i)dT)lud15{&_MK6S?1>WaF~Wxrp(ouZY$rT?#Gnnnn}?rjG5s>( zevV#DcFUqLS;~%yTLOXi!D_-weZ z7Mz;Hb7X!=|$;8)c#y$b3UQos|ZIpBCDzQ+J`pM#;#m$*K zkVMuZ#jzw=c)$V4XI+F5q!bhN?Z|8iwag2TL%!#D^S=1bFt}QyI1w20Ce( z95nGgfWWD5%L9JkE&x$pTPARLz&g&LD3%Ktr)Us(Ec#j?d&t<7KtoLcMYHqkuFpIi z?xjqnl7!xeYjndJG7)0i#XAd zo8rwX_K-?0QU5jQvrPhjn;3uMwU|{mOr>RFort@@=V>{$!^RzQFY5sq2Z%kOOg)AG z09CS%YqqR+hrHQkY$&j?i(r2CJ8q_^P#SbE#-!62V3a04hRIi$r>Zt<3Jvr2<@V20 zk(N=lAzQZxn?88xN1BI#YFeSBsc@(OF^^Aa$>#c4heXO3=|CC9 zrXQ5!fMb#HK9=<;_W~zx*g)QV{}q|goT-Eysv+Ut88Ml>QbvgvG5*(v%LA~gL7{_e zZ^76_3}g;1O8+x7uIy5SAn9GRkY@^{htC3iSB1l=*nf+=0HC4$T;0Z;xH zcLru+2t`Y^!K{<6(J6U$j7*(l>yviqCL%xxbukKwLPSIgYw@|{7{yxk;dT1Na@=Aa zTz!}6S2nIC)eEs|kS%kwifJ=bRNTAiv05`3J(FYhZ!fE83Kkv7-Hj6km7@qddj{O{ zbTB+n42?D!;>{Y>Lv4soSHhqS?wU`1T=u= zl%K@)o`~p^k~$~cd!nz(C+WURmlxWDuXQf-85lHlRm(92AY9#a7T9TX5`$l!Mv9Tl zw-RDhNz=Bi({yN{eb$Dc2?n`h`7SF`fR`(viMQJa9EJZF@-dbms|FInu2xub{V`*@Rt2=p7L-{V*UC)uv= zFcMCL5dFI=5G4Xk;c95^P+B|whS$X%-V+kh>fzxGHR}K6IMDK5-aqh zXO4Zh|GJ19vj2))Id?y(LiOmeo+y+{TQ?>LGO;Tg^-7E28}_pYsHS~Ce@KurJsomyrKg#vFwSA^c#y!F;?CG z;6yfEQJd|vX+F!8H4m5IStQn<5)ZUf$CjdO_Qaf z&R}=;PIQyFYjPF=M=|Ks=i-NHMY((i)Z~;snbd=9%A6lD zdJtFM{^O4ar?ec9L?TiRvH0{}5Q*3*$WF+Ndtj*dvZ01a*@*G?IN(*z{j zx%z}quT=t+msWRGuA#Y2OG$qr`BQT+k}iFokqfUi;%t_g7f%===)L^5#hh_o7zTH9 zJ8`M2Bk^sX+MdM_n+hsV26w}+&@b)sPrgU`jJ{CkEdtgw?icnQ#SdfIl zL*ZjxD=@`j5|ylJq%3pk4i0(Y1k^wqBh?N!8+P9LAz)Cw$n3(Jg4(QtlBWSq-r9fbJIMh+2c<&ejRu8bC5o6an?M8)GE(l+!^DGM3S3H?v)Dc0S@2 z$QW^(c5l?v7`6?&9y=zJ*%IwRGX(p2E&R?bs~MS@z@d?5s)-^y`eZo5TjO_1OvCF@ zwoVJb%pDuzf;zFWp<^Po<(hvoYK$gHvFraN(zc)ZIR7)F_QfyYZZXh>Q%e<8yv0Tm zK~vL`CN(YF{fN8L(%Az$Y@0NU%O6 z3_HJ~kd@MYKg+`(JVPIS&;q^FE4p<_2+NFVc0sOHBuB4N$dDcJile$ccZfQ^`;XR6 zHX%6xVnIWIVd85BsxU6pWe$FXYT&?$Vs^;SPlolLRK;Wp69AJS8pEIiVXWXWP{j9||FO8YF1$*lWS}~4V*jKYAz75#HEqN7Ehlz@}sXm!NfAmTJU1KlhuS|B4w zLY{o6r{)pPL~ZgUKjBuoOgK+NKW<0qwT?!p)|N7JF@g=BayR~ z5N7W|sX?rSuf1>@F;*MxqJUHO&MZ1WN6d^{i2ht1>WI~k39JY^6{|{2%$C(4@^?^@ zz0>J^o5eW6PQE191;VWXpA9Hb46NC{Pad%BVd_?_d%N9&Nqy9`gmfJC`oxe{iL*#~ ztNf37(;UUj%WF!Y)XJ!6@E!fTjRi!{?t$X9%w4JJSLZ?QdE#v(5ZfUMM?^h@xzQ}} zC~Ql*rmP@C#|PRgsM(Upg|fy=cR$Q&THgQK3F{xV808!rCyVv28nE~SH%Q3RsP|=B z|0w#`(fYOt4|SY|t2=*UPq2z*;$8y*h?`o}z?ZqV(%o0W@v66c6x!plGQx1{lc5f= z{GO*4;%kGvgIW3k|8WOfi8_BJyL;Z*pr`R)<94CB+nmN#@OcVnU3rg3_D9BY`rW>X z#^D1+yK#;fMghQ6DRQK6QtYwpz?Mau^_WaNnTluRed>515p6SIvh@&}32`74VqE$I zm?|6Py%A;a58_67-Ytx8m6(0LMfn6dm%In{T@ zD?Q;Eq;@h_r{iFET*6%z%9wXcTvHBQR$B=YMl?|aJp$Pz$#M6Hm#AIzhUy^zM1Irw z1M9{$=V!M3h*tx(Vm5s4CdN}B@CIqYLLA=bn3mMG@v!LpToiJ{cfWx+sCf(i^50T^ zj{DO?J(^sfv%u=_W0rtw!Qr9yPO^T0YFL9n0pmS}Kzy1YCD1^rLw$@S6jWN-=0BwS zPnBUN1PWd?2}@7*{ChWv1}ine8M5uHv>DQ#-qmt6xfzfOejImxxypVhPe`2K(@T$q z&Lep2`bOc4LpY%dMvPuZ#|=b}8EcZOPb*SVU|-WjZ`K$l=%-X9+jbdE;41@JwvhWV zK?_(S1a$-cEe#w~ReSxs^X3S7R@C;Fw=7skZJF6%{CCs}f*dYbc6u?Y@n) z2uZ$a2Pqx)WyQZZyEr#fC(0?E*J2C37`0aZLaS^Dza&wR?Gff7c;xy5ZUVe9FYC`c zv^0w`mY`YgrI8DvDtja;dXZF{pT3GWBn|FUiYW)*Ef;(+Pq=M^u)H;-!lM)ezB?kB zPQ;*N^0si-0U$&c8T{<<_8!&m0?`0Qim$$dNSdm9J;H;=neevq4J#&$Tb_)0NlfH-hvRdcDBO-TSSbIwgaEFLV9Fyo zE{Q)P^=lZLP-r8vUmVW`uoRD9>R(7;)Hky2DHI|The>0kezWZQIysIR39Mt0ffcBr z9ksVNspv2xppJ*j$tQ%*mFw$hzyV2>w{2v`f#{XFSe(~oo zU=I$Bj3E0S&HJLTw*J9LOiG%Zp8ibwbVl0WexLM&@kwND4rQ54K=p^?_S>Kv`v#!e zaj0P`ztPHcpgk{(-iL$K92VscXb?0auASXN1eD)EIyQq-MymW%5wsI|%42+s`3e{I zsnz)FPzh)UU*0$jY9KIYe4)4vc|%$=nir-~vs1+KwxglvZ>&G0<3SnLS z>BD_&+okBaaQu$%u~cL#HE9nqza9-}(K@sJgYCF%g>!Fl-R{wdJd43`VIpa0^FeQu zjViAQW&bnPqUnd=`aH;K7Kq-<85wzTU-d2}nEM7gS4|y$Fk)W^z9L{e7Xg4`OHrSs z{A8+XSShtgL3jy~MR!i=7zVt{Pp~qD42-<>e1qnh61^`M6Lw-R-Od8Xcpu0z#BXdGuVrfDdObJts}=W;rpD%`371g?N{E7X^kO15v=htGT4m zam3(=NxL7gP8Uxn9QGtaYcZa6V+KJ=>TJ13^+F?Q2tcayL;=XTlp!S$9N_z3n%+Czsg(lzd{#^Qt>~<PQ4+ z%~8{g-B&H-NPwg4mqB@peH_w5V)XK_-lx!$NoOL8t!=%rK&{}A8P;N!wVFB%{9iy9 z#G7ZCmX9{oWd?nFg&m8OKVB_R!-Ts$GE1+~Qa#y{Gi^;mpT;>fX+1{Y22(dQ&9$1w zJd0ICtnwqSk-_YKXXXs?5s{FP(CVX;dA>x5Sol_P1G5t z@EPXK@~%+uvkkJ|_n`i?!0&GX9x165LqgN`Rr71x`USKK&bYmLuhs2w z?&8vcRj7q?!K0eNU(3_NgU83J@HL%j!~h!Zp6gA$XQ1I|ZI`&?qKbf8MLdn9S4>>} zz4dkgSk$eXlynBG7{uddn)J_3?fI$7L)P*Kh;X9ZKh3bL$qK{RN)+6#4BlrE2DY#| zlv$63$CT)D-}y95Rv&eB+ifhZ6lXzP=d_k>g`t+ce0rNX^P|5v{-p53S&k+gTtKXD zNRGi(?HScbw!ml&K46ep^!VMm*Qt^UY2=n zn6)E);&5NY249HN2ceg|TMt|pDz<$t7-znuYKMq;3lS!!rZA!6CQB~Gvkb)=T4(Q^ zoSc>})BM)b9yn4FrmMNbLefz5CA!F1lj4Z+ZQ(k;^UWPLo1o-pM`9arG7WAUcwbRb z1E?(?ThyN#Gbt*eE|@?+*EM4GB~so1*#NBgPKnpBjH;`|7E< z6U8e*ap}nD;FtnFvBA|bSmfX|I;wMhUOFxo6ICFhem*@H!mXq(fbf3OYt`(xaSeg? z#lyALz8|9yBg)G$F6yPFjE^^?tM>}`hvSb-zJCk+2q348<36v99?z4`gdh8#I#?e! zSXZvjj)EFAj2vowMJHXpsXJ+G*}g7pO<_ofPf=!lvE&$=lcz?)<4=LU7+4(Nk12~b z&=}sd%mqo3A4>XVb&ApsoY9l_flJx;E05)KtH%vYNzBI}2vi{F`@6!l9z7L!V z>FCHmwp#^%>kv@+v%I-vU%6Udaih6Ib@HQaL-8xU8G93+I~RY{@T348j!npTrj5B# zM68F{d8@z#E~1IEb*yND0NR{qQ)_5+c1`YEg7olHhb+u2yyXkalzZ9K$bL}3i7!G% zUnlm*Kwg6XR@DHjK~hQBRB}aK{z2o@bSsN#_{q*v zKoc%MVOd(~{T`?bj*4VJ*Vy&bN|0+qBZvMztSSEGdqwV5qp;;W+zRc^c@|<@tLd|<_OIKH%&IYAJiKf^- zQ8t|4-b59+-}%>~IwW(g#r>=<4dcIh-}b`QWw=otVK0f?-Jl+|RgMK&TVlpR)|VORZZ#FBx8A>x%+Ht0Ebqs}5BPi!s^UU_Xc~2HwBo4&1T;Tx*~gos z-a8NZD#qOK3ZwQ&+AMDj7#NtFh}9buvl<;HR#sCFkJ~xIde9ab0)d5wBI0#~HG29x zzt=4J{ZobC!vR1e+<3X0xv}W_fc|c0NBwuL&%Y#S`c_ZsR+F`W4SR=c=ne&3)5*!n zB1T48mMJy-2}vNWc1`8`xa&tEd>bbm`dun&qpF{z+wNh`E?fQYQ@z{MYn6FFqK>SW z1ornE}8_)X~c=!cI%4ZbLh(VL(NdB-%pZV~viugaNM?@qEhT{)Z=TGkh$Eq_@wYAE46&0um2nbd-HWKdc4L|cdU~5G6ZiFI@z-2Or5d5DuGdr&B?+L)w>QMu! zD4stjTr9pdqTAX(L8XDVk(}J|s^(&r8U`Y#VZx{Y5N!fOPF84!@f`D@*G{#hOLcFUKkJke3*Vq>u zO;1lxHUWXJzna}P|Ljc{mXvgt8#JE|F;)~Bq*@U3fcV1Pys)^qD-@F!jg%C%X7MW$ zE=!>S!DOMa;#cIF02%^|-T^ko0pb>yv(=WfKElF^ihckf{^m-bYW9ZUwcUz9%k54Y z#8#lld9GB4j+t4)!=rI%7Ci!Gr|0N3V@NXgv9V?}Kg}UG<5PZnJL&Z=x2&J$R#RZg zwf)^^G_$Z^xbXJ&j!sDl1w<*)-l32_9H)&rptI&?W3-LXd3$V9bB^2mD>8%M&15u{ z^FvaO3@)o-&&0%pf)X_fDykG1TCy7G5zPPd`F zvac?m!8co0_57{1R_L*@vBp1i*Ecs^jNW*R2wpFL&dsH&t*_r4q|Ji0-wd_~3lAMV zy-Gb#4u8-8y4*(j%8H?xnHd=c1@uy#&FASo^~9?0Pj2AVxj)|S#-yizjgQAVT&RN4 zD%bA>!O1L3gq1oQtz?kSTTGN16SHLOtw@BWQX)QQc-LlP@Q1^4%vqjm{IxiG{x>q~G2$9|duSa}~g^SV9+T9)R$B!Q&U%!frh(Il0qPSe0<-g_a;_WBDc28eqVZmSG8cxm1N_6vmPuhFaHJ1jhvhuWdnnVgZT=^ zVHZB){ey!l$8A~I7cWeP6PY3Ysi_2C0t3l;c<|uh;OJOcr9?%cA>V3hFym;IB*Cy6 zZkwwxih@JJ`MSX`D*n`yPL|W05EJt$HWnj3K7MV*>qNrJijK>686F)9qTl3<;Njts z%x;eO$5Swo#UKnkWx9hbK`$Ie&C-r|dNnjWypUj0Up!`JW;AqhDJfI%GFk5UJJ<-f(e+b+1R))p4Z=devF~td+rs5$Wpc%FWJxOY|x@UC>MO z>S&4f@$qqLVuFk-O`*7?gqn&<96Zp3OAtJmAIy~v{aIW4_9ZAtR!porxrJNY8OA9f zJbInwg=>^8H&B5@NkrEwQn&p?_8HdZeqh&%T`Pke;E zy*(2)JTrH9?Ud{DVb<_YJY{ENHLqWK&Bo?mTFL~zir(*}?T!UJboS#(DN+qX zr7R(0i2ZsO9HgU2t)SB5!XoJs2?^;8+@XoFv4{>UFYluHDpwi`Jv}|k#Urmxm9}yH zlEdKw=tE~}N}1`ggAWF+=i2Yk0b;N}oyUU?4Pph;^wUK}MLbSB$ZZc-dh)4n5G22= z=(vJgHa%W$yg6<@fj~aamrE!ppiE6ofxROTybAL}7*qj&^Wnto>})8=#LUbW@L$Mj zX)V7-ex2cxIfAxw24^gMpvYSOiqB!uz;tnOp{6KKqm)@X@?%0G&Hnw(K;kDvhBOicm_Xie-x>dpIzz2-B}1U&wnwl)$lCx0Iv5;en6&Q|H1sdjdDE>ymQG4wu@ z01svp9Aw1&{DdP(1jC}E(ZG(r>`IuBkf7b>%}e5a`c~lK&-CfpStl3*r=#4f-}3W! zp31d!b;G*4M5$3FqOMZ zsv7h$pdms+LSSD7`7g&?=Y){HS71dEAZKMo)v7R*kd;LY3lFcd{l(XE+Jyvxl+1>K zosr3?jR=fvH1yiqTDqj-ROr16 zrge@=d_qFt`|135Co8QiVAx))JM*1^`B$WlkNzIcDZt8mXkb7Dtnsd3Vtu%~IjkA4 z1Z&Ct{lz#uDk|xZhv+LXlg}GIeS$jt`2)$K2EVPXZK2&y_!X(pSFzw%^roP5+1cg1 z(Pr!Q$|eH*BrMnwDBSd$T~QPZFw?kfL=_cZ5hfsnBz=nM-*e^zcW=Dj6(}t$E2^f3 z`HDm!WMo9%T;A1{i^T8V0Sg|%TlyxODS%}ix+oyE5)@?+}*i+ z|4nZ4f4Rwd^CmNsGiS~uXO284LQO>u7mET5007`B$jhh$03dn*00_oFdmf?jd4Kc# z6LOW+aeeP#;p$=RYz|O1c6GFKaJ92Gp>;QRcCmJ_=iwCMgt60Fxw<;K2y=0L{C^8L z9h@z>cv0nRpP67f%ImrS0C>j#`GAEI1=au{0H7cvso|Nn|DaHA{x*pk&3|av-D7^i z>#ET+UV-&h0#sKv9<$JfB^>^lcRg-ZlutpqI|B7H#t3iR`HOB$TMe+XU|}!-$Qqud z6P!HE)Hu_4_ffS;r20pPrNy1TM{G0(E6?lYp{BqvjJB&qm&>^YyE&WIqYpX7k<30- z|3yZ*-`lpaJ^y>S&G+(4xaeG>*#DyPr3`}j|6;&=_iN!j{i&Ji<^Q5KcOONWjQxTC zO*8hY5&i$gH1T2n;1#~te@kH0B=(a2znH3C+SV1wZ2T9~0sn*lzp#&;1o2OoZ4VA7 zH(QyxWw!T+M~|G3TTeFuk5P?Z{&S8y+*)R%lm7_b7AbjzQ2Dw zdJ=z(divYe-gZs;gc7jl@W65Z(Drn7vN@947C!VpGOwuloD%QCKt%O03FJ_EP8}y}Q z9-FzYo{#3^P#k&S9u+Hoi_v?(Nz0$<+w-h3ha^85zn;X*|7=iQXEd!{Z?w(_1l+dv zJ)O4Qb6xj6UDIr3lA9jWJcd2dJr+Fe1l+E!xEh3&?VYx@-R`p8U$i~WJS~=AJa563 z>UYvZdcBdT`k2E7YX84tE7u-Xm3y8N{zn<&ce1U2XEMU|jf}c{VoA9SMQ?ASNV$&D z1CG&Y?o$I!RUa`Qhn{!#J=%KmxR+Q}gQtaPysX*FUhg-GZ0F^hLf?+)s)fI`?nn+XZ@E~hed0iA);F2A5{&3>$ zZ%cVyz$krl!yCcc3ev5>U!~)M*k8csn-Kq|kh}Z$g)SHpkK}pm2t!fOCw#Iu%?ld@ z_*tw_5|`vKj?M>AfIY{CFRmLz?<@3(?jg|8FREgp>+zT;%duU+fwr2wH zg7v8!PnR2a@@s)r{Z~3PwSianzDL=9crIQsCv#Yrax1i=b_nsOFI)i+BLEMVz!YmM#kqY`V`$a@LrTaijMbcoywJSw|ZgU?PJjgS1hT_B<~*v`8@5S zz&0l=w_$+gE`0-d6bcJ=|62HorBO%5&!96t$F?A9NNk2&W2`z+Am8{BwQ!6tHAU7( zbRuv-fX$Bh=;rtqY22R3wSYtQ*z?V{Z*%)Ud~CHG*#AS^O%d(jK>G%v_4f8p>sUFa z!PD}}cU@4CEpmka4){uO){=C*3;5`Nwg&!g-{Jzb#J}avw3RsG^K0sR3V)jMnAg7l za1*i7)%Q5@;7j!0D)2ksjfc8spbJKwhuRTM52Ljh(iGh)d@H1LW$DaLrL~=`EaWtO zPuLw};Q)O-$rUa6j0gD#MehR~crzn0c+%J86eT3FF5Kn=NDC?b7R`JM+!on}j*)62 zyYTbNXiHx4qX1sLMUEK)RcQOT`-lea=P04=i!`)%481cBh_NwRYpyVW-z>o7`sN|< zxMINayO@M24iGRsUY?f1dN1G*m{ma|hK_b?=F<8`XV~jA9iY6NZb*nf;Es5=jw({( zhNN*pdCMW1CUJ$&(iVAfID|X(2Rum`o!F|%Jbv7#d0G#MUU_<08GBl`ud_MdYC>1(Klcie+K_eg#FbtM{WU@!{nm)8SX%`tmSrj;Cq*NWNoNC&{Q!?JL?4^4@rW? zL4 z+7Of$sS+WzVcOlS4iqkl93D!JXaO}YxKOUCs3#h86!<8c559(o4%!j65&+a9po~Cz z^X4`%5k#;Fpg|XwbXB|eY({?oB0pXI+H06wATd!4k5GtW)evq+Tiqpxc_XSry$yD4edvG9DyDS6bB$#*^2aD4y&;+X2)Z4f(ptz zs=4V4bVvmUY4^c7{gMO=F*Jw>aA1I5AO;$}tYI}P7O^A?TUM6`b<#1mUr&>TN?Ik_ zvIG8MlZF)r8ingA2fTF*0}Huf%PzG>BPIawr7<w-*0;RzzT#8h;IQZ6F80-0#2v`N zsk&eEPn>yZW22$>;m^k?MdQ%224dmOegRlkxBsPt5gcWLh5wC-c?OmMK3(Cw@f3`L z6$Y&>V?s7r;t;ewIJIfA66%iWkl%WL5ZUUTI8p&5>>8n0!l>JYFuAc7Q&jqw!>5$_ z8Im8t^=Nung#3Z6eR{X*?*YA127x9>8JZ~Fk+G_zh}bK*=7|p}&+Y0GfC`*%MXTHu z9QYHM3mbAlkU?*Q?iMJr@SyLKS(y?H0Np76(%MKt96R4u#ir12jb73DpMvx~(A*{9 zKB4j_%Z>gu;vsO+8Ch|cN!!1zS!0eElRSkFkh@5uIaL4vHJ=Jdb7WZ~#~q3R`d1am z%ZF|FamcfSWhTKJ6>|cQ6oUY8Q4w^t)cuP=lQ6S#%byapDtV&LRg70>)~3USwG|Q) z79T7QS4?&tt<5U8Ny1>!fw9~4JA=h2pPw(bmk6o~cP05^tYGTnPnGfSNW`Q99acK) z(JU%0swOYSAE>v9?Rm!$v;ZjJq_W)-^$j)vrIK2meD;j3td1(=Lo&)P#d6uFNSP1J_>>}<0PYwYTON@W8C4JY%~9@7xy_HMGS^Co+QGVKl5ZO ze|SZXjrJUC9XtsFf@xRvB!TN*qgK`k5|^^duw=kFma=#@_BcN5SFVvkSx{|ATLVa` zN6HZfFK(jf#eHR%Ou|3Lbn6j>)5%j&5tu@@rvqo7smKfH^8}HED?D(W61QE-Z0zo0 zP3txLKip1?8MXO;{>EkGf9z0PETySQb58|8yOAh}1P#$b9spF{$XakCY=~)QU050I;b(WY&$}<;W#Y8XZl( zB$Zhq@u4|8MVz02S|mieEaR;%J!LFZ8_qd4_q8zqAncx?q^tBNDr?+-_x|5Sfw3^^ z%G|kdjO+At>&(T#O2@J%{Do_R9fz#nc0`b5ys9M*3 z8*t=>#VJjCEkwE{%Hr9LX&9n^QV5bGg&)?Ilgn`x{Y5e(q9>h`L+qSa zuAVhs=$zuqi}^a`iCc8X_KIxKcFimRy{w?w!XSQz0g(LqwscjZc~mxk=Dt~R$07Wo zxb?601tGw5^x*2~;W~u7$2sQ28F-Zl5f_*K63`g?$3I-WIjb$4%GML_seNnPf)7e$ zT>Tl0{a8>up1N?AnSB*!5BPhRRc2fodSoKtAP$P*keYGA)d8h*F_SYKd2RN%m29!~ zGCuoUq0&11arPVjOGo(g5c>eLVX(}X-YNX}j2;|-s4CZJwg=wvj6j8@t-OIMRj)Bz zhs*K4gW%r-&SiF}*DP>dKJOFjxI4xj$TWm>OqbWU&IOg$&V4+4%aHYLe-Am=n%s&M zUY}g$ccBkw4-Q8=Z&k*O0I+t?Ur5x@h7}hFJceOs;4p=iOjN(0?^qRJo<#V3QI6iR zvg=}7FDw{bSi7F#za?ZdRMs#>?C1s|13fWI1fiK1aP-zUPjud`Q}%Az&NhjiFU;&~ zX%J5cGlL`W(x399!5dB+^JKSu0TQ15cDv2hQQGE4*Cn&%Vz(?q1OZz|_f+?10gq!R zG*5j`+yH`}#~X>Kt?QPRyB4FJ7SC(qSd^#xCf9LB^u6yV7JKMgiQ*Mjzi4Qu+aIR4 z;4`N8ySC4P()z!|_+Pu(optkFvUJd9oCJn$H(9X;*_qwHIlsIj=#Nszg-&KvRsh}=(cMN zIplzO_d7#4C>NLTU(3jc{#qGrjVxniHFC^&f!fn0vCYB0 z04=meEOO>WI39+_Rq4G3F=0_L(p7A{N>OPR4OCN+0yHgUmtodlq$W$VtBvcSH1-=^ zq4D{W3c}l!#{P`{i+!`bhoVYE${jt+Lh9v$*pZi}lz>RB%Fyfu8Cqw5yBQa{R`K{3 z4c^N4wR5K#nLl0rsjt&9nRo1J=-ZA%OJ2QaGo%n!@>DG#Gb$;LD;pX$NDG-FRw}Kq zU8(kQuPQrBA^e^tE?H299axb%U)T2P(sGBbDgv$#q{4hT*=lKt-!GZwJqGD-g7*E* z+ndAVc7#DKsU22;s_&VjpK6i&W>)=c=JO7`2o_ZD_~f1#V1=q z(MwAv>h0GKWbH>+iylL$SLCz{V#Z;be12_Cj2cd4#t^~{DGj>Ojiga*RRna*ucl z!_f~LXHYEh@{`NC0fotr$?on>=P^76m@RF1T#B(webZKTk?rkVnWb^Ngt(dIsX0Oy>RnRjLGDej*>iUweOXS=#GI`D<(w*&D)EO-HaKwHP4wOtjjO0S zVMa-BZ@CSxPJN_Y;Ou6d7VW(;{W(ZUx1D|TCgZ4c$6tDXtVbJhnttQOnE8|qFQLiL z!~^X=@T1pf)6iP@YINt|Va*-M>sGA0{e8Se^X>Wig~A#Z0C#@-lc_q* z;g()&*JpUdSp-T|>=^IPsV6TN@p_LP`V!r82WMV@?iM6g`Rb(ESGnKeGmLw6xtyj7 z=#Ob)epa(1e**xn`2wqtvW$E|_(29g12+N)h+b#-{QDUD_X3oy$eAN%g08-h1Wqmv zw)YtCiocrZ<}}9;O*Fk{eva|2x8DM8Yw|z&Ie~@T*?TXYRQph6cCoh6lLh+f%W*o7 zd~rB%(zMA;J(>FWX#4m(dDdN`L$R-Rn9oDr1lq4&(2;cF$;oS~C_n>`4_*|q?pIrq zC#0^&ECDH`_NR%WA0Tqb5K%)3KfJqjhaijs#jVF82`Gcmqp0$<)IIfKVyv!UOTe|G zB||UKE0UXryLHvdwz${ZM^BGO>okvD0pS5pE6>@ctHTE) zJcM&G5F}k%yIE^ww_YWsa~ddCD|)|+waZ>|y?h44!Ah?0=X31JxAD>J!?KcFbAG1mM>^`)&G#CTY({dt?0h;}X0ICS?VMuK_akx&8LWFLkc6JSpz6N=C zD1cHA4cbRil`Nf#QbkVp@EpgswsDVYVML{*XLZHTwc$Nm{F2w21CeG6>IZA-0LGVW z+urVZdRnRG;sw9A(fwnq0D9E?Yo4gx?P;z|>T!sK5M^M&FK*12II_R#peWf)I~h7d zfqRUC#&Y?du0I?8;;(%WUCsA7P1QTOuRbLnQ2!>?0_2q{Jl~khS4?Q#Q{BK{5Nztp9Qxix(uc&-G&`)Y?lxdEY$St zG5>OIf{#`h-5tY@cR0!KTUBu_&?+mM@Tiomj;ELF3aatDGyg@h!pS;j9pqH^PFvKv zmTis^_IM*oS|}x1eOPS>e$X%nAr>y-#^IF7kJqGZ^vw`cq%wJzm<q`o#pVdxWnb*fP*;mH(Pxq4El z_U-Us7MLGAOo3<%xKCMu-Bn)_177Dy^#G)vvfICyF-6IKc3p7|@ZEnO62>}XzbTsG zo-IRfH;WSC1D%PsZ*o4CEuD4h&Fu_ zT*wN;iHo11ha+=rAAL@MHaMN$Xyl^9m;K0&Jk%BVTl5_{_h1X2{^+0poi7z0$e(wE zQo678Iu`@$LbeVD;ZQwkM-$o=jWPPC(fF(nNM z!S4ib@olr+B4FhRtUj}iL+V`+c1Kb8Ol7VjXC`oi5ZOt~3;BypA_603q9!f{_Rmo? zrZ9YgRG{2l1`S}qt!CV@_eOOAKbasA^2qg`Bc@l6-m}gvJ)^uP=*r%`;SGq_F&mr_ z#xonzOIY0aRV3vFEEwFM7bVjL;+7>{klLtD?v<3hlTr>>`CiDo(8I|)-^$oL()@JXU#64A?r-yhMr{mM=U?0OYV_2KhZ zaT52KME$-Hfap}I`SiY6r-5%jca+kB8qMJgwr>-9>n+JzSSCWS+*kzfw@+;v1Fxbq?S3hHAR=fa#vr5-?G|{L zDq=5nlx@kT1^t9iaP`j92NWThsW-%m0XXoc9@fO%kA+>m5dKDH$8A;Q6-Vop;LzYez>kVE$bYG!#{ZPUmut zIC0)I>f9z`M)BTpXtm6-{lu@T=~92@(sv|aE6+i1#!3#pa`(H<@$T%B*h1X$qWp-Q zcZ{Nw1uv{95fut?BIu9&1%EfuMq67cVOBi;fZnJq+YvJEV>NbYiKYMR0D4bX*Z3Zg z{eb!+QCIqU+Cl)_NrCY-a*5x^t3%o@VE9oH=)R|@HSxN}>b!lHZvPS|Ar;Na1}O{j zF+=A}tSNUWDE=Ty)|I-4p`0R_W*YiCE-_0pNR7B+=;h4c5d(<*el^>+$s38JMqYDn z$&oi&AI&`w$AF4;5gZJI%qTSHZL<3EZ_VZL?@8>B5XF(Lj4#~{1i*UMPeM^@BFW&Z zCO`K9`Zw%Ki0R{Y>b^y{$+8e8owud-Ok_XY#U9SA!OcZkKSClH^;;U&#S}wPwyKOk zCUtf#!S?RQ9)5Kbd>^Z`fdDdKl%xnb56$)scB{{91kY%Hb5!|IPG0-|A0n?~j)iHLMM zcx$Ugv^#$+)muFM^o|UU9Xxdt-so{@8D_@OP(F5@XlhR%>8G0HE{&JN-l2}QNUfwJ zA=Iorx-f>}g?6(EpWF5-a;vEZEk97cM>+od*DnIDd#7U&Y1yErS% zuJ6@s`tjlT3O}ZurENX+b%@vUwLasGY$P!SP_dCXu#iWiSBR3~ zap82!Ey&4!%^j@t4rLUMoAoA3OGne|+~8qju@uOQrbGwNAp_*N{B9pa!?O5CAwpy! zZc0z~A)QrPDAWnn0jzm2J4*x4`LTXAMMwbvn$LttA+cOEh_KgO}B3FqI zTSlJxO=P7R@O9+IcI~TbNN`11b|0pI_=$-tedTz+-I(4UeV4ar(-XLuu?S#l{Yyp2 z5I<~}&&cZ*H7TZe{~8bnpgKRtz4mzHyc%%Zg!+~~`}N_B68*G-_0Zj-LUQq;_0ik_ zb92|n&R1#dPX`-&8|Oj=S4w-{Wc81ciI8qg8B~R2y0esoF$Q)Z$@`1Tsm%PDe5?;u zS?8FqXk(TVU1QgDzJ8gIis>twytHqBVN6d!mrwu$lK)+fo^`@Z><1lnM8patA6hmh zX+%S_jYA;MsvnlE2G4j==9akga^n4N%0WYzMMpkIr{E_AobJMH@@1 z^t%j;xg*)zD4{;gPiAha)|#FTZc)uU;-0GBDQd9zXKj;8shx7{xc{ z9v#-16NWf8%CGLkZXJ zhn_b4o=gYTB41}B&*v+hc3zQ1MhOpXY@(WHho)W@F=pDnme4A#TEKv9 zD)fv}!xt=wI<0|<2?6rrdoveN85_3AUb3yb>WcQfOrtFF9}Q4*Aip&WeyJAc{gf8lREP zdtr?UFX8PnU(vHmamPO#Ukd(O5&g7Vj#zWdtNJ5iF;m+6PKE1~`Pm(@`&2PUdk$KZ zW2^`b!!3b`Z=lm@e)S@4Fd{=TC#n5I zZ!Ho$x$U#JRt8ShB~`(A?f!m=>1piW#)}cymoRwi{ijUK_NQMo2*DDyfM4cv7JTSZ zv|enrl;%yA@ahz4hIi#{g~nT%?Mroq0gaX~HB5Vc9A&3+u%Q7;(nnFoICa+UFF8sQ z&xFy>ZZ9DK*rN!Iv~M6NgkZ-TF`}Xb%|@Qylp_cx@BqTj?n=Ka-aE6}Io56h6U+jD z*L!=jZczr`P`eat|1_|7*rX(K_T`2a9ADvO;TWZRDU&bger>Ca=+6xM(Z#gif55HT z18Dfj%p$EW2~0lDT)Z-4Qk1emjsQ=D=2<=D&n%}kHIgHOq19-!H1+v8yrplf(uIEJ zWy+f})h8Za9nZ`(y#DbJ$M!DYS{?}jHZDn$xP*7RamV1O5cGlJBtnjm%Uycb`eUC| zs%+A#Wc*CSuNaxF$T=$G@*^_%XX@KIInfQgrQCL<;Hq39ob&I~o$M?|rA=b4b)ZJ- z$2ucA4HDTkmc1KhiGSXid~tsgA_kW}DTK4m?3G4@2D03c6M0^w`2z#XNRNkN)qK4| z99{0Vn-n|flvMRgmtjKo)&RDVA?tVN6?$1WY16B zfLf&|MZ-V-u=eiThO0!lODt^|ApgqO9kZp?Psaag$c%jY$_lrlIL%j3M3Y;A>W#Z* z6hZzgmv_HgO%|Uk1xp9`mv>5&(-+Rd4viW2KXpMLSyx9!7^@%Xu)icG{iAGZJE1&W zefMsM|2G`xlJjV)uROYq?AoA!7WB1`<1r8HNKh7f~>Wyk0%h8r>1;Z1+5If3I9;QN^4 z^^0;fJ2avd5~9T-s^PAnrE!VJ*X|k?N*k)Cjb!cG5>2KA8efmMT#$p=_Y=0;{&+34 zD3bFO#&ZZ!2Q}a7AW=Kh?CB~Wl->dWi(w^w0cT0*p`ZnPbPPf11=Dv?q`4e59QCJX zQp>l_KNBz0mDivtQS6l{Us0+&HR-7TX9or&@Z@@h6!LP}@#hb>uw>q~*3o+4QrAD; z4Dru-2;&0-@dg|$>=0!r%DSxTK0?M7VQbv>uOF#obPTR4ZxJS`V!|m?!QbSadj+dF ztSLA<2}cgD5W39du-l-__f;sb=yk6Qf%eZi4lvfHnAcWi=tE_IPLK;Xp{-ji^7+IQ0Ui?k<3eoKk?HDTwp5Xkk0k z7pEppUsQ%sHoa1NyKz^~4TM{`F_lIz=Zk_dUPten%phMSy9auvufC{^EbZ#wuqVT( zuT2|N-^33Z^OfHc)|8%%M$Yai>c~4mEcn+&L;V4Er4>Z?LOJK@Q+#;I6Tc;?S#}DS zs|U>q#07*GbZ-2VzTmw7u?|XN`&cBEbbRmBVm01BgsIyMY)75(`bK!-SFNFjaa%8( z;Y9`vHs00vu4C|;-*iWr$`X*aztud(vt{Xhbe>m3lk>Y=ULndrc_&Qnt5;=`&py&2 zUZfE2|M4%Exq{))hB^S5HNkbgk2i4`$kk@^Vd9-->+`0YI zOx3?`q@ROO*JW5$srr+4dGjMr+v73r%W_D*hHSR4LAfuaHJYpAVp`QrXLvfC&%A{W z=JR9Zj`vk$sMBg5P@~>zo|F~De!j0{j6t#8S?`SpCku8-M(Sj9V2gjl_%>lIlfdJL zdWMPhoA;`REZb@A*+3aPMmymBsN-M1tb5O1Xe^5!OyoSnL7z_tQitwhR3kEr% z#D}?`rc`Y_?%v%ut7$tOb^FcXB^D0BHtk=jtjdQs6TVtBwCe-3<(*8k)3{;&ea5O6ZEN-R3{neDePbhy0)vArah7u=QyIYhf3DE!-qw`Sqe+ z6;r5&FqW}3;0+ZSh#a)52f_{()4fzyA*Jgi6y;D0H!L!EK`{(_FwBWU(l zc-p82fTb4X7b~CUgzEer3%!Qw9b3FAJ-M!_Clzx#SO?TppvTfr>cakIl;ZH}aU=RUKa5GUY?4V!3AyF_2l>?z#_KF8Cxr_>m*~DD)Pudv6mOb5N`?mV%6N?B zZjBR;42BsRc+?VpvEol-6L8cqocn^?3RnF%vq5Y>F=EkK^RajrwBG%&o^CI#F4vWsIb4;NrI%yM3TsXk{jDf7eH){+Vp)2QuE`@6_;mWhna;4KzavHC zC3w*d)o_WcWLk~m+6fL@=dN=~ zG`C(^F(cW{42ob2j31Z{V-*rUS99R`I+M4xPg!G{W6!yD&dr?Hf@~U57{rv++`}UH zlKg?8VhH@<0`c!{-3RJM{7X7>;4>!ZQm(kaB^RwwdJJL8y{?}o7=mKVSRjS$BzkDS zQc3$ohNzhAl@Zr38y8Q_zA+7=j=iS_JS*ASaES&wPja{(`y8Lui$+x^sRZ9RnaOEm zww;!*z$Dum&4Q~XWGI~w1;SLHlyTGlz!sh#_OOPPcfNTCE@AMbx92pOT_5$54Mct} zu*8#Z;y2Qw46pA8Ed{mGL)>fnw&h5ph6yJUvlAPwvi88kVojqd8v~{tOhZ-_JVgPr zICY1!Ctq{=F_E=YAy_{swCh_^h0RZN!_XCZ*K@agmFX||`OmON>@#N)ZzBhcOX-;DyqTG1MjnSDs$iBj>*xHKwM<1Du?3-*p+Q+7nYuA~*i2Qoy(E9LO zVD_q8X-BZ>AC-@csH(v~|5eBFGZ$wVgjw3@XQ(y%gRDT6DJRO)CWlB8S7vqn_9ALq zbAu0!Q8`u(6-Y(%G)P|(waZ!(GfVF)AIsyP*z4hWlFNI_XGheXH|FDJVe%Y%X6Tx4 z#9HYaxAz-mQMUkVxk8@tf0X%q_)_rt76#JuFq)2N>c>Z*eG3XK3 zu$=NfN2-v0(GUGMZu?_0*eLH{ZC-x7{H?RJj1ESjAVC(TDZx~A;bi7ag>>LUZ6?xm zxxr!n&D?Pks^c$+=d8sOM<2nbsLbKmg|b|DW7+ATjvl!6$$!u;}5HH?VP z0R`@GBnZC=lL#!^+^BM+66xpyd`lR1{khDrxGcA915W!1%NRpEZNI%5EtHRo(?-nDg6YQJg+{J;>$Pee|L|| z4Jeh0x9e(cYU=8W)Huo!(2XQ)@N0&Or91oDt@C;4ug1gd+{N-zi!JAZH}_MyqJ`I+ zq`S47iWt_#!l-4Xa!a-Ms}_4g#)Tl%yFOYtet{3$Uzu0Z7t^*8Z`WsKwF6lKfZ7Fa!nwy^wH8> zboGhIa5Q(OcktM~??Rwr@aqQI5B36G&Pt3pa}{mUQj6Yc&lF}91{@9g9WJ~awxl#G zKS98<)ME`c==#1dLgEW-lE9n~Uj*bWXjU}12#y(a^cL;3dq$Zyxw2rn??yYuqWy?X z8CxBlKKJOtpcFAQ`Z6YJz-hyQfDgEuX5((5a7g>qGX%`6oSiW*Mn?Vh=fzSY52WnK;b9k@bkq5G_Pow*-9(pY z6H1z_*NVB0SEP@tmUIa+D?DMfK$Z}+dKzuxR)-hYD0Qc8)b390zR+n$F4s`^;xoHJqy3(RcHY<~>C5*W!q`F_{@Yl9_rr%2PmzUXEJe;`N7LS>9zx zibR`#NWzK>Noj9IO`$#e4I8cqogUe0yBDoBt;uFeX|78uA7fcxh?*1}D#^mpt2(;M z7G-P~s|B609b( z4Qa4ZLE$0Fu_&3R%w;@gX6sa;-%z>B7~_0~)#&_*k?zeYJ!J@XQY85qTB;q_g-?ep z^-@W&E|$US^afU2(jx`eJLJ-utZfiPRsvLCV$q0x_{IB^hD80QOG^m1A9!=tq9Rk+ z^)&R7{*~@sLkJG(*_Amo1YHT7R{njXKuEkR?xoj-r*FA!LLRAC@*{ykk*jB)8MDVu z!exNLYsb&T2j>oql3`g&R_P%MurXBhigytlyW2x{BW|9P=KVmKgwIMAp|Vk6&3>sA z^6@KODt7$)U##SLlp>0Hql&YIYq5XQ%ntHDO@n={p^E6_qVw9=;o7_buC$9%$V~3r zLMwp|Tp*e>x%iJkX~A1ZvNMdcpPKuQ;&v=BpjPriY*OK}UNUsG+##Q_TL&%KO$^@> zXr+O`eumLa@d+_^g~zRGX(HeJh`~CRZ`4Tn1Z^UWNoKOrq+j{ag}GEfur#U+t<9Db z96YZ((Ifm8#Ped(F6X*ol-uc|sfZ^h$aX+tRJhwelQ3Q|?`K~wT%r5H_N`uSi za&Al89PpvQZ-k&GQ@_IUgQKVD-P%@j9Z`&d0u60yQ3-Q3n(;F9`x>a^+?*R%d%uXJ zC_nIIL*k_h^C$e-L!rLEcIoRRfY`A~c@mlojRGFUi`gPAig#Rv-cQ$*i|Gr_Fj;9W$&$R0PI`Th9q@Wu_9sUUj25oh7GJu^MM zm;777T9`6!B0;c6<>ERcc#?t4gnGL6?jQ_G7+8+LvJ;4c zKkX{2^167UgP8~4J`vp|ol?1K zMxGgt;|Hmwjr-^hRb9X(4ph<#i?-YQ97Yi1gs_dB9SSu0ovk4Yg3Ce;VUoc%8%BcL zHg8J*J@zZw+};->{qLjerGD+ruaBi|D57oiZ`z%W2SU<9 zWzsiEF!px}H%^?x3d+RM^8*t0l$yGOEr`zjsqq?~cKS2!0OIY0_Ow9b@`RJo5rDDr z6(~fO#GUoD=F$%6SrA*R5PRyy0ownTqINGdnE^{SWNh)7OW-0LJP2dyw8$zAO*~s= zoT{1k|DL9$M=kgyTr=Ff9`QyAJk}QfCl(oExL3{}2WpzNXaFQdS&zPB-Dj*!?9Poy zU+I1kuM7G>f*d7+On&1Ql-Ic!__q591^wYJf9oP_Nq5`jTiY`;sNnI3{hLy+)T(b` zUcaUw?W}dXgGAh2jlR0lsxc2Hbshx1uqI}`BJq>(m`VUG@W5w9$j;r9*TtMt;cw;` z3ovt|_4C?e#3MOF*#4*4N)}<1se5KyorljC0Vp z9HFLsBCO+SgB>}X1$e&{;%lty+YI%ja z1}VrI8^3wNm~JoDW{m%HAw#bnnj$Ylm|b@1l=dm|WrD>dtI@~}c`rN?Qw#h~OX*HN z<1;Gav$OZ+_@?{I(IgCIT!fh{!?A<30Te`|a9uEHv7Un@2MsIGClD*Si=bsywpgpw zG`%AlZ$y^k5W`fDmvj$bqtasFowF#U%_QZXXH7dH%!GLpeABrrUw5~|g9Ou)Flj#g z5W7(-g1@+7n}0@*)?+|FH0##Zu)HRcrMISem+>yFp8pTebtMTMwdY*x)<7S_+hbx{ zbnBEuwm|lG6e`7H1t7HCcl1{>y}Y-yXmsol(F7fE9A-@WIs5Os3$d*@-VxsM*Tf|1 zD0AJQLiXy?YF@Yf-2~r(HA^hd(Yv^C(r=!tC3uxhT2gx{6@{EqKVL`ix{H{==|r?H z^UAW#fo;VIVQiQ5#-MlVzsX2Q2!zCOWr>3_N!4r-XsR^4o}FaFjK89wuu-aDLLvu( zom57H1;XAO1H5X70+blOa~^`s^fdkV`xIfQbaTC(%74T2Aj(R5YW1QYEcKHxwA3V^ zhfJw{N{qk9`vlV_l1uFvK3=gP0=a!H#F-2tWYdv+oDX_h67jhz%=-kv^Z&OMrR=;o&0rs1`-Nf%$H%Is)4~A!l&a* z#Kb5~v%ZGZL|gJI1eRmIn%M}`H12H|5_xXT!n@fNW=_&25E=mBF{tT8N1=3JO3@WY z!{9VxYTebm^yGQ0)v=Omj-D24!m?+wGF5qk`4tuKrsOPeC59@0D?D+d*vP+G?jd93xjJ^c1PjlX+GVTdb?FtX}uQ zB7Mu2^Als`rM&ttq@ZI~_Em-E06c5&l*p|+ThH^v4ok;fZZ);e)!7YPO@|!vzmGh1 zEctXjaCd-Q_-G?fuOJ+zrd@G>ff;#tL+Ose65uRmOgV&-&ywFJL2kvUIiP6&cg9X| zQK^In4SMw<`445Q4J=In3XUwdZ+Nwb)m6eHdjFMtxDdtwd-~g7HVk4T((6GjF3Q&4 z8lTVhn}ELweVCXLz30UESh*nG>$unTNi9JbEkSbt^e6-D{y2ZNiqa^el$bk&!s(8y z64L4Dg8ort_^|E-8WAZ?McgucbA#F?B4MiL>O&JoLJSN4IN5}btTh#>r9s>Vr9LBQ zvxfDp7ijtk8}vJLu&q$m z&by7vi-vwu=&dVbD(kvh3O4a|!F{hCS1c9o7~Y*IM75f<@2Vn8&7zaUc>KnS=*a_7 z$5orp2dN)w{d*dGSGad$mm*wJW{p%<(6o5@aso{Y)LAK8Z)>dn>+WxKQ0HU2qODS) z`80s5%rmRGVIWdGd@&1&J~MkE=I{S$H|0;Cqu&tc8}%e%%p|v8fzQ2@3+St!NPSMv z?OLkgKj2>NEk_4_$~dwnWaEPLChoa2m{M3H;F`k~-@IaF@pQb@R#aUC2k!MkGo8L+ zQM3(Zp85~Xn*>)~fSjQvga}YSbA?g9LNBvyc)i9cv=7-&IlL@I(SCV;7$m8%@K2YvNSeLw8RRI< zgp>KV{@H@NF1NS(zxCWs&~XU}z>7G`uBvg^U`{TM9JD8OiVPxOpY9ttk_<&Gtw zBr6mz*U93grpsO!S1K;LJFNIFzrklkWPM}b<5OZ}yWb@@U6{jMM@>9?G{YY}WA=?6 z;_m+xnR807ZpcGkZ_yf{<02_dHlPYkhLRavJdASa#d~v6JZ04m%k-45(rxGq)D7E0 z@k4Ik%EfHlV0pTPI6k#=YUu)^grcHSIiA&dKNq|REkBnu)UEJ#37LDuc(VI!Ozf4G z8|HV`u5wtiwULIy@Z7W5`bw=v)MeyhfVMS?PihANF-SVqezq8)bG0yuM~eDJxM1p5 zr)eQ&v}Zs5BHMHKZY!JxXK{quVkXB+x<{p9C4pJD8X89=EkOp2GW#L+5$n(mpB|@m zZtEI?&+%NuHfsrP)9c#*kZk(xN2B>KR0vf{=I#CRG0@_9qLr@WF6~MSPwucTMOSAc5)b4nmtw#B|4>YaT1s% zv#OM+c-9<7NXeLEw%#<3&Fx!3A1nX!yM7N|#=MUcjE>+-FGf1N6esec6mCW>Et?@# zDxbGgpjY|cL^yORDUzSQG>t0uw_2XO>#%~pW>v1b;NR!MyLey)RykqPIGY;ARPP;Q za~%PZg~n{m(|6C78=mIZ*d8Q$y2!zfT3|k2gL-L9I^@7RE2jS7lV%9iGQN;iN$&pu z{y+i0nNdWDopfWauIB1!npzxj)#;fbu1w9~pvrh(7OQX*AV zrk|(xa4uFjBe7LH)Rft0N#t}SNo*}#9HLb*S5g2Qxxk&HG=-PchbytDd zNfiJmGTU*0s^r0Iv7+k3)G@BeT@x!XKF(2DF38O=25`vo+d6Ni;cJmxYoz|jYBAL2j)&lm#_onJ%PeOTKsR=S@ zElh$FrP%=*rZeR9wedPnho0)`d4%aK%**&>zSi`^?5$k3&(9%_4M5;Ikz`-9q;>K&h>$8D3G64&k41wxG&oH;ckzr&*BONv%wo<8 zy)(ez^FUAl{7fI9hZZs}i7tqItNh)K0Sx_5-mjkP*7G`eqO{O&dPg{u1#W$W!U9H8dI=ir_}7bEEUdJV2bn1ZklAS zHqI^T20ja&d~oU{!N}y>-~p4+8GeFI)fKNj78+84TxNAdn#A!H!!U_1#r-Pp#0EL; zO+Pq2C&WN(M0I!{5iacZW$uwu()bYtBFjnJsZ;$+*mpV+(P4y{E%U#_ZV&ACl-31< z%S8SOZ40z5Nji1KfltEO92_pSf<9~>%lRG-B=&v!3UYIg@!QuNK2(&k6*jWE`2iDa zSS9l$Qc6-kNbXC#qZ&o1=ydA;{VTRotCJyOk+Y(oJ;%7JfEP=s z5%`*uOl==f#A)#3^A#Y1;-_z?pdbko%x4oUZuF1k?_NHGKbyhzXC$Qq)6AA(q~l#J zNUs0Mm&9zodNKWd(~uyx-Ln#q4us``&$=uqU066sSJ7GR_JFX8p~n{Z<_%?gy@$Ox z=O+Kz*Sr_YIdC|_-`(Xk8=?{p+qrQL!FD$d8561vy{B?>YDucEsTrU-M|G8hf3KtT zeKK(trdmL|4t}$ttYuvx?Dmjhh*QoVOKqblDX}@9F(5ms3a0^bc10ZTqrXc~EirV| zQSIzBpcCgNymnCdyIXc^=23FI?I4Rep&TX2oG1$p=WHr!^(PrxrI3VH1^kOMm|X{4 z-$FlqiQ&9P`LBM0@UVfsx&%Z}z1c$s&!L6Y1%2hBAta-Ff9>eS8fqm9Y zy4@qZx_}yidwtL9ZO3kdeI8}Soz25x0RY3uXB{DA;bO@>5)@jO7@x180(N$P5;(~1 zft6mWTorjBtOU)SDBL{&K2`%0->{4lpw-05K=9Ds^IC_INyo~O7$3XXX0?QWbpd;` z1#a*8S=O+dZY|7mNeR%y0U^Xm(sqIjN=<3A38Nc{4`%YM%6S#ZG{u!l1xW1iWQC){{{}9zRCz!Lp zf1pZd5}9ecTo}>Sg2CwBCL#wcjI|SyT@|707z->H{JXmi^zsb)$upSO_xTJAiy4N` zuV4=Y_u6*P06oqGlA4mRdN@R=66jM7M@rcPgdN7f+Vmcx03LS0tj6u%TtN+Bd&TVa zfa=X2epw?F2B!0{#{uT`Z5G<`U$L_}{6~Ka!^~j)zwMX^RV9XJGqe{4Y_Bjw+$;S6 z8x+IKH8y{9jkEuK3;E-p!6zy7`3y<6SLZdxRRv!%acF+VbADJBD7N7JEDFf^8eug< zC>bQn;9&vy^$f$h;A}Ki3@;c{xJ{c2gJH&G#dIE~_b`V8hfM$LKO(F)o}~aL?pRD3 z5$7I-nuSj}DHth0fAI1dhc@;D!kcS^Lqtskh5Y1e$b5$I@)<(KB9Zy_EnoBTD`;I| zTsN@Wc+Na*5V{WT>XLA{BoQ3>AK`Fh;d$1?SvHRg=~5OD6ij>oisbYIOhOFBpC?Z% z?-VN1-zQ<8U&g-EiHI19!-Qy=U>^kv5k59AA#Ker!PyeNbgbS4;UOIeGf-1wtS!mmVt}i223Z3oJdHhLGoTOX&k9yl zM|NCfoGPzo2v7k@a3`D*BrXXAI;+Sv=}-7LsxTcf(d=Brite$^a19wf)LE*5h`^sO z*?zvee}663?r7wNRUB+NyB7Mc_ubho&z*>DT0z~ zmUt&+0pvI~R$EWIPVZV$89TMqMTz)t>5t!AXqGq!k?FZh;Q$}c3>gQ-xZ60EU5U_#Fg=)KuvU_Yc4@z@DA)jgIXk|KATVsx0XFz`yAS z6xRnr`i@=RQ<2e-BpPn3z(n6hqF#=OKNas<%KJt3_V4zlFvDCoV4z?ZP z?mHj?a3sP@-PwBL@+BV}{i@ERa%xlvv`M}fU~$PzJ`vFmLY1)mhziLwMgW-I0oq0m zTI!y5Tw|sy=%?d(Ca%a_napt>Q}@o~m{#KYOPszmv^fu|74um3U!xLX+Apyv6?Xgg zx~ad4eWw!<2p>}3(2;kv6RHuIv-K2+hX8E% z8TTedL5@N?s7uNyK5{o*f6`hvfSvH)3A>+UUL`8(NE~vbs(Hcq^_+*avyg`!!rQly zt4oCQ6{PE7j(+M~fK@x&4bZxzdPU-rBpl(@1(hN0A0Q23SSTDjDsgzwxG158h4=_j z3JTK>@QVt^7bV04w&#>|bLbK3f(Ln1z}F7roQI>W9FCtZ;Y)-0Pj(Qa+|ZjAvfV>J zKI3a6dH?X~3hp?f{NfH_QNz!cFzpD_4(JyQ@|)`crVlU!@vagS=FrnwoXw^LaPa)E zWx_J9`1eIWOs&(PkZpAQbyVHxdh$Q=05Vp;{HqIu%AsEuDDNEXm+ve?5n$0wRgk!z z1Yp%C%5;X`{+McGKmBU@j9HVh#!w+HHK}j_6KBCh65u#K8i;6DE6M>UtTHgc(V|pe z!hRn&!VG2!N)+Trn_N zE#d10q%C2bL+F!OK|u}v-7z16vO54bcL*<^G0FJmn*OJ4vz%laHt5o{@>3P$-Xn(-XVN> z;Ju#DApHo8hI@4wA^RizvorLUHR`WCm9ch5atG%X!lH(l%l!GiVgTYqs8;vw8}6Ou zoC*4D#_vBy5^<$D=>d?Twg8ZXI&`&Q1r^c%MkrnybO``9&Q8K+$8}a!6DQ}`vJ;;O z@sX!tt}e(C`RZ$`Gp$!yqF9eUuMvnj5gUmXCSIesW|{$z24ucFUH){RB#7{-iJ^kq zV$N#*CVYPrk*b8q#NA0n#8lMbfJp}PX1M@XOW72Z^EvExi*OtvFRviofbmB^fjwKt0mdB_7VjSbF|g|;mEOMk79pMi z_G}&biV z0rRj&`0)+QvrB{(JD_SPfa7a}G-xpzRReJ|sTz03W7S08SX1(k=OI1(uD}zCm(ZP z+}=%b$G?Srw-b?Q+Vz|coDT8jGGd`U(g3Pps2~I3+z=`n39AQ1LG0cA1Hx_}=R1@f zd=mpV(K)QOtRx(c5&vdlg~3OK1xIJIm_c1sp7LQLNhWe>goGq@1r!e9Vg+;P_}Z8_ zByIk1zJM_Xwu|`CVT3>D;ptu@9^@`#EoJbJRWzJsww$I6M_vUC5YFZZrNywMlW@DJ zMV`(gXV5>JLxN)VRSSC@AjckIS;NmODszcoTvmh~4azodH=_A+M{J=d?8k1S%xG1j zxI4nOBmB#A06?)};61!LgJ}mUcsIHob9RnAiP63~`Ez*n*ah7D#WQi!f-A&kY9|uwRwC+3x6T7IT=`<+K;) z^cRtHWM4dwKEmY$GK&wigbnF_nnPhO&Ny%3Hcsh|s(hgzVn-ttm_nBJ6>A?!enV~S z3`C-9e7zoyOyI)zw_+jILgP^4MDU*m#XdHT!})X{r&~wyfm4}uvs@5vctfs}EaTo! zz8!!)KZ}80|6UR(y8|o$xj2WtIL`^EefDgcbi&9^;8$_J&Mghm{vk`q)u`wfE%Jhq>UWjC1U^?1AQ7;K+;#wvy^-4gqR)YEV;yy z&4mu(oT3DCjmd&pF6qBxw*?P7cGs_Ob4)5xs#!LannoA9QZ+|ipz8<^ud4{9b#Nbl zlxN&M8gY@3JZ%Sm8l$9p7l*t;qsrDhuTlL=pqiCT$8q9zNQ3~{I3uL*5!yaZu8tcf zVY7ie^C2u|)V@#E%&vn?!(J@s1Sr56BXRmQtc@xHeXev#SpsKE2C!8@x!Yl6TmEp! z4;MiJiBOA%od^dIhE=h;nHHv>JGikXJ{17Gho2V+R$y;QXwr(E46Q8e5HWvck)aO~ zqSdWxG)$ti$vn zb|l7JG1b+a8#gA3S{9If3w!9${@@&H1@*Ukgvz12tWga*F>peRRG2zlXVn*eB4c`_+K0~!X!r$Hz9~zZxBvq9~c+a~L2yw7a2n^(k2JQ11nlS*^QLgV~I(s7g zK7w{6S-yTt4?nfv=rK+W@jPD#M&o~G~aJp~;i z4p#d9@olk|iG;P#>yDj~2>nS_P;?y=;{>S#A)~MnUz<8xDM%KRhjt|rbs8jx5chjf zzywM}A6krGe=~_9q^aRP#KD2#kubxg;AAP9;20RlFtA84Z`k3ueTc;6lD;C5Uag~A zjc^jU1P&y8B)dI~&}BoR2@{oK4jnMBF*YSkVIwqhjIhyoKb4zSe5@#*4p1{u=Deve zUN#sO4&@ynV<5+*ivi-{2s4ZrKDmT%9Lm8%`oN+~B>1Pq$?T7L5Tq0Z!uevlj`-}+ zb-=8__}LZgt|M>bVhLYcxCDzz zo7M%DkK|#;`@ft|RmgPMH?fe^wwX_q*L72KO8moy=hE?*VMXFN#4Ha@i++Ux${|aB zYlL-WK1qZc=5Am4PBG*AWY$8*mWj7>S=#l~GSR+a5dWn8rq7;dR#v#h@ju~YT77fL60GRCv|IN2B zmlx3GC9gRaOW+Xsp79n0g$@)1Nyro}47&3IMZv^K4lQtO8Lun~RIf*6?he5HhWp$(;A{o0D}+Uf_Od{`HmKhMrW@(1h5)lY@H<)? z$>e?#uK@_(jUx_Z7~yAgz?tap;UXD5M1Pif4>9MUwz*Bv^TH+LC-mv!I!0pdN( z4?l%AC5AW{sQTFnOy+JwnYg-&m`Fl4(nMqlit-D>a}r-e+8x_{8ujaafZp807z4c^ z)J)G;gi82;@nVip8dN{NM(G2ZMMDgA^^SC*Di%N5a8q?Xy9CeAVfqo~Z5*Ox>72}Q zgiT~mYw+-QKE_xZod4@Bv6@W*KPxdT9qMlmgpmN`e!RYgsAB##=Xz)}Eq*mrz_B}$ z=hOneGU%SqQS1hGKz6L=YU#4_ht6t*s(?+weOcr>nf?+g-y)9L$DU1w6G5?%-x3F1!L&f z%L4BH2x;Stm(2my739rX5&)#$4We%HF3xPHmvJ=DVyrj4Aux`L~&pqFP{6K~#T z9*2x&UQcQT8hL24m?O_T0SgEE^=tnBsEWf57a_gj<}R;g6a~U=$1|&{rUJ)FP$8+v z)(=42=EOSl*nlXVUPBL*l9lf(E(@4u>qJZ3(h!qI`|OH*v%?|FcPGeRhzY+vKhFXK z{>?Sy?jBjC?#<04m)bOtS;N>u6|z{c*tXd+IgJo(Z9B-%zM&5o286_qY--4S&cBa? zGf_Cm;5m2Wul->9UWEm;0Iu&L&LX_Lgnih%GX%$(LBJC3Ed>^afA=$}Gg$w)M<@)` z0$Mqk`3%Evze1=i#@fPoh3NyT+Y!|*sMh5b_Tfmi&h-qY9rI8|s6sDS>>l;x$!akb z3hlQy?ACnt48|CkwuQ6}OdJ3yZ4dYvv@!^*hVe^UZ(W~!#?eCF4;kfMP7?a#BS zmi_jIv5N@1^p_V%TrS=2D0K75GZuM%^kqyw85^SS=?|QR)iWl*KmF=4>?%nD0|>9* zvZIw^lmt7rhMm^9<`e%h!%T~kkg*oO(7w}&2!II}e=@TY@J8=73}2T#6V{id{a;oE_Dlp(3>=T zO#3K5oLa>3d#aI)+eT{9g+SOqpU99TYp2DfR&qwK07799ti+&oV9>vu!7nOyG~)0b z1Q0S7AqiSn@QZ3Xs8e-L5ec=PP>8}|Yz)Q*CzS((P#TOgYK-GRc$~&+1Cy8#(gD3;*w9;hLo$gxpLgEFFVINizc%tve8p9IZO*#={* z=$=$ZGXXsfzf9|4Bm@KIMA|x4LBGc)k@U?@Bqa@XoT`%f8CwhW!=yYW(|t+ z#7v2RF%ZjOSyPoV$ulY?p4GXWU`vv06rnWr;2$MNNluZny#d%q|K{v_gmQi+NK{M# zaU6cCRml!rPcECrR(&En>NrByZW=HstoCc_)J5{9loXA?Zcl}|G|(#zKa1C#hA4^( zGRE_S`=%lgM8OGz$5Or#@)ase40$ADn}IM#Q9``Lafq3g4xzMgNk%hWuOPzOl6VQb z%PN=#sDVCy zr+E|fADCte#3WXum;y=AiAR(ax@;6ik!c=QBJ^8}%ndtPFRJ>8?~=bu?2u~mKS3u+ zXB)rs2a2QLC(DT(ke_+pFOf){iT_C|Sp?7yP>HjE0?=CMIL&+kFhO&C;A;S$^}|RB z-n2HX;r{FSj6y27CeaHGBr!*U9hJaNoFgqFlLi z(0L8C17Y{W5Iby9+~#D`yzci?@zNQXSu^>d53F?svQS1AU`a`iiD%oX=t^9lC<=c6 zc)k2zj?T~_oo~M!XXHDbh=jHWW>p?xe~RhWafJWs8|2vy$GE`DlIlY-__LSu46h2e z_j#Ij>U^Lsp{qG$V;-p;`PUOaz|gZ9-TAM)<*z{9yF6e&~|el|mRISoWy|M7us z+J(4EgPHf)=YfA6o02t0{xQ7nS7uWm}@!(9; z=G7Sz?Mx(B-ac>`+?ukTxZ7}Q`*{s_vjg5-lTTDQn1=)Gouc^J2wgPr%Niz5j1QlG z#A@l=d+1_@@wZ>{`}lxRIXdeqwo$8+)%Ls1bhD!h((vgeOgD0XdK!%Q@e71`1=}(? z$O8!h=yr#2Ji@(r&i4hT069Vm5eKB1ct6770Mj(EpL|3-ca#J*P4j5@r*<9ui7ey? z6?DEw=646!Y6dfJD7}1l|5&Q~17@OgPuSXUJOW~1>Ux@J3m_>jWsB-UtUeDQ{d(tI{4a&5N=cXzO_Ub5TygIB=ri14GI5(b)}nle?d0Pqm2 z3Sxk3$LZ!q;L4b2gmakf0eZh7Id?u|w?Gy4%eTO+!SK;J59Q8BWhsOHyn<^z$_RS` zFcl)=kUvd?`&fC+l9oW8n_%}Hv~(H__z=Q-Cm zgNJk;_U%0|3~+JnpDIeqa*+iX{Mih${43DSk)M@j?VOle?tRlowXM>@&kXcp2DfS9 z{`a3|Ib)68NwYb^JRGpTwwXVW3LK$a!g!DJ%Ugui4BNl;0=CttaK+?g_P>4s00@_7 z(56IKHB*b+t+<3Dq|<$YT(Bf7)E9y)T|;s9B+ z9ijHC6W-x|kFeXp{?QkZ)e`OB_ylf0!2RU)B=5Z0vZ&D1kh+F>cEPUNK)y-X?bsc* z4))ax=&^-=^A_TYY0anMlH-`=#-%JsTX2qkWjy{;`|dlPh=`%oU8+b(8qV@=2ZS%q z@`JfL90S%oR47%RVx}GzJj* z2UMM2G zsVray5A|u&8HlpYD)GH|A1P65hQLXmJ!SY*1ZD_PqK}=BaMon5$5>k!XJDez#n{9S zjaODXQWb%%DH2~@tW38pry{2+fCxg(iZ)5-d=F`Aw$&q^)<~4Li(RTb1S%3YwGbv& z#=vyM^U8X~YeFC_?UWR+bpF#1B#H%`bft`8XUvBj*riIEdJogFwV7mG6Z8sYK?Rc3 zkvmb%BD^9#>)09LjX6muVwE#^A0ZskY3b?p#x*Vg{P!1bku6p>HH61p8C6y&F+9R( z=hvj?smdWw))Cn!^dc0pOqM^sTly6sUOTq{Bt%;+;TL!IOEkB1!M{0q3~ z-(sgynuc)FG>aq+!%Nql|1MV9M&)AlI$?cd7bwXzW~uLZh?*#UDZ?1w2a|O6I08~U zuJA|y6lNt*Ix117&pF0mwyq*+9t;qGd`()FabAky&wvSH+C)xDB+=W>X9;id{*mk^ zj6h+a>m}elOj7e2$0=}6vq8Gpp>a0fL%Z)G-XW9*5HFhMu1{a#CbljqfEIAvPnd2h8XMJ-MTwx#=(RMnCKk#o?7SbcO| zd`?mDVHh(MiP-)!b37#aejSFXC}D&?~ekA)|+h zDtmCOrt7?!1{t5kPm*|Ck;A3dvd$R4yQJVelG20Y092#_s73%tCWoiFuDo7w@N!TD zOMewA3wd@11i&w=d<}k40jQwvBwiAMnu45|)tp_IAz)ndyJX&m4+xgU(#&n^1I!q^ zvFTDNLbr$#0XU=JSm5>9FQ;CqEYRPbmq%$iCZ&h_jRISXJdgD#=V!XW22+)Wq8!IX5A6 zUB1bX5`qRW7Upo^jgD<-?KshR!fksN=^K^3aXK-&GfMGhq$dGR8Mbi5&8kCNvWrU z@itq?{xEghni{A$Y|R#N*kF`Rm1X3F+>Z=++Kvfhxz6kQgZpH?BGGxfgT{e%X4Byb`8ZWUQ<#myog` zwP1p}O)eUnwfU>JxM4=kXB&6aYqlx)QGUhYeY%>F(B65-v4^>7bGM-T^c=o2sO~z5`Zx%bGZ6f` z!MG@49uAOUMDcdoKN5>QNqj>F58o6x{0(+`&7he5WCMKrmX-drpM2zeMCtB?@s@w{ zV;B+Cf9-P?T@Eq8n3YV{l0-4WqfSWXgT>AaiUPWvq5XJ;@}Y;h+wnQp<)p3@CoOB= zQ#!aRfW8M{Nj8n=4`#Di#ER=`O`olO&kn{gJy-P=#7*4AaDBtB@8ua}f27YyQuHaw zNF5O4CiSc+zG6RqMYW>WZ(wFK7I(D&-b#Ik?GEGaL=wNMGDifezyZjE4Ws$Z4$wfH zzAF69E$`K839J@eFR!nO+uv^a_q#pJ^DFpO4Y!<=3!2m{0mcN|-4s)_E#;g~1~Kbq z2iNuayakxx4XWD_?l5BiX#+Jt^LCQ!_cM~wiyeKE z+fuy9-JM+H{TAAF=$|zhX9lyM?pY{oPyA-jBv1O9Ls1t?*nN+1cMn<3iS!8cE#=n= zZ7TH7=WxA;eb{5XTEfo?ly7$VeZ#EA@N5RVC}DOD@b)%$<5F>5L?9jGfE;6{Ab%Vg zcO{A77tau0TxPY_;z!@Uk9bIhteSK3#-IF*aPfWJi8lGa>S)03iIOP|Yfe_vFHW*xrm4C+P=-L^>VEtaWUwDi0B)#2Ks12}U8t zOj9RMNr)-?1eg_mC;&`ydUMIwnFa&dG4SuBI!>04-rH99AJ>5 zO`Z7|p(=6((;NpBgNL8T%-&a&#@ih7M#8M&+>mu0tF0v$|AT_ZD)r>#(>pNN0>gq9jH3tOHOi@!K1q4j1a9!sx)m1 z?k&b8E28#D**o*`ON^@up@<4SBipP{&A3x7EO{`6u!E`OHR#>L`Nyh$r&V!xsQXU z0N95DvfU#b;xzS$$;2>Z95_xAFYSA%Di6T2pt_mode;2`*dHG8jmV9foP=2Wy-q|R z=CQ&@`f+lg-VN+YH#qMbb zxPd{fSuBVh_kmrzIP_HGpjCEOOe{K>9H494!Ulz@rp};rJw(~9NSy+cBpwr=42a*y z&<`aQ!Ls1&jUiV06Qro^fx#fu1wvE6eDs3VR3H~3bVkTS@zBRf;)HYsXP5*dc9;TK zO$>IzeLMTODrp77)eL5+*+o>K*!JXS02!hhRt;36f?QJVI}WhN0ma7V{Slgib2%z< zA2fA}PKV)ElqxPRF9-`wRnTF~!J(cgtx4q33*rEP<%lnrq?5d9; zFwW*qrwjv-cpqC%akuB^gx!svohNId`y&&Gq}Ftjz^1turfE+2Z+xB_IV%Yw$OJR` zm3L-~nE9Nabvh#>b#cDWe6rXnJeBX&e&A5I^b%`w_X5^N%)Y1ZPMwp!N7(LQil|)q zr~@0KRO%7-p=1m(3@ntWPKn}T&Mtf%rLnz-{pJmy!{s^848#K9!=6760YMdJzQFkL zB|>FUY(1*$Bh0R2q0<=Xyn&zB7|$x07?}I@9I~ikZZ?o(ocDFH#&9u1ahO3w;Aa(J zKp1&d!dEkxF+lzF{X}`*N;eS7RXezL%)?d@1aj;%dLuZ4VP#QnJnGxTBLmb5+`&_F z_eS6j4#U!7oLdYpmk7?_cvZlR3fn5|apd0Ll^7d?{mTN?gT?&r02u>{t%vOxFNB(d z4DIa(VL8X}Y=+V+#2C2U05jNJM73?7;~cDJP%H4WG9y2TtSQM?E23bCwXsX|m?L5D z53oDSHPKXYdVPRBj)d09i>80Mbk$cGynh)N#z6 zR74aI0G>O?BlmnnTlmW*#4q3)&dN$dd!foTFTy<%_k)>nrd!zUCqb28VBhIPgbw(f zM8ud!vSUm}Ce@(?*FnN{0_HCvA&|y$Hb6h1c*~?CET}Sbg+ad}0l0qC zAvlBalQV?UKn(~v>j%hCLWThQut%8H2#XTIF$uD5c$A2kU5l`&p{~p@3psW$qep28 zfeDK`DqM7t1ZZFn1N^)|dr9YK21RirlSJNZnxyLYd&o%XUTNwq)s0nLL?xY)e5IG3Q!i0B&V}BzUre&s#NBCJESaG zIO%pIGZnGl+I2DbpYE$H=Dc4?hdoVQ-|h2ow;T*s6?r$;H!yY0u1O@OnrD~vOZ~v$ z#@BC=WqVJ}uq_Yg*b$3|k8ZZ`n+;6Y(`T(%CFd07kcr5m%9#>f2U~xf z#Svf))!vE%DC4zM6~<*v1-v9qVJ-3F;|N?W;VTEWi146Gn|vo8HV8w<{E_t(FM0io*fdB}9Sdz?nqd$LoCFyRUAE$f&0-jm~Q9KbxW0dXx`6xewbN z^y3!{n41FQoLz|dmmcQffbO#k@)o{&!!B6c!Y=0+)&=Z-1|tGLFDUqO{{UGmSgaiU z1W^|9CXgh&O@uGS0xo6tm3-NllxtzoEiKNzZK=R@Y=N@C_~MMdXxGB*S~w#Z{^m0b zGeK|_dSZW5FiCI6uDwKMMD)YN zdu(d@mtn}y-qbZ@)}Xy2r`lXJD6jXB*S8tAe7feLq&~=e#v*>({n9bTcRCRXaoCT> zsgX9$QqcWARtjRZ|D=toaRRjrLrz4r>k*DEY~hI0PL<+_+kX_Woy-S#*V1q~oz*-{ zO2gB*LvW;fk?q5tsf#ctd0suK6jX;DD!LN{((}-&#wT0)t^*# zibDsf$P{^JV)*y*d71g_(L50VOhk8kCKi!<1psz2&(|W0IRn~L{sF)PIzfw?nukzb z6aEz|b<%mx4S9V7oUah(HB1=?TMZ+p>YmLro_P4dGj;;5cbuMn7yxH5K3kGUc8oH> zg@e7_!_)aR{hx%FLT8 zA9@xUVi$JxukVogCvC?Adb=m5C33rpw>u2a78q9!)%^f_7}sxs9RG_0 zPSqOd*_;^iAHN2U0a(tN$aMXqGbWk#J>>3zL97NOPL~cN2M>Zlu`HM5AoLLu9Q5&U zyc2nDDT|z(gd{l~=Y_C)8v~$+P5fOERdYPTZa>W?`ktG19VL2)M9?3QqAKY~OgB}P zX9!v62)h!)z1;V)@L?G=Moxu2TSJEtVb5YlxH^Z~9~n2?JuvzCtxu?ax!J??1I#U8 zZ)>jAh~TJx^mgK}6pqD?B)$*@Q&#_qNu+r48?lph(3S`|O&iOjF?8f|G ze+TWNfUgV?#dV4|+qe&=85gD<33F_!tYRl>fxsBWCfVAKGWJ?p3_o}Va~NRX-lMoV zU=`2!@oEXvaVF8QDiKNp|65DUzCOZUZ&7SKWCVOIa4oR>(xZOUq5R^8`^X2lSrwsT zv0%74V0?Lo?y^F$;oOtsvl8a4z;gczVOF5rhCJuQ95|n+x}#6S=z&?y_{S@3A5a_s z83DKLq1Isd?N=BZ3n)-r?;ytx!^ec`6*q?*F9GZfr;c&=**WZCMDfjC=9l$9e2!t^ zP+zxk$ZJH%IK!cd{mJmx%`PVz$;{cB>!|J61qGr=Q%&F5)I>~lJ#d`JjBtnHM;?Va8V2ej`$KO|zBJn0Kz?eZ7|H4w7CN(!W$hShaTb#hVzE-)th@tsV9yKFpLYxD;L64?D8S6vz&0oJ*!b2DJw2n5Mr1hUO<%Gw9xT{>@L$ihqYOd zApJY7<4lH4pX-=B!TYJhni7-XbCn;-M}A*THFISEAj{sSUq``)5TaN@Q#0_}?IUk9 zLaf?$5+QI7Qg{}C!~k)Eb!eFAi7LXe&3s3@H?a5H%mb3HpHLn?Al%+D_?tC656U9$ z2jyoDBk<-LD540&tcKQ9w4yKu3xY`&8$b+h<5zAP9ADJP6@_TB*>OEpC1(yrp&Se& zJ9{GB8;EenNTN^kh5&X6hGl^Q;MDj-2NwXpuBq@>5GENagJEvbo(YOg0sG)!h5*|~ z0=QR{4f)|w_ThAWRT}@p^NaO)L9TJ zcyg8zeVge<_*seWyo``E#9_?Gsmq&SXzBWrNCkjl8O3wDKF0v#%%Wde6k7|c3Ul;O zp?{DxrXd!owChN)KOCs87n5UcD#kr25lK?yY2fL=BCJ?Db?ZXNvq{8SgxEE)4|~GR zH(M4eoXbKiS#CM`jwml4jz_rF@)7*?PqXiIB4Xw<*k+lh<%T1tZ`zMv60+2kFq;GX z&%UI>lo6Qoa|R$y#cslO&vtXthfg@qG|(khp~TrqxuolXsv@E1YR!P*_JOZ=7P#9$ zG(gT)RB%dAjVS#lql@oNY#mI6@v=rS24Hu<`0*uMfVG9~1L_}7*=|_Ppl*ToSp(k~ z3^PG>AF%kBUt##cGi*MuvHY@wyE&r%dW)oaErUn-We064_>V5x4N%3fZV+mV_Od{^ z@hIOO5gG^IIEpSRgJwv~C z*nV0-<2h}5z_nDLac#izi-9tFvl6~C7$OYIc8a%ucMV^j;rx$!zNWIUtw;Ul0KcrE z=bypX4&%(?_TP1I2jJ|Fdz5z_yCsE#78b`(&fzP;SQ`#68lvM3Ky};0v;)kxg;9lR z9YW&}K7S6=d$@;=K}mw_jUM*fJNTF9Xn*Sr_3I;wH#@GMriA?U-v$QHDe6rHEE=}N z`+=1TYap{aCyBb6Q}6w&x0&yxVls)s5%L+kud-fY{P%vF-G+W-KwZ}e z7fbRyN&~7s0Iv0rgR-L+D}S{o7oM0}82+>tM2Z)5Ob(cIiK0I4frK8ph( zV-V2P9RB44D~=aue7|7;W(}dDZ|)cj6b>Rqo+ISnUK37KRgm*FG(kRMu%o*@1@W7Y^)f91d{H z1!pS6nONFRLzZy z;m*(4S%`a3Izs;t<$=dfE;C%Z`1%g|`UqUC3CpT2%n(pML?00}OLdQb=XW4J z7(1N>^z~avUE%PzKZ9=!#>${vmnb*03`3G3?kpsj9d9 z!lSy6YJGMpRGKm1?2k@h?!sa%jO6Z>6a~f~yvT}VrX5he-ZDwDmSczlVuy!Nt>$_} zd2_`0@(e2HxgZYF)RPsNaQKjJ>Os|EdL6iAS| zo{B_obEXp-L(qaMj2rRh9!9z5;O)We0?Z^ zPzVWbL1VSU!_P{LGfPR)xZ!!dOuUjbA{_@F$@GZ_)Pfw6_%qIDF$lHIM0DvQG^L0G zzU(y2DgB)cgm~z@L6Q%q%x3_E39dACR_js2?*XGz)$-JmETWMp0UawKshZ?Hhdw59 zb>fO7z4i~7#_P!<4&Jj<({&lzgLn8p-#gQgtD3n2ocI1|m-C%!Z+L$i^`p1-o`d_+ zUVZ0p^FTXbnyZnB?@=~252H(isZu8aKpG&GI(GC4u{{nCrhOFM z2t_=6#xPZ~RO96GSY?YtNl!UQ>=N2(kfINSPAnV>RhR&1VIEiil!*?ZN{Rpjr-Y8m z?!ZBhWkEl&jI)OljHDEdivo5J*dwPR`#SAoLq)#QQ4Mc2RNhUhLER8%A6RIu(4me8 zc04dGML;meZr$d8a@yvp@G%pD8nvk zodAy^d`X}{UFP-Z>A95FQ1k<0%*07N9fX>@EItYZNd7EwF2lZ3*F=+qYf9LY9Iz3< z2Ku${x#cQxlHeBe_ysPF0qC;7Mx5s*A<&;Dl5m7;r)Q%h6J~Ozrh7lF0hzi7K0FeJ z$z~#^KXoL4C~zY@#6y4@lhFw>#@J;XGrY_8fdfMmoIA?XDlEpCg==HSF~vR+bzq{3 zS13{;BcA^?I}|bom?LFt{k+JcHK8VNX`IC>dMpz9GM<^%MDZBOF^L2KvB9Up^V;@N z?$-$mDu!{-SVvi3A7AGcwr7XapDhS419In7t&LD{m(P0`L2w2(2K%A3@jrtiD9pBn z&Ps$bc9czwpG06gK0}J+@V%vZqA(HnX2aoSQYjubeyFr!CUN4}Y{+`s(* znML)~(>-qOq^_11@pO*m!Ga=`u5UX+!j0iNPm?C2f63jygeJ;k1sL0;fy;SVYC;91 z_&dicAwx)ik^Pw`BLC!{{1g1MfA-Jt2Y>JfXqpE9!GG`{;J^B>{ww^>@BB`FP20Bk zPyf^Z6#xBy|KFqQI{f{=|M&6V{dfNzUc7kmt9_Vtx%zM_u{r+iOSY_=23ps!AH9U` z4#a#Oj?mqn-ILR#1(>Az+KvwR>LQX3HwZm>9qz?*W|nvNfU_7@B^8_67BZ`$bw$Mz zRSeITtR!ytxsxI-59;yd834fj!3|Ir=$95igTflPha=o|tWcK)hG%ow!w7S?gLDi) zs-JQ=&3s0Twtr3nce#sIuBHGg;x*f670S(s`q1W0pcNgV+jhXcqWWUMc(uUpvl-@J z9pTP;YJJ{<744+{?B#t56}2k7B|aMwYDa&V?K#2&}_EfArUW6ufMI8lZY=U^@`5bhrk`T_2v zmt1>4`q>neM?QkwUH@u(@6W(~oxUPZolpOc6`)+zIeqPJpNGBynDDQWYoT2ip;1-h z5N5J60ODiYmQ~WK$}R2i*(*XRA9h?1)ilLh4wT%~C2`#5X2Xu!YL0MP#7Kc)*CCAL zaHWn5oQ1x62B@O=W`p*#GqjflmR4YPacExWQQYn`d^5~q;iHek|5S6=RJ@|NJ7PSm zStyy;Pyl{j!q-%Y8I}c1_k!xj*gB12?7jX!|>qV zJF@uy(Z!b_iYoV``sYnV$G>u30-ItI<19NOiT}gmXC@uPTHbh*X@A#SK zcGeLMPtO>1wrfwWK#4NpE@^3OUhe27_~e3aMRf~2JSR2w`89w4JUOlPJtUc*AWdE3 z{>TO?&me~yxZRP{tx_=v&=xucWlEZyPA*q5#^icq=lfo)c_VmJ^87^68fnWMx}J!A zkwa{O_~?>AOVW%0fXdA0swewA_X)8X)OI`PHIXIprrVxcEfFuy=unyHD;P$ohnH+p z^NcjW*F=fqFjDK|J;l8-0(DJCwCx$f%hxm|$#d2$n==;0?$K{)vD;oS zFRVX1hiN17TL+(O#7Acswi#TZpi{O;w)aqug?+yFum?|?xmCFRN)B-v%X|%q5oh0V zFg4fxWMDCr3d7Q3|854;MVLOqeteDa>NUbI{tQBqw0ymXZU*>e&S2)vg4t+}6P)%! zBkBy|D;(cjU|0&WBkLI52iSwd`oF$L_s$viU#L($A7_1S$Tix_45l+M3(H`^eTR?} zVDOcNIS#<<4)MV`+_r@M<|hc(FCiCe_{>5USF{elzC+xu5taq?$1f4;hAx7eHO8+# zB{Sob=a9>DV7mtPHJi^=*S>L|Pwbs`H|wC{bhhO=R8EjzlmgC@%brLwS{Z@Wl2e+r zpTw>QoTV-=QN>iAL)j9j@n>Ft?v2R5{@4E+zwsNtfnWaRUxsrIfA{bHUHrAb_Sf)7 zfAmLKENDsgxBvFv#=rO%{{sKypZpVSHXHorZ~i9!`d|O+_;>&A-~C9>6^G>gAL1#R zK1K!-TGF3n3Ij`AYFTom6`#LMwq@qzaFN6|@yhaB(9%m=4*d@0Ip{^sl>!IqN z+`4|?cs-#Gbd^cSVvMs^0ZJuQ5|Hf%q0C^9p0;sKqBhu*EoD^HXGoPp`ZOv9Sh!RL z!m>nnNj|4NaxqSbssv6^qL$f)_WmW^I8TSv7*c52y{V9oP@dBmG4U${8wm-Ko9Ogj1R&c7 zgpy%9x)~8N&Ab60knIN2+j2pFnL&*a+08&ong~?yV8Dhf7SzR95Xd!6vM64yV9Ih1 zl$+2K)w?-aeL_iP^ni*f@JVRLIMFOzI3W}<@j=INE^H=C=^3r+{?z{;W%E2GQzNv>8h@=l*mx z(X(QrN{AAu^(s*;X(S+ zSw#Ip9s_K1&oOQaRxRv&--cwhZOZ&KDN3{{+P<Z3>PBz~@ZaAyFy59}082HO1sIPc)+@XI%A;pn&1tAJ!$2;OTj$Ft89$ z-1_M`XYGzXg^7g#1R;H5(iAF1AYgLV5=m<^q2-gy-h@1guz?Yw?nBgk#!VBkH`a2p zA68X$nubmjj>-AaC!>ZC61|8#Zvc?JIccK+HrK%C+K7Cf`-JE;-N<==-Uk?_E5_vd z6auM|_iU5}K$MX+$$fk1#2iq|GSPaYskeGAq9%wKd%9vJ@?OVAWcA41A8vcjCB(t zU?;#e6R06Vw;mAc(3B6Sx+D|$QlLD5J|eCcl!4^Q-d_t)Xy7b^?gJwPa*Y^N+8YJR z0lK4+hZ-Z46WH4G&tsVP3Eg?vMkm+70H1Vw_UKtx#h5;`0V=XqNWSI-AR}uFoUNd% z0&#HseF09#$|9LCadIgltN~UPyj9RuMzb5|X&$huxF6i?QhiH(imaBWskd;l5xu9r zBw6pyHM7=l*!)lVS-cs9{}v<7GLl5%zJ~3Gz5d)Ak$?Fw|K%Hh|HuFMALHS}hxmg( z_yhc{{g@9E5Gu6kJp6@&vDgiLH7r% zF`gCB%?PtEW{L#Ei}nn10bo9OaSCra9GTZ}^#I5$^vm1RCYC<>d^cZ0e9_^zHF3+*~(+2u3If+#{hRX%S0k#RrOB~2Py+zat%~vkrN`>kB`djEX7WESa-9}t}`kKwJ}as0>Waz(&{E6YVjQ?=E?O8Y#>Ti=2FG&_ysR!FajkziEMK zIIVO`>apx~Ly%^4e9v=(=4lC6C{!;70z4@MQH@~^a8vEbsZWt3mX@DQt%)9X0}w2R z$7@cTUhGN#dTR{4D@_5X5VClr zR!#CeQ4Yshls)B-OvQ9)TTTM*c9<-JXS-TsfgfU7{drxV=RPqz45k2LwQo4xzIR3E z5MF-I1X-!MS)823W|4D@3@Fwba~a)d-<((;HiHy7!e)tB80hD> z5SK*hZO6Ugt;cZd0^=qH4=0MT&jdcxkhO-r&49L_Mcz6&cgC&<-hUh8gNix{u;8C5 zVUF6aDV5wb9?=N;t--J{&<_gQ2oHe>{~|;CKKFq9))8O?5Dnn1pt$q1MpL&uODAwO z+c$_tqkC`51_2CFHm?up-#JHjX(2(AQSodz&sOITNs-a+3SF}$^fFEpxezBswm75V%< z>d^8G(i;BpIcf2^!ni3A?FIC=KSj9P!T;LNBPv1m;uRl5WX`3L7uPf!DUusoOY8A) zv7Sv*08o!~efxuHCXv`gZD&I z?hX_zD~0?nQ3gb~5%mM^2g|83!0bAr6q<;CxF}J4_nM9d?T8HEg1H@_Z|d2Jt9`-| z{_;CVjN1aQe`$;Al}GWqgG&~!7PJ+wipff!NfZ5tJ^gkdE=X1V( zynDs>WF@3^JB7PV)RQS|1po`Uq#uj-CL(Vhpo0b+Q2tQ~LMB+13Izc-Z7{N4-*ySmkir66U&vy4fe%kw#pW zkVv}Kq@T*}24IIbzy}!}%%LZWS=m{$HluUXm743A>l4+WqzG2mV?tNeEI!R|2Sg*> zGdxj7AV48`m}SpNzI!8x^+MVDHRdWY3drRnl&$c5QR_?Rn2cng$-5# zmf8$oBwCsk0t-!|CRmMOGaZR6%ygN}D5g33*|Jjx2k9MRVc{1U)ad4P`PqJZaLDc= z&yY0Df>y9M%`9}C-fw+7z__II5dj{Yr+fiYdEz+ElL^@!=I4lx)S##pDSByIGEZIA zJ&yJSQcU`U9~1^$(9l8B{XT!x_nPnUgZ7-y@%nM@6Hvl@6_+NF-qXyYY47RrxGp8n zPkBNAy(@(yhr^N6j~HigVSdW(8IWtlvlVNW+ra5;mQjFQ6)7vr!Cxf`a*RM+KpveV zh(L7?<(_qdTNjWJnJk_r_t7X|vm^~DM#Sx!sCm~z`T@GlP6+;C6gIy<>Trb#>vorHSQwEop*O>5_4 zJ<|^FJIVo=b9e}9jDIoItov680e|an{Vn|3ul*W+?&p3E0Py_zb7WbDv$L}|zW33i zM|l4H`44=Yzw>wg4u1Q$e|!G>e!s`tZ@ISrzJPeBG4Wd%#{fNKK%8_jm<46g zB-_uCo1=&TO$#Xtggm1)V+e4GBWvzD_yw){vgE5it|_uFckM}VnC{1z8;r~JJ_I1! z(V`Tkg=z+k=_Da0_nSK`&1zYo?)E4SaB%wNPRVbY_3>A(#r6sc2TI*`5%$ znfr{?#18{P`~5}9=Xw3u_lkRyKmh!#GfVz!2nesPAzJgjn!YEqKrnNFWW3)b@I@o+ z_M}~{R}=#74=242(tfc@`k^%G2%8Gpk$XPzb5%ut_ZtDJ(>}IZret58C}Nt~7*<23 z@%>1807i$nEHSJs?DGS{>l?_EM?hu}DoZD)>pf5vh_)nuJcVe@<8<#Kb%(ev*=PfN zZ632J$NaTi)4uZDGE`6i-78w*rfI{tWYbi<^gvV?QZb-LL5vCk0kNRqTaFEB2t@(E z%rUGiTt)XBTkDw`LK=jhn;j&bE`US>QKU%JBb~x>!w^(WKqFYeSSjQ#BI|v!7pDth zR08D;R89dcrxYzrje zn1248qYtx{tpEt!4^dhCn64l9J^@h(Z9~>U*RwHGn%M~7v;L(lIYk;%N;T5-*>H(*{cL%7dz;Jd!a~&%%wTJE;T`o(FVZ}9?R|fsopxY|av6Hb4-%PG) zHRiCl9rW=C|MnIk6Lebz+e9or8R3=|{W|R_E~35E2^{UAJ5GehpWC26;{-%^0^0=W zHo)FAFtvqlxjsWi#zoYCX-ET$8W=Vj?d8de-4z;Q6~ZKfpJ;ZYpVzf|eMk4echBd~ zN_+-oHA0>Mn^z<4x66zTjA%~bMu)grrWgib*kouPXqZ;P^qh9-K4SfyXOM1ydbnUM zxTpRQML|kd5|=Au5Q-c))bOufokDku6sgeJWY&aqj*P%Eu{-Xw0E|IcEz+c>f0MpE zt&1$1&r$iogOu;PeyokiZ~Vq@;1B=s5AkpR?Z5q>dYnAZk>~mMeLXr4Rg@=h9?pP(pF_^z*$>R+1X}>@4})XHY-?6>b){dtkFBdZ~r{=x5iEJVW=@$51Xn9|zd| zfOYNQ*9EXH=k=GNXxp z?i#F)9R;w9j6sS`PpZa9Hz27hPW_DGH00jlC=-{sA87UaJ?Q=YOOijj6nre532^hH ztja&%>&LxUgnmGf(}t<6W#OC9W%KwEi@b51!v>jKkx*-6W|1%ePAh8$LwFY6cKzFq`eNS>)G60ZijN5_< zyC1(G^)moPi14{a`@jM@FfI*D=V2O$!#f#~Tc>G>0n$>km1-g$R6QX(r37JO!_Le;QZluL>cW)Y@70`Ap3MM_m&5j7=4_E_})-CQ2n1eHi5up*N z^%~eLf$KX`Hm3&pUg~vFll9BnAcA z?qqxe?h`Sykg7yjS5Pl+5q5jJT-gj^vw*mg`ou{uHd(Zfp6*QrX*;pXAudsYlWSZ4 z*^&2-PYz8P9ok|+od*;h_uRtZ`1S_Nk2}~8UP3~Ns5HW=;FNNmp}i{5|MDf4pAN`g zHw5ssK#ncqvc&B#p7V^Rc^h=6(OznJD~QQS6A@SzTNJATV*(*<0wIgn9fDyquTw^m zj2^mC*rt7DTuoFf4_`1_th*qPvHqCN^0?OUWd($41~sbJ+(X9IWJiv9T2Q?taM4_4 zh&qSQ1o_V6$-f=YTxIZ?p!}@m`+Bp3te4PMVc2FE7aDquzz8%C4Qw5;{L>@cS&sh9 zA{f>xU_l+2#(sT)dQxQ&xxQ^Ug7o4O_wTA+RcP|i(g1zaW`VmsM zDC-u*#}=W=5sI{z`-u49oNi`4^>yLVIq#zw;kMMk=|hLuJE+}}?4S4FO@P@5d6n$_ zi=2AW*Ee(MG{OooH^9&T49u>E`_2alH+PVxO%7iS)t%{`HiKF&-pK9yVXq%sBl4TS z`J4FX|NNih-~5|@gSXy#YySGx)fI+ez}?;58wkdW7cX#ib@d}XN1TLtQ`X01Njbfd zS^=INog}gO?4zC#s#v$PLxxxbWED~7MBSPmFGf2zC5Xw=a}u1UuK}QIQ+D zmM#=Vp!YpgY0+I2P$N*>a552%@Z~x{wH``Gh|{O;HHpMyT6AH5fLgEMOOqN1%u@~9 zh9o3Q89ZloZr)v`Bnbb(OErAPb(|(hL#loy0F{k}uwq6v$WEmd2o^-LQJbh+b0WhcU zw}H0O$$d(u$D1BYQ`@1YgH0<=b0<5=l;-P8nlq^27~rVYNlTVdtKf5i8bRP@`ZvSL zgD)8hDxM)=5&~4m`%R+dWI~7>s@BmiTgcV+R#4u=)QH4+>gRKc%_nQjsFRha;$9>X zi9SkOPFL_X+C%!i1e~PmWH}2?Reh-;O%mOQn5N8O4yL6I@I*|LJv&ym!@tw#hOuEH6%Wz>{6|_wF5kfei@o`Rx;N3Ji?_F(?Qo zilrieU{m4d{7IY}{On>VDm4;mf*HCVx-1}hhM*K+NP(kqh32#~+3nBv$WxN`WDlPL zGVdqb3o=gFrOB%ZX;A8uUkeQh}A8{CTSPDl!{0^oB^ z$Fp5}ykVT1R=wRod;xWP1Y(50+NMD4G!dSr<^hRn2dKev(gDmS8aSjWZqqU#w=7sU zbUpvB%zQ@rwT1WsVwqbMk4I9P#iVEqf)tZM)HH?Ra{A%+j6e5AB*uu}`mNu>KmDiw z6u6fLY-~i83Mh}6T*K}<-jy10ih=s-Q?j`!m4BeT=*|!4J zu?4>L4qR!WhrqDhLc=X+o7r8kU|&4{eritf*&(?&DMS}=`G+H1sW2?LDMb;y_}?ss zbwv3php8jV>i}0-v=1#@!37y>B9HNB-o=PaSmUpau_LS`23v zS)EXWT;K}9>J!qRbQdse4C*t5VIv3@*#3!2>8L&2CP%YYXs#5x%ZU88fSxo^M=S)9H16o_mGJ8;wL9286DsrLk6s*S9Cvz2qho4o6NsF3w4f6q)Ih zlM4=#``Lt)VzmIejuy)?&gsVhfM+j>q@HisNK7`i&N1aX&k!G9G7z&LW{sKLkP{EP zU=evZp2q4^g7@ekeSqE7h>H^LteoCt=p8Mprvr+@Qh{4#@I}%}oEP(fY-)$)f4jqY zUSZr=3Nt&0@j->4na1o31Np*R@M)jZ^+0#4+Cw~GceMA!-5!^R2C>R<_j6|$OF?_7 zP}~6Jr!|I)62saczZqw@8RdsFv=1$mi&+2XSFlwMiA&_K8p!i& zY>z!+nPJ=(b7sHHB{X(%xtw_L(|agBKAE5G!&8j5wU66Tv`J>x`Z4$ zRL^csMcm}Vm)zI@yh#@lfh-oB@Q>r{h!>rs9;9{*;cL4&*9g{-g50*G@fA7rY6X8d zX&An5DcKD8;o<@QT&~Y^pYXSLP{)Dq!{ud4k|u>Vjw8V*@9A9Eb#H_p0yqT`jt=_y zEdbEiMse@ZFZnfuKoFzIX(E#`^<4S^F`1dDmudz&+>kxXy5VY~ih-y)>{5&sTt;g)5T_TmmML1J8bKfnb4$ ze~MDdMJ5c>i4Ywyee#<$hs_X=iX*R{uIiN7`%MA8zgnGT3@5g+a(ziY0W{LJ|S13N&1E0N^ zv++XLL%fGBI-Xrm9#Bx<4+zg*a!-8nhz-XV-hu3oG;x{sz?3fipu_n*Cg7S{tOTeQ<`}TDLhC`1;{wg&L7j5Twk1@CL%5*8`;2V z%l#muDeS8t4M!~(M7pMN`!qdq96u^hL@AQEgOipeIdaY7P@|JJfQ#02Xa-vd>x)3$+&k}%O!RDbPnivvL z?p7ImrZ6tvbivWnrlS>8Rx1rxP*ASB09R;)WQ7R;{h3J?ei7n0jR;zZNN#fYLeti7 z0CX=dyBt(T1l*CUA9N7XCp8+@_iZRZv9%|ai5@jqH zPP23%mz2|-IMYO;2K>U#cE!PJs6j*BnbU*=C)8B@2??J9(If=KDn}53zB}?>QbM8P zY$d80av8&H$s1F#Ob4y}6prVT3rY$rJFOE%d+EuB)B9v&>eJGZ^cX+d^825?KG(eh zz#PmZf-s@fG0tCST4&%U?T3@*$1^~1w%v4zYBLFcMQCPW44qK&oM>~RaZZ!k5bsSx z3?~sXQM9JXZVEG#5V;5G)0AtricU=`j3ymaf$M3Su%zF04n)<02s1y|Bp99TZX;;F z?b)mYCuE+SZ2=UZI!~=l`k!0n)SPtVOiLhLBc6EPA=z9f3r2CE0)}2N)2TM zdJJ@rTvpV1Bs+0+Z#~5-?V*l#ylT?$g+SyqO`>TH9+N$2m~GIfy^s_M2i1%SRhsxD z3te$3@OA>Nkp4Yz{Yv^Q=8)6$+K^`{ERCOqB!nHw03(V(cS9OE$NBSywLlq9_PWyq zW4g}(z|&z3Mb5|XlhHvzaVX5BArfF1W=#TZVUwOxsdPpril0^l+J*s>1ucvrC26wu zO;f@7`rgpbAM^G3))drpsEOtZV75foI=y$?Peo*o3V_zh@;66N>U4k1535dVGwIC; zZX~+53#Yvyy$-sVX(H=_*$if~!&N?}voz7ds)~(7k(?YSsuyqqH709YqY?8AepRG; zq?j#lL$deIZ$|`8pn?yQ?0A(hM@UZrgK3JQ1+ftL-lW(7P9%JxV2|lM?I*Sc&sm?z zY?7n9K&q3ZIwi3pLYj<10Nq9C;q-6A^8We+8>b1^)BNmIH^Q$9xMDhYG4FrA)N`$a z1R92i+vFUT_JG{-u@p{0&XZ>D-h`U_GXbmVcNdrT6r3id5+mFyr#s)ip7ZFk2xgF} zd-sk4pWmkFg&6snx@6<*J>b+S05{RRN!uOgGXo)+awLmy5t<)K3UrPA0I?QQ`IIkX z_|KUFb0Q}{@{FmSO`tSbk@8WO# zjlTf^_y_;sA3!OEU;p)Ae@0sX0Mo{%D`=u#BgmR6h(FA;C=;O}-YXB(mr zcRR>(iT0P?qjl?_d;q+7jqKXM*X`*^Vk8ZxZYT;|d=X()Ks|jp3(281WV<=Nj?`p? z1*azp;3m@#aF4ebHyNrwc?Ecn;k`?^(qLRF4kUh(Txr%8w63 zs`3n~b=ZEhfiDfljm5Am5T-o2He%%hFgU1P1EbU|EL4N%CL@BFgzy+fwC`;&tTnd( zZbzYVSpZcDzhxm7t%4es_bfTX>Azi%cyUIa|F=FwNGPV{`N@T8{@~*qcC<1j{1!Qo z6;QbXUjE2S@PF$1JogF;_)j*a^VjN{o9luhR&g8=>xL5zOXrUX-I=ct$geModHjye zatH|#eFs?Gl!Xp3Z zhA7&igxi*AA7)tnw-)l^2E*6i!g$Y?*Hs3($)NHK?$HLrCQHpdkTn6>&Or_h)Fmg7 zhj&=mRIdZXXOOols3CG1;`sZSE+81e;Y(|R9j%Ak>-t=4iZX{18cc-E66*CWLft@}pHatCmbB;0ufQ(GTyHi4H~rv-XYN7WMTW6rO_AS4 zls68=^9JhJBIX%lVbDD+;VOl3$)-W~5$lge=*FRYm}6KdG*>c%9;PN^BReE|cA}8w zAl+$Pu~F9pSVSlL-U*Ot&lOxHxc!-P=pMNI&n?vG;Ws7oM24y9z-;qfT%T$yzs#Z1 zghgVUf!g8Wg3h4>YptjRw?9)tBJkk0f!kKtzn5Y8nL^pKX$n@s-jNRCS9C#>emv#K z)eRewvH*O52@H;P4>#17wmm7}TF(KQ_P>0G_u!OGHUVwp2!DGEIo6Q79pv&HVNpVD z)^yZN_VH2_qz`X5oY*@DH0?|&$7HlL)hH94@rNK={8*@2f7VqL1%Bsueh0tvJHPWk z_hecFNYjg9gj$rOoAik%YtjhYdB}3fa5@07?T8#}4ZBNv3}8kf)OyLTaZwV1ZW_82 zoox^cJJYUY^w1&Bg2XATa6-E59m5Y}LRO?7plfnGV?s2=#pFyyq19w78LYr0BtGO6 zN*157AsNrFFs2Dgb|fOvzjKapr75F1DGu-vpT?Mq)UlE=^m(IA>tB@PypTv zOc!R}C_8+>)e5~n=+_E9rxTWP z5n0Vi#<*=n^Fog1L&5K9sJ3Kr?f;q2S;>S3v}yXjsZUBa}+lox@W+m9vpDDhY~?{ z&(1IA8F~D<0aOz9)eg3H2^BTe7^KP8goeLyDVh1pp>Ck6lE|FM9L^~s9FtD>W3ua= zrYBP}xKtG;?)n@N{yAQs=U$hdj9Vbr4%t+^i@J!zAZ@A(N zBhSI6=GQrc(gbkp0!A)4{j`#_B@vn9K@Y=y($o(5o;O*xXJ&_g%z`?qs}un0%Epz&xU?u=4YQbBB4Ce>j(FXO@w_^TOIr^_jgSfYGX>=; z6#fwnCyXF}-4bz}rcVjkMP?vFfKJ}(QEOUw4gtC)DlLxM7L}$-s!vUSqQuSUsn$T5 z10@YkqEV3E!*p&AlvByYPWL0iszg{9qyaA%q;gJEco7EG$vx~*7|4gB;29Pp(2uhX z=Nrv<2rO2owK#>e0yI`Aig_9^+jwT5ub%94ttpfu^-ScX`AEhf(KAa(%7Xc0U7wf~ z>HAW+TQv9HpUg53=X`~z6!a|}&(zt5Aci%mdGzUgu!tLKccL&TSG)&$%==5s4cxZm zbYk>So>K~Q93a7BT8a{?My zi`mElVYhxI!i`f82cM)!3Ac3ros0Fs>q}LUvkYq_l7!o)|4nQ)-NcEgz^QIzb9%j5v~hF3H?MzQ@}4zjyuE zb3}femt+~xj6m>+!2|gjq$&|_?^s}DmSgF0MBJ|7Hzmx6FA)z%gubVz{_{H`%fLJa zm5kw7p~$(}-1IyE78QJzQOsE=NU*S4K_3`)1Dv?K;v?kx4zLF9>I^y+8fsTVnx4f* z5-pjYh}-1tKhXztGv#Gi*y{%P(~mLyrLW`eOBTgVfaxNN>k+Qh*nKgZ-7NCE2-^f? z4F%xsBMsX`RL@6rmlk7{Xlwz9l6jLBNJF$&59**?Ns!QpM%^#Z`=yB_wghw4VSZHfIm1zZXELJ*aP=^~aN z_p=Ly?jy2YgsUi!cMAi=979S*Ek8M6yr|G#TI{}{F|Hz3AF#;TeK}(BvB8s%_Hf%0 zZlU28I#D>n+<0XB5%w98Ot;K1t}>|6z&_srnnhgpvW9wn3w`+xT&_7a2?4{SCG=k4 zUtdG@1Jt5I+^pEZRvfYVT*Iee#`U*$P>DAzS;oUDHwfvl|32YsDl(=CofO5K(kfZT zLP4qdkc-wprD8)?OT=-6?~^ckwLm=7h;0Mpe*vAy=Xk00n)JSOO$q9=SY2zxu183q zgBX(%(Mi>y0YDmSPt&Q$P&kaq791dQY`KSswamll)BcizDPz+>R%zl@l4c{_FbjpH zDiJmne3cqffbJ=W2GJUfON+d7kbMpRc!gnO=$fJ!G?pD`R56_87&Zp0KRrO2p2^^u zhA+6sutBDn(%vv5=4_{aRchx02ZeidCJ2!o9P<;WrpD_L&)fO)2{`l6J&>^ zQL~1&lB1sm=jQbR{$h#ayA{e;1M=rJ^5;Crn|GO%t^0ssrO~e^0XVSyWPk)>@*9P0*F%jtl#8_79cgFWer1E>V~vYH>S2$}MjA4M?wlHuak-*~t&gyO z^a-_x?>%P0I8rbhlt9qfd&BeRJbIXmISonRIo=S%(TiahN}(iZ3{eq#e3CzsP$?F zBq(rq_a?2WDT(BM%RM{mkZh?XA*w%(*KF$zqyWuCjcRD$8~dJNhl>(woB}6DPA{*y zkE1MRup+J&h*i$uT>#~)JM#ZG>lyr!uIK%-C=sd*-NTZ(UB|R;`jNtF#VCPLWoRE{ z&|ReaWdzUy`nHB@GSp8K}dY~bW zoj=|Dw3qzFbaTo$>$V#GTCn&OboDAow=xau zihd(-rG@x38TJv`KETu-_LwwRO7Qv@D)>@x{>LMM+EJmniCBHuFbQ2#?;$>-cwS?; zsBrhCjK&)i3)V$uvl#_E%IAqn$OOIssu$F%3@bI$$4nPc+N56c=38@X{?hxvp+>mdu@EaV z$ZExGgqyn)Pj;^<7%~QGdj^$qJTS6wQ)e3%8iyLPD5)=a&O}OewmAjMBqt@)dZ^yR zygty{_WdhNfqc3iq56@?vo#FuTW8P@7O<~s$f1EhBib}y~p!vJ#F)}R1D9x4l5Zix=`jYMTHsfH0ntZz7g$6N4#*7t#E>hsz;Gu3K)MUS#gp~I~h2rQC_Xkq6k{)UbGDHl_97sZW^gUwV zBaA;Ba`6*;#R#dGo*tWae!o;zCGa5`QcP4TfVP|oB@!i2iv_7G>*cKZn%wpD89|V6 zxj9j5()Y|xI6@5pmKAMZpYPa!I7fs^$?SF{qlbOf6V1A1lM~NYa}cL5Eo8HV?mUVi zz&^W6PE%W`kz;zg(FKg#03 z0%QjUF{;WLYxDQ0EGDsQ44%!Xu&=Je#KlWbIr$yg@vz}4@7E*VsRIUCYySs0}cRL zuOPc4r=zPSHDrkkZeJe}bIS~x7kAVsSj)+VHHZbNepBv%LX#5WYZla#i(f(b!O&yyzpEu7q!L$n5?Ep1;sCGP|<_Xn~Hd*R_)KKq{bW&3e zPb?U?XS#^ZcbUK*zy1ZpV>iDxpDFb3Y-xF4dzjiMDmN|rV=|=3dXI6T(LB)T*GuSO ziS-8^%yF0jQ(v$y(j&posbE$*nT(hQ-s9@wB{gkE6G;DFt<$lA zX}X!NELk?+(+o%M5sr#l>1BnO3-IF4UUomxjfiN4uw9bddaRQGR0Fw9Vj|CiW7Oob zO+r7*h6O$_0A}jwhB3w76Q!J*8(A%9ss#Wb(yLyz4svV|&o>yh+1y#{o}*Mmirjpu z-~_-*!|ZxU2nZRGb=4=0Ms`XEp2XeVg@slTa%|JMOarg)klh`K%2WmXqk@~pbw_{c z(x7>eVOSACFl|JBAYWSQ4yG+&x|0A+Hx5x-^ydQgDk8t31C~TS|76z}g~D-P2*wpq zy{4;F)D}LYfJ+UM9KKRRCIAqb1&}N}gF*5n2eL!J?N=4tGC+-j{Ix>$Ds7IfX9Ds) zdXfb4EKRG~h=?!={n$XQN`%s&KT~wrSOTgC%n)JgfRG7vON3!uX_$uZNicklVMByQ zjetv|k?fGt8MUlhf`Qn!e8OKMc49k^%>R232J(Q^XQGzj}6tq~t=XI)4% zbX8G3X--pCi8))O-)pk=W*RX7*qU^N8Ht^&e?fqSl!X921en7>OJ1c?7@#KAKu+RP zfcLYw06hi-t!Ao)E0dLQsSq>)h~|;N9usBF1!_FbErz8+cdif(P`(NbHcR(&(0on# zO`;qa1>KR89u7xpy+&Y6&$Il9laOc>e95phS0)=^pC%HXcA@$1-uyzED2x${(`ZNh%T}BbUz8xU#2;A)<>lLSC z`vdQr6cj6|p_M~}m~Rj=!@R^0ft&?HOy}N|D**tiR)D7t2f!%{ z-{bv(pwRX#QRPy?d8F9@6Ua$}GW(AAX>zfODRhvpLjV_Gb~V?s2(Ty+CUcXtj`a{> zKik1wuFyRwP^QUBR6K+Gt%0cn^4mVqzaqxBmUN~9FuRQ#z%77b!*##@fRw|a1h{AX zpweEW#)vF{6sC%-iE$~&cM*C7j*kV(3)bK60p#$xhOHALVV#2d5NBuls0H5W1Qc)| znf4c-u_?idlLph0s@0wIwdQ*b(*h;^jkrA#`Rr4BBgZmp@+*j5z>Pob^?_&D#KDC z6T0(>Q4D!a>n*z(m>2T;26DDRIIEzW4*un9sP%%N)WB(+bbwoJQ9rU+gotbmye~sY zpbAY^VnH(vkz}Ya-QWGdd#x%E3JTTrF`L1(>54t4cQMtrQ^LI4eex%lwny=@guk$nEZB!xZPm*^3@y+)Lm7x&^v12@b((TZAAHUMEN?v9w}IhN>D%4 z7)u3l8^{o___%?3QevzWu79E8V)@emJx2IkG2Pn;hBfIH%CWczRyeh|iS+i)a}>AK zk?1bK=L+LO&~J!9P6c&wP0nR`6OvUQ9Y3N1F8(mWTY8p5fc?7$5)8SW7eLg&ga4#q z8V`v%bnj8TY`Ia#h~v*a!kChml?Sq8fOrKx0E_3;U$hS>l-+zMaD%SNSy$bN_Hv1_ zQrLXJyo38T5NZr?n>-ahfF1+JrNRFF46BbF%9jU3vp~!=QO7g_)yE!-kGWyXa6(2y zPJeZi=q~YW1+(j6>Jj>yB4yPt$ooBZ^Xo7#cF#9bb1w-!PdP*i`sxu8 zq}$z0n~JZlA+N3>j~>8p7F@&0no;@z`SXNm`#{UqdrjgLfG2H-xLqS$u4&mhBsaf2 zgMYALa`*KegU&9`A#Xh*>ZveOwW1b;OvBs|@s3vyQZnypFH-?JoOzkk7S#+0M1cQ`2aJoIjM`U$G@v@@7s?qNx+E~AIN@d%}XU#Dy;B{+WN3~Hc7u&Eug-9Y+Q2uw|n5qjUTS$Xmx z6|NvP3ph>NQr;AdfjoQ7AiUKASd^ziH0c@S;8MbKgdA#4Q|>!qEvi%2#ON5xi&RW^ zJ%VqT4^Wi|*Eh5g2Ttgz)~?@|#<}QQf7m06pnqq}iRsHWHRcuC3+9EbKj>%O<*+R% zLSIntsfQE*dfT9~8bAiqvU#^RJiEqq23OKa(>4KiA7%|y`PmWCYIF}17}rx<5tYC; zT<7hR65@gLZ#mRg8rMH-kl#kwIy@=(aLXEApF&V1V716rzf6tl{HZ0$)bx z7SKH{f5%dz+h}BU!17ZM-I>(P2>LUPyDut~uOl|!8LXIZL>Rg4MMIleCZMJ{zK?bZlG^=h}$({Zs8XhT&ZFD$l7M#B2+oS+sOc> zpi>w6lpCaINgl01JX=EQ4tV|wx+rGLYQzZr;*MZMkt3d6z-@BaPw#-cJus%%nCG+t zpEPA4h%&i{{#n;gbRz=bWJ#Jt;^G71n5;KTIiV8(QBWTcC7cS6gc7}xhznrO9SHYq zBaKQ)$8Hv~K`HWX_bs#`Di@Uka)WVYNsrjkRfQsD%p>%u1kozMGf7M8UPAR{Lf$|V;qiF0G%7N^2u znqFWMwMSb1+B(AL0&fA^U>0;v3yb1*+(Y(hd3(Re51Mo@ZhC+#!C)YZS+we_h+rbd zg#e=BhF5@OSsbxe(rN`mZEpu8dUoUL8MoQDCWNi~q4(#m4GL{6Ct z3E73#1R1=ircCRTWhXGB&E&tzY`Ymp$IPH9gbJ7`py-E0B}`ck={;r;C9M^w<|G<* zG89Mxb)RcUpImv8jiO(0e6H&u1!3{2X8YX`7*uAH@HwQ=O;Lc6)U?Y9`Ewzq9CP{^ zwL&NjPXjdpCTTqyflc=wpHpa&D>%Ill?sJKHxfTlG*bf>DArdANcUwDWG7mL>QBZR zYNQ44G_f^(aLKm7X<`y7x*(5wIwQ-As18L@i@(S(tjJ zBXd0`fWRc%PLb1Dw^{LCn$D(4sO~*v2&a2*qFcr3cU7mKi^(1uX$lY{WV)e3OokZu zCMZ5l_O!+uw)Q_|7bnC%84QF|aOtG?F+`cC_wJ1dfr%bFYjxD=>(hG{@BQ3l_nP)} z8V4Be1tHZOB6B!uyx;H`o!r#Y=i>rm#%Y{x9fD=%nCkr;WD3PIcM_)0uQSyLw5v}h zHVSZ;OGGWm_I_U1tXqhQr$gG2!bqKSx__wf|OcnWDu+K@gn{=#ya5^`!_sVf1@7?P2P z%#+z*)!ay_f#9x7atj*iMCwB#WFm z&VA6y5?Be4^PY>&rTc=mjU6>?n4D> zr(rs?wB}?`sneEszs3j=BL6pNMAU-|K<7#MuTNtpa6|E*J)gr0RaLz)M$%Ugc@W(0 zDB|6&q3ZTjE8i2X0hm#W@vBb|w4nHmBXr~$V%@-h{2BCv3+T-X!;=j&HA+q;03HG% zPX%I#=r3|EfQRFo{wCKDN3Zmz}G}!$=-iB!difac~Y53g0TQ2N!ALu^OaU3{o z3``SXTaR(YuDiJ5;n-dp^jn2t1*|^^$oC#+I|sMW*uAIcCSd(RK>6CCew;*XJ)0KQ zMijRm`E`%}A}1nJvBM|r0$4ovC~g9>0~h+V3Aj?wpX-#m9#Om&gc=x^oM!l(8kEH| zE^Or^#2JiBL45_74yayujFm<6$kHY-!)ys!?h?AQQs~bV`VCOt7^u$kwR^s|K2sPs z2BzWkZ29dSN0lMKR~fpC0=lON(3P}C);%41^s60;x(Bd9{-UPIffg1ZXC+bNE(M?! zhU4>_JH&Oxai@R?LDvIy1AnYx-g%0+tmbOOWG=Sko^&+>oH}RgzajkUAc7uSw4c^_o>-U$ky{~s3HfjnSqQ@WXTCk z5Uoc0Fh_njBD+4qJzQhhSmdv}*};j(XfjP$=Pb&|V+Bc0 zN>eI(zoCOnaqZF+2FR`%wAQ}8LVoM8`c8-OtYCJ~mN^K^PXnfmpJA=hUMQ?Sbts>A zwD+~lBAS|ztPaTT9Ga^P^_2$R%Tf`;!#7{@v&fDCc*cUFeJB{00_7^$qeuC?gX$b& z&NO)&F^k6a7|=Y*(OxQS|74(baccS?f>349Z#_o;))|_I8H(!>rb$6{O2I!mOYe!r zxG-=fK?~gltp4CL#3IA^XboRkxK##STBy!3Ge`t}yO;}ob?guiH7)5Up>uBGpIlJ0 z(hm^3=GS9nNZFw#t!Hzx>ZaHBfxF(ZU?D`I&?`PK>$@65;plR`aI6yyU&?iO; zwBzxlos!Iau7QT1=N0M}Q8H5H&Q@#=Q~0T94fTM5fYSARf7|ZVs3tvGyt#vjKq-N5 zJH%mtDhWnO-H-;FWz?2Ey-H>Qp87GRfPSFS$+1P)R2VKUq4xt{OKxd$ktwnpK0I<7 z?>yp$wy&z^B-HL`6CH9x``F&m{Z0ep+CX;!rXFEBHX7zY5XG%B9G_Ms(`G&^T z|8a-iSJ&vag7P{$F(gtG5)2FZ_T0c{fIPJ@J?;Iw3yZ@$YOX0Jg9x7yG#EClG1LGQ zcLDjWgU>A7LU8kSP9*YMvMKDr$g@PRm|5c^^~%XiBN~OUE}=etNxLu`*?|H1dDIHAmiq{ zJIHnmJb4JW%4rw=?PnCO19ZZQ5$f0=|G>?zd$I2UQLHmYN3)l-pZqA-Pjn*!ms0Cg z3Ll!%W_>tOPOPE86gUO90UT|{$Y#T6@}@IO-hGTGgmapDXql}U6^M3-H9$W?$^zzb zqH%x?f^zKk#nY0F7I&mSFcdFxS}^j@A=l(C_nt*VjBuNR=wa%{L#D`$%vlI17iUDo zHi51StAsX=?BdywrT{Y~6f%ydsX@Ili>Ah~A*EA!W<=TW0DMA2cMltjh91DFNm64?ahw-L%=Mp0EC;WG`dlejH{ zG?5f6#IPeiPRuCYhXN!JwNNh3jppRpJ-OpdC~e5Nz)i!EwD<^r&O#u&?OA|4y`)%A zaa1jilsK7Obdnw;;4RdPq0}<8Kgg{u#NeZIGBr=|?J9~a+zN9utx2F&)Nhp<0 zqSa~dB1fAx;xtL1wX}*6rZEr~5%cVX3x_jX_ca;&YD?IqDDT4FHG7mxHm=1 z!bf6Edk^3fswvZYN(BiND5?z<%lljBA$>vkwD$9T~4MfO1VTmGh7LrQr zTZurvWAIs+3_j*H4VWYM8+&ANMFHrP@XYtrl?uvnUHFV3h^rLzGMo3sIgo8lkihhT zW+2MKtW%h+kBFI^1iL*&_9kUBO^*W?XqP?`X`dc*`aFVFP!rlc6}3rFs*)WifRiok zj9_y5A*18-O~Uf&TmwieQhK(O2EcO;py9=&lgb(NE44}c0?*YMwFlPvpA zE>V))@`Me7wUFfkYC@GK#CRN1>bXflkwSaa6pjpQfINrNn!<#%cH?CCT^6$)wv3ME z012^{Zb(7Ld>v8AYys`_bgwm>$j)w?MK*^7x&;B(sDy?mO@~legwjCwr(#+4;B-_G zjgMBdehCq_i71|FWJgXxyp@zn9_Mgn0JFt^Fp^>eFsGM~OVYryJ3i;Q)bnJ-C#{F> z2~30$v(|EAR_HGMo1uP7IYo^}j#HjTDR2dywJ zQ=ltZ6~S=ti6T%wAUgy^E$BBi+n@z^vin^Z2!{D3zDRXT!}p{=(+q`Hf^1=7HtQK| z@`XyjBPUHEKY{3yYubIMRCjyy(23o_ZxDnv0Y(|QR#oTb35aUbbZu%D?(ZKVK$;%P zE#OlqYD@|2Q^2o`9%{<8nf9frZjJ%>jdA9$Cu@7PSYQrK9tJ@F-(VsV4@bm`-B?(Z zr!c3kM|2}pSwgK>2$x%^rlVjzZPxz9OCl0auDIX<2F+pH9@@XAbHwJ`N9aS3yPx0E+2Qqw`msgxh=M3J(g8~kTx8RvCp*OCio?a| z7vy@|nn6J2%Mr)7G92Dg81J2zJ{R<7KzHR(J*r`Ue}nbMj@k|Yi_cDu8QIRkG!Dn7 z3k)mTfJ%t->q3KsJ_P8I8l@_n2`n0&z;h3feLvm?JZ6c)R$ zt&rb(EdJw1=)V3Ic3;d;+>!%ZKjNlazShXEd)QB2AucP#hg+h(nPO^ex@1v7wi~pM zml#(D=9Pi?0JpTzZK7jsH*k-)(7P69#|g}R;TQnuS38t98u50AkhD^9a<2$+PEVho zS8H;clhs~KmYjI70d9WCh4+(qDFw+5H6dLOwOCLbe5grj$t*X|V@(uzINeD8?hdLf zfroF;2bhc%dHMZ43d}en+}tu{eVI_|7!mddoWdhB-WL`9-}TKAh!NvDg@Ap0jXBvi z{k*zPu32TuBWij`X4tT28Y;$FV^s7Wu`qCF#cY5P3O)13B`|3`7<%=GWd`wcn!NKp@${LrABjQ+0fi)5xPiw?$W??)S3XKTNdB=1aY%M{pIu1_j~?s>yI6D z>rs4k2Y0bV^OV7A5=P(RdgMS;a9-E0;TGL3$nL3bYIXDtrz zFSwVgGnm$;Aj1s9nL)Pq(9K8=z4HjG1)ypFi+fZ!C_(+jEhI*ipB&lTRHU7$HhG#W zLD*DK&4Bpfr!-4hEm)i?MZh6laTuuuTQ6u{V9X4FzxTq@j(!+d-{X zEcTK`sVu8BNp+C2M7TIRJ#Ihn^S`-+WEtG$YHn7|zNUNO`33-|T2hsqq)+R1BtYU8 z2B!1SpS+q)cE%@X7&jI=1%9@dCS{QUXW#a)FK;pY>|5x!2F2}^vn2#@2L}cASN&y< zUJ9xzvd`kL|pvG+Y?190gVy?cp$4I#=z&y4gtlDLsT}=)D3j!vHsQ$hc9oi`=ZA3 zlK|T=J^&CL-mQ=wJc`#H>Zc{fg`j**P^Z4KiGB`9w2<(C)NTjCYdKBz*Dk}RK>1`lm*nI2Z%Sf zTps{}db9rc?_EF9jfkvQ5XA|GYP#7$XbL2piY(Q1vygapyC_TMg=CgLf9w)ZGoeY6 z%^`)+8mNAReKiHcWJId8LfBMEgd8z04aVhi)^_-kE*SQ};&!Z5$_P=KtR3Ong3 zC@~aFYtC=oDGX0@#Fy0(p^xY;3#hZ4)USA-cMTwZ|9fSR0gJlSICq5*QcMd6>ld88Q|O zNL+Q`q!sZtQJ^MjngOyS#jNeqB{eRUpfLtxwIRxIi0IA*As37bQnqaqklzCKkWfs+ zT!S#4G%?+Ufo)U@9U`*Qo(q)ID22sIzg8$;38d)}7evC#mm^H;DIx|D8{HETRxTBJ zF2Yv^@ykzUZn$Y2oiZGeGxy#jA{gy}Y&Y;RH8-f@lLN>87w7PoYxEa6@(`h?0wgsS z(TCX{5{lU(l4qxX3(Qc6N!I`XYQ3Hjj+wq&H})<8`mrvN7*1)GpyHKgLb zrAFFQPe^E}a;R=#VY6OvA5e+~ZQVlJ5hhVIT%IEocGf-l!Z2572y}qi^$_n7s%(Bg zLas3`4aye|su|F}wPLez-BG-r+2pHF#~J|0?zk6CE?oJ6`&_h&sqzY_UOG$xsH*c& zcQuADEYLns1R(;@ec=+r+Ms@c{7lM$0H`8j^n@jkGrBJpG zu(gA_We(8s?E+XTM7;$>pt}ew0eX-*cr4$YP+i>t#Wk(O#Ybj*WSSP*iF>Ua^%S<@ zx}$Dd+7nNqYSO+byr$R=c;1i$MQvzr#oDVr#=F`o8`NrNNz-Y01~zK2yw zF}sra3_u7#o@2b?8qBnsU9gl3kd}eFu$o|&j|dOW;5H??%MAJ5i2S;zv*JA$E8Ww% zO1}Jr=U^LVaW}PMeB8-oM~x})bE2;%hqz&5AP%s{I8Rf&m09ye=Q=@uW@qgMK?H$o zNTW1eM1DsWMbOMUb4t*GI+tiD+MbvXK?Cgrf$o9wWlTmC0&@f>pDm{n4ub4XkY5|9 zk#w)9dDdrp=9&zb3v?G2-5IG~0C0F$NC*4lfMOR=>^MpBg@S200UtkvTxkZLC7U&j2;ydiIs9;{gN>n0 zyH2{Yu1D+#Iy`RAAl7gg;8QT7ONsBI2=qCJIQ(#X#ZPo25|dB7OAitG>mE^M2x~SR(JG)FPiVEA=tv#`W89PZGsr46^{vNWi#I=r59Rb7V1~968ug3nVD$ z4#@9F$rwvP$N?nrSHBU|?>U&(z}6aW5#bAtdFi=LYM4&6G^B+YCsBOQ4JKG_JjE^3 z$`4O1d=7+65LQ5QrLp)dqPX)=Bi(XbHH~H?vO|DrJn3+SK(~NOpHb96x8(>tLmDkd zg~K}xUDN{|yt;F4h*Gx*D;A~sOBU;4$>Py;AyHGpjOeN{z*QRElMK}>hwQG0ZpK+y z>K8ehrv>s`hwMdw+BHl`%`?CO^3i83Znql@+k%-UUB-#h?%oF)(&%#_+979~dD=IB zS3}pVI0YINIVl?5$sS9xj3TtpUj4}H?_9Kij9tfmMJ7#6=X(j^s68 z7A&T3cNiCs&|Lu4Gd2SIcQOncL3zvECp0=WB0eI&AgsspRL{1!d z@d~E#K*XG*(4Ob8M+bY|V7y>@d$gQdxP^u8JWL8TgHecq4XHT{q+N8w8?G{OY6zx# z#b~;y9Xs0h3Jp_~^QV+_5rjn!b?7)5867|C!(q0bk9mezTHw}EyObJ{P&2#}i*&E2 zb2M~G_h1ZzK1Ui`sAOLacMmcBX}d%ak2R^8;{ZuX^b9(+(C24>R#4!?bE3hD~4nyp}Fd*4T)NyyOaoiQK5dE;rN!q zga71_eR4#6xJF16U^N2S(POL>+VcYCjbrx3y=%%F8rBBGN@4lw0NuV>IC@KGPUX_M zEnJh)U^bPROdjgTmXnTw&4w@1gd=C}Mv>SV$O!_(ECm;90+~KLF&csehAp+E)hmzo zQp1(hk%|Xw8&hlmsoRU^9*4Iy#x)xZHAa-z+@Jb$gYHZ)oN-D70s6NFNUb4%$S`Mn z)1Z62#IV+M?$d(ZdzQ^f&L(d0(&74R7X3Nd9n#ZeM~_J??kHBTuL#hFjPH@p;tb+2 zSsip4b1|jJpJ>|>f&6s~wQI=G86EGP^9_#gFHyc4VD36n$)S=Pt4?M?Y(#w0&e?D7 z8A@0doc6cf3_POgXi~AL5Q_}Mqb1BSxpz(=XR?)!MV^2+-shpNp&nc?)qOI0F@}53 z==dDV1@*Dx54TtRL^mRGs1f_XO(PWxaf+g!IGO1K&<`#V&R39bWFqSRz~Z4F$m{NV zU=pm}?g3-qAD^ENuq5`B(al_MIFIaA4Zq6KZ*vqk1FBCQ5k;+Fk6Z|DWf>lLXR9!?G%s&g3E6l~gtQvylO7VQHwciMW4urDI|4Rs`w z1C$yg`mIItm)=8rp)f9h=2Am#G@2_()UF6u30wt~*Ad0F$K97K+6TbR&npzK6dwJb z1KLZ2wqULXB9Ps3(>T1#zn7mddGz)x2IUKGh*Ofgttke}jseZ3Mt{bs1|m>DjZiBF zqUn(?TRx{Q$8-@A1ViF;kDG|q#}WB;kL;i!k?4#XxH&~lG)51cHjQgO$3$_{gP?jb zAbWAZc)5fu4AviTG@Rdz$c_f4q1bHr(qoKE3eD|-^eHt4jBAZTdrKR|VX2Va0qRi0KiI&RmXwYdfw!*U*98kX7qNIYvTzwa;-Z|9 zb?K==iA{^xwul8?FygW#ihmD{)8}X0DB2dY{wdEPk2gTulL}ClKiwJ;0BW@Y#*w3F zYayA2UM`rLJ~bP|2)#^v`>sFfJ+$WcbUn;n#{$w?1Z$Yt@rcN^q^WEeM)Jx5PGlzs z6HkqqN*v^vvpLZ1h>#gHU%4QUIsm%SkQPiPpQa(+r)DODU(i}w4I$C6fblG6;Muc* zSs=}T;prB^s+0qQRLoLr?n{gC_zb!a@R{KD7cVG2&A4968xMaZKm6q{@_@_lCX{XB z4TGAo5%9$_X{$W^I)ne}+bC`WOe=3tuVy>XBb)gAE@|ABq=XJDO?}utBu5*eLr#pi z{fdPeIH~oS!m!PulM#p-$-7>C+^2?2Lw6}~aR@UKJZd&sP^5WmJ{XbR_HYZLpLRDg z$S_mTV}Kex#--tuC|>}Iz{t2V@Wm=owglrk=X0fk&ZXioSOs&SOJ2zIDNizKJYr7D zgT6cRz8eObRRHreU%UrKK{R>}zKnH4noi2XnZPrtNn z`mr^fdgM7&qGXWf{AO_)o9_wZ`)RtoM;JS(MFoAaC6&_$=*vseH6?WVbv+>nAzJhb;F@AF=!>QON5aW}PuM;K<=9;PMQniv%wRTKi{pp!TZ}G*=2A{J$)!XA1f4 z$!<5_k!9hFP#wNBFtB>gGfIMvACk73GeGP+B_ zxDpJjY<428UWDXADoNi9KqBhL7Fiu&YJ$`ff#MYn1#~X+B$&l|dpXr>ks1i6v{gKpU z3)xoo01hc`T_p-4q^=S*#_}gL%JU7ou?2V5MEuM&ej-d5Va_wD-GQJ z*~{)Hx)F(8kJzyzi{p^Qs6ZG-h;p<2ZcG%bP*~C=22Bs-;20F-?uo^$0gg4`+({TV zZN$@5<(_4yv^^v_BB|a(-!+J42~ngPMMc4-gb3Y6V53<~hh&pG*=c$r@XiWM?Gud$ zn3P)_^(B#aIEgb|k;LY4nqGJe$t^2beyS`V;xQYvU5}x&2PCoKmq7vkRl8fzg z3%82US1pDi1+@)&w#1u8q&^6`2N9+fu0{mj4JVf+oY<6r-`#jwTK=jNx1(KDX z<)5>Iz$PJnlq8_{@r@CWc(8#RFe4z!vAFRHfE7rbtd}uQU{o>-F!c!8*N|-m2{Gl5 zMCguaNR~#Z!^U!26FKJAgUmL+A(QkOCF1~{=pHUYw<+jQfvAT91;YyS=LP3!vsh`E zoj^dVR=2Pim!#&I!$9)_9}#myT3d`vRyGC^VDp`XW{}fs0;ma*@B>;lvvP^H4K;m?~!(iC^zo+$JbHV~#~ z;qFR4uW3Wd2T-%kx9(X~m?ZF)AP_IWO3ilU%CWdn1E38XkEnp|oD3y(%fI_fVLHmD zg2?Q8L|tGk4V3ec;Y3GaL#OB8A()gF-;RiDT7BEvBLF}`nB!!VY52QOrWgc1Fx$U} zj0OR^;S|{|?Yvh`^t!0N$1Xn5l?+Cm?43u)iH!5JYZ-hHZ}6TV8u~ z=Nio;HU&YSVgkZ6k%>t(p3}-#_drNXi!WWcbF$y|dOYsz5`G7eVFEQ$WipgUK{YVN!JnV$EAnCg-sfT*Nf ztN47b6J&=B`E`W;^fmBsfw593UwEh{(LS~2)TxnEP^MruPl`n{uFz>BZtiIYBkLh) zx|7IUE4p&^1JA=GXpf_#flgT_fTBZuxCMNiV=_d^TyxV3|3nA=A6-Au)kkbwgw9id zTUAgO=O>rr$MlFpv~E6Hil7Aw@yK-y(Hlx`9Va2LZ#Zh&t`Tx3 zbWVbvSmxv+_W|S5Vq9;b8%KV0;`v&DoaVK~**A7jyBfp07s-`|?k~eSd1mLp_D|@L zFrF1BpKwL-d3&KyUnxBNk1fouM}J9b$b^ap%MQKYMgR)7i7=h##?o`@5p2Zf1BdK( zK>KI`ain;)7Y4o*bX&n#i#NZQsAVUH1uXDrN{ zOO57AVgEA@=1$}4|HFwz_tawX%whYj5#56fW2I2NQ0OirhM#TFUFXQJHI^R%*%25P zY2q_PRNskMJnu2AE%skra-(q(Zb80xz7K2&jG)_6YqI))8}RF20E$-%7vJcKRGh8Q zJ;>80G`VOnJzWpU7hQnmf7<~Hc=gL$WXFijH(O-;jKcatA=nJM4X}f(1#xS(4+n$9l5HHYUIz4$UhvCvy!HHK?oexdM0j9 zS`oE9V{@GjFxl5UEJNT(cDn{{_lONO3lby3Zckc9Kims6JXux$G+tsf`R_l7->wxA z%jv30#LUutuj~15#y~bJ7LrIb8m;EwNxxYD5+DN*uPzY2^aQf&I3cMDekS*xJLVau zAtKz!?+!3+kE*22tZGK6{+=k=YV=nN=+48w*wZ39QwWQMa<-0q_K`@a+P66T>?P_e zg^T~%!W;*5k19w6?0!JM&Cy+GIz2fc+dJq!U>Vcl-O<5ya3# zM1JrL39MBrX2LvKF^3VVbI5Kvedr%m=*~5|OHxYJ5Mk<+Gi5dO7_k0ez_=nUrG9MD zT%Ez?ET~pvfVT{HbyaFgBU9e1|MnWO%CY1pvkV~@^ecv` z*`uEu!8b0YxXv@C*UNSZSyiV(!N*z0D2Ij(#XU=I$#dS9$(}Q61<5i}4!uX{dZ;{T6D_>*vH4OJDi zH~!=^=&MJFmuD=j{G0UxiX6x@=0&96uy4_(i0nm+wN+uZ+BEt$N zYFCwGJS$*!JyhMzlN3`sM5E9>s;D>31dESq=$j+jFI+I_^P?TP{xNcTsx;32%Qd3b zxcOfh=sBHD!;;je@?}p4F0E(E)3`Qp1t%MFK`MCnfb{Ck2OcgLbQfwCnD>SN#}b^H z9NweGWAVQ)VC&>QIZbWXbP~)YuFGwie_!Isu44e-4HvgDzM05Rn}t z@*Sz=V=1`(1yU%V{65#v?a!{!T?mE^u>KA~$6=)rGT{2>E$ktpypGs>hXwqwW}~C~ zvb&lDGVzOR~eY?8s<1+`Eh`LeSkQR@hJ^E>|IC8;HxcE z?~u0%$S5;L0*sy%uf7NF6m*fFbdkyQ;D2;Uk;5z>lOmW|$iAlA*0(=m9j!Ig#W})* zGpN@)is1K0c=yB6EPkRJ5itg;OdXfd1>%0nDM!zWoXlk3h>>DGXibjXWZ8ND3W1c2 zF>NlBZC^~NWaQy73C+p-J0V;l(@;J@Y7Zy{x5?p?m8LjuW~$|eg3JPnVy=l+B= zS_X$DVb?^zn$WeNRnlz$;sb?EUNcp^jnG9Bt^;V#HIYBfjX^>RAX6;frzwjbBXrBn zBp5)A0yGMCN8aVIqL9n9ME_}f$qm7@FGi6HN#{QCx`(yEHhK;YWbqWC z27w0<4Yegc2iz!gKq9GT3>FOM*^C?ndqQTFJ6ZEhqS^AbN3eqKQY9aCfnPA`oIjI> zEkZj_@iM#iz+krAJKb0eE6O!}&|N7gyLdtzr~4o^DgaUtT?9geZXIGyE~l0e@SJWT z6@l~PjA>#wSx5skVMyNIOib1%3q1hP@eTAnCKN9^2bn@VljB94^d(yJXMUQm6u=}Q zAo_cuk3LNvlZ|Q2NpXoHP$|R->3gHmDJ;+>Uap!2$N;!Mq^yQ0q|(SRo{Rye&n3qB z^NgjXz|@+Pz`Ju$P0A^-CIugo+9YYRH(m3TBO$0E*^Ey%m{BJ|qt!&{?u87hkv}(u zgH1NL;)#H|iiqZ9>1bL%PX(e+c9%U6RXk~>JP;(#(*~Cd%+z4yqyi}y5t5kI*9tnJ zfrEQw=l~;XaeXDyMtRYQP0* z#R4a%p*m@Y7<32BcDmC&q?0YLQfb0BeU51@YYkQ8G_lAm^&P$&(iW#FR|-t# z{m4e&TbXqph%v`KMq*W`SX* zn5iNCo(}MW*&2ANiy-_t#7MJ^8Zb2l-qGq5m4KOsHY^jfW~4?YOj^z`<+1SbRE$s& z3|bx>_e%h}=Y%RGosdM#<~BTMXncXpBIY^;*v8YjmZtwwm8V*FqG(SOKCNi~E5eD1 z)lf}x)bqUG=Q`S*>g6~(AcmO%5U2Zk0ytA-#GiHjL^mS1Jcm>($i7CnxuxLzzU^-E z>W}FIidw;ZdW~4uz}Y6*on;iE@2{b{3ZgZUqhW+z5E;dzOQ7u`w|j2RO2I$ek{jNS zX`-P~ydGiiIvn3$Ay~oYRSkER2Q3zz~QMu`HG8uT(VeLJ`42t)`GKd0)!lCqjz{mP{4T_iU0us07*na zRJ~9ztw+BV^p^qc6<}(G^FI!#A1my?KEl2-$Zt&=V*+pgD-TyH?B3IGOJH0D9Nz~J zG#>vS6qiq$7WYxfMm>w@E=VQIZ@8%XEt@ENEYWWihLxaxDJlbyr3((sw4 zcx;T={NW8ZwebQF>Nt)o3s(s){-{Is*@*b1MGBZC`kL(=j&Ehjo_Ga4L@Zt=K7L_f zuWMuVL&_2k3OJ)}o*8`_1A;7N- z^xF-p4|l*P&w;le!!I&Yv^o!eeFIgNw3)njMWYceR*-&#dU^ZiTJaw4#jDxASAtK$ zXO;zccldFy*1yn8j3Ir+Ip|?zai;ZbtqTzKagR0({^}g@87XvQKQ=ewhpLX0L`Ne@hW2x-$&S^Mt0kycwXc9 zg*E!Mf~{3bC?;5;h5)2+!H}^58_rU*G@J_2>=<3PHiBR^)K&vA z<2rgapuNzz`wB2t28;Ye!vaWu$aew#Mxni==-$=={hEheapz}xQ+uw_T?q754mCtv zd_$m{0r`s>;wl7Vfd~u>h2zh#u{i&xpOf69VS!*$Lh_WH?8|$p)c~g{F4VlDJex8xuRV z0SlCoPJJp*Mi*(K`qO$zRY9s`t=n}7w|9`bVUsZd6Ze6Dwnsc1Nx^#eF&oM$OXS&0 zsLOMNMG5SVq{UucvN^c-oUtI-Fl9-o-p?j7{Y4J{q{QlvZy<*TQe}|ABTr`uvrY`c zX2D!9BdFhBLU#fAO;1w{t1vFPKLFH9mY>wfD+}9XPy>UL_wN$i^92j~*3e*L^TB}K z7Z@bCc+T~)f1f(X?Vt1*HU`5|(Pq~G`7NCX#|484n=3(nO=F4rF^lxYX9O#zy~Jk% zx8Qkck1+t3Kxn_|!T9glA>jCyM*ARQJa<3@%9n=u8=0VeAgCYHl}|a~$^TAE;Ftd! z9knjL;V>=@`fZ|}Hy-Pc*tiXAjczMAyqjL*Atq231P%<~7C?RjRIdVd?<;qbOXen&z5{#}D%11vv@$oCV71oSHn+j7E- z^MbB?g@zgfs!xsxnT9*dXK>o*8-m?KfIjrV^H)$+Ndu?Mo+hd;unEpA{JW31M~%$M z66ZPLQz|*~5u6Xp0=_cP&#yTd4FOm#SS#<22zNW0>u8+!7z= zC{qD1|Lk@56WxeN-9koAG^DD47`Sm7Lx6eeJo^EXP&8NrS*=d!WzO$Y>-4p*2bK$d z?|sx_5|1UvA@OT+;!^0$+?fszdLWP6Z7cXfBfldrvfr?aHAXRzC`Ne8pu=Hvj*v?d zU=pbq7HS@4D#ytId4<4O5mm_daYi|#QjpBTm3roR`b?l&1$z|a*ZjWzGJ`9*Y3PPu z8x{-;8kduJi~>~g({zIcitcIGr+dQ*Mj7Grh+&x=DMo?rIBC%XQP**y(XRyEWrXPj zORhVdI^GH6l9S@EPc}TAh0z>>@(u*BeJ81 z@+zTN;B*3DF)@0SuLja`B1gQjkQ7kFB=?vZsLON25TNT}4#v|DA8;Cyir^W2h(v0| z1x`Sk7Ahg~Qk78C{oMB_R8uA4YdBel{xAqCw_rVvDkf{f%7bD!Z5*@{y>fBveI?*(Id{+pH+rVk2PHDuJ6WweVIYnJ* z3P$gRxMKdDkirCkVPm074K)P18Z^G>2))pm#&=XHvrpiR29GiV@H zK_t2D?@gLyZa82yLPetl83HHgorCfUx>bmo0oIF?wn!zXI-%2Mw5P_I8q-Lpy)KaaE(_7+CI*#^%ovpmp0O(HOTa_qLm?sa^kI=yi0@x#IWD(&1rG~~d zoc@lhWJxaEn@j^#&nGG zn8X3ajU>IDM}9}+jbSAiD>gUcF;7cf!Ou~-i0p2J>PDzt4XjGI<;3hs3=t@VHT5A` zd^|U|)BO;&O5j$@+GC!$1;j;xAOgMPq~EV{=yqf-mSckhfEM0?XWInwPmZ%NsS$CW zfL^ltmF0reF92}&Y+U~b*H3gK;$FN2#6q8KAm>}6h+Pk<(#C8Ji?>6Ka5%!(HT2iM zjIb=ApWV!KlvrknWd^lxAjgJCs8SU1`6M(=l#9?bh@*pka1OB%7)Gcug}!+5Y)wOp z-R5x)MP!4wh?4g!H{eu4{s|hK8sj>I-t8S7%PQ-tCDDIq8iZE$`$E` z9|8Fk6t)AT`{bJ3=yRrh1|!ICDI(u|w@3ZhV*gG$m^>|Lg8|x0h4x{@@Kz7~IzzS> z=n*gp-8TTT9YcRi?WmE+1#S@#3ZQ+!BE{}BvON!dJ+N_V9xC)(AimQ8->Pu&jS<6A zW2^+XKN}J9i2Rxp4Bdh&GLJAvHVyZ$Xn?VzJ|!BU`ivV|cPSVyBKo&R=xdAOwP5|B zL;kA4>t9@BSPRA_Mfv4*3Q`=|9J*2=+c{{f;4=ePlKXBN>RVsK z`7#SJC4QQ(7$f}cE!1iSwOJz`kBGy_$wrxDJYPWXI^f$M&}qc7_&|*Oe&^v|y#kab zuiLqkZTMtnp)@4V=wenkP?r}RXYY>O&^JpKD$_(n1gfWvcgzeadZR;Fml(DMvg;1& zuBO&4%TWK^V<;by-S!FL(~w|cYJs`ypp61hBq1^NM|~vDWageBu!xPS%hlioLQhp!B|qOHDw4KpQ_oZ z4>Z4G6{e-GxH^ zB(f0LMXWz`Ff~6b<~gz1nt1R4rz1>z2Md@H$Z85seW_*|g?J5LXk>>G=DJ0HZqaQu zs#mm0HOGPIW8HCDp*2Eo5UfJ}{J`_%J}+Bq;A{oIWr&^Xi7JPCv{1jyFfI)AH8m^# za($u)jVYIEwP2wE5NO-&Qv;j>FR$VDd*}xbAX>q_cnOu~v$ir8IaEI|Yalhvp&n;5 zm^jcqPO1v{DIJRV-2r-}_AWd+N64rtRUbU(y3H)75dDC-SztUbku^P?g&KxHV#Tmj zzsey!o$kVB!O!T^7bjg_#_T5Ase0sLpemm21T0S{E#H zZzfZm;zfgK6vp+vFvcap*RSqvYVf>kedmO+>$-4U6S1VDd(S?5f8Ac|UC;YG z|NrmbE{yn4f?RL9m)E;}O_Q%9^G_VvK5ewL#^(_?O`DdU5&zp>dSc}v=29DlBc;nW zkZ+_h+ngHq59RqLk0l16`d-84OB3pI&Gf0{cyvpPb|SyJd)v_c#DTN_x#Hw|HM>XR zui3vUo0V>*Mi7AMqGTI29;?6}EIN_*=54@NhR6SHPRL;T^hikUCwk0mGJRz7ooiU{ z2!{h&UBbomrE@i=@Jax4De9Pf)k+h|2=&u60rQ!Y4K&Ca(L4J4b6jaC0j#Dw&B?Vw zZw}~2KqnXjS$@R%Zg!C8sQFYpOEv+ZT8G-EOrku4`9$P^Pj86z=j&MfNN+?`mZMZQ zb{Lhl!ahD6pfxZlQB6nKY{#Tzwb={(;e0VtjE)AeG9eH}AMBS4(G=D_s*wORb19h4 zn8*WhG81COK1iU@)e^gEv8$H;RML&R6A8evhonJFvKum$X4AVv2)Qmbnl?+OLP+JFDjb+e$*JE9J(k zdqws%KkBiO8~#v$xQSx-ieY~>Av?%;(U*o$MBFT5cZ$V(X|qxX2|O$m^(FL+fCAcc z&-0&3H(&+XM&7GwWnpX2guaz+rHe2iceR(V4XLRiOS;cWq$1U`NVWsWC~g&#rxIq^ zTunG!$;Pd`mhR^6p~W;ZF&R2SrVnGsz_c=b@`Xs-lov_KfHAbYF6r<=b;rVn2zKL$ zi;VWP5J|>9(Q14YSVGcZs=WO+ofINQgHAtNrVd7zq4x(dVz(_}9Z_`+#Si#ke#{P`2&E+X{b9tChMPN7 zkz)~=MF1(bvP`BQL(yO)q)Gn&1z*k!QY&Snbd|M{%}k#*8GT1|T4WrVB~FSlDS6PJ z4}q%j(4ehB&n3`M)snazjG=mb44u?{Kszb8m5=yYF?LI%Rrpk7zi2KW@&NLUCpPl+ zZkgkzhT^WrR~hkVzcLmq-BhGi#1h*?rcWFw$sifLYQrR=PeEeC^u-(;{j{Jt5i@(# zP~N2*?6Zg~1ghbSVSUT6Gn1yqjOop;l54fRPATP))U8ZYgdj=HeI=8MVS)^@L79Cl z8yeF_^4kX8I_g(vxD+tkEfwt&79Rx4m1p-*?j^I&Jibu0b3F!?3VAG1aoR}n^Z-`l zm!*Wtt$NHxaGY*lhzD&5HuQmhF8E&+W|%{dx!n;?rqmB6^GBR(yuFBQJ1P>ykm6B6am))HvgPc=TzDAwXtaZ^LS zlB|-rEKy!F`%oGxL(=<;$3PZUKK!n1>UL@9=8E~p((s<9&mpQ*!vMN=XsvJ)sXs{) z%#a!4yg*lS&f3Ofp51{`l<`y~TSX?5c`tHLh2(2tL_ z(L|~>-7=TtTcxD;;JwH?1`Mm!f@f4paJRX}ml>1iTfw23Q~E_ge~~0vO)^J1=?cVv zm@AVR$yYidF6AZZG_nguh!4dZTf(PH%4@kvguZ5$;SSqdH-Oz8FN%Mndx` zW}iw5`hd-Q(YQ4fMIz4;A4+y`V`!y{QEv1@*C6H5xYG&UX)bi2n8wWm0jraZMVL5U%aNP%`L&!OuGO~UyeAfCM3ZTYb~ z2D88SLfh+l2wsBUYKzG-qVvhru0`HC_&VSydwKEiAxd|1FaQp}H*1JdXgJY1A?_F> z9aWQL7J--KUvaxno0<;YPLs?|etsx4?c+P~wam(7svb7d5m(rwv0AG!Aaz7sT19&z zQ_^g&@4NWKYjz0UzOb{{$a<^kmc-DycEG_Dj>Fo?N4WG|q^ zJ1-K_nXDTqi0gE%t{iG6q_(gFwCw6=jFPtL<`?7pgRlb?@Lq2zmcJWgwXbjjCLUn1~L08F|D@} zqG+zygtIyBv>?B!(VJSD1DPeBmLlcKbV^C~_(CSR%8S>=K6Ql5$P_0+9vG!}Lv9ry zkJ&WnTCmU2YE(4D)fN>hm?mkJNmKd36kX(W=M|=Qm`y9)_ZMVA%%{imJB6RB=`?vy z)KL~@jHEGV$xmi~d^aMhC`78}Jk-t65S_x^K(4#cb?Bx;AM&xe#I{XDJ;Cw5h|dkV z7}UeOA{3VPqNEA|o<5g#Mr)yFX^lUf;7Y^cLh>wh>lrZN?Lz7U-9vG!2-ml$SI!JY$NqczV3*bM)x-P zw*1l5o=&}TB^#mkR3((ZV8sX6g#4bsm62|d&T<9QH`Yvxj=P&HSr^k9<0^SwK1+2# z?~nD5l^UhE)pUzUw}i>#LHqSW9kLbwO*hlTN{te;exk5@B~8L060qr0_cFr!g+p-3 zgU(eQ?_Ed?gZNg#G!DBFwM9ty{iu{o(?S3x)YX`P7}1JR-Yb%6KM?L#@>t3581oF} zlYc~Oi9v9w#?Gt+sU8kOpbQaP7IOb`y%e-MNx1-hb}ILo&vE=nZ$$KBPIz)BsmN1^ z%bAQe6aO2nVNzk=d|gJVO(Vf=){s43Nta<#$OyD<<$HPweTr3qx|$sI(q%5``(_+)&9i}Br%a=|x+XS**NGHCgxa$*g*NlayZUq5ra*fXw?a2_1 z=b1dwY`?u=ntUE^V(4d@{i|{zmd_);lu@aW85m7x>R_-3O}1yu+_-%wBif8G$S>S* zQx`oa5t?%;j%S~Qw6h206xmL(f1o&A$)ad#h3@2a>>irb6&<>>vhmT4ML)H|4lg6K z4`jn2DXcQ_DQ_dQPc+?95Pfc~P*JmaO+KIMdI&`HOr9rwcP<6c<_)=-no26Z9 z`iUajleDYSy&bwK^|@jCRM_cvZ;L5-$SUx;qMr*VeEw0SSf|A>L{!_cfBS;X8KPhFB3K|H@fV}8nY`YCb<|{^OQ4CWTFYz zitO=9ir81q$L9!T0jG1(fp(t$YKd+f>iZvw?CSm{thOS_ z{*e@j*bmaLAJaowi&-qjjf1XASs(gdB$vCr+>l?nFPpg+$RL0$wl5^o(~FM&#YB5D zi=P%F8{V!CqRGE^F4CMT6A#(#4!@k@PQ|ROLc~nP{}GL0e}BU6p=Dkgikpe75enSZ zNn*Uq*d3(X<_j&H|4!(6zRKv9nKV3{cp`?$=1|P{GfO{{(5$Q$i73eb6U77ygN8db zBc_==M=yb0rjaz|c9}pC+raGOmXK)_cf3baPEVRj6p`rm{v=*D*;# zwxYe&6!Mz<{#GM_0%mazEISU zM9S2h$XZq11R+%An&vFx^Gb3^T4@}(i3GlyR#Dza0TGR2`--L5Xz~xiPjU{I7N1YC z%aUx}NTB1UMHiNSo{_IR^lFca3w&wFZX1zM8iQTeoPA5C=^@h;pRQ3|kH1(51u4@Q zV=ysk{z)<{AiQ=Dedy31JWd3?bRJqm^QBAqeXa$|s=8h#Mn8b*R89ha@nU|D`#o_F z>h)J-DlmA-UL^P3{g~>qfUsH-yNFuO3FqhN=PTlVFPmE#VW9z5vCP)ddS4MynMGI zTDiaJe(=V=P`Cokg?NAl??teR`E84C9iRTGB~iiIcbsHqz4He3MM*ys^nWlSVK%J< z8FouceQ(L(Qou3QwfJGLzb*lS)5ig(;H*ppB+)(4oM`rMIH5QKC%>Mt{NPB5YEMPo zF#C_yNW1Emk`d&~=}7PEr;59GCPKq%Bl$+&)9u%k$h;mMaGRX$&XBJa*(S*qdquXB*VN5L25%e1v!5%7s*sIDO!CiNr22kj_lm|>P~M3u zrM|Do*NT&O-MBHy_Yt4N=5>SaVD{KkUs_ggT`_y?$=8nd#3Y%1keX}nv0Ad-qL!dX zf3ZMy^857(uYdMiTlBsaly{8y`=@f9HV!|{>1URraj2#z+c|=frn~Y1yJ>0ePpHo< z%XbghbwhajO?2moPo7JIGQlun*P&+9ml}9OeGFjkUr9qXdCJV$si**E6WHvet|&6e zD*7D9kMu?aqXiEJ=_Z~6!iEV+2-3yKGg(L=O*E7k-K``P<2-R+k7gUZm{oO`x@k@} z489Pvq3Vy+7J2UD%>ku|c|tj+Zsm}atbHVUF^efD2GE!=k%MGPMcI*S&)D_Uz1*zJ zYmG^HA+mc{xKgy4N3CRHapw?COopvABJGde0$+$fIcmZA*@JvQzD((*ZKPYKkeZOX zkY0_Om2s0Zpnp@x(ihTc6e$`>b|u{ddjL0q-iUN8JEWVtN}d-7#Wv7SCG0Td;F2#! zkeb6ZM2*bteqrgg_-3?cd>^s^Gj?i*KLfMem1;x@swkZX6+o{7fg{#XaH;ZVz@d^^ z+(gsO5z>i0ZYBo|qe|wpXbe6}q?{<{h3X~yW|)lVT_fjIZi$QXcrFjP&XCOKK|-=Z zZpDPCm0*GUfS+c>Or!cCJS&%Qtl$Z4D+$dmKxQQ1$Y{A9T$I6 zx#WOEkoVvBP?oYjB#_03OC1iaWyK~k4!$ajgEc(jJ!jbK^LXflpQV+PU30*e8R^P;%E>RQ>HXKOdru{qcWmA zl_HophNNo8Xx1K{a|rnJS(>Kq<@=NmkZZcBya%EZ$>>ffSRxSFX4C{4CxQdVv93^}!ZaSf5TH zi@+GVs1&##-?buo!J4ZfkWi@+Y(Y$E^kXojd@d@=eKuxRWGcgYn|wAg1gINXFBVfF ztnFKAco=~VL}S3}@fuKl0+hs!Is3Reh4T*LFya8~EanhmEu+PmReik^H)vUe3A4ID@kh4^f`@DoY3&D<7 z5qFkglDkF?>x4grnnJ}>|SqE`6QqSE>jt)Q7z<4~)u#7iWJ<#5h~q0RvC9#cD1A%0d< zd+e?oWoyG);1@ZuHJE4Vd`f|;vFj7CDUM(p1tL4nY(fQRM+1A7Nj;OuTf?varFHc8 zIew%!BH`wa{FMi?FxL$_MnRZ9c_xcVRmn&>&!H-bC-ZTHWtt9B=UFu}`i}3sL48#* z`Cx-SG!&n#WT9y~;$n(Bspyvl@vJ1jYas+eAx0!%EH==x3DK>S;-eFN@!`@kecY3+ z8~h|Eq{XD4S`PP2x{*sdsS1(Vr+#FA7b{PB>uFC6yN5Q>D@cf3#pEXK$Q5i}v-DH> z|7auXti`FEsElkrjAH(=kYk?y3E7BL&lI~yP<(Ao_bVqX-%T>8G@8r~k&ABzx~Zn0 z4jYb$n@IM^$#>K5Bop0cw~SQR(n&CFxB^juh650$@jhaqUxamR2 zKuM~_fHee>XANnzS_{E!yCYoR2<9^t0m^$pb1RWVx!DP>)e-Nm zC42qeXkd>D(2Cuo5?3hBep@!A{Z!J#n{zdKBHctbH04SZ5QlR!%DxvLNGE^yN=`o$ z8B{bvlG2^rOT|wHAf&p7|4)r8qpKHqJQB*8enwwHv zMB0VoaH%L(Qm-fvN-K&xq+tvrT0GlI*sCiQ!GPT>`UQOYKWGVIY!&4-m^w21L~1Nw zDDr*8ejqhQw=l=14>FBu-Y`r*3(P)g=x26pQmN$Ea}z^zV%T4u0;iOBvLU~G`vB51$`paoTm0QBwuV6QgVE7?VOB3dRQA~7OJms9xxFDrzJfk>5aq;n8bs_9@L&9{oUll0EI$gziH zf^6mSgHb3A)f3IYxihU|cQ+xQM0T%gnQ{!C7KVTz(U`ZV@?0?sgsABj`q*tPBB2QQ z!ic#%T}(r8SV-vJA>b%#Fgw|l47zW-SA;^ocR=fbl7?U|#Y;C6sYkSoT6kY5qKUXt zj}r`AOHn1>87Yi>Ca-Jo;gF>+L@@+32I<;r$acpLw9nPp8I~zaMD>AuohBBUNdamm zbv4yXzt@0N2qsghlj%ecuBr-OWwI#sNfy%!RY&z+@-Ze8DSCT-1UDoZ zk)BKvZq^^CeO)izI2b(&_@gHM$MR63(Tz?5m_~GFkYYeD=JNTZLM{$n;z9pCppTUn z>08pwN07}z>Xe%O5#t$$p9{&i&<*r7gQ^88p!+Zu9Vj`sOeclF5Tt1uCrHJRx|9-g|* z`Nj)Opt9+AA=DbtbxY#0c7d2=IeOQOYd|y#H_0$s4AN={I32@HN808pJDC_FA)`}nPjmUB_>ek{52ve0y7brBclMBn4;O;VmS=ZnL%^Rnf+LQgpyTmWO%H7YN zkH$xpvI3e1GeOm^wSq=O^D6Q)qK~tR%|2NcM>% z+c-j|S$|2)(9w!6y1eeW{fPo!!lQq+CghgqKRcy*8kv8P@%-mKmp^yS%`e}ldM2-@ zn`<_2YNnq?79V!hmjxYwjfC8>`KrboG}%Vu=8-t{G#BQ`*6t+~$W5TRa+rf2(^XBY zIQ{KZ08M0UY+AVeI{2yQ;x`rc;OQ2E0Bo1?UJmya^;IC6w4s908xx9%>Lo#T{*iQ9 z2h-lj(-SGApI*bHLSJ1Ho?R0T2h40L(t^!yJXhkOCUza}u>C{6 zI{ynhtR>vs9C zGP{qTpk`CTY$6M`O<6#VL+xt89!?7(@@#h$*8&^pPI8etxJL)F`Arxykn@ zirFWD>Eo9ALe`J$5b!xPmj=^D%9|i0xi)gR%mhdISgyx*aWt1VCo;7>|Lq2IkZyi| zQi!*rP_zpPYaL9uu7d5GGBMGuX8HX{b?w-`W@*n9w?8FdjK%xnJ;^to`rOi-Xqrpu z@GjqTspBg~`*If~qzo~S4mk6RJxpwWk(?OQVrSBB-grO@_T zF%@rL%cyP)RUafh*?DQADJ9c8@3DI)^44jAzFmvyyeI%qOx`D|LJEr{p%4m_mi&r& zDd%S+hIYCh|NNRb1Q})-sw@brHKA#Q#Pef%#5_lp$oiUR#Lbql+ldA~%b@LvWsbXA ziY%@_R?xBQP}bn)McQOk|_iD0cC-^wNh@Q?0M zUsbHWV(Dk{JaR9MqfC0p)LMV-glr#}e)k5`y+F=VDd)|agNradg*i=2LQO@CGi{b?IeQM0wuBn(+hq&iVA=uV(AQA2Yk_v-d6Qr-w@t6Yaf zq*OGgiuG3`*;=wXhI_X!;z*>@$;XlH00qsNG$;=b0@^7ipBlPFq(AjseA7|=$M@L% z_ixdhXnY~pr`;>s^FaNkBYU1<8bv<~m|E6bH-Y}tgEsg|CLy|)O??tQcUKH55*s3)-{BPUsiQ`p$Ua=BlX*B)Sf|zNFJBRiGzpT)^ z4s~eI`xd>2@a~5wW618`BUTdVYp%8A)0{8F{Js?;r&@1`%Q<0Q&|g%9Op~uW%%Mj= zy&d1{5Rx2jSGex;O;3O5E6U&fyMGs@6o2)v{?+koP1Ep;zxa!spPw_E&G?01_ywLm zefkG}>{z$b{Rv6)t>gowD$yrP>?;pZ^Es+%(OdcDt6h!S*A$=a$ZqziNrgJJEZ%RJ zJn1Oz9IEYzO-uRdPBfXzIWe=c=(I`3F?5+2rXWXMWP4H3JeZ9;(r5>?WTaRHCeJ*v z5bb!j_hh?(tp`-E$PC;>#+%B+?omZ^S;(&2iytG~%C35l{PZ(P7~Q^}uz5gtlF^;m zqn;X(PaN)xR6}_WQX&o;sIV#7!05Qc+(;+EZB^rk^V2?^;%0 zG2DDTr#;d1Gg*kFu!r)wrg|ztL#89)Nfp%-O}15-E_HXTWD|s3Bpf4q{KSlbO#p{0 zA(N<>G~}&lFI|~9=#_L)@|`3^`$E%R&EWne?$IT;Un^LB*>boq+S*_hb|1*MK0ySO zbeDX>fi@1k-HSY{?ofS@F4$rw-Lb~Y^vp%k6ITV{>I{Fe#4o4#S%I5oaJGbtGyM6S zxR|DHX_QIc=?V7X11U(1k&SzdV}YS&Q_O7g|KA1vhjjcf*9kz@h$_8*=VSx6KN|GS zA$4!8P14FBO%0=E#GK6O!(;^`8%P!6u~Q8qeaozLJ&klr^`R4!YmpHr1^ptYzgiMs zxrc5X`SU&H^M>NKBj0+my~lJRtqoo#YgLA+dufbp{V2^8nw?5`OizB>pj@O`YU&Hi z;eJkclF8&XUGw=iU=PQ&BiccOoqQp^1PQ7rrgopJbc2=u>NKSo!^krA(nMu2c)Akm z^915>k-N7GuD>zk?rSr)uV(Z!x&HHA9MhCXGk{uj& z*O5J5Q9jvItOKS_WWGs3TujAFrX;LTZ)>ufy~s2>2WLyvs}JD(M9ikcrrP-t*fLD( z^?HY1@6qc6db=07kTJyh6g{6~=5x7!4%r!yFxY>z#}9R_@cyO0sv?((a|$*DpzAT$ zTk-k;Dos5A=pFgfE!ndz=6Wlie`aOVcxcd@8oO!8whp`Pq##v_SY~9q9=q!ZrwiiQ zQtkmUl5cy;Ymq?O1f20H`^J~asxhnwg(6N0!c^9o_N<_}S8%vA94<8b`-bLJj}wTY z0ihj~H<9XEd{acBUDoHC`r(ZBB*T?Dp{S$y!lIC*vaQ_L>wA&iYqE(LY9XB_3?@lE z_g9+DYnH>M$UtQx5eWrJe#IDwEFZ4CMqeuWnW8(1bju)9i!OO#Enp)1`x*V$UZXxW zA~RF6LGy)7JM8leQ%fD=CxLzuX)a`1lHUw6`G_kS*SdbH*uOECT%*0n$I9m#Rcmx7 z&4;L!Y`D@Nk&7SK=YA?{V7``IC)ImF_Mc7Z7dhQ&&OX&-#jRwolxqnl9?!!N$LYDR zEX}=w`l?J`5<~rPhVqfc`<+AvSc7Rjx=CJr(XK{U;Ar+jeq$s|0Vz8U;GP}%O!v5Fa0I{+@Je%{QH0Z@BcuLANPBr%Ew@! z;ZRjc%rpGSM3O0=-5r0XX=Hq~T0@@0$pW?AV?KRCc6lzH%>6+~BD+0$F~_~0=p?&l z9D4^V#vq*#nx-2P)+J@w71G5g#+T$d#Z8OZx430REERU!gI4&$5Hc&8Nh_O{d@K1M zn>UOE`+O<|tgS`IX=^Da`l+U$L30r>mkr(13Du3_a3Na6LGlEm<802=XmH=WCR}e< zr8+Ar<{w6~8tU^nqCkft##geKbjtuUM^W|E2g}88^=x0Y93FX=-!q*3_JQl4n$Vs~ zhd^bKKB&|g8IZS%_Dm&wryzj42R*@NsHiymZ6SNS|K~xONcC+YTZK%*iR>X#q+e~w zhs7gZ$hU#Rm5frOk)Lsuh)~RB^BT@10L$!K zDPWUSC+3#svP`m=kSJTA&Znp-$EBflZr(Lvti-rHx`7 zGG9QnvMHY-%w^-)o?7(Wp!-}xt5zFKQDBN3eKr%`yVcTB4G}lXQ9+a6?j>Wy1tS%ECP0IFpVPHLG>(BtVM3CPC^d}P~0@MmnAnpkum#JXky(- zM#wD6Pcgd|{oxZ-RS}jmOzkN)3cGI6s~zs6Pcf%U%2_^6w)|8mdb;!ChiqDrO>MSv zZdV2U)gpCCd(5^aKEIJEYL*e(j@Y)S=>!!c;Z_z;RTdIj=$z1^W(B63gAXG2s$0Td zI-bf}RQ#hetN*aq3iX2nx4oT^*GYAv3z`BeNnLp(s+5fc&>K&P65rjhIs z=g?(=^-(5JyTfsPzTJb-bXRj}gr$j#y{nm7O+OQ)uTQE7F^((jA->QQkn<$u5|r#p zoje)|qmA76%iG9+^&Wydt82*#sxLD7WyGC2nkHjg+tlQfa6gF}2-uybdUov2y9XWR zti}K44Amrqvy;ZD^fZ?_b}t^;!-I%hdfdT^IlqP8 zihSNQk$e-$Hzb*t#xzRq!3!&snj{gI=z-(k` z|Ky+i6TbGfukj!L!++pU{E0vDxt~KX7ie7^b?(-RhONkng~iQtbYZbC{!WboA5ot^ z6|HzmOVwAG5CVF4AfBDb!t(SQtfil2Oj`E4i3#GPaL9l2Qz zrZbG9pIW-P!PFMz1MOKRCt@xaw$Ktp6AkjUZ09kVrdSE#=JuUz3=(UX2JH=YFGkR) z(gM*7{&x3J4A`cRm?m<#XV^cClCr)MBY4bU`mxYx+Edwt_#C#cC-PM;i&cB7#eDwO zirvR^rXLxKYfW4g;0j6upZrfkv9QaI^;aso<#bFZKL1Vm==)jZ@Bmgn>#$FA2`EhC z+>ugsFxZ1oyqZ&kikj@HLiMnGUph3q*CNd;4n1*9f4w5xMnMe+Sp?ifu~`~)E8}I; z%HpwoO_6Uz-{^~DIN}h#q$14TH57O9d);4I2}}yIpq95%oViL0xaN&BnNm5)fKefG z`c2vF*gE2KDTun09Mc4<8;3bK?DGxbWJ<_N;sUb&i-zP?3t#$(?+d3hGzyOJ^fV7F9$F66ev2xlC4O6>8sz?)ybF?H71_ z5$gmX9+(%6b*?9RjUG(vL*~$CD+_2@h*lnHY>fKwa)CNKk&g0ePuv}3!-Bv_unlH{oK%8zJf30rZy04vN{FwrQ&(_sGwMTikp^hQP3_F(`Vu6Q&YzRMdVD$ zuTZFQV&Zd^HsF9xDd`IC-Vtxv{G%Y(mQ~}#Vg6q7LnVTrNEOAbIc#=>*r%|E3?kgV zlhd9_9>AbkKmT@5KhYen#PerrC4r`OJQh}tROkqi#}~*1_Bu^y62{!L$Da$CV*enQ z0!E4Fh;K#nD%wC~tc5btlcvRuarZ6DihGGuU)(4;^#yjEICYWHR|{&!D)GP5=DU9#?5@ zenLvW7o}a=o8&K*siXQR7l2FhS4OS4`$|T%F#A9n7P9G=bAR!x1yL95UX{0Ry5oQQ zsZ1AqDa{L0gY|;G?Us@D!jr8vb}voRp&k(8otW3%BA^Z?KN0_JkupyPF z?;`UL4rJ?=Y!y*)La>T_-H9TC1SeR`5~0r#meY~aDY9>wlBm|v-k;IWB#1lT3Xq8` z!(81vUJJd{xV+fppHAq`Cu9Niz9w$A;zfISB~8`qqeSZua{SPwS-<#;zsR5cvwxO9 z{ipx*OJD!hU;S13zJKZK@4WL4uf6sfzx>O;{GWWRwr$yLHZT1F=AhMJWq??**}_)wl_v zcbKOu%;Q@~V=Ucz1|xOI#e^owzH&1kah8LWAQ_Oflbx}xMRVDnM%+|(^xa9MIgfNF zN(fn`4oPS5m7sTZGF=bmS3ei_weBEhGO~Oz07xDLx|2YEzsH|A{KC1>-NV4-pC?0N_ki&II27J+h2P0!sS4dGZd+eEi)G_~{mV!lz z@5C1xyX~>t7F8#(*lm~4D`G_NI>A34L~>|1jYy9|qTMtd zeqPE=6nS4_Mh!1rH)Ge{`=cTC3qJlZ*9rK2)(W4vk4k_5g2nU+5+I*L^g+T;2V*~o zye%2qqtR0MEh;JYnofvYg8@E72}K+>JiX*M_$tHAGu$Li+HQB4LqD3B`;&t9EPFxX zlkl?%n>vJG#WX1)MzX!5x)m(0P7{D`res<<6`ECckRsc3;Ru~ja$wzL}4=kxUYK?`)i)I$8~ClLLMh!WJ&iNhS1U?Cronsg`~Jgtx-*n+Baez9nN`crC^@QeJ%PR zQ$3Z8`o@fZVv~yIgs6^PCu_rSJ;We}_dkN;3#lnyJYtk7NOtVk#*`RMntBeP2|vl{ z78(6K6>Y|dr(}?U#)!(~TKChO*ffN~QeRkHX#}Nvs;SRp!|zH>H&^(|5E2DR_hH;P z7waHlgEuYNrW1@s~ZVa7DGI#R*GbsV?8v4 z#l8fgNYM!8ok-)`dBUJK3AnXI|H;SuJAdcz@VEZf-}+r&k4h0&8p5~vfx{TX#>90 zY`!wb))CW)ehvVxKvBOJ=r1S9TM?xg&Bc@8Dj`;wHZuD}+6K`K+UvmW*GjsD234dY zS5n#MA3`vxJ2{ok-~3~dZ|xr{%(aGVO+SmYXOViV=w?ZJHC1G{8aIoqzXH`WP+oEU z-#B!wIsXk=1)_#-q39}2`Phz`A)(Fr|Lneo>cxCk+=|w+z7&E)w<_>6$Jxn_T@-?Z zuOhyTJpS)QTI8!pajUuhXRmRQ>fZJ=ja;WPVvQ4zOSCUw?0oc7c=j_HDnRvAv71c! zUT>JC1@Z9Um=~ZtWLrhHm13-2Dtx69u}6X$%bQ5K_8cBqT*^+7tOW7FG^d8?GtbF; zf%e4UGevVEi^A?r&+^-bi*MG{_j3BFroNOyqIwp{tUOnF+f&|xD@{t9mI+4l_5(Q| zN-bu^8sdCHD5Mxw4oSU#FeAP?C%+TjXMa|rTTlMswd7Y+1zg_|cYESDzCvFaa!!R) z-zIWOS)i})goQsT#e7{AsJcZzyGcgYQZf%#f8a~~KkN9zUMJx9UMsLx(4(2f?3gLWxXMpuzS4550SCX;W7q@cV`M$|);l=VVTo8X;b4dk&^@oE7xFsuBomh&~Wjts3mM2INUR|CyM-jlsolCQ;+<|@VEN+gb^i9G!|jh_axHP}YvQDG8C)rWSl_`XOc*Y9{tt(ktJ zk}o1-^R^>?sipsLg54|T-?d}YW<&zG16mLCYT=R~b{sYrxsPaL+g*H{)os>L-eBs_~`#TegqbCXMsjL3=59V40>s zmVW6WOWn>&d>F126BryNSK39$12KjeBhYsE12um)9?=%PT`Y%Ko9Ytb0dgs17# zD9M0?@qR(#HFlI`0z0mzAsn%VNot|{g#V6FzCSaBYzUDGQf&5Kx>`oUtByG5Fy26h zPW>=B5%hAD#Pc?yyW`{|4zDl0#{rfw{+k-kbGcSR##kVO{Jo#(g!POg>N;e}Z_)&8 z8^`r$n6|1R>?<`9Vlr-y!LI#rQletQeWs6jn7U{W18QB?AvLa@zGMs)GhM{g^4Np? zVhnaQj3h2wGls;990Krae2%D(J~-_og!KI>K|VXkMAx+GJq?nq;q*xBz~HHqAW89Y z4PPI^PG39(bmGyCLmxWnuva!=b0cP(!cH?IMXmS83Cw_*ZQC*bMmaCdIAantL8L@z zEk8S+moHrJX~Gdh5cK^I_#}pZBT=8e=;I5mDSjYV1)nBRA%YKL`gdOBYF$5)%!pCe zhTsMNoAAidh_5f?I(5J0njP0_7v<-BhuL+QT_8(#%m3&s zV0FN#AQKY>E@+eqgfb*=r9!vTEY-b|*8(rp0twVHjr0>i;`&0=5xS3(?GumRFUpG` zu!(J&rshfQ;Udb0qbw{S6&n`gS6IXYJ9&T!FGZL$zBTR zHcig0OzwwC#yCk&L8us$&LNqOsPW#SQ+;bjg~qsE4KV>mzktCX#zYa*h9f~vC-ue< zOYk|4KlF*num0+<^6c3&e&%O>X8fA>o`3sq|1E$2@Be-N)xY{zbX~`4wR)+8@$~6a z?%%)vpM1=sC@6~JcYS@p>{1r^lL_X-r}*bLn6ncZFC`ALUI`IIV&@YZd9_9r1?p@m zA6k*i*xIBU0btkdaU`WBYotG);0q(PfTqJf+hF!3+Eq!Lnequ-Pw~l$Smo5O%p{a> zn@sIPL7XY>zFH(gli*lu>3V zL_TqNr-gOK{Cz2Gq83SoFBRES=?EOI5|QGvNAC^xAd?mCptzGl-ziyOw3m^pX(8l7 zlQ{n*P+u4}Us{m&pq;`cGkdekQCrLOV?%oudHUab$OGC2CbJgTTC(4o3GM1Sh_|AE z!$WY>K)%w_A?*~Qh}4S+IudKk{=cq4Mf@g5wNf;hMmib0*JRN|1(Xv#YBVy6j!!|i zA#Ff}eu086*HqVm`9}@SWzO!ETt?)D7;lL%`AEVG>wBW1EpGy6|NC=@5qB}CJIfPB zPc{hsObWEwy8(T0Wa~lq0^LbI;!#yRqMKz}63AChrg2d&b^?Uu46K%L&Z{%HIK^ig zAMfCH`W8wg$7W zMJwMl*t^Y`IfOCj#hmc`hS)pI!z;-Py4eecGtY#g)pxS4#E70xQ9g)gWO&Y#Ik8Gz zW~GF7lw178g8Kf1=FBkvSYfw9?21K3bFUinZbEKgUZOe+0jBS72~{SzSOwi#j-F?N zg7$%I=U99caTCqqo`q;pu^`{dxxINLnP4|Hk2-rag~L zK2>CUGr}``mCWr~DuOccwgqH5s)A_13CEi*F-ac|k>$G%H#5{{W;D@fdsze96PY+n zp2#G#xfmKQ>2U(g@6!6$M~aQyxZOk~65U)jAe+~dnLks4<6e8}3qvp|>HXut?6b5H zjFEOB!DhuK?M>^1~Hqg`byFV6G4Nvl-o4hUzEiJQJh5Quuo(_|oD_O}miLPLyo?eIYWf z>8A~DYUvgR?PaQInslANo^q;^EHPM}CU{U^N*Hps3#qxLDepYh^T6T*IY-@8r!1aG z5#-vlO-4V>s2@7|t3druKtC%u`xdgfh_L*gB3O%?GBy^g>%jcOmg}Fc*uN6len}b? z^LKU1^%0YK`>+SEI6Rw@*JRh~Y#hqjIR*o-|M`sWDRx|s!=HxdI zsW~nv|KYwL(mK2R-X8mG&GsAj>86^C-}2Z)pnS3)Wt(wQ;P0KtJ;iF;OPQ?M?XldK znls=p=IFY|Ji8-KEBx6Mt(3^OyB-2U>a%m=qk9A=J~frRDDh^6@}B$?X^iQKz@ALk z|L#rw?{oa2Z$$popZZgL^PAs%>1%)CFZ>1GdFLJe#^3lGJbLtqEX(-U|N39^3%~FS z0DR{=-{GT=KH}$p{^$Qd&lMZF&~YBKZ4xp}Bv)9&fG|}d$imUK=oIE;F3zFI@m2Q1 z#6)CIp%7}qxCzNEs_mh1=*Ay+okb?QOc${GUT(}t*DDqVcUq0z@2CdpkcKRdXx?EH zGNhUIQ#}R%X8TBJWyfw(I&pIJv>P-{S`9Unf(Fej;=*?Pa2&9AmD5JMFP6k#y;&1zna)GXbwOn{>l!_5M! z)7U48zER17GNO$;AzLUXn?ch{TIrx;9cUzO60x)35R;yb{ zT2J9=ROJ|As9y9(IVb09`^A!QzQ}a~kjm;xI8X zN-(A%w3{|fUX76i>LE?m8u8!cnSA~(NWhs=979k8_TVY3bj(ReOgcxl>4}+6=bx-g zZc!4mWMb}5iBO+|DkUJcs@d?f@PpNYr9XV9L>CSG}w zFsYytk>~hP4t|P|5V8Ge$bX}^+*|Ew4%pen>9pMiWQbS5cgP3p?`W61H~D;;uf>_M&@pYpqO z0!|DvC!u62R8-^SBPt<0s+c?0bf zHGC%2DObsTH&h;?qU|j9pvYI!bX5mKtfWC1jggF>g)}z$g~+Ii!!XSiFK0JbG!FxQ z0&b?qng*Zzwy80>e_-fNBWmh|fc1i^BP4(6;l8LQf{i1JJ6so_<=;)C$W|I#%Vb+7 z*Nl@9*&rr>z#)0|5}sIU0a+(pp$L~&UaMpD+zo3&%p~4c!ZEmBD`)BzSi?9|0j?RRy7tNvuZhQ}{5}5~w28$=%U& zsug&Sq%06w*YMxZN!a^C--yiTbH4udufO!Q>2%8Z`T6+uzxWsbB7gm_|8>sJ&R8rK z{N=y=m-+dh|M@>K2`8*KaDGXw>k*l!%7QqX$XMuZBL?%jA$C2n@5HcEY5KPx;8P%B zwiP7V$J-+1p;roWSm!8Vs*!J!BbS(-j1Nm;0q9`4l+*BbIoPRJEu z>1Zx9RFv*-mb@<64lcgg;tNf4Zpn6m;P9Z=Xbof% zR0UAox`akOe!hnXzq@H7%e>15*6y>Ur)vnTtl59Q{r4PjOitj6B#(qzuz z9-eZzUodw8z1pI0w@0%%pl;__1HP#8;QW|uV$1(xzr%CFZOxOaM5oN~m`*K}uU$^)&vi*vq zcxEYYM2%runNqq!ad;q2(~w!3^GH1DS)3fO#;x6*p`ZpZ#%hWl?1%&L}U+3@bi_fU7KS>zS@TH~t7&CmCg^OlQA z!_EDikZH=BB+Jes?Mc8dI@~75>@{o@riRmRY4Ogy-I1?z<{w0=Ymv{nLbBHeT3$cX zf;8_$=H@E#!YL=ymSPpDp7-2*y`a8I)U6tt3%Tg+R_@>3#gzSn3^$QADmw(`-`fzf zDg9Ki;^uzF^s}Dgx)U#`QlgH~j16?vIYOC%R@nVf?Vx->wI03RK?wK^z||RklBb(VPsk1XH&4j6p6b&ry7iRT zNz$dEyc4r|z7p+kZWW=Bg`iv7QNuYD(rzMCh4Lnmn^HzZKS>Kirl_7lxD)wCw@7!c z)S4nD4uVPSgv54@6y|E=oeKsLu?=IxzkCfScv`O4Cmb zQ9-fx^7e~k=X&U-^{3Tnay17>vFiwBN=em9@V%2#^qjrJZd;b`TXY|Ai<0blT3Ajc z%rJI6dNC6jM%N49-Ulf*P8O(rO;~TxCrjdDiowC}?E(KIIsUNL2>`S~O;aX=_fQll zqs2P|qx?cmCo zoo=bfw$dHdy(}$<`_i~5?nr(TX}Z{zO&$-K@<=!GsQs?bL@MHDF%^h0g|{ju&mz^0 zqnjCmmF7>#kzZym@Je#d0XTWYeg;7cXO(%LHWm!t|n)u+9A09yB85 z(2BU2N|&?i1;#K;LSmFj@9zrvE8z15CVyeaAJ$r-iX5e6jfndLYC4f5`-DU_E|*}) zwi8HBmZjfEq`6mNxLK4~#Sz%|;OF=Kd5{Y3lnW z#a&PFp}=ygPVSxkRHTunm8R(Qvmid#g`&KLurAnq zNux_gT;-TrATPu9t#gmH9+x~O(F)32KhNlvk(;k8x)V7UZ{I2KB{WZ_%-(GIKVN-| z|NDNzUAI8h2Ga`iUuS?*bd6;lDuLLfEEMg)?lc62QyFG!Fb(Wq37{gywGjZ#dpWun z$c-;c2qpVhrSXz)RR3SRWgNCR4A zb-cBZFlL*YOS?dp<2GQ-TYJ{0PL<48r%KJ(c7Xmu@HH;@*Z=$lP1_~M%*8m zeD{V}2@$S8tz??}#K=8ye~`?+2lu27@j+ApTFC&Q>xp%Zswz~TVT>UJ`?<{OU&uz} z-~5|@^U~kTvgDV3>6iGWU;3s0tjCS>DSlaDoQJg*^3bfrJh_t(2q4e!7jsk!2h!WU zpbhUfVoE)kqYe#WmsVD-(fb;u6mh*t-pvKRvV_v$3n?nip(7g2_Ejy}9CtaobC`XL zYI;zLVpT~1;Wl|ql1@Bin)R0__=3dfmVa}lqMt{~8~M7=(`a*=2o$+=Evj43=5^6x zzL*NEooElHPduja>|PZeVtXb!%JR9QJ5_XxFfLTXrlY^?=~g*WDeNJT8=-8t8Oe|( zMmyUm;zr}opeTEC>o_z8t}9WEf=z)hBYqlalY2MbYr$*uUG~z&7BZ+_*>N(hxteU* z_9ag?bM_xCDDH#@9*aoOfQoEyr6K~R8}=jvujK2|`xP%^5{leu>; zMWDIeq2dfwPB#nD&p%9#JoD`6X2fb^V zeCX-VCiL@+{QZN3l`SWtJ9j-Q%Lwx+>iO-FdZ7(rQK7w;;ycgq%Zlh{f8-mHAJ#en z$VQ~9j(^Xrc)5IlFi6zodm^>SP^N+;^s_>W!WRsBs;WdHv)#*DGdUsR#5mj*m^Nu_ zo!}N@ZY7wo4@V>-Bp`vMJ zgi$(EUlbf3N>d_V!}7ZaLSfmyR;Ke$nis}NhrgRCqKU`!^+t@(*-rEu^`#)HO&!zp zF-OTKofU}ajEi|isyJtz0J6q)1s?Hto8@|}l06dOf5 zm(=v`+=GVVPW)Hxg~#p;9^H4&+bpGfgw zdb!Tq3t5k|ox@ccpKJQL8b1d})W6DL3Y(-gP(D4-UR2ay5*b>ND<-uV(p9?mn9_>B zrweQ!zFv)A=zs$em4S&NJqXL-z^UsUa4bG%AdesmrdDYd^D+E#gu>z$h`! zq_deQdTKr;mN{WsNcXetAj^-i21sCw7dkj_q-*^V9zV3TBC|4`?|YG}oGtP568rcr znbBo>8JtTS5y=IMA<&!}Y@?{OmVAY0*Qk@FWHuFo=FVH3-L89K1^YFhZMl-0_}N$n`@B;GBobQ z!zIPIGzp6P2l`Lv5>}e-gZ)L1s|~)?jG`lx6x`*Pq z!N0EflhbeWZ=w1;TOV=Bw2Zi0IMKnn6n2G`w$o5KPp>G{1tB##o zklz{>?@1g&djidcY>@i19@T4#l>sGG()JAcxxAkUu;}sH5|uPAx|t?BMDksvK9}`( z^4yQXvDzJjXO)LAQ3*$U#ATZo|BpEZu7gAXf@r%gyzh0 zxHQZjdy2ar+XPIn5^+Yc`_cl_ij1ncko0p2_liuO1@`wfhgUr+7*v$R;iwhQf7+(v zc}OP}%7$`=ekR?%kVirh>E{Y`B1t5l$K6~c5I7lm9$qP_&m~3t@KDGTlTV~G(4I2p z3+Q#m{$Pn88?*-ZW{)};%4eGDsf=_bB^laPF2zZg_}C_0Y!MDO6Y5>TbveUY&!p(t zBO9^FW05x14}x^?_J*dd`2M<}x|1%C?vm#9L5r($CQp;rd^%vj6!oiO4s9+CAq&uH z^mT^aE4pRCPXe1SE2^iOi~oI%JDqTNMG{A6pF|Et_~UPMLhXlU$n8qFf*@=Q8>w)s00pI!#EHROE3$**=3r?P)G@S&QZZ?O6Vf9i>^?!Sq9eo5J&-)l5GU#JQk<6D6yU z>GKlZx;;qY<&cR=bEZ~@;-*HzP@i?^ z)sDE^6J9yPO*8tr!R|cezqNhZ^_eLYSAVLG1fs&4VuH|U~( zq97(yy4vhfWg(tQ=ZH;9)L*PL>x(?%W=9MLwU`qh+=CD>>zY`nG2qD@iVT$|PPE+^ zhN$m|4{6lEZzu9#7tFMee(tQ$L)tzp|Wu zx5n%{y2V^bSi4BKQ0yOSCQl;MXMz2d;Jfpy#YmzXd<*rtz#NJj*<^GlDjBL3)6W$B zW-i3dDA!GS1NztUw8@6qCxLS1*}iH;uJn}-wYN+@lZ|;lm+;`?E>f(7&a{0kCuGtT zs4o?}*PvJ_xHI&#lru8*=#|K{o7;j_ZLx?~L-zuwIh;$1yZN07wn>xEM;;HDgXZ>= z6aKH;{~M>vJ&!K$_@KSOw}$Q_LKexYo}%n2Gso@fj9@h7Z3=u~5_nOh>oEOPphC(=R&SLl^9`~MRQn*ZOCKp#8doWv zf5T#G$zwB}_(k_uHf6fV??YlCAm2x3A0Due@9_7QgxpGvnHk(XL-z*N2i(L+!{lOu za*@fCUI0b&47+!Nkne>W%h`#X_gbTh9AnH#+?sr{lXG=8eW{6O)-~$T9BFYsaHvTo zKD1}ogx%(IU3Wjy8U$Pnis@|7Bx|Qd8k9-b!R`g)sDgb7SKAlzenuk{$S5$2#KH>(FLeV|3Ofom zqI$V0w+q>X^z%rVI|vF}OGm$(Fm5DNuTZ@r+ek++o453#Km{#K zNX#QRk!Yz#6TPBG^71w1vaUzeJ%$Y<~ZpyC+dmQctk zg__I?H48+(VRTAcR&qm_WXV8&oO*;@6AF>oxk}T{73Gb236p9XkFK3eSIV4FTI@PV z;b*0YaAhLR1TARkE}>fE@cXmL%r3+&dk9nx_PI!kLZOI_LhTz&TguvzOzvjaqC1bR zMW-&_3Awh*8}VQGGLGF#(}{dESZNl-gvt#AEjHnKeJ-*sCIxzc954nQU$biH2zf zjb7f$@1#DrBSKXBBf>KpunCha=6s>g^mB_VGNjpp2{)Ric@-ovaf{MjN$;%%FBnl6fW= z#m${O#%wBow*oncMyGpqWC$rGPm-?I%X*&(bSSW!R+>>|mQcKdw!c53UfW2k6mBZ# zwA}~Uyp|-8j7S9SK|Ez58`^lWz42Mz0+u? zWkZq6wXA!RtQ=ga8Ia~~CdufR6?>H_ddvq2EQDF*?HlCtzgP0&T>iGAl!1m&aE3X@L-P4{d>E??1N{x{XF~JE;FNXGh9*zK#VZdx& ztlb#b+idUAho0DV5~5jJvUNi=I?4DIT1itVWQu-j1^>J02$iKh%`mkB7o-^%Be5*T zNC09KDrCyOQ@d2#YAsWgMA1`iKf+nYx*>fJN(m6dis_yB@-+4LI)1b_B6W>^@3Zum zK-kw(Xk;>44j(?oTwYMWbD#3FEj)gXTFi)LLHngkR3FB0xFK0x#fZJ#%OcVBgp(QF z$pY;Is%d4z<6!dsTAo&G(Rt@4Z7`ykgIvJRa_W0I&woZUe;*$Gs}+8l<0`}9Qf@Nk zts>tCW*@hy18At8N2ZU(r$7W(X{wt*_R9ueigtPXsKE4*`G+CVa$xtGqJ6Wa_@JP; zf$0-D3G$6jG6X|&8FA;mNOZDD_0<*ip`iTr2|kC_SJT8oMa-Q92-cTzT%`I_Pj=ei z?@E+Yoc+1SJeX{FV{*eUU%$!w-2=L%#x@$=%Ef2*N^(uANVw>DaJAy`_b(}~4Z4$# z?ZxZ2+^lBw|Hmn69@u`xaq>+|c^8;|A{&A7HnRD$ru^f#tjq#m4mdwW^T0w-BR?G& zO}9Nl4V!!_xIX>%0e@>HVLpBD@>`Z{A6fm}eYBJ0+K>s8y*-sharUV!9*6rHQ%ACG zq`Z|ZndjdqN4i+Ph3a`2Nf_-?OVQFx;TQ@7i7=AiIdt!7Us*CFON%E&WA_E7o=Ep1 zVf=>V>1Y()GAA<{Q(GC;I)A*ut+vG31pnX+{lR0xdW(7VP;xYqWGJ@MozqPZ>(4Pi z{SiJ?RmtMJ-Q%9$j9<48u4JvaP11`Pgqgm`Q>KuStN?3pZ(N}phuSyN@mb7dv2Hs0 zFW*DCNbz_ho7uXN1Z%A@2S-$v<|4y3fz$7FWOp^H?Xl0diSQT4=kTS)RR+DQ(9Vy( zf!SxBoR7;i#_tTxy#k*r7VqxSho0h2vwJn??!UF1d>7^)wb+9mH_F|@(tP6{A>Dk$ zGZERpxeyIZ&4u_fLS|AhC$yEM zqYvoKU?pX_dEm%)7X3WZS4n=FDGv8w_0?jeX4#!g9(@kO-Firb?#~_NvL)JFBnnRc z?e-gi{MIo0M9k^Fl#n$dtlyG#KEFE>_VQ%3z5QA?ZhZ0;%s-Lo69Jl2J+2o+R*Cfy z(+Ai(Os3hsDwFud2fY~5=LTB`Layl^ouXW%d|nd@%l;Li=-FEG9P*XJ7edm~K49;9 zCg0!TF6Y$uOR8{+*;eSzlWluKmayY_HZ~nhC-P6V-AjQxDN$Wdv6BvFEOVG%g3*K` zLxq6eHpC*szV?d17BV9cmZl?Ywqi=1PKeHlk^RScdV23drrj}O9^XpRymN4ICJl!~ z=8VO$bn5RfaT7~^G8O;NXHQ3Yq)u5tF+YBPJejk9>y+ZQ6Vz{JiJ4*kNhe0~c`;_i zRL@!_pL&_fWS0Gv!L*T!-`t}@g_~IVIczFRd7bVzC&zGKdx)4OviMLoj|1jU#O_YTqE~NM{ErCCKF)I9CmL+q7CGCB8QIm z8`Nhdlg|{J>5T8x8C(|_4}PWzrKTtxx1TM^ZY{HGX>mBjx0v(s|z5m~r-H-G}L`=DzMGZ0(PoprL~pMJ5xw z#QLr>347{~oy?eL5+nuqOk7FdX`fIQ96DCO*iG-&gU75p?X>9low;Z z?&Rl$&Lb~J_ljmyQ1tRU5LBriAHQ8F@|{eaTxIE|1HM$yqajPbAE$_|ysu!=bZ7YE zhXsT&+zceiTKgdKs-Y8oK=7?GLQoQVNAd~;>1^wSejUhIp)h!K3Ne(TPlq^$ZOIhS zj}t*vmeTAmGAT}mPAACEv_iS~u|B-WBBJ-QE@&nH9Rdvp-Fu8;)JA%&wJbY?{KlsU}P^R4aJu zA>eWdymY08n2l13ex8rPc_8PxFCy((HX=T|xgI9~ay=@767%FB(Hc5@+C#S0Y@W}U z8A0%l!Gc<*ew1nq+3Kf5hc%88EmDYKOmZptd{YN90!HK+-Ap_n!KSYdAFJbcnPE{v z$O;a8R4AwMUNNeuV|oexWjIAtQfQ5VYF=K`FvSs4kV@<7v9p_R9Nof7QIQSbuh20y z4UD3j4=Jl0!v=@fl9IGtHP8?vrj~A`D`kVFT^zGuhC>ZF?n#k4k?FHZ_b=rGruJwT z2&F~Gbp8z?WND(O(q>p5Q`Uq*#-)4;YaP(zNs^&DH%>`akvt>T2&(o6Lq31pjwl`* z2|jL82%M}3A-A%z_`yRZub)f)FJr)}m%7LyVN&&^B$T<_>s6{jLKFx^?NEuTHFU`B z!DD<7S$S^9Zh5eBPMAiD_E0FYLrmE>j9y4z!r{^|c`m+DcWMNkT@I*gDPp7L1=WIF z8`&0^39Kd>`JRwRLLTvxK-h{@G8l+?AONaY$KYfuXz;4)*ms85Nn;@@*zHR~(D=DW zHyXRw^ydx=N8Bdk_Rfm$HOl=~3VNwcbSu-&-XH6*7sFVi1`1I^>^CK5W64))gj$FK zM5Y~RNqg5Rh}oBE4H#^dojmX`#g(;KuKf{#o|6cFk@i$35`*8vG>o2=Vd^W*<2Z&@ z+r9k1FGR|g)iSw?@;1|ZQe#aqG?s?(=}i(XkcM0)-ew&PG2}Xf8|2XSK*-(xTH|O~wVIxyU$NWzu2X zG_((=5TZ!4evc#MntbJW^#8cQUCh|NwV+rz;XWJb+%;zky-+k~xfn-Vxcy1+lfc=x z9Olr`oMre-Zlof~k(BbjRO}wfq#;gw^wv^-oKxJ2o^hDaOdogDml^v93cFX>ouR!5 z1P%B9XUPrOyh)NuDBANtoOsNQ5f4Ttk2m`y(9IP6qQF(@V*Qt=to12R?kk#mj?35Y zc6N@^9sYbIBBmMTA+;JIkkhvO1x-jU29^nzqze1#YHj z?u*C6RTlS3!+&-5A@6>AiSA`IO@#UPE&T%8cWNfTS@GcCAK1QD(k^9z2^ln(5pz(S z{z^ta7n<1QGa-AmrvOTVpIXQ^J=@nZ4p$=KBEtTGN*hn<7NHbPZ!oQBPC-WI!7!%U z`$AFP1+;_pn>nTvw6CiKv#NbY<^$PXBSAq;D>uQ-79KsIyEi2iqW#Ri^C`+`+-vuU zDkBskXCrb9A6su^At?$})1hO;y?Rb4jL_Ud5Ra7eVqgy*)nsDW{xLpcT@xCQDhkZK z3+ZlZEpn3(Wo_u4d?rOsm`%|88oVbgMN4m12g!0c9F9$g*_4=B?5dFvs%e2vO^^Q3 zIo&d6^3ev>IkJVAlY`Z$Nsh9b=RY%}n=8)0ondOpoNyCEeXgNPKCm96UYvc%U^e_-?VIB*PMSdlGTCd->}#NT>M5Sa?vH}CiQ}! zqK@N@@BaTLxh9|f4;hEIBa_dxm{J!K2G%cR;-P!kzU7Hop!_r&{ZidB(w_v1=Q6n* z!Varj$uI$E?uFEW6^c)BE9Ua~`_iqoZ6M!xlnZ?Pf69qAa{rfOniMOdGBkNX`9dD2 zZpB|_>Lb%XYB*fU8=HQ5l&AI!=uQIdsT3jER{l&M2g*A~@$rh)|9FqPuZNU+tj1== z^l``je!=#UCff;)v$~PuzCE?0jK-D6DXsF5Z7d;|uBB-s#giR=Ug9c4zG}xL^?p&X zeS1o=36$3z=4MOW?os6hC`IvXPbf3G(-Ko3Ta8oJdLU}?kN|LBk!%FoIyvG1)ma~7Dry! z`zxVmnwLLe>_K6FWy;|}#yAK>GcWuH>JUu?Sv2(3YfoV=;pv5 z+oE;AMa9|dz@ljQ_V-?qEVNddkkwO>qxExn|1k^bPUFkS^KazhgH6GT*)vQ1s^?%L zv+v7#TinTXL-!F^nsncm8e#QyNBP+D=zpo%zFx9>Ra4!1@>S36*N(sAXk;BRy+~r~ zbCaZD(!?0<9lH0--)qNnD;gnkhFnwKN|UI$EXg)z1Y+pUp;lW7^UcIZ9S3Q$244#C zEfhwsfklDccIdhnIigZ1b2-))#|z{0%e{Z3HzKN1KNDUZ{k=?M`GDp6#VLwhvp{M(}eX zPh5U4W;CB=v`dAXM6$gwvZb>rlNFUZE8Q~EU3f9H2PMhsy&&|W8A6aC+eQu#z%3oh zNrG|nS_e*X{q7k`N#;f@J<3EvYd}Y`lNRSo`h$G_x|aaNtZ;nu?jcQ`V@?(Byyxxn zTfTKYK?RF$Wcq@FxVQYjpT0%hNjE0j$ppxBl0_GKO)$`&=2EQ9AlszwMLB%dO0?x? zp5n$zn55Myg*J7Z3NZ(V!NaU1*ho7W$qtj2p?j=?OsftTntT_jt{u&(yw7YOFIG`p!7mx8!q;tILNFlD2tik zJ9{Uc4twn6#mtN*_1N|D$NU&~IYHzlRthkbl7!?G$fT^1u5po}>>QLrADWab8_=DT zj%PBZ0y3`7WbIH*CmXvw6A6YjsIru#`!)p{!g#YVbuThK7nptO@uebP^(ZgID_dLa zL1VfgDa?JuBwxeeL()D?2_}|crsK^j7==#02-C)t86=M(zAESzvW`uzBmG2=Q-EMa zMyPusH}zAEFT^uqT1E9Ng?(mnErm=1M@fhHR}z zug5Tn7_RkTWzZyP<+7QHO5ronymt%njHyni^z}%#OP%LbC-ze*=%N-9k8&`17LvSG zNnxSV&?(6CYnO1F3xj%ef@xv;u@pDNVJa#?ZKjV*p9C?Kwt{L0k-(@ZO{0FM=?XPY zOl7kmauCzSaT5~q6m}OQzLK!J>c(RaQZR(Y1SVw)+?8oiH1ackB8cw+>p4ugW82Al zvq`^Q6sW~aCMPdW@O==;1qcmFC#gs81aobSTth{H&K10nKlNjExDI`{k*uLS2c1+E zcPa7OYH1j?Db&qc%-voBBV&;7A2x0w5-Ll~H2Jz?!2HI{;3rllW8M?Xf>>DUSLQ^k zC~ur(0wpihp!o+;Uzk3UZ@k<)CgQ&g^)bNIri68$33@lXw$vAjekSLX@({|1ZWP%@ zOQu-DZ--2wJK4yzSCjM@a)J0#5$`orRnNCSzK?k-YeTkC_)ja!t)Q}fA=h0$7kXxW zC{VW<#X8+{j9l+w5?FWTxGwmo75`B^0)#%b`LZ6tHnxUxrza)PrX8yExKq%b#qJfw zUGni(X>Cfx(P(5!Yg(9nq{rNo>{jGb-BN0TdYQGx?(^|4#{1YKv zNZN@evAKY&*Kc`#Gbija{8^883jHLL;(jTK!^I{N9<=RHxa~bD<=0c?|J`|OJZ%PuOb%@*8J(q zZ}aZ+3tBfJztJcs3vqsHc+%V>Kgb1H-pCZm7qYRTmX5>jp`pGKS=js|xlr3v`7qrC z`uja^JbKRN*B(+`J3!-

NU>NSnb}*F@)t#eYI_@Z)sk1*)2ie+`>0p{_Ca zE@g89f-;^K=(`=tS`nrx z)czRqH2aOuWRg`1kRaw6S!O7$cuQ0-l8UGdRE!%C(>P2U*gq_ArDgs}Cq@3fZ0ukU zITwR0)U;_MaITp?ldPNOqNJZ`+NEg6+jE(UX8TBcqUk5{SlLFg_^3hkf%>YTpNT9| zcam*jYPktco&^q<8eXmOn;g3`V{so+Ho)!?KqOx)s^?Iw0&XhT)6jVh7O-;j?dNKw z@8~{`A%xAPm||5cTKIeyC~wrbp>d^5Z9i{KQbMJkyUG@o_ov6_Q!{MJDU&T}#L&gp;Ez#21ow zJbf(rGVN(T%5pQSQ3>a*yTIh5&A6%P?oIKP#_m(Pb0%i!AyX!5$e-|u#{Pc;eCFf^H`koJx^Ke$u%?-={culxnp(Yi&ObU*s zl}wW56t^f@y_KQ+$o>D1k;Eo$!Ci4 zRwi}pw*!9enSEa-ma+7xUB={z5Zg=#y9Y9DsIKLD*}RsJ@*8Pbx+%Q%@HsAOp8apH zl5J%&Sv`-Gw*q=l5w8E3p<4#j{RTRN-(<`lYpQ3F!vkq>cK3U9>3P1Ljf#cY`wI7T zM*q4)opmg~ykoVQz>|t>A1R-v0DyRI<6EzLGW1rpz*kl+R^-tS=<5 z%pM~9ha$Ot^}*ND%p@7U z@wBg$2`jEKwV~)7-Q|?s!<_jiimY*R?Z=2tft{-9P_t4RYd3ee+dDbujfUMpkk?I{ zY7#?SZwc-0b6s~o(i@Su+Q95&3>o9>gfK19tDPA0W|QRR*FqjDC7xb|h);5h-)nfJ zqUhh^v||6IWtvDR`bCbeEIyyf1jQaH1>;5}6?|?{($6f1dluVBpcu&G1S^GWw~&sV zo2DId1CwWRqq)8(1?V*6}Dod?w3qEw_`de+;DfBxam z(SI07>8=31YnniKW1nKv86|5vl5%Tlb!O zPrKXI&hBgSFupnWEtwL_hFEfy7jRH@&)IwJwbz<+d}I8_zscgngea1=YQse@-kB1c%o9oOk*1nzGl0`D=ie&>jArW`1WO zZ~ktjCt-VYKVmuwb&W=19Rp{h1kNewk4Ie+(}px!jS7CUW{$=XW|CnAvQ;w&v6R;9J!&Sj3$+uDxAI={ zMd}=UCNxARE^#W)Ct-9{U^YTAjAcFvPetEgP}>7IC*a+DCi=_qoVEWb+2*I`p;s&H zd?n!K?OM|4jV3g$3>haY=mz5TjbtSh8T$U202D?u=8RwsF}Gy59oa3!B1b*A$8f$B zozSim$D$%f?^^P0!_hJmx1;+D#$Zff3e;5tES@<`7gI{RxFwAyCLkNp=AO`%OfLfP zU=`I1jla>8rn34V7pE*Do3}OnDpI|cLEV*d4`qj>M~ZO!8BKTU`QX>zz;udi5G`kW ziqMs{g!?Klh<|aTiR*gO#bsNe1sxuH)N#+f;~j%DY7Vo$}*+(x&+`;)_V0IGj6Q zuyqCA8I%#wMS6z{Ln%%bwvE_E(#}IBZYU$SS}qP**Xe$=SWI-T zxu&_Vs9!<;@qn9I5r-x5wphu@jWVKQ_8^%8!RDv{#jTU|Yo-Zj5@a}kD&a=1)RJxS z+@_GCNOdiTqCPJ~n3mi#X0JWB?^>GsaiV4|9*JAh?zToui5 z!y)6<{)qZo(3tM%hZ~Qm<0KsQx%@8KPPP`h7fWJ44`e^Eow z)C%1R9Vfr?wC6QLExz9Na!Y)$n$od-q3Mn^lcv*vP_tF4pp$5dl;AeO4Du7r% zwuu@LB7THXCAym|30n z-6HsnMJ6smZHna#VOl$fWko0?^`3bSR?FA8Pl*1NlEiffdT^i>VO}y>fLcu`EW=VZ zu)|CXm1?K)rGO35sAQ9vENEjw?mLgqGloRVP+{Drj@twgk@rUddw!sMF&9eGmB%!J zd@W(DF_Vpln={#f=C>)^NGnV$iS9ygQZ(<$^`Bj2 zLh80vF# zB?Pixfo)AP1Q1H+P>-e}cXr2Pu8{7W(5Z?$kYj9^#L81)_VUZcOcP4OFtc(lbY64^ zy(8`pXr<6yDSzJ$a&8$T^sfkN)H*edY&y){7KpY3Yl*W@p!_DeJhdHk9pP}0Y=OmW z0>h@E<)`sc=J?YE#(P57Nqx0eOfE=UQ6LVoWr`+QrNbRPrIoO`kQwZzm2Fd15UPy! zej&LqyN*~|d}hct5<5`7n&YdCVUZ;&jPxK;rF+{&vK#q~qt(guL|(S?(wHhO>E?PE zH==U>7B}K>*PhCARj==KB;9Esf3hcBFGRzZ3kOjEghU@K6)Xozf(xJi6jvdGHVT_uF5__qEW~y<%{N z;4~(P%U;M8!%UbUZd;%$$LU))T;I%4uL?{LL^wI$keR^c%{>7?qOcj_+)>(q3!3#% zu^S4aS72n@Gg3H<8v#bLJ(COHunastUGw5;g>8hHI9dq13fg<3SB)l4)UE2Z0H%j? z`8P9jKql{JrjiSwymutin_#6LiB?B4>xAu*tcx@GhM1T!_TcfAoEc(LkiemZ!j*=6 ztErwA#7yY@$_G@_Vb@|gudg<8U+0<7xc4pLc#fNA(?Dx)I}~XUah{kciBzTN$&{iy z&B-&3-qpey8ckp9k2YfbL=PhR&BuiK0=?c7+Ya^og8U+r!Z6zLrqy%IEF3QZDIV>; z65R)?btz3pkqOGwIBW`yJACe(s1@_)j%@3&>ju?12!X1~31vomzrvStz-3!c{(8r7 zZ$>bh>VsQ~Wko-q(=Qdz|8z}x9m#f)d>bg%vh5h=hTTI=v5pj*!0vHQG&!f=aEV$a zoMLgckPx1H7cgC9|3Eedb}u)~;ele9WtcvrJt1+C1-)3mV<$mdG(tPttt)KqSsWeM zu2&RSk;4PY!9Yd2CPQ0k__N&MZgZ*^R?w6P`#0qRtzL)??{E@u?{s8!Pxsv=dVtx_ zUeh~^|6lUMAGP6A=( zF&jx}-Tv{GYS#0a(<}Bv&bBLPzITuEHgfs1Qe?7?3?w0s>>fMHWB`jqZKjF@Fz1==h3|*)VX9q zl(R`+U|NSAyg1-w2GhyL!ye={xVeOX3jI$rJX{ito?KW=8?d{c?lh-4(_-`3M}~#L zXV4wr<@g+ZOW{A5bM!sgx(!RqFgI+U%qG18$j=(7k19$~T6Yp=Gyhmz`VRM{G4IbE`D;sYEws>R;Ph*rZmH>hVa?`pM)f)u$F5Fz*pfG* zlMYS}W7ERoI~HHeadnhGOOH8dvQ08-P*8s}pE6057c_U6DPDc0oEoKmA*gJ5$@G20 z652CGc`42{>rYGO3dpv^l_t5SCCyDb`1`rx=8F2v=8xna z{cpr$aHwy6KrC|X<445(f#{rA8)p`^ZBcC}Af|Jo6@iJm0zg?1t6YS={UDpw`F+WL z$Q49QC^Lqmg6_ytR_B<;(Vqx{Up?CrbIY(Ss9*NXp2-#rpm{ul0Qqf?_HvK(OM}lW z5Kf?sPYuQS)mDCeAPnkxEeG#n;ORuk&JYSzd>3Q(rmTx~h=YRJP{$;YQ z!gxh@)?;j-xh-MP;?!lulxzfJvI{YMxa|J}j~pHbic0}hNU@I6l>X@-o7hL6y?Au z0bEA|oR9-S^nPZDEI)9#TGN~v%Im=VS){m@vuyj>V@w~YF8b*@l1KoJdwhcGJm&Qc zaXG`C%&@l&`OS`yohFyoD0QLhiAM|EQ8k6LhTAp%)dllkYvJ^m?#*M0kJs?}N{pjo z|0CUYKhc8-MkYo;kb^@*R4r;&CFDlQHe|HhBnirsb!8kWEy;dwbhu!MkQsa_hhnyK znAV94$)T0dF(vk&BO;+k3s$A>0&0>KV!jLbLQixY-Ae(`E|P7XY&|Lo4N@UaX~nY_ zBDO!=GiWb|(zsz5n+TV}akHHaBCZk$!Vl7LOT&@G=B2FvCRWjSy*-}6znKt;vdN7vkRHBWWo+y;%R9iddz zo#ilc!;`h0*osOs zqbo;M^mJuT=v4|oQ~0^?@lA6Vcm$-4lu9kAI^a-A$UniPLzw$J&QgGN4p-Z6>+aIs4P(}eUSGS zh?zmPgVdGrp3f|?%m{_S_z10}X2&!{z_>lt(|{7Ky0cadf_zTanT_0ZKGU)((|4PN zn8{jwwA>vtenu*jNp!7Z9bqG;8_EZUS;0`L3Axl>P*2r^D&=|fApc(|olNMt_93M9NzQ$;|*0hshW)ic1VmKOWsATITszQ;(=}t{{o*|Q; zk?o}6lJ8}*D0VX@gOBh@Ll-HfvQ@2<&{H#s@J*9Ii|lT*E8xv2DoJAfpvX3E3L5pv z5eEdN)?G;Y4LM^*P2gy89GtwzF%3&&T^+Y2rjOI6OS>d?HtDl2vb&%>#IjS)y}REt zW)?MAp&f>p0{fIuhm4jwF%I0Hw6o6AcF-8PFPsxi#2;i|`_uIB5+bT{(SOj0Rwm|| z)QYZ`TB${Ir<}jD^7bj5a5M%;cKsmWXUJq5CFf?khmD*8DjE?J4^hBQK>IA2RY)z5 z>dw9!trCK+gsxb2ICGNQ78{)A0yCUj?)igN%G5n~LTEget-<6PPjnY*L+2f51_ydoc-;_Yc$%QE77$e&`%XpNmhd z4+B{nr>*w{U`8e*1MR`KPKK0Rk#B{TXEvQ=+-0SFhJ)BJhj}>}FO1gz<0FoNsDqX* zt4rF_6bTTOWSlY9lMsn+Al$AoRfP)6yRVIr_=(Wof70V8dJu_EpJ9&91l>I(8(pO^ z>m8~t3HOiW2EM)}_C3)#^lFK&Yw}ekE2OT!3uZ}fLT25d21mXTKWp82d|~hp7G%$* zaQBZ_^efBuktN?nX3u+EZRkF8L~%1!kpAO185^GQKJi{Ku$}bp2-^mH{3E#G^2kKvFJ?ger3$i4WK7Ye;M z_@Ee8kzRp2a+s~5ywH@d73!tMbW(6Pr!#hb&g+|Vp}Ezbd@20bv)>aD-S&xL{{$X? z;T0c$?>_z4D&jj1sz7!SjYoEEF^yywxJnL<2fwDUooDwb!&PGSyZ9(_{H;c=A;e{? zJ1Kbmi%+m^I+HKHUrF``zhz;aGvAeC^-J+4%H0|CpC6IU|w94pC5@e zXDc^zcb20Zl&Sg1*S%QEZue98kUmo1O*0VbqV1_;IV7ZiHX%w9yYtzt+aWbGNa zc_3K0{=7KdbzeWB+N;UrA!LFeqTukvqk2XCLUVW+DBs$0xR_x#hVoL8-`qJ53Pn>$ z1EPz8?o@`XBH3x@n=}Y%m_L<+|L`!Pog%+Q4)m1t+#SjH<_E?6<1mH7jYHD@+z^#v z_9|eTz~X&Fv6j!ZIkWVuq=y+2&wfytK?adv#l}0XN3J&v2aRnY-;K%FirLdWs&|+- z7U(WeKHo~ynhaK=)znY-LglD4)Zo$WfNpxxG}a|Cw}e@apJnuK&M2-2@@KgK4l&}- zkBCNNFE)3%L+KGKp)Q8p3Xt*YDw(>Ze1O5h@d~c~DDKjK_K!FW*vAj1fh_g|p=mLn z%!e@=Ri}E{c7(@g_|lR$Ldl}Y5iMRzEDOqm3b)jEnbSp!9D%n}Cj&vvD)-)_4%0a$KTh>BNO|41; z2&93xln~SEm16gn7dNRJ`$II!K?y@3+ba51B$h(O98MjdfA1OJes)g#-4%ISy7@(% z0E|!u^hr-}is&`LY1F~8`W|%0hUcpz)F3v$!-Iih-ci`VFpOdrPr2x5wgs^<*krQe z-)Zojq4+4LUj@2%dSZ|t`dcsFplx!NU(W=z^wLlGN~cUW5XVgjUtORJNq#^1*$e*U z`3L;1|N9>&Uq@EIbb(fpmlrGA!9agEgtza?FB=aQm2yUgV~?6Sj{aW3>{Y7wGsWf| z(VCRkaRMAdCjG_soj`vi<`nrY9DOH{H38*d{!FsO@{Md^yM@8F5Yv_vWIHYPZmG%laz5104x)W5q&{RX*Bm}`N^@#C{>GMU+fJI( zPd?OMG*l|j(6dT3mTiaqdtZm;5_NJUA;~|Y)AvvGAc9FqL?*U^%G!hm`^kC}rNmVz zMq)oC)VRm&dT9=nlERxA*?RPjuqb6JbTSEQ7YHhCU-C=_-^AOrty~nN73(llsAwhY zBO!ugI8-#q!RNux6Zf#z6Tdsylyut4=3$r#!sd4tJEWCd(ngG7T)Gi!+wMr7-|h_A zT9F+Dk(1O-(&4Or$f9=Q3Oj}BblNT?{`NtrRv{PeqOT%umq8Zk&ON4f7!$bM&1n0K zVHqZeFTcsytuu5Mab@IUKcgF@2|-M1dd^g`fy3XxU~M`QFi8 zz*mAu!YDM25R}l)5)!Qk8Qj_vJvq++g2;x1{(2>p)IxamBgzr-yUkO`V9SYleA_n+xTWpzu{j$Tayb zOxrO13BUKCNGPI0=XwgY)PvL#(*-~r{YK&Sw3TpzoGUA6n(}h!1*>qi7Qu8%Hjf5^ z7IZ%<(zaEeuTQi=4~TDBD+^bhnMdMT7jO~@j{JZ(?YwlQRC zdQM+KNYo9Lwht;m*UB10Hkk@-kr$$qlTR(l&tu@)Fq7xYH>9o6-Ns?uRKyGdQSOBx zz>NGuLW(=7>#mUPXTJMHNSGPxr(`Z@C&R%+y-UtyzEt=QsWWLX95sL-ud%$5&uY>O z8ik)_Vwaf?a1ou0>4C2^0m=@&)RqK}tIo-WV?^eo=ulLM*i56-#x&NYG!K9@5-~(#L}~S!!XPvc{R|r29$ig1GGILH;)ygG+&i(HOK#15iG`f2mH5^Gtf*#~!0Uf?=VVf1IeL zwQQrZUBG8Tw<|WH-yOFoVjL1vjk~)qrS@xK`S<`qp363}6|s$2x{H=9ijFZEEJz)T z;+-DjWaAqbGtrf_Ud}_MCi~u)XOqLMd~w=}{D_%DKhfQXUd$z&O>6X+osehn@53pszM;zw!iEY33ib=w3vCk|=5LivlQ6 zA(HL9AROtv9%@BF`)?blWO=uQ;4*iknDz?a6lv zS14{jBTd2bn-V%W%u}dNC28xXhuJf+quqSQkzX6?XNtwgo_y`tJ;~`8VjWl9L{7fl zvwb6<#8V-cMx3Cq2R(U-7q?(q!|-!E7PFS^u435cl+QA{Pq+NSJ5TxU)jjt6lI}%8 zG*G;;qwg(#oiqE;QooE`{3+34+`L$#oR(UYdseeXEQ0qLiw9fEVqmk+z$Rq6^7KcL z-)eEm$)q4MsENzoJa)|P?>U(r2vPC;^%2ntpHxMX&8{>R*FP`MyZD|sVKqZG4I8Rc zU?tl?3PcKRDxrQM+o0VO`M2UaPEI_o)NJ0$*uEp-P_w5-!i#Q&w+rA)O|Z}&smX3H z-vsjSy@0AD%uBKhvA5fN>6Bm;^N$+Yu6*i9G9C&=wiz(ZKrxCG3zHl*6uz3F`-;K` z;Uh0+FgWz<8^YN!!@ZgeP}VSE2iIm1E(jjk37k{(1@85L~amby}0rwpN1(Vj~%Y5CG(cTBk% z`PS1O+Z1xDQsZ(b!pzsOc;*>ujjQ11i_)0X&!l7O7k5L@;gNXz+l`rot=U!+nv$4; zPuqv$e{0tQT7+s8hl-v?c}0KfQG=qq6c-#phou4Ok7U>hSwtgsMSjP->qIt5VD}zZ zTDoHqtrlx94M3)7SEAXojSPIjihf77%+gdG9*lHPFpbAFo}n(%<^${@Fn@o8Tb4BE zxtNM%itQUk5*G{IYxmZS>ar($zQ&zZ3`L^%+o~2V$v$OpDJ8T)tIHO+$}863z4BwzQKbwf0U-4`pAht&r?QCnP{gv^P}pga_>NOV1U_#F060=^C$ zeNS>iHgC&>K00&hK0*;tSzz`3AhqR0vwIWN2R~0#uK7G%w~Xzb$T^!z>b)J&U6QZ@qhi)gG-Pzw6$BYfJUq3aEM#@y7%I z+|PWQ54I!lGd}vxjPBfljuhXTvpos?!q0u5?{JUpI;XglzM{H{(`Jb% zpZR`o=nfgp=UU>dr`;9AUZeMtfn@raHW&#&(vYuH-x1;PZqM6qTyXKX9(suUj$}9*m8JdfiICQtGNTD;Er||tU~2RGRg*z>K)a#WjyJlF?8oO%2|rR zOMJy~j@^5T>(Qvepl&wAc}@T12)pUXUajRiuSz&Ha!w|IULUPwKxsQd(-Qmt7UYP; zrUhFG&s8bmcRE3Ll~VXx&|LO<72qWVAj2!$aS zjho%+Lqe(WDZH+@6}w06!S0=e!yG!wmm1wy;&4!C>KA6B445`jU4~@u7}!4)N>+I# zTMg5RBZV&$@3RWTwV(sl<(Nfb(1U!<;l8Fl$|dx$5NC_SL%9BuMR&qC&bGo?%--AK zy~e*UV$ee-D5h=Uuqn9dE#^f*7R1>rI?c!1Bib$_cm=5$@Z;LmrLe#ms8-XxswrO^ zLLTYwIh2C+zGAj$v8x03W_$Wz*km)5i5Tl~F30ZGXIk?@_dZOq7?R1IpJzH7Uvzkl4z=sC}eg3Bs`a zAWnr_1)+E7UZJz31u39Mk!i5q-6muVHXB8$?dKokOO2~F`9_>@K#;Cj`{s2p3l(+E2hnw4$F;gG0CJz3GRksUzu2LR|_Pn$Re{ zYsD%!x7dShFhVBVjn(@t(J0!tjxj@^e%_*oBxcq*+ClxQ!xs{sYWJzx^n#@AAIlM< zy=WS|(vuD3Fc)jzV1zGzxMz|M1Z*0NU8(S;Smw&GEyfqB6I!PTN+G6SSNEcWs$NK~ zi<(KR60D*x`+l&|FXc5^|CT_ppNZIYhEs3{DrUr8OzZw18+MKZK7 zuzM_-A)$yHQH$nrJn{DibR5&7HPme8fCyJVvK0YcPj_JR&Z9&I=7I zUH^1FvF}k;j#3#a&(U>+k&=aM3$aEVxPD3>vB=TuPh=mc#JJcsvgs^Kuugi9^w6D~ z?Ed9BH#=th6*{a6qB|8Fqiv{PQ%{F{Zwn3b3yve*K6WQ zU^wy#2#j=P(mfm$zK-}h@cMGe#q|<>YYA20c-EjFM>cg0g8-hab8go;w=b5M#lRPy zyufvadaKB`q(Ma9*H_Jg-WzP;@pWJrbn1a37uQRaio`D+WS|NV_8H1430urOv$F#s zD2CqR7M|vTnKmlfQA_X!^D3Lndxp6LFp|l-(dS@ynt$;3-xErF+NKN(*<2_u^e)lb z$Y#Utz`ZJH>r5CPPGOR+#g&@&RN-b)lZaBcY%69NsGJY?4_Nd9Y8Tf`R6gC4!eSNe zgBinIa$<%`dJ)sdM9qcr%3+!W!Yf56B|tOSlHzrPxm*)gbI2gS6&kWzmSV1eWT?5? zP(AG>f}(fZ81>UxI&p#&A?JkK)p_dn8+u*~hJ*-MOYY6E5bx-yJP_mCypL zlFdL7Ch9_UDap*PvbZWu`(>g@#pgO0~%xBQQv{4W2=(_iG}4^F9HT9kwL&R^2{ zjBma_$Jdd*_S8=;**1zJ)xj`-Dg(~`aR8^dx}D<(P4pUS87_j?M5obClF?1=Fi$J8 ztzz~<4toENBL--9Igj30^V!vFd{o@@H6LcDC>^mj&<|Sdc*oDj%NEtN^11j*8i?Y` zkZl1ayzgwQSUz=h$ClaIfkQth8cqE|O}2#PRb=)3z~S7`9Ygg>vH|k#$kP@-?qVGX zxooC}BM%CSwQRrog`R}{rsGcNnlmNU`@MXxFPOfzzHsnP0xzvyOJSE%9%9_-qDd&m1 zy`<1Phdw?c))`?gmZ%1)BWinqQarisA<>Gg&?K_&JR>~1$JNg-Ir?5p_R-~pj7AN* zi{$TL5bKhBS&6vS2(R2_n*BqA?jzN8n5-VhRP=r>t9Ly_x}~OhAmLfrE>c~|wxnBW zhB@>{fmlRh7Kpbx38)vVt4 z6MgFDXCh(lIsHwc7VJ`LdZ+{H#$fl!yFUf9g$#zHfN2b-7aQSW8PL5nV%=lPyQgGr%d$pW}N6$|Emsf6O&LV3}mnt}H8 z2<0Qi^}w*SG-o;aCJ0S4M1s}y3)%2y)=XkoNED4C7euokq#@A?wQI1u2DW=*5E?8o zO3ujsfZuE|Cr7Bv$oHpv1?Pyv09i(~X4<0uG(KXH6D}@OihQ1^oEmnLxk6o`y8ed- z5!DXj&e;!B&!BpT-VTICg|92@t6NZt?tUdfmlu1~p+l_?_=iin6N_o%WQO8Pq2icc zlWoP0Ib?U#qJA#4&idlc9^O?lh*Yn7IM3;hwB&wu(#Wde6Y1dG=@i-r4s+C_UzTJ$ zX~2iMqIu|;|G;wcO~;ErZD7^ox3U>BivhpS(7na49QAQS_k)Ev*&%X@vue-V%WIZT zT7Ku^370nu^hYIjE9daxkzs$HLu<%(0^({P*(Ms-oilQ9Y*B0j$Vdg?zs0w<=X~e#K6|H$!H|7W5(;?xkAJ{^$ocr<7`+%6%798|?ZcxTxBCinRS|6h zEmj`8>hZlHItXQ?xYXSH2adx%Lvvr4Bz+C;#6eJ$FRf5e4+(792>sL-hVC>>R8)ez z*WGDkSOv1JfTMmEFukUJ9mqEt_d+MISy5fy<-^zx)U~*?9?r9=?)zNmSthYH?7>sM ze<8Z)Pd&lSb6h1oL_gCM*PZ0!tmdFK=4wYQa+)_66XSB2i7Q(D15eyHa^|%iY_^c+ z5&~Z2pvC+t4vu(pD-juGNvsO|yuhw2lxu$a2N8X|g4KeUP@PyvFw@Ab%$~0&L3&)x z@yil@=w+=vIQgFaVG`nHmxr|W7r%PDZiq$3{+%Uu@5y!|LRSHHk0nQBwvWk5H~H@? zDI|a(AghYzb0>*!9VfaD2o2!)yN+NL>-TE1L%{9>)$1rhd`q!s^M%kY56j!2Sv7#|>50GrXzU-&EA!%V~;8U3Y9=&C!iP-EXnhqjjXLddmBbtIGx9 zqC^|$&I0p4bp?YZJY5otfSx&KS&vno|IfF7hOoDgMWR<6Zu2B^jV#|6B=hR$A~BPU z1-lm^`TkMFA33rs8K~SmGAts^Lro|g+*X2gXgHilOs^=eWcX`O4W@zeLK-SpDfSNp zZE5d?$s)M87N;PyGoT}fdnyGt$v`x6yLB&x$aJ#x$PQ7`)Q>V;siYh{9xg*2N^!vK@P;^?lODX%l62KqlIoI zs~}n}nHfr<4;>tk!TiwRZ`XoyX7;}n5ckvehzFrzsmuxr{NjrIDmmf!K&)#h3dvMx zJK`awr5g>VA{rxn>*EZnoPJs2OGCEl(atfPRG22i?(fiI?M2k7otO*wx6X-~VewJV zFt_wyek`teeoQwG`17Ob`(14%vnEL6Zd&=e@^YX%&TyrszVHHuBppb5D*B=7wMrT# z*t{i&-r}jJ-)p*Kh23cEUMwf0NjU>r(Ve7JVh6hiiuQhxjf9tNhe?<0I9wmjB`KNY zy4M{gofQyuWZ33ZpIEl(K`4*I4Ekfq@o|-=J@;T>@m+bX`Hdo5i&$TH*r3+(JC)ZO zlk%F{Q%!R&Kih0fvbTip;ecv2*^Pv=+6D%b^dsxE{kb*d8+q=YLO{~@hTuyFbFi)l*~H8l4%>Luj24p&-SshEH4h*q(EV&!Ll z>_unjBJI5r6-s6w$#oR1CR-0=>tWIxn#(QL2kdT!>IMP27M}pww9qc12I^eC=J1K( zVL2D1v=ULZ>KxQ1=KM@(Nu5|#191OLkp7gKtXvYS-~3a!DgPVzQ2l^jEtBzMY;a3&IawR%17o|5*ieYZBjci0>T@a4v=pj&E4d~XR zq6o)_g@oExmyT@P)0|hhT2OfH1SE(`uDfxQQeDVBv3aK?SeQLaJ;afK5~dLl!E}+? zYe#cx**#X&A6w#cOZ#3+e+uT?xzG-sq zpUQR${Yvxo-}n^nY~b;uYp&Nbd}~;JQBaMW_fJ4Y-hX%v=W^B3-6LWU!!k?z8Q<0_QXhf{dG@%)5~D3 z6x=(;ozBpm!(8u@-XsXvuM}#rkohI0uM+}lv&XJ?P?hNN41Vy3-*-RJgNVvAp;ruU z^7M~Z!=O>lqjm=-`#h`hrIj~0q-HF{Wa}x-i9U$CK)xvmMoF>AE&W1JNj4%}2N4#E z-K88(Ce`_>$Y5FiXkkWl9O( z%X9b~n$LRjx~E@eG8xYU_m6h`>67pCd)cRx&|6TzK4^Sv$zEsJT@sLLp(ohOETtSH z{AQa{K#x2p^M;eU;a<7pYx)7+i}+ljbtFVZ7cB86C);a=Q-|s`cB2VJ6bry0TANS?No04jJ+g;L$RpKp zL)*_#y&{@OECTsaOMl2=XQwrGC;%<=7FWsdSG`hXH_)C4QZX!qs=`r^>kYor=-!~b z5(HDr_l8VXt0Qf13|2GA1~K0U>_I&LZLR@BcGIGF4Qh8luPWh)w~_p#8^Y0yP)J(( zXaO3vN+^69K6)>LXOQ&tT`R-&evdjimMzMD5MFSRPl8pVaM-a%0*giihkg*7T9Cum zhoA0{GPr}SlZ9#AZi!k82w`M{s){_>d?NyWrHE0`}DHjBMddAEuB~w-7#fw&`ilE81g|1dAdZB!I8PvQxPr$;qW4nv$R{^~M|q%uH0_ zri<9d5sieSiOGXF>xE1Zv|$e765~_N5*L@^CQda*>Q`h)!GtQv1~IIhP%sBYww0lu zF<@(iEKs8Btod$R1$6ziQDncPtEq&IZb-;f#7s}}VZqOfXF?BD0 zsw+R4Knye4Z0Lh%TcVa4rfWy+6UB3gi53;n>9tQZsa6hmvqAER-WDWOZDatdU-fh+ znKTN?sV3w?%glD+j*G8kE79B&>Q{L!f9*f9Q5p3iD%rpKLSEaXH4KsVL=fldBN>F< zQ6)OXW*}xJy{DaQ<&q0l^pdFlL$;wdS;bn7cIJ*XkiyHN)$)8kLYBVXYH`ZyogkoE zi;eXtIE@m}Nm2gSz77AI{!rdSUVzu)sF^HEr~7)OpX3>_$VJ@ioCLcSvK zfw!#}uty1%FQ$znI`t$WqS}D&-K5#kO-o2cYu;F{nP(k;?`lD84CY4Y(?p?jyIGtP$F+)tK@004 z-Lpc4gpQ<+Vg&DFZf{6~mTsd(yP<;NBF{{D%383b7T(uhu{7eSl`yL&0y|$ z?~PY{=Yt2--_Iw9kNumTSb4H~AVz82{5C@$G{u`cRYGow99-snO2{MCh{{=JWgr$@M> z3bSt0#!m)mb+aMPD#D^BR8~?`#{qau*!BT?(+FCZn(MgP0-zRi!qJ@O;f(5|E$Y=3 zzEu3Jr~e1m>ov>e^2c^B|4~22TJdL2{%6>;`>@&JUtgeXhRQ7Z^yCidocz)g55F#@ z8SDCl_Kg4TCA7>M0W?4yiL^9#p|ph3kiXobHX`^{MM3}0eQ5x7;&uB-zsjZ>VY*0p z*%AuFP+Qzgc)-P428hF%C2Jz}^F-scip!rX=#C<*@5^=H9;>NVbW6z$84>#BhmNRK zvUgMr%fxX`gO2jD(Gx&I5}Mr%`ejUdDxqR!JJ|vkH;#TODF28wZr{+1PFQ39htRg5 zyC)~T-OBJ2atRMLt@%c2celwFg;G}M68^_^c zakuUMM^4T5REDCE14_{9>OyhvcMka4GRzG9Lbl=MtpE%@=}N|g?5JS&%3%*4yX&W+ zK(eXiI#kXRW|a)OgP&@Q>IPINRG^qk*qiPg=EXI!E(yy@v?2XKIGQI{$dImU#6dD$ z_rxe59*Fr%5TuhLCuSCReaYW`{U85S)rzU7c;|nE)x`v0PXDX5nBA<0;{&I}>9gu-z1 znF3dd5e*93l?>jti}(zpQ4|}G&lJ~RFfy=T3P5VQNVk&Ak>yiIw8%EDkL0^JU4PrR z1kgMFX0jL_De8#pmMdXc3J4fxUVy``0Ft_gVI_5Q zR3DouHw)z2Zy$Novghb%kI|9A8P4W=e)i}Y|F7Tp3djG@aQi1a&d#>1%9hSqu68x; zAt&rI&c14xKO6Y)UoxoUo-i1cjwl<5w>dV^#?Ua_A7qPruw=IY=s*|0n({(=u#k(+ zL+IX8XY#e8dE{6=+Om1Mz-$enmV4M7wCG7Uiu$$Gis!#%a3_x9rQrN-Cbg)%gx#AF zcjTFUV6ppTpPt+an|q4xEOPt}F~_+1tY~`Ae{+woEbUn~U5|H8t!m1UGQ9-enojbD zOe^)iJ1xj|j{M_Wxwk`w5B%r9{g?mHTJaOT5rKqYSc5)VO^DI-@IjD>A``o@ z!J%S)XPd6m^f)5N$#zfm4vdlJqA=4MOv29u(HaHDA|Q?!A0S$MA!z8x*^G9y)02z< z+e$OrFUJ6_ByvqoG1$99d0<6X`O@^OFbI zNl2nM5VHVTWL|YtW?<(_)~;r^FNp^$;ek%kc?-RusUc6VCjw3}G?_fV)1YJ%l396= zE_YIxb$Ves3lp$3FFOWrXfkO^Y{P_}hM7mt9Klvos=TW-?ftYRiNcEqX?Da3OYDb@ zL#mq&46}qvW)WrNHTY5ni*e043gYb{4RpP@`jCqVR|Pd85qc1mWZa5GBWM!}2|SC4 z__nmfT+<#4O`^CEL6~yVe7ISbLJ0*CQSpxY5|5Wer7*h=y>B1{{HhY3d0!FBf>2p0 z8d*Z!T!a+T8U7IjFKQ(Xg;v7z&Wya)F%a~pJ*doDVwI!&0$mG@Wek2KC}Np}yPr&$ zS7{qEIQcp&>*tuhPL0XxDp?}u8KD+OHZ>%8ZQQ!#nH&HJsyF(;N6Tbx0T41V!%&es zOJ0AsNeu?v%ucUw9E?G}&bCRI8YPL>w2@ei_lR5%rjKZUrzsdWp-QW1z#iszbx9}6 zg%Z$D>Q<(3m6^~>8LY-_u>3wTS=|OJzo+gM!A6EU{QVN#rB6izJ(_g2pdQ?+*sp;ZmFH8awM#M9YE=xYhHD>NUuUMFg z8WA(ux*Mg?K7f}HT@A9?=sJ`&s3E_*rql2-ZA?d_3Z>+lj`7aUdmO$)NH(=v{_dyr z5tW)i%ul*tft){RC9Xi$pu9nO3sotbklkV09;u|g0R(X_Wcz8GFu7#i{Y?3qq0$%| zK?|@Xxn}9Q7|-@Zw~RKq)g}vSvFlE3i}oJt;l^?|ocJ%^al>^%^G!bM1Q`(t~<9kah26+8e1}O^?bf zyU(8rUwI?8dWScc6gOfE+#eURMQJ@|-=QyVG3O`rrxn{Lg`^h;&9tOhP$*Qu~6d&7ZC~%)S@cG9t`S#2EY;J1kHLBC( zx0>$Jz^C4R&71QZR$0UET|Z{>o025&QgDD*uOjQ zKl+8=E;`+g?kZ{Ya9`w|y4{nzgS8T-5>9u4%5 z2J)}YDK8^qHIUTUD0v^ZQcTvL1tOgOzI=}5^8<%BXY3ysnlnYTiU)sx!0z3h^TbiX z=FLJ-j*~8;OH^iwpM6KZZphKwJ#n{}qN+7dv(yB+F(HH4M8w%wi-`xqS>r01e0#`p%FwCGiO$~t?w=V*OxFjzK z8Eiit39Etg^EIzNI;MCj(dEjiDZmh*xu?1Pj20(71NAd4!tI$1KzaxJHv;y}J^ibi zY^^!|It+8o@MqTSuPdtW=H%;0wohTKwa~oWT`Y%lh54eT|x8BROBMzM_d%?)~mq z5c=X;WB1VB_r$rUeUY#qPU^aIYgT z9Nk{7VV!#honu;yZDbgkKvo4Y5A-ME_*Z;?CV+4bt1rvz|M30$IIWWPy11z-A5dFM zd6j}C*G!o)`C6d|i?1TSl3~%dQiH0?$o#o{zWZ}SwoT&wPcIS;bqq|6EG`=Kw#6UU z4D*bk&M{piTleVJp+dkdOQI3`f9*n|70brM7h;TbI5U)MMbUL)zpEAc76B#FhE%;u zJkuCqUPCPIHnD@mTZE=X&uY~15%JIvuW!+S9uc-bg zh4QNuIF$yF9?B-9!$s`y^u1cNDuu%AH9q7NH!}75LQScgzK{#MI{_jTHzQ&nah15r z3=8?%5wVC0{5t0w{Uc^qihLWn+18*UDNKG+$OguV(A?cxp1wXIM8&;o z$JM^3>oQy~)}GrpjTG3K@I$xz5;}RF?pR=<-@15{rpr+#V)v4Nvd;VNQP!Y$gJB(aitQLw29tenoY#a}@`RKNVso0f_v6nnyAI_8{cYOU~<70cFxn?#ADHo~?s@sUZWp13>>wftLk=@PQeou0`f*Mu3jtqRjb zY?Nyo1$L)!G2_B6P_3DU5EL{IWW%acw$C_3O+kQzh+@azDcfnfm$l>%M7aE8K|<4R zD)i1K%gm%JNwsDSB!%SaQ_BX}?(Y2dvs=xu0(pIfK< zaokGyLcS+zjT!DX&Eq!57bNPEpwQ8$M0+E31LPhbw@hQ6i|u6CaPv&=@ls4wv>P46 zBp}r^0lW8;HMg5fF3n^#G0#zhm{s^$e%Bx()If*Q zqO6u{J)!-oDg}hIBTq(Zg9_T(iU>n%VbI{==*fmv)$+BA2Q-HQUk5^O`SsWD(46MHQC>64db+~WwK+EP z%vXC3Z9(5zZ01oaQY~7s^}Q@Hy;u;tIYb>LcsM}$!Vq%kPdvVeldW*naJZgxtpyYr zZH&iY!jQ=T<8zDFLJgJNr37$z$$e2?db_BhKT^bvY>LOwYIBg^zgz05j+;I?sm^m$ zX(!sJtH2)wM0Klzn0k>h7&By=Sd;jQG`zP+IIpw5YV5fd2DY z+L{L0){XawkC=O>s4SBnIz(dM3!q^GKg#1LdJu_+1F>GBuQtrKjT8yzgw|4K#JWJW z1LoN!{>eSs^NQKkmUw+D5%eKoHXV9*AY5FbmkU|5R>Bd@zxRT;oO5{hSPtyNfZiOW z(D)Ux&~(QZ6)fiH4y81`q@h-?I$UMgypz)&Yue*+JuW;-#7-ays1Hi(6Bhs96!}rRp{LF$N%KF znAwj1-+%t|#DgZk?}@FUey(WGBJEk64&>+zSv8P-w&me!!+XmM0ES?Ac39DQ%i%bq zcZS|scCY62&kMqlM^%n$-f?g>`C4OoO~0-Aps~C@nsc}ok8#~;Vi{<^d?0v57!0(A zVQ;Y;$svhvHn7cj{k!K3Ck{Px6xV_VEuL!nm0|NKi&jEQvj>IUC{BN0QgOF$DXNRe z+3)SS`qGSz&+(;fX=l&l9R)8vhJ|Dej2zDPR7oIFR;14vsvGhBj|N<2$<{sYRI_DLfMAl=|t0+bG{ur@{mX&+R49%Gc z4p$$DS%Gb3u;`bH>?$&Q-q9b4Xg(TAOWr@wET0CdZ@gf5*tEb zYqGaIc59e_9BEG!zJlhy3`>jm@91tL{W9BwX{6~I2Mt%rh9sMbHY`iPf~zH^y+8A0 zH=2AcO_cJH`7?)`X>QKVl(3#P(vS`_od6I?Fm6vXx`k#~DCW;R+0Nr;Moa{1MHN9m z>yvp(K$R;(k=zR_Lvv;+Zaw8iOTWtTm1g#I4?uHf$@YQy(}Oe`S`o?|m0SAL8q;~Q zMw*Cd4PjQ`D>57^6{G{{Fwac~-k=olsNQ>D<;wj=EK=osaE3_rbA-*K};-#Y`4 zvp)3{l+qJ~^#+}140D_AV@KY3qEhq^m*~!ueeg;ev9`l@r|8v;U}`ZVnHLzPQ0uKc zCrCK0RnvwIz-(G(uQ%*JcaPm;OSY49s7t}20OfUH_I%)Qo-xdonA{AKF{DByzl{tF zMSBJ+DDqw8_}fnIy+Wvov33kj=%n|4H(;B<#m{B}G$3q@#mAm!|GcJnd&}Xv#@t$t zza>T&`$vlYBoG#k*>`g60oGscQG3Jv-&U;O(ezI`)JB*e(P)B;4Bd>YdzRU~kC_!c zyUI(}$e>s^B|a)bB@|2!R#MfS;(z|$ukpp=8UKs_lkEi0t)nMU7=t+jvaTtKd5vm&7_{)djfN~k zZ(FKS@tVONH?d1%W1@daZEPGt7q1VLLaA;<-0V);yCxO|g*R+knp$yC`J)!5z5ycy7%ngs1tJQr8x%den`ky5Gueb7euTdq{$qD z&^O8qGg?oM4q1R&%+b~oI*-!GJ(6dbJd;o&Yti%ir`D2leCXpNVhDE*S}+BTMXOOA z#QgzX*QlXHcRFn^f^0&QrLR6dg3W=V>7{WqMm9=HVVm-fkGl|?)Z(g_q~)X^iAE?m zIyabqB<);rqiFvA85yvD zD6V%g@v?QFob9yS^Rbhf(J#Q{vMnBU9d<7RhECg}ak)5hx1-k7FU8Y;%n#W;wkZcl zv?#WX?9XM`s9wuJCQ0w9nMgT9D#~ZCd?f25^=pS30-?@O!A`mX$#oGuVzw87eaMn- zXpjw@8a&mNSic`0SK`!naH0_#B1ICW#xhSXY$Ly0VYj^u!D%Z95EFVDGmEM!V%rK8 zYdMoz5ko>c2QWXq8WELc#O+?P67nqRbF^%jVnppl#BcY)q%iw_+7P*u8OjIZyas9% z5UQM*8B8YtgC933Nzkr$J^rkuUueo}kM09*RiK>c*+Mp^Yo{T@h^az*D%<^#YlfK^ zOVk&#O&#W1C^?6ux60E-Pb>BhWaHe!CFo$a!S@*of8aOg>+GP`H_5^QI-( zKzqo^Ut035h}ucDByJSWS-NAPY0=3|bn`ha&Y7=EY$q8${i!FWb3MyF-&x=1;%b3? zo#9R$x^moJ&LJqd&IW~PMnSydKmP77aa1>=yU`E^ja~MbQ%?wrA6%Spv=9Rvwi#<` zerxe2FE&fIn+k3v!0;OvZ=#$cTLCJPUmFg7&Uey|khZfUB>IR0TqAeA}tiV;mim{D^C>JjzE9mMA z8NmvGBHI>4du;GUDRsPy^s_NLMu61jykz@^re8&hO-8;ovQ14CL7$8MNcxq?P|JT8 z7i!x0+1)^qC93+OME}ftvT?U5(6Aq5n;O%9kJ&k`L*HzO#$e7)QHwcBIr#n`e&79M z46IqFJ13YeU$$Xl8kz2Q5#8rRMsY+a4QpfX$ZN-?gmuz!|5x^2Tbem zmBm$tXbKrX;Lb`fWrQd#cD7SsP@z#yoN#<;C5?R)l=Wd+$7?IiZn5#?*Mc^M(vWSe zxYn#bA#6+H#@P#Ttr-?3g^oqKqqHrViCC(9VG?HuIm!3j4mIDtz0cL{obYi?*1+z)K#U4|nc-&vmj$Y-r^*K|Uae4_ z#%yJc>q`jtdj6%izRv&c`j3-eYq~ca$|Ma%R2UP8UQ*Q6YM>~4S|Bu*>}nM0GDVlK8<)8VGymx7{X9Q@{>+S$goOLx(*GP3-XQv8>+{m8AEQiHfCDjq{aQ zcvqJK76}zLZC{de&=_W`2ce+kQBhq5X3smC^PGMriPJt$4q3?i*&QpI^B{Q*eG&=} z5p$6DdNO89;$qVW^5+|3nN7i()1?|BzS5`=u{$rKR3n=TI;LiD1P`@YI0$ECQduX^xAujp4fM2o2l zL66%`Ea6K--Yb@ItrcBB%N2H5UUU;69wBwhLJKT-Y&E! z>H6ygd|Q0vxcX8-e-!CX1@QBw*i*~qL^gw%Nazg3t!PW9_<|0M5!0CV+(8~tI}19} zzR{z0mf~85a-V}b>Y2~m$zk(iJ15@e6t@a@FH)2P{i{Og)yD%WY7x8lLb=?$f5dIE z#HKSodQG)z_}tlR{=r927}f=A1u-bhLE}}%M>j_tE^D$Ii`@zMVY;MseGo9MIAbYi z2wTl)meai5%bPYR%-)dg#D#FAjA;k+7kAd%{Za<~Y;*U1OD!SAA}Hz?kz(t)IkC7J z+S8b9#Ff04U8H*1paxI#FD#|*eO;`$L$YG`rKY@=>me=-W?%}^?v_U47fw9=!rW2x zQr(FLyisIZkBYEeW)qcmbc8g`fX(IF4P{1uUW?`PrWbL#y8|!?;cgHa9N~5?%%WM1 zU(N7l_-8kWJbU(xfBj$o*ZG@&^KWuE9C-KLclm37?XU5buY4u_zL9_X-~PAxtAF*c za(jErFa6Rl@mK!JU*Wy?-utiigPaq@C(OjP$~n|}M@*>2C%x0d=@NHbk-grbx&ePO zpE$8**O6_-nF!~JyPY_L9Ir$yh#-}^3$o6vkifc~qx`6)KVNYB>4N!7M{&`zd3VN8 zDe6m)?F3B?Rs)9p14F-*!)o%aZX@N5{Kv4&rVzvGA`)&A+MgbyJIneV1@Gik7jZgp zi|a_Xh3%&lu9OA~1-r*7Oh-$jz-l1-upr+m@-?)l@W!A1i1%NdQGBbSd8em1-E;L~ zAyYAm-@1B}kAD9lJZyRA{E8oZTw@wVRt_i?X;g(dXo4%*9T|q1LG2B?Q@E8Eo;jM> z8UBk`@1iqLcVAO4TgrSOJKN9=mVJ|>*OuzFW?yCuI`GS%{TAQ6dBFa+9?+aC`p-2e zuOtEWS%vekKO0asqTgtVPQjpQo(wcWQNFSeVf(h|V#-&ReihiCI%Yq}FioU8G7PnF z$9*9MJLK|yyIP9i?3Hk5eJ04LuS8618X4N6hTBiu#H*D?ue=GkN-@-$@>bTM^+yeU zmNU$4$~cIuzjzElbkvZ2HQsk=WT+YNGk<>KB%k;AMa zu4;Tp*Ito9l})q@)jQES+^kWng*43DA3yK=$5tmm+=Du?eo>1#ak~=%Ze63S!QAd- zqw&sLvRT_52xfMN0{I}@qof}jQMw#(sc1zKYdGIW^EqxT)E z>F_6We3g-H#9e7f8UZqkpNlh^tF%~jrj18=EgRNg70s!lJ<%+ld2AENHjZI#Ioz}K zOL6X7eB{XvuzQ>~gUua{U=(PQhL4ck+q4sl@crYAd>t`ur2at6Gp;`;uO(y=e-IEQ zB-C~F9YeQ*=3P-+E60>Aa`}7rxl~|0l0+YclkKXsF>nfAl+s{S5(WuSBtAM)Ld3#* zrMUf^#^^&8Zc8?27}gHZYUTtZ6-^3z*gta-rn`B4kfnzo-@EwNKhH(Ud6<>1kNAb;vZ<%+lu0MW&|sCzHSzX zGmottN(Y8P%xSU6gf|jKBFe|0dt~#y9v6{)7L3mEZV{-(WVI z@n`?+pQUZvf5J2W0S}$lNlKy0f*8VGP#ehBBmIe)c=Lkq%BZZ9(8p0O@M^1bj#ztqB}l^UzCvkG zmBX4qZapW}fx74k-b~IuYS4J6smvfh6L~(Z198x>w`6UN4r2YkcSDiaHSx;o7t50SEXwh+uN%XXx2+}LrGT~%snCwl*;M0^xL}q2^ z8$(p{42+rH$M^|5cf&lHT0nB^x*Ie?E}K^Q?>NqC|GKcgH{CrZR{AhYR1JRN6u-?}<%&XRABWS2_tO%#-ygvhg0P4L#N_%Fl7wKaJEOr0g99xZ$T3dA zS4Kck7t-~sr)wSOe`xFaPkQ`Q4>bHY{*8ZwU;DLR<83# zPdr)Sjw-U3Yv_8y@lp=-^-kzrbveF3Nv^eq?#*LCoNgLImEr14QnI^&FcV}+A9~!f zq&+VvUv=2aE$v&!xVhv-sCXB4M_R81qiBx=oh)wx{X(;STaXLopnfS@k?LX~SjGNf zPIF(ed-LuD%61Y2R$j(wm&W^& zc>5PW=KCMtL*3-O`NbEUmV171d&1-8hF^L3_xMk*exBd_=q<6o>kRpY!8Wp4akZqD z-~aL}{?#{rhyUd1FS0q5ym5R>=PfU9mkfg;^af=EO2;W%#CuH`G;|`G#Yhw|$h5T0D^TR`FFwhdRmhDnw6kz$G$8^%*_)62ybxKc7PB~i9t~9od%%6AM zeyU{so(KeIAGb6QOME7D4q5xA+cFgz?IXqWozQ+jEF^2mrXWN)$dsaeBo@KuAV{j9 z?1I3|zP}N4G|wdK#%d`@E)cFS`CHF^^~V-c_T#7%@QFafqyH({>A7rzng&jeBv<71 z%_J;Uc`nW%V@XUyp1-)1e|zKMlt`@xaSItvYNAz=NZUEg)poK0_sc?r>!bZ=ay-(# zpPZ5Qk4t>6s4tSsm4a+HV6JwAqnWs(%q1(v=bE8XbjNCHO#78=74H9zCs@VB&uR3a zretyyEK-o)_2&)w2F`zT$MxrD-26=B>~~=Cw4=S3(;jKAe?|`5Y_G^~WYf2QB=bcVg1rf1EKl^{WU5G zg%Ya7D%m9`J73$1*i^R;wQuR(IOh6u1*;DS%9jWFV{x{zyMdT#x}%J2@5wej?OBO0 z6szBS2E)McsRu-p^Z+*vdcDV=E(p2B98w@+(k`L(|;HA(EXES0|5EeChdk{)< z3h|7$8v*e~`eqboIF)4#-TucKX!zsoDgMmo{}S1@7YDpDPk@9cym%$=#d~kbH@JXb z6!_Xwe0UApy->c#0d5#%yYlE9cQPX;j=nj#De>N}Th#5AaJnSaIUy4}=G#wa6t@z1 z8?6jF`^N=7SInOGxS8Sh-7&8Lj=$?DUo~9*{2X5>W-sN82$`D1$PN~?dSZ5fA_zS*&4FFqJ2E@=#49$KRv~4d@Wm1dx*(YM9gtUFl5Y2>W`#eo_tOIdwh?JTQLo>hrsTkY(0jhe7@OU0G{eP zZDp6zpJ*pkQqxE3OEFA{THHAaaQmKEMnCvF*Tl@w-LJ9RLEJXy(!bhoJw;U&hc7-9 zH_ld!Q3%NyD_zgpr9i{v4mv%Q5*qW(M)YG{hdN#*ofJ6V@wdPE@Bg8-;-C6Pb9P@R^x0DWC+ni zLLzHTb3dm&%_iQqZPfHf_bOSvjlo}}=0>da+{)wT9#_c?ryLYl8hdMCXE8e&Abb@k zi%LDf^`Rnm2IXPb66k%(I*~gs5f2H9Su#${MU`ZG^+U)*_2tI&JHur08M6r`5uAt9Z&qZrm#p{ zy;(X`$3U}eFIxb+zZ0R4HF88jeIeJiIvC=?5E}VeqcyMTNCNM1?JxII)Jb!ZW-RTP z!rMY7IRx(5(I5M1c#-B`B@wu6AKDWU&6`f1s9bgobLeOCyG8}gsii$KDKs(t&b`po z%n;Ld=I;Gc9@H>qd?YS9cfw0hcs|S2!7iB6N8wyn7cDo zSu2~rAM@kK+Ec_xY}=_31Ef#Lq)tR5y@o!tD4&c7>O!IdMsd3}C~JkTnc0+LA5p#3 z2sOy>J192l;y!(0yV+I3x}rlh141&i6+`)ttij#(Pi;O()yOgvKlSxuTyZl-mME zXppYD+y1G@~|%u z%_PWFMOvR>Ou)|rgEw3@a|t~yL|2NFVZi5c`aRuTzCPvwb8SWRpUH574Lsj1`TqJ8 zLZWKtF*yj5?rSymbJ?}QvJ#As52-fr4o@{g= z+@{*7?&^STQodOiCv6G}Tp>Z(dfcjO={5Cm*V_)Ww0%zj$5AUWdop@*fYa@eG-wgk zd35W<;c*aF(a6qFF39;Ag<3vsRzKN~Ct>@K^7yB&5qbap_xUS-<*)D;{=#42-}<-y zEx!8Iukz>r{GTV!bAIJleubAWUjlG`e*Qz>cYc08{o6nK_{)F!FZ1vGJO9pq>F?vA zL7(4~!@uo>W?{S?}oBD4lb7mhS3Dnw=(%i=O3nFB8U35r+V4S@R@6xQ!6%|bH(x_$Kp4h(thDFyGJ>;OEj+J z_r7`45;Dkd6tFVP{}&riw)f;8-=g|~=Dqu<2>FHBcdBlHETQiEhS+xG zm3W8)D5C&F`C^AUba!;DwwIx#>j~Q({&0W?Cx7q_{YUipqo@<`kFOP2OSrm571A`s zn>Eon;#-fwYV?&AO6GQV_dR(ASq_iSr2rS16zT4c;$rqvLe2F?21F2j$1KAaS~3EZ zLWh9aix`!`N!oR0D6WMnn!noKaS}O3 z4cRX6=+e4mf1^3aoNg1l*}(e2A5wd$##*GZ+N;R&FyAaq_LZ zm3nz80LS8KPqbPBxe95F^`HntLbQUUGAj?WXL`DhQP3SJ%FEfMFUn3Cw)~z6yN)y=R1|cz^w-=vtI)Z*(K*VP_-#g8|hU7T+`UC-9|*&-tyx zTe!L)+ejmD^(Cf^1Ybpz)674D*(*o4ymK6kT84?)i%9)aYVNQ|A#oul7eu+&W}OU@ z+67c$Xpi+IB354EUCJ-fisrmP`J5tI=`NoR1f%Hgm6WerRPXTfVgk9MR)owj%ryO6 z5f(F4W<`(GOQ3G|U`}&tS$%JhzTKy5-r!H>0y?BdBIH^qg=yGUAUQc>!{8hQEtb|6 zF=yxp2}L|P#-Gel?I-S$AH(Cv*;A;^4u5rx(FRttDHlYa9!pSi=h53e?!%AJi_bGG zYG97(YINr(w@uv)=xvT$l?)3@^>izMPuoFR;LcYJCl#)mQ$62fZuV%cuzAKR&T*xo zJa!LwQs2|NNJ~Of~DMUy4bE?j!9zLo;NYoo(?aikq7`VF|-KJ>82L z$G>eEmU1rpTz=o-BoMQ}x1OJ~S~Ps-i|_NhAH2ct!xiy?BpKT)ODG~?Z__ru*C@v7r9m3!xromawb| zxxuW(q=mMFs>I!2O8!x%$+s6azxi+S7yiOunErdS+3?02 zZ^(Zn=PYr%*ok{hl&~gqCXNfNo`INXFAar zK=LexMY`cT`J)_UJ(Eku=4~}`tXr??gQ49Ou(MZ>`VS^#$%=!A9a~&xfy1_~`P87&NXkWG5o7&DUx|dc7(GasUAU07*naRQpxL zF9P|cnZlby3#1dJPElOR`_-PNtbtuj*N0)4+bK*+5DF;_!`tVyry0Wxify7-C975C zWtj1~LU*DyYR`n4l^yPi9t!%UMLk-f`hY#SA4+56WzYY4e$Qp_QxwtG3C^R;9c409&yTIInhC3fUKS$|sS zgPL5k#zWqhaiX93nQTPA_2EOJQ;f%*Y1EXj)Gy`d*y~JwP6?*b{La%ihtbD8UU^!kA7 zel(QxpVs5Y+EavxIa-P46eN8<1tbHK83dSn_lQ1HUJk;a4-q|h@Dbe&_<2G5;7m4U zZII7wQOLF`1mWy!h02BM8RjMKxRMQa=gFMd&-X``HihG=AX|y3pgEDPVz!U;$*$KI zwe$mpCS*`vic@3Apu7<3@@Q)f5Teu%F_K{lG5+AiDWNmuFEUIo)WYUIH1`av_XB2# zw8wg)e(OQeZF1D0=r#PVdLk@`S<+NQIXhitFt!uNEIn>p6rq$p>FQ=qI9OC6|J|%h zFp=%2z^w+%Vju=ZbQ*OnrXGuVLx}L*t9vL7VdlUImC7%YUguzhaS{~GwxI7af>$DB zKNY&Q@(R@${GiEOHPPwE_sZ@S`BqJOIA4k^BG^k$wr@P&2qkWMXnUz^psVu4}QAJ9I4BN8o8qg3xz|hzN=n**)AlRG~ z2zlaxrsBka0Zk0ZgeAzJY*CghiDZ>nT~=im8GXcSZ-2Vot;U0Ioqb=DBAJA%g39Cu z68Yjb=bpRoUTb~d|NA#{3H~I;49v-UOy!-a%OOJGpLG3+HzJQ7J>uKn{`OCO>|5XZ z7XR^o{2v4G@Zm!MUcP+EqeqXXuX*|MCExw-cmD@pvn)%>viwK>%;YSow5XdkakCNo z&7sE38$ln}+o?E9s|BgN6Y-AA61x>g0n?9Yt$>wKuWC!EG{H%FZE@?x9UusYGFljp z+)s_&0s13{=?ukn7A4>Ar$R72J|a{GKi6Ufdn|N{`BOnT+xxv>kRi z&|j6iH1mFHMBbd=P#Vv&=sDlbxHw-(3Tjli zqmH^6IeU1?O%uUC`<%YhoeDmlPF)22_j!3>e=m6qHOqbOhA$mHeM-zSzDcgS*ZciXP+bB>7-ar$svWwB{utOWt@ zjy0xFoc{4%C>KWs^@|RBv0-@gND9ok7H!f>VfTsZCJHU%4BTEQ6!m4mH=1!SR1IHd zE6X9#-qVwdmP*i`>M0w?H)2=YtxVQKq%73UJZqCEHbNJPP7co5%fPy{jI%V+tU#y{ z#gh&D>zevgmu-U+<8dUJgt-(UWTqi+s7_X97Nl4Xd2qLM$FnW`%w40<3C17Y5W|z6Em$d zyGtxT_cEzJQY^ld>H5ukP6G1~b^>I2mzSmlp!lf9?uDfhjjZvj?*@v~j^TWUZ8I%8 zkf$2pt_^mZo1L3EsZ7KZ4}(Uxn)ZPJ3w1S;G94@$G2Nlc4a4(_=323TKcW=abB8|) zoc_u=@2xI*Z+5}w?J>{yD?WSvCdn$^SzYtd)fwyO3(RVuIc{lR%mw5*83?Tr_pW>? zFZG%oByVhZG@@FAU2F7K8W_{xQK^#6_vBWw{48+$o{`DS%7ab#`-yTk@Yd-KA9aq6 zDwuzf@;-H-XM!7{zKjxRSW7&B9umthMuw%~_C0Y^-MpoR9n&Y;GudlapMld1mont1=1*cADmA`{g^ol%NLQt6-F)Z$OP z5&83f{?GH{AOHBLKK8)}AMnmQBJz6jJBl9ZrwB0AF31`!K6 z&}E@ZBM~Yshf@NQ2-1fm#TMaF#>)buVE zF5^rlOra2gS$UlZg(j{PwvA#N`oL1&MiyW6n4O@Zr$6ZOs5`r4bY7^0Xly5A-tLVB zcIR==azoPhu&7B^ixb8e<&Z2I{HY|L1}Ba#+G_OqjjWra1*(5-A!#LO=vR1smHPw$ zF`##?@bjBWxbGlSkpt(x>&02*Xhm8yq=g9A&9&?aYSxg9#9GJN zf-Yu?P^N4|t0tYpFjtH-CD|oPCVIk`7W-M93x4CFzK9Z-c9tEj^1-afJjJWBHEk4> zRg5vRzRfe~B>l2pmC zOr&FJQb4{h1x1W0zfQIaMo>#LWLnBr_{(mS_mx@^D#iJC3t6jGqCOX3XUqxfC%&*Fue3PE`T2oO;%QBm&Qu+WT75sk*RiRyfySZT(sro4$1+em*}WMQai zyvBPC{+$J(&{XF=+DF_*%qH5m7TJ+7X0hyu$(bPKwVTcw6%+p6LipU9NHSWC5poD; z(u(F;N3nM3{U~SO@sS{#Wq}$!?tCiCxR6AA)1Gk}RTw+tzZ9Zau3{Jmp1?+4Q7`711hOo2RVv zdP1WCh>6*Y@u%{m0Lq&n%!O?fE#$GR;pTao9No|eW%HGMO?&Sjmi}%Z8?@Ifz7#Ox z{JV-+CPE#tTZ3s8<)yGO_K(F?t9c=Hh@XjrogWN0-%1iHoJ7mfJ{Bz#Nloig;QPpy8MDJF9UgDdCdUprAg3IsS0YeJ!f9db6X`~x{J*WVuLuPZ)!{syUtjQ2d(Cwbc4Yus9M^nuuM zZ{IM?o=4_SJ=gC$LM8f5w}IKy90tn>OJ5phZrDd2K;Wlrxt)9w)!|sk#?dOhAh)~Ro3ELK#Z>%swPRh;pcP{^tLUEVA zI|(SWNVL3`#=-6mfi^iwSm%yCD%?hA*QZE%p|P!E_m&9C|IN34$lrec4K}|&mr0Aw zMM4Sw$WtA6e0_1wi*CtoC{Rgwkdxb2ItVL4o5-8Z4ZXL7s99gkWE2Xp7+E!2(RhrO z_O=ku?WieDU^Q#$N6UI&;h#6SwPOEE9&01vyy7}3c!&r@VBGj*Rp8#3^!ziNj^58fl;if5z?UEm5qB?8Dezz=y=D8IFI2Deh z^+cyi&WK>o2T8S_XrHoHLgSsgp*idmD#F3KQsvi+MkcBUE;&^IFBDCir!*>x`Gp=7sZgYuCk1ij z5?}}1M&8@)`w*K*QVBK6R7ZJGCa+(eCVkZ12%I~>sLQ{5k%+aTy_YT7vtfYk(`3Q9 z_)_#D+c!0Ct8iO2WdjY1L-UyJc}qieBRMX^TuWnkplgl++b2v;O*U<$Kepn=xRrb< zUmJG!E#pGrb{2ipW4b_SEdAo(%%!QW2Fz|m?|K0jx-qY1MW`L2vY2&0(T4z`YZ{G0 zW3Ts^btOMGWROjMaO?%O>0#F=(-~o$YDw2y+6Qc(x)>6-G zzaH=yF-|!ovwKAx4Ejvi5bDMei-=y1#LmE=r|E&-i{8|u*S1QNPr*4}r6u`J%(<$o2Vxw0AV;p6w&Ya0JWG6V-VK-*nm1TY#lvD}eYo z%TwOHr`Q^)7dIU=C91ZJGXZ~^mr^5%S&_JOs+2O7RzoUGtp0WIR?Xzq@xA#A2fIQM_hm6 zjmV$7m%u;M3^XEdXiB>Tzv`~7Qe8Uqo&stPJ zQfz95rQ`Y=g-lI$iSjm~W1>CNgaYbwc`(cfaU)#C{zR-Q{Y;8vw-MfTeHm%*D~2}* zF(&Ye;-$mv#R~Jl`?f78pICmV@Xsp#qyEpKw}yE>pF*kFersTUyhp7oy4#Zf^uPbL zycm90y;3D%?%Te9&?(&kq|MYFTmou;; zD0}hz7*ht$jyLS~CH|^HCDEmX>xy21PN1Gv{O2G4I!&7cmp)tY<5x4P_vPLW$C0=i zSDwajk*Aw}g#jSitUK{v8IGT`9W0=07pNivFUayp)ha?Gv}} zO48}L64cafWD=zV>>o&zQrwE`j~)`kkz)T?#^cphqB}Ns8%nlWjSl*yrau-6MX?p# z$?SQcxRJ(H?>l)ePZoq(!LYKJE+gwnilh2PC#afI#Ky7y^*3-EPkAB1h$K+YFQDz< zjRz1T)yw^4zF==#^!1ix#LXotg$|L_c9TFl&i~QW$3KnhtK265(2BU;h?~v6xcj(L zsJbT2YV~LRR63$k{+Ge_^ zBFst|ZNIvqR0`A9B&$R#b}T}25cIp)CH4;-yGI4Cjp#8^+2w2g)OcS88eD~mJv*%{@hVrik&VB z+WTpuMubYzm6MI)mQzN8f^iW2Udp)#Y7gZV(sZY?oSe<8AAf?#9A!~f`X)e@~ zfCKB5VgK;JX+DIRL4TZqA0^bx`cfv8hXxJETCc?FqZW)}f4|80NuJgELh>I_*{RDY z#+k*of$GJc-TfuQ62`efj}GM%rVY%#6xSNP?WgD1pUj9(6G}~a)uTUtidoD_O@&(T z?f?gCNy`~(-;pk^P^ZVFSv?soBxgm8y55q;kvNR#StHMX-;+WR&85lW^%zmXqK2=Q zn)Q|L6;X_DrmJuQW|mI0P`7QKmJAaGHqB(Zp*Niv(hQ?GXBCeA%_D{*OY^KncYd;5 z*X@X(Iof*;w=)75lv0$ImrTHE%uS!{FVf6vpQtVe#>O%(3`5T138kD*ZYLUs>u*?^ z7m4E^^*sOcCEY{MmsLqDz@F{!FB?`rKA`I|=^q!0>ZHTo58ON`;CaRD3$dq-*Ts}C zG8{$R+TgyhIUH4tGgK0j9TkOg-aF9q5r0v${!Ew^$v`?8p^WqoJX$4w^y&d=;n|lO zp?$!!PtR~y20bLUZz+bQ#%&bEP07_4V%$=XigsA=-}GNY)t>!(5!D(}g6%g)7!`JH z&^MO2HT;GD)gSWR#pnE=|K7hLw!UkfwR(#2#1rS9XO9Fh;=NnrhsVVKY9kHv)J*}qy! z(>8!xCuYwhp-}W^#bn{%y|t3{UTFbVpMz@;A*M`vo7u}q^ZADU!HjX4jV$^={Y5Jv zT-)OxpU~gSYa%4vh13P9zRMZY`TSG8N9UX?P-%{eu)0crE_a;~f$y-Ts{|upYo( zTcK81rko8|j~q8G`&~(DHRUTybctAMahfQixZWIe(>hz?1;r=3Q*MWvAs9(F1!B~M zq=-plZ6K8aokeI|l!Qt%EDXVGbeHWfEvP(ANjd@9b~7RNbAwRB#(5HIRVm!j!COgn zogJDkNjgm~k&+@tjq*ANvPqF71&2`G+E+EzHs=K7-|v9_CZriO!`+B^dffcolqwW3 zERzUkNBP>M)D&81#`IIxo{B6^&(BM;ir5t5X63zv-swAc4S7>S2aHyu3M}g~SyZQt$(E(uSuW=y1oGc5Ci(hR|oVY`+Gn%T6pwf1u zC!1fjI;g4h{*WhY$pG!0#sV!F8m3p7FPtZ-A!XK=AfyM&*pv}|NjN5dZT>wp*|u65 zkEGS*eOi`zEkkvYhk)#;hR79`p3PWzAuG{Qj#B{w332Yi965X zXQZD|fchtSeN}r!3Xv2e>Tr*gA{_!8U;nk0nle@LLYiIL`n@BRilXpzF8vfk<1nf8GbLF-n;g!JJkwDl=XAIW+zVaK22=7HDME-! z8jdoMqN49|@vjrbvL{7_zmmllO2u%L@Mj}BWZ-q9ret@3ab18*C>KeCmg$p=q@+ns z=w!B6%xupa?mF*@YTDCY|C?c>uslXR?Q=@y335^}YQ{xoK?K=DVOL=1Hfb&L9`vnOeJ=3Zap z$_LVRiyl@ot*$L-g;{s9&y^-ShbEbz9&Ed#oB^`g%jZ)+p!ysFxfH#c?OxlwjGSvS zA^+Lxia(V`lCRx_e0qp6@SVk>Fb! z(s{!l|L5PNedM7Im`jK9ivCr>v(=34!;){`d&#f7_l#%#5g)D3c=2eBv!0WaHP1e{$Kqon8jZOZqu{7ybb9OPUKaS1z|Et;@()VNtHeH! z4ZG1wVB(-eOk3s#PRn?@yjDE;yNdQqoIH|}g2`91xSN-fl5F>|eN!5o@=_WTqKs|J zO=9x$qN7fkfdyS`I>_ty=od%(=e<=Y^_JJ5_PwOAfO=Yq;SN_Npk|E z^#;=qB>UAD7hmahv_##uq_!h$HkjjM32)1eS@HP`5%)Ju4kWawn;j}dhDT@OTJ_}( zkb4qqNQFbMTXc-LF^kR%C(Xp^5rl-vfv0|ES-(?IY#no}u@_s^({prLpsRvnaV9}{ z&d?uQHg9VdpGWE!UJBhL2jAFe`Xh0m>5n9g^xz$@$HeN>p8m+mBrrEEs}JRH+dYQj z79Rh1p4~&o_6j9Qxx1BYy3RX zoyiopJ9U&diTl47**-K3E4cnnK+Qa7ryBr#(A<7_O!G_&FTIZFK2tpA9`meV`H39d z(Sr6ugKCQiHWAN8!dOsTtL&E#+jnD5rOt=6OO!W4wK`-ixt+$>;)ZpgW*xGJ2nx4R zJp8*mZobiQ`9JTd|G4J#cOz~WP(G2YVw@Y+ZyTzs#Qa&HKe7xnMStv25sp6?!9lmU zJ8x{Ors6S_LbI8@P?XQ0zVxVMD6dBBrpH`uNmW7rc!}N*&~>O-NHl@D13ZS~g7IH` zSMp1Sh}%mBMtJj{6t^#LM8j})!gznluyj;fnj7*ntIATQrN%%E0%G1fk%A;UWF@WS z>qC@v^9y>VVT2hn6)K!K<{5+DNnmVT)>Hn5WP)TW*WiisO8(uIV6|AF_CZ(=n-)@{ zyC=0onQIi&C(6qKd(**ZPfmt7iiSHT z_SrAf|KYJX2wDjD#R1a1DhRVk@y?dS$gH@O$;0L@FYT8ne+9w^Cz-S!DO#2qxiX1AefucG!&;cdZ++`+|>7&)97%oRjR2 z>QYIjlh5vFnZlW$JQ4brl0gz(juePFeSHv$m9G?`&P_^G3^Vzghe85cqdUUq#s>|t zF!ZNO+@{8XIA-;c+b0#FfYqlWTNsxX(+kL+$^unY0>EX>NNP&jM>Fa^K-ZyLsdw#0 z&O4p6My4ww)7J54bL0H^ZbWi;5FrR+)DL%7gT_Epk(8pm?&U@eqhtmEs!dZPa+rST zQ3O~v+n4FV6Ls!BqkIio!eQK24r(>ZDV9t=sG}^-q%&tTC85Xc0`7KToI6q$m>%r! zY@aCBf?kYsBY`z-e!Y}+2RZ02l%f}LTX}%@kL1uTZpndof*?qmXGZe+Jc-fb9uq2s zae=}F!f0foFgp|)GBt?Ta-b%Y5tcG?G;eu%T|qMFK@$&W>;Y8>iv7Oiv-L4UFjyTK zqKLPX2ETLY#$!)g{9cmTRV&{Y6ogUp@@k1`WfD_fXyV$52BS#CSs#zV*sylymbAUtckcgy(vN60W zF?p;Toow{QCZRkGOMPdPXp{hGy`UQXF%%m~f*wvPoV}mzc#|L%r6Jaqac&5Oe4R=X zdZ@h=jHb<*G&u+>EoYN(RSyAkwaW;qk#*5^`8f|5qfuS|Q^S{^)n@PK^-`m7S(UZu z*=!1CONWowwVqP*o4v2o9g22I!RvP_KN@!RrWSp6-tjjLR zWKt#2ttMi*RP(z%Bgxdk?iHyQ=eXn{CW{_rGIR*$8jW!5_1=&QDH39l7>*Tcl-Dv{ z-Y4rQ@5M#>BZKLMx31Cw!IVAnbs@g!QIu%$mg26Ht_w`do$H}hbSKhuggiw#Sh?$P zn3xFPKbA%Wq<3DXL&k+d|C zNg=L$S;VgL_bHU9nYLuX}k;XN|0nlrTF-l97Z=1t<@!HZA)R$*V=il2H_qEsztQzyYu!`X~b zYMRe(#Vw#LGL=FKdDBN$=Yt^9?Z|jsbMdPci!Y)1$(m@7?vhTm9I~d1)UP7@2ae4f zhSMMPxSNjaUtTgc5NkChhL1~`62x^uv~cw6=e&Hm;{N~L(62PziDsM$x>sGwCUw|5&CUrj?ML`W191;)LN>5py)~_VSv`#T-AgQV_H{Z-$3z z2>flq%gZxfg?m(QZ7?P>9LwT&7nb|KcFBMEOaBr7htK{ZfBfZR^o2zQ2rJ;GpnNVO zTb1DS`(in`dBf4&)3pCWPc!Ryu-Nk1Z@$NC*jahq^E7?v`1sV@TQzTxJLfceByT?aOAI($`d?+^FrA<&&T5yNNy_hjJs zgARMsiRe5rp_Blsm13fQ`vO6v`&PvWSzn#+{Pi*bcg3VrWXs43eWX}g2%4j$eU(BauNC`CA3+&N>7UijpN zBUw$Dm#8sdu6F`>_`vwaieY70eE$Ls)GM)y^^L(d4LodQZ6>H+bm-2bw=Gp=85_~; z3`;$Yw+}YXt4~Kv8!(+`I4<$E&>mF;vm0<)QO-2oO5+=a9uAys*%xlUW@ug{PQTxA z{f&zLSW!P05W+VwEEL;!5~~k1^~(X*noK>Cb>g=2@9o=}Vh|;*I93r=2gG>P(49bd z6YNGP2hEEN(;?K#P$hhm=pF`EKQOp`V)M2feD>8{(>{AHVQRioD4PL_QgTYdOk8Z( zICQI-e<6G2_UjSdc|$}q{NXe6>^sOxg(UvxbrP)*WzB>3eBo;V1)*u*DWefRw;?=d7yDS$1TGaB)sSpWYK1Wq0;n928n@GI4L?0iCdsGPgqF$=1WIsIo zciWT3QS@|x>UsezK&;PKHM;XC?};CO4uC#6g32+@?c|1sv!paqzSuF`pKUQ7HT6r$o+>th>QxINQD2l3 z{i|OY`eTLLKzVJbUTr~Z{H&C7`EiH)qlTl8BHKqgJ3b2PJ{(2tUQygAx-*Eg0FPVt zw-xvP5U#)Bc=Lbq1t0zJF^i83-#C87zj^XKe)q+j4C|8SxuJbC@Z`@t!%pNmtO6ngr0(u-rs1h_D?+q9G8RxH-sJ+F^WWW0U@4YKR`kb7e zOv2t6nW{eOiC*Dv3z!A=?~9!Ng_c7~%LXvQUc{hgP5{`^hKn2XaJJk1TF>dpmfe4QPm<9s1f@tyw56eh@=Eso{shK( z!rvd6|EOT`)MEzOXF@g@sn18zoz6AoCP0Go?^i#K)F^z| zRF&d-Ge*pQL|<))XDh-yZ$icpS2N*nj}bk15$_BVUe!O6Y>VhLDkc_R_VmY&_QYb^ zhzgPZ!Ho9QvVW9F+MxY?5rR5JeJ-5x?PG)KHRU?xbmT;L>gbQHglpA`_I|?d|s4UqMP0<2>=suRW#nmaEN-zIDVwbAP#|G@hT-D{%@s85x4% zKfL(Y_@gf#qn}myStPlHX*?mxWG2*!SjlwAwgz8`^Tl`H{({X=@oGC4j`d7oFC57@ znpeU<-#^T>yp0mxx)XFlG7u=5f!imRP-qrU1GY;ne`3Y9d5oA|7W=T2G*#P1n9y)V zGzxp!qBlD@nhUady}d);W;LmDxb=W34Bc6QN;T!9hor@fu&6L&&dFHF_ovMk)ilJD z1+4e5Z%ND7g8Y5~uQZIPqJb1Acc4^T)ayy=O5K4K#t;fC$aF@c5AIjf^eF4SPzrms z1FeZiGxV-Ut#`QV4m~)+$qW^e6bku@&XA14&vOouR$xWLldQaMc^k01ARP3Rn19ic zvda>+Av!sHqEnP>;erpR4Jt{{TC|1eu#y~1^`+1^`eQ|Zq`3N4h3#PeG;86MtZP#W zS~$)WyEjUPxgwO3d2|q_>QSNlJA$?B2bvg^&?0Lo3RDo22@o--9;K)sR)WSVuP}R^ zwHRtTxP5(R)X^Ww`*k~^D0F9nDk`tgohAh*g^QNl6Fq|27}yy4SmE+C$G_1NbfWyA zMtQIsDbU<5QLGhaR2h9tc%`x(aHdnKyUA2_DZ*kulW9{@d14;2R!G6{=1E4tz1Y55 zMROhqH;Qpt5NeBQeV#DMUfrEKN~0wGcrVjA(*?$rqdO{C0M3YorT}VL*E9ynyKq+0 zyQ4TkqCiJb$;mJ)H#g>D4WpOy(qvY_>+UuxBmYKA&JCcCR`RKCK-r%S<@|ZPR8tGU zSQUZ{@0BzjMez@PZE{AaF8dy}@6fBoKlC+vkow}_CZxIn=M2@g!?w~u#KOR;k#lH> zGQBX0{i9maw)cVdz5t$!U5#x6_kO29j|sOA^ee;WO-p;am}r`2kVpa3C#owZS3SQh zNm}St&2xpnX((^RC2ICkYKZlFQY6p5)RWVm3W{)R=^BSB0vF$@7-xwOKYbvfgYQQE z;N=@U->>+kvsZj%0^P@Fs8MmTo#96#(}*U!;=Ppn8H>cOoAKdwjow&{hyI%_S|{Ql zlMQPl-fM2RHRjUE6r(_%@A06wk!%lD1>$8vGKtgGPAFnS7Jqt$s=Wj)>x5UZe`E+v z;9@%?l!^U)$z%y-Vt+ozU0TX@WLV0yRz(3`Vj)1p?#)c^jEebZFni&NTgSSrDECrV z46Dq%&@wTxduc$3Vpde#Du!J_c`Z|tVXh^Rwa-9uj(n&ugnmg(%s)4iRrw*q#`H-v zpZ+jqlPS9%q#o7Vfm9m8tYlmYwNLJyVtn#I_M|akwu6}4EW|xhg&@W(T@PN|+ftRY zLaY(1-qFk1b-a}6=|+Ih^fLw}|6DgB;p!Ttw&I+Zx@ioKp9>Yoz z&&B1XJ+-v=G~@k&WE?8liDuB8i&yvMuLz|GC5KwEjdaK2kN`6JAMcN-XO8+J;&$S` zvVEgqSSrk`0=HI>q9mlx6SL<~Uj=c3sxv*K7yU?U6n+*_mj%iz%4=yTLJ4Cb&Ql44 z-K&Ytp+^N#bJNVB7u|#1YHX%__y+#>Z~s?(Jlx~|_43=i+|23Pg16?^)Mn(z^&6lQ zXZJSvp!qL9{|4ssit0kK`F6m~MvBtY#+=@KujlM|%f)<2YK`#5PX_)MXFuTY-hPdb zU!H+RQp>M}@={*}`jsX$3A2|mso3Ko!dI`bos3xZDAS=h3zI8}@?bM9ZT|?=gAvx^ zukN-&g#jtfx_c27wWP2I!FYWw1z*3=6LMUx1Ley-{jaSUmx=m9WzEot%4w*!m*Qqz z7;#^__2^Mhvgo8J)i)c`c8i+T-~;jI_D)b8J zFg#d_ZD>CbS997o=QJOC(!~|=@$xHPyh7lT}sidxhx)kKon7aT-rGy)9O*X#J zvLA#%^5G6~hS#i2C1Zw*8`NUP_;8N%5d)Z;Eqd?h-Z_#+$N??%_=AD8IZS&Kt&emjt7rKvI+qRM+x5^e2{L9VlOHaSO{>3k^#L zN$K`8!?-Yv3)sH_r{7D=p9zQ}0!Jn)qo2Vp7pTcXe-%v(e#`l zIW4Ya>kaDUDAU@yY2vJhAe6abBxQ=Mv4-lZ!E_P37Yg54S;+KT(|P*ilJ-oCD7z4* zLp0F5beQeH>EF2pV@Rc?{q29zA>QohU$xg?xClCbHnDvg3XHs|GVG# zuc^$)?{bD76x&@z7&EQ38u8xXwkm70vVc>`x=j{-<4sigH<_nA6 zCkbVZijyA+2sGSCUKmPppZrV!kAn@f>l5yBFWSx+S$-yw6Tl=?m(XO{GgOEZ%~SG( z2K40(@%}MkWohqOe5q(IgEYO5tI2pn?>gemtw8wG<$U9U-{ zBdlud&4%#ul^94JIA#BY>*u-=F(=2^awfWvzDIRgFrNAF<~%nQRVf?DZjXQRka3;` zHePdLa+XA(NBh*co&3gW2Peto1qY5CpVyZrX$yL|G4N4arP{Em5trW#N)Pug47e|RbjauzW~ zqPquVm#e~h%seubp1yUQKRrS>9=(k4qC~wa_&@#EzX>LxiU6}nrxn$O7Lo0lCOAcP zE)$^PST+g(tQ0A}Nw{0Z?0I7MSkV=l{Tq>PP|Ut$61cjx!hcdzy%O5SfqqqN64kX7 zNGhdibV@pSpJ&AQwN<5JYLz%c@pMUOW)x4a1>G+kDg?@N zu?|*cfw|oL=`PlP#+Nxgfz=VJ8%X;-X;$GECB=50)9Ujiq;TTn7= z#`KY+4`nRok1G5jKj!|5SXyG{0VgfFL@qnDg;LX=h=4Vk1>KRs*J^TzvU>?;tuB=~ z=5&g&fz4Yb!Kqwy$ev?bpi(4t^yZeHwx~-T*j1Nc5mBno| ziyt~va@>AX#P0LY;2N*QfbJ2!v-jV&Sc>%*xCcLjZV-+`w z;x;iZG||H59eM5H{)oS^=s`_%vYY?F0nR3~kA~}VhS!|nFeG;f&wCI~1#>w6hnwaZBMbzcD_wbI9p0_);FlZGyDF_J55;#l4115J$zws8&7naaVZ&N z2S-fX1VcU5CPsnNM7V&O4GATAZVrr>&8uz3QrC%3deKEmB9aqCJ@ zeJ1e%C{unTc&?K=K)CY(MbPRr&TW|3He_C|CfPGLJqSS{9)iQpR%=BJ%Zv#RSu!H~6{QK(yx zksE-8H;@yUe_^kx5I2wzK^qAyG)gEb zS*V+|7J5_&sQxue<1G3g7vdSOTKVr}wa`Bikt->owk@g8<7ll(PNTOSNh`*)W2{n` zYZ1XGqlL0DjHIRn@&s&v zZDxcxK>2z97w8Us?gq-eNh!* zvRzj}?6l`k$-++AzfCWcs8BHJ(tN`t(q+i&T4yRq63Rm;WY5t70}sVP zQ(wum7)p8ee5LVqE>e4$fRr~O>p}Bt9?lP#Y^r^Er#C%Ne|<&Pf(q@%U08H4Q$%0G zI7`@VrWLi2GI-gaz}HSL`2Fh!w-MTR)G)kkuzQ^;OPSui1G|O(OcQLPJnHC!L@P*a zfSk#07pY$w#+ji%3wHsfNx;qM#EN(|>sVAhXZ4ntG($AZ-D^6>0Q+r8+FJn*qe7cV zjEWc){b(^dQM!>`Y$$GWSadC$rBVswB4ZutP7HqOSyVl3B3t{*#wCH&iZMt{)}2cI zAbYaxkHt1kphZ_GQpIGhF)Y9-g}O?F8itdsU-dG{O$NLdeF^9(h}Kux+B{EAWlAT` zA<-#u&T^XMBN)*ow)d4}nT;VcMl@p%Of|a^v+V_xPzqILy;w{VN|?21_$UTVqbCi6 zJhR#UJN3OZ>{>~v_&-HR^3Qc65>J-Iqb2sbkOD3Q=pt$<+}ChCLyZBw?WEYKE8No? z+(m(3R)QGi)M+&a$q@n6zQ^o)>@W(t9D+iEHYKwv`q$I9iA^lTwq& zjLlALKr^pgrIPgW@+(`n|4goIVVvp`N{6}LU|tNQouI)Apel%~2DR@=eUILXm2xt| zp?5ov*?Uw!p!XdnB~nufI)1X6epFh`!6@|Yj^g}Anw+BrH}99YUBP_j(5=U8d&Wmc z#M026IP5+$`|&x$TgO~}XGwh>u=_}{5gSekFU)q1ZNRpH^^=NWt};zBvHaX)x`5q# zY+K-)Y$%~%|F{w@!ikzDcg3w_UThx=uyXW4l#C1|u2{oLp?h#i3I-L)bVX^%#riT& z2I@##C{hzRZhCG^jUHk5ND`Lab=IRLp;Y$YU!imIvFT;c34i~HB2O<(udtVjVF~@Q zrn@I7e|c_jJDG&+9>eDS!19Nd>MBv(N`d8P6`_PsAApr?CekTpFJ!In&#YLf-ooy& zn0y?PsBI_zj!sN2iczSbq157P*e9wh&#*MKr!vLXKG7c+lcQC!iIa2UIFm_MaEi^_ z;>7jf@7_{e>?mF#PKrkMtOE$4dr$G@wG_Uklj-N%OUw{aK4Ev`1eV3h5}hGd29lw8 zwG}83v(Um3guflYkX5qGpXW?%#S(@-HssIabyZieKD`h}yOA z=)UBsbUkc#q`pTj7I#j2RY9yAT5I{(APu6u*b0hVSo((xcE5JQ{OLgPD(ldc!fpp* zW$BMg$rvdQg?4t?jEV5zh)_HFQ-=x?au*GBCx-of$?ZA*$w0KCM=Ul%*&bE`TGTIP zoo?T%aBZYH_nE<=Y46F;TYM2kqjKw6eFDu(Ewn(5O#G}g_NIfT6+q9|itRgMN&%p1 z&nMTXFls^}Kp!emKa);+`&PoQ0>w#3YZ{6|6Y2;$F}!ME<~jM-pL4#R6K?>xKu5nz z+Is@Lbf;pFbN22PvtnRT^lVN_c0H{Cs4YQFpG@e-ji+$;)iqmn?1%x_m4 zzP`BC*~T{q8h&QPc02<}dIYygqTLuE4S<4vr356_iecs0eygInh&0byid&D}O0yeF z%l=V`3W9wmH1}coLg3XN60i(iB2Ow)0g!%FoNlhNNMt>F}3OEuDi5!Q=yR zvV%>THdKl*%&imtp>Uq{AR;K+1wt04CdI^$e%)5{!28@>%&0Q$%49KVum^|_k`Z*@ z5`ui@%ssn<*m2Vjx{Ov{&@r(0Ye60b`{3ASra8ksl2)YEqQIGnI89+zqYd=MI`= z5~=aT-evK+%3+T=L?{P~9gx##03{Tim^TRRnbJ(nK=$;`Kc=vPQ2GeUWD18uA?Pyd zwfmb<&E#ZUo(y8$7qk=?h0o_jrr)pT-M&!Dxe zoi6jga|$qDZD8_Odxa=X*kO&o7DfobIKqLRr8UYqQV6I)$@)%e${RX3Zjq8uxyaLz zkc0y2EXics)EK9~iOJ1E%9%Im@HbVN7FDQ;{%JdTPNGwoR^ID@qNU>9^Cll43#D_o z9uR6fHT&Aj(i;z012 z0GDPfp~j!yk9{qv%1Tu2h~nGlAL%dZ4_P7!v3~&K>z135ccvBz(i6omDUAwF+_T(a%AZY9Y|7Kz z{45-vhf$_`Nhef3L!%RehnO{I5{Ren&Z%rGtoMzcCp41uA zV7R@Wp+=!I>Os9G<_3Qhu*-pat1VBr1w*n~P^mF{jW0B{&4p?XAofjOcLAIUjKT0~ zH^=CR(RX@`qVSA^IBurB;rq9b*tLbMqr(*euLwCbIXX~z+A*x;ecH9b?$o5C3!?;8 zPXU4o=nZD8akqyWiPv-)clO1hl6^H4plT>@hTkB@Mv5GP+ z;V^j#cRCTV^SxtU5W%)GHFA5&2T|FfPbrC}hX zFE5}hVR7dO6z7$o8NHvzuoL|%PgT;Y+fmV{-8k}tVQ!iF)RfM9hU(W74?^fagi7wO6XZAgxaPO+`cD90_Ane zqH~kS*OE=3ylf1%OB8F*{$9awoH+S@qQ3Bqb3=b**t{{vwTbdp7NF^)6e~t37Q~zf zk|{mo(n;`PZpch8cFWtNLXfV_K}an&p2=y7<5i~e9G=|)(^ayeEgL~XmnC-HW3G3Y zTS4T)gCi+^>QaQKSFg~g$HaL9rzddpr?yo8nO|uf;p&FecEtT2`{W(M{T1dJLOB`7 zDflrprRc`?9rUfxR8m3@7S#@<%^kw23P(zbR8^?1BYgBJX0bpo7o?_wS)B{U#Od#x z3niv@gvv5D74Ejj>_$S_FwQkEe`Ce+bI-}&dCKmWAJU##RzKOJ$H1_fO_ZWgYJ6iR zcee66h+|Gn^v9On!`!qaSbaQ7cED+Y3b6RXbMtk}@W2xbi`^?`UrKY+-cwU5^XzG2 z`E+DhS%$fyyDxOd@(TJDY~D?jR~om0)kkqE=-YdSb=jb1p5faA>Wf-9=TCZkP?)aB zN$b$O5US+WuRvOOcKDuzT5`4*`ebq$dtpA)~`)6mk17*Ia$eP~OOd)a_+T(Vp2U z6*(C-xqq2K^dojZ;x^(~(>|)E>8I&DYVd@kl30pES5gXfGMCAy)f6u`f?PTaWkLTy z@>ulk9(}u&#N!92q}maiVxn%DK43PTe5^2V)Jz4>7|?{y*Njoo!}p=@Us=6&=l)Tiv!Hnj_{)ou@4^*?;SDRpAid9 z`BIP^zbdiYfuk?3NwbPrTFi?}nPdaXTFUcMocjt#_vD0rW$2E@g1c~fDs(~C@Zy6T z7)H9|2U9a)_mTQiQC@r8cBFh6z-qQ{H|!UR_1DBUUwaATvn}GxWMKb5nx5vFr#&s% zz6JG5d0w{fdCbOe^2egf>W`s#CYmaWh%Ex?MJd+4Yv|4r!*O8#iN)@reUKQABk#QT zinkY6e0T9B|84U%KD{~N`q>JzF%;Jd6)c}DPVtu&)rBFt#Ne_4O>ek<+|aHo$}bA~ z`yRUz%4?_+-#9(zc2V=;<`MSR@Y(uz#TG zPZYy(WH=$y)5K=ntrJHdCTy+;=3k0s`1UQ?cS9i)r*SR~jNK>ZPd&*h*6-L%pOd;x zoVOBg59Q}q&~{Wm(lV`RN>m|}^Zk99&MrQd^C~$*s4RY7P<(kUHNa|4Yzn%2HE!>* z*DW?BVqsYS@(D@7;=?UiO;}VD2w`8|PT!vnMh@0s3MUP@_oR74)FnLqC$GDo>qbP- zv@{{}X;wpBqPDHrjFly-Dus@b5r6}#p$_~{_-SMj-u(`wXbHLlCfQcK}uCY?}K z;Ph<6g<3F<1^(EJm|Q2k*Vw&cxOM!|&0}KbOPXs7$zgYbfF>*SFVh1-Q06!o7&URw z;1ag-Y`T(<)EOAb89>YT%|5ksXPSLIyw==E(Xf9bU|Nma7yV^2S=WyGlIMw(L)fVAx7LLYY_^Uk$O<=fKm$A2cZ_U z-GpkItL@#iPbuLqdue2p{|BnSU$iR*&=Z~fzHtHwRS$(Y{EhM)jyZ=YnJnBE`Y=%m7dRQwHw{an4({(;%p*t3l13=0oT-zM)#^(}GFF_hb{UD?nI;r4iFAjhm~cq=sEjQ12*HTMm+1tEk#I#piKp>G zB3lQ8>GXv7hDuF)2Yn*-xv?=S2b?PESMtSft8ts01u+P)WJa>~ODw~~Yd_OBf@Yg8 z+yzS(IaF6ERADe<%t5wEXuL|Mt7goZ5>1uQw}9OiqETrCkynR6%|Q`s8DH5}G%G|f zYoQZP(~^U>q?PkcckV8uD4&VS%kQe{8bXxZ9rp{Y5m5>~pFv8Ps~yVMm{NrP_#kL< zKZs^#9MPK=b<)U023CeY*+_j?bu~tp? z+%i?qQwj~k$_kL#3N?G2J7Nw=j8-Q5#dS8m=>(`$Q7rGL>7+&)+;x(SpFEALzm&3Y z_gKKo@hDK-T5OkauN=O%s4@uwMTw2K-57}*D5Ty{LGk(X6P{ii@q5)9LfDVdrwtpIG)MCHqBE&~Hodig6jyi;=~=<>tB+OW<~nj~cxg5u$-u{l*{^Pu(jC zNi|Z(n4RYGlVf3ZX!tL0e+ktasuk#)= zP~)(t96+*k2=_+z(}R{!se{%u?piSFVJJa zT<^2Jyq0|-h?AsJYFZm9M`RpyBkG@riO4^A`JW=-Ul6HE}KoR?=!3!Mo4T!CB(6!5`O|BP@$QRMO>kr)dh(I#4M36@a4H z$jH<;idJjJx?uJ)viw}M0?8B(W zlC-{itQi-P2X9^T>U>GOEClI~ip3{FRoH$lP(9Nee-IcO5n{KGqNIzCnxYx_H{Sdq zf7^V67u_jG4>z35_B_2>k$MU5i$?R~&mIC0P9&hGSf?zW71u6+1xSXT7euxtf7aq~(Yy1M$4#{_hQ3f4$)5w4&_p_>;a?%--6t+f?wZ!gP`+08$hb z8$ltqj}7iBF?;D*zh%V+G&dr)mH!v(P(^z`viwL>Uj>TifoK)CPsFvNJ2EW3>?yvu zrv2I}^FV=WC%-mBpleipxfx?{<`CWU~|WKU+v9Kp!80HH0spi;(j1LlLxB6?l)@cu_C^ z0$*wLvfGs@f~ZvWwL_CY|2F%TQacz;H5*`c>BVOilD$L^t{ zm>U)sr<1L(zS&5oQB{%ZlJW5p(|YWyHQH(sVrEK_`|=W773hA+a9nWx&4$@4Pjx;B zjmt>^>t~`RJ2*SpmYk?81xS0UaofcF>A>}@WSmPeue{_CsU&0m@+Qe7brhPB+r>;> zG7JmRhwR^sq@$6=@0V0piRyw$NUaCam(=Hx>dLcy>?R?(?GmTok5lvAo*KrPqCC%* zvR(?7aV9}t&8j8*WQlDR-6Jm+q*sCpk42j3l8}qAg<)7I`qT7UFsz!=$wR3q-`diD zF=zDw?B0}cwphzVviZVJBKPWCF@GM|-8c9-jPpA>N-~nSASM8^Ud;e*Jz#g5*-TU3 z2FgomXp;il%0$F%gCwr&J9B}4rO`9Z@}nN@Bhff;3YBwVR7zB@I#fSOnBjrKIe1h% z5RYaAS7OhvU>LDl6Xz9vRbvn5+UVt+n-xOu*mP200_y6PxZX%gyK_*ALtNVK;5M_t z3bC|4Oa~dg6fm=fczq+msE^P71Xt$&_^x<*gx>5(PhVhmD@@@?*EgaYX(Z55l_ja| zNd16*bOendG!{KX>}@O57eIvoUeP^XNE7>s&@#iSo_^lJ;r7ouf5hzIco3TCw~P#)W46?UAGm@ix=I2eGvebwm#u z-6_f+R+vuC`w|39ovX=JQjZF~wj?K75;gNEo$y<+l2uoZ)I{`yj{7HT9?jPL?)d_u z;pOdu!g=nUY*<$nZ5CIjQDZuV-HJPAd#32#8L2-hSbUb)Kaih)?|UP|T=C*x4FX8C zit)r_<{tOFmb#_X3`=O=8?cpVUc(=(sIH-X5-@dOzqo74UFE3@PyF5r+d}_qJKEcl zqYpIwkz)T)8cw%`-Mb#j$m072#f{{Rg(8~|j6xIZjs?Ih*O8EGqyxwticF)Mm8jB5 z6Fi1&T69PCx_ih30MjWEv232y_)>B7aW+zEB)C#-b}+9=R#W~+Mj4ww_YTF4LO*+n zYHIXMfV`9v>FNf?k=S*Z<73iW4^Z1gYCCjYqs%`CjY!H5A2FhOkBOa#9~Lv=c8(qj zM|1`nCj!!apIvb>^5g8}ijnFPia8)$JbzqgOS6p>1BIoyYAG%g<8e(gitd*l314#v zv}Xm~iKf`d_+AAOIv&CY55;HFOd5t^Av|L}CTs_8FT%7qGlH}S8NrUVr8|{P%+1AS zPmKztr295EGU*WUvv7NJVHNJ=nt zj{o%2UtxVY!`>Qh%!1phA$bi^(LPW_lQ0(rI`ghUQkvU`BAQQ4AQ{nS*jr5-=Omj5 zGeI)&3cjowG zZ3K}R7Q)5XJ~1p5`v;ElCb9e^v3?>}eA-LVQEZc>QICr5RPsGcYo-a4>E&{}krAML|3;4_+)$qPtM z6OBXnSx3^2*wRpJMUx^ElLT6kYFX>WHgovZL6dg(Y*km%&_<`3zX;Tqf`FyWGZtNv zG~fqKiSp2%n#qzJ#6-hwHNGi{PAn%)n^0QTh3N#z8)u48IQ&fI91tm#+WQ8Z^9-Vs z{j|E2_k7?@hk3+YTgF#Q=3mGjIL-~Rj12bz?#eKGriALTN|~0XuzS&>6t|KGG|tlW zx(BDh{bfyct*LGTyT|gH#kmnte319Q_(Fi1{h7Gb6gNy0QuW&TDViRkwb(9+06al? z9Rvh=P|IW?NmFTJb~j2;-h|BKkN8@qRo(qsK6e{3<%3MQ)!3cGm~7oS1oXOr4a zu)Js?CE}_P9hNhUbBmv8$}3NCJ1Xx)0Rnk^W4IL$`})uNah`!V7&R zh2$ZJqd&<`aebn?f#RxV_s*PQp|N{mV~h*YW^D&y2Sg)l8Dxs*_KD^93fhN`kKQOL zlhCwGo6tR&wINoC-TMR0M+M8zqD&|oVLrrCY8{Yzmi=%zspRZWpnVSC?gPab31x{6(txDGG9Fdf-H6%rxP6HV8nYchDasp}u%*)@ z^sb}4*%CKfR8gP@(KYI`le=|Nm#A1wG-dn7W6_RmTFLAJ;>|6Ie;&l@g@X~9Y=kK2 zPWC-cg`3dLWEC-q$j+|!LRW!1QB6uhT3%jVL-&eTA{ZssvEFY;}<2n z#|36cl-GiE_bWwtD=0T;(jZ*EeyNF*wnOqMRFqBRfD#@=XTwrY!ZkA{+%^hjXr53> z-HD$@0O^v8Ta|SWGTM^^Pag8>r5uW5(BQK@W8Qr1<2}P|N%K8}Z^Tij@=3;lS+kK$ zA`P1L^96PzVTULyl!BZuGOQxH7k_NqWy(~Mt#r>uZ0WHs(6xq89Rd>#{R0n$G&^c* zDX$dnn7EJakec}-P*5SHcQ zK%QSSQ7Wb@2`y-s(|5Aju(JIQT?6T$zvC!-u=At7D)(=8gq8yM12Orak9?k7!Puaeq z8EZ*77m8wD6Qit~G|xiz1a?QZ(Tx;0xykcFJ9Ha)&tnElQX!2mj6$Cd zs7ph26-D<^2e}8?a?(H|34O?gePDZDRiA!0vHD zccv+?h4OkZo-jG>d|2qr(G~id+eLh1P(I=Io^ftv(sB45w?gL&Gns_CotM0j&ZA<9 zuPyzNG^O?V$U#IL%|ZL8Q6Zm8Dhdy~DoCYRdMB+&vkCw|FNEqhX2TS#85d3h=w5Aq z${O0&hUhAkFK}0T(VBE}4yxB|HV>4F!@5vKao3C(BZBo`;46(I(eLhno?(!waaGBE za+XvTgn5bC2@O_l_o#K8ob%M^Np&#=PpX)3FK;0PhPThetO030yJJoBJYX+(>>pQB z9B+NLqc+&>fbKordrN$!sLw}KxXTYgF#!l>OvD7;D%;j0=cd~Cgkr(iWH&fqI1=-U z{#Z?#O4MELV7tW8M;;w4>#PCr4Vae6eJ(VSk4~vCJZ2~uVagjyHcx5`p?LX) z#0RK^IPiI)Pthcli;_FERa15kMa1qcr{C|{-*pgLA(Bqqoq5p*xY!yX{?m5?+ylMxXXV;|1cgiq$89{e6Q9 z0@fyzzc16O4=k61w$5~7@-cfVlP&>(5pWeQ7Ieum`oQ>5S9vk zlPJEtLEm4((&0AZ#M<63b1j%qUW?WDW{~{5zQ}Y#H(v!+o83d&aJqpC1M~0{7ETUCt8bBfk68liXCTCG>C@F)`wg1hptHI~kQ$C4_*vZSnV( zQh*}`!s64Gaapi^qoBG8EI;#tbSg!7SWQk))lHw2naOsS zF#j9|tvLU##;p}6-;WG);W5`QQ!Z+mrUTKEkv194_9tp`qbhDS`@eriVa2J+&m*af z6ei-9J+FSF#_SYs4VQl=U{(X_MTLG=5tn&fzSW>>Q3@4G~BB~0gtAhHa zmL@Dh`$)d8eku3SZS>?`Ar{I>YcCI!PBYM|U?D|R5pf)>Fh*D5k`%^^*XD7m2UT=i+ z{p1Z|MD$PHFLoo6`hlc+R8dItHI6U{9Zfk$oY$a1jgIlHGlr9b`sog}ZBaKH(Rds$ zQ2mH`ekCHm+K~o_QVMhL6jhakdn+jxtw#4=xZ)`hwG^2Esx;_zi`wo9iwA_#knYc? zOoyZ-Z^-OM)EIM~h-REgR?H!@21GX&vc;?pqCXNUpcKsG+~RhgXcXPCo}91B+eCF8 z=~sqOh#t!A(oWOOapA-n&x_MxN>E*h z7FCZ?q(e!<3CCF>YtTwFA02GpmNVM!6}tz9aej~WyF#}<`bne;Qb>!y2MZ zPC6&+R@Fqsj8@Lk_P%JYh7*swHK^Y|p(xqCX3$-jI63)pru9Na*99 z&{@<~33Z}#O#0DrCXIV>txy+pK81zQii;XmNqcRYz(3)Msj!KL_5;QL) zC!}8{LMaWG1X_!Td|W2d%tI7P7c&zDP!4W zCG@M?<)&=r3Blqv1~v1X9c{V%q897UM!4+6!%fWB>;KH3i$)rsp|otAddUCFRF}hBIv|-TqcEY$l!b!`eHpNO zOL-e|VW+Z|CQglD$N^|>BV2bqBF{!*ayW}6u$RK(;LsC_Y(CHmniwiMH1xqf8kyY1 z(hy231?qY$O>W_&Sq2F$RO-$u^&m8hOyPNx?PiP zec>e3%;`MY@)7_Qh0-KcOLh16GolL+3-4?>eh5^{#kz_yQ*!RCyC)m$!`G@iN|9LP z3I$U_4Hah4cgt2WWr!S_=uknkO_S$6N@~$VMhLASr9`m|Ew&0@nk;zD_Okg0O#JUb zrjUmwJ}ChQ#DbD+B9W~vU0zoXY#UKg+_A)BSoR0E%P6nTXlWvcw=s!d6LlJA>PBKQ%VC!glt$N9D0&C0%`s0bv_|)%ppd&3HLry-<-?Sj zBY$rt0_wd`Fd}9u7|>ckbuAREWOFF07Al|!TXnYVJy1G>=&gQHFMIH8MedWel8Bx~ zx^Mt)dYLwbi2BFmwyA@mj+3dJ>Ic!Bc`-OJt-70%f;_~Tj;TY;lu9je10zyvIHB=I zb6Crn?(Ky!A-4WPL5v0TMos4~x#l=%M1&@uCX3*S#(A*84${yh2ct{aPAJ&&%qp7m z!0v&@uT(yx)D(VdhDg#HvlwA5?tBMLS3)M40-h>1eaU3HQATh{?EhV)Us;CZh&mpK zJBRX0^j7-A*Q`hl~ypbm#jWWrAUPMd))81=F53&T{~C zdlyW27hjNay$Gp@=rRz?L>L6flzmV3x1@z`YhprIk}2eC`S~hJz_v`O<+VeZ>!T>I z->(dAr%@qDOu$6Tl!ofC4~i*=#zlGlLS^&cD^8|Mhv*4kYXNn}lqWi`olVZ&)y3A_ zeeSR}Qj#;v8fivS%3yjKF(#)hD9Vf30pLsLXDPiHb796&m4Xh8QvYxuS)7KEbZGPW;yWIy=y|$TAbk_GhE8V7@G}crNlUoIc|(AAO(S|MuH_@ANUl^Eqm5Ny^GbSmY)k=3=Re ztiPtw{w@zekFfokN6$u34&cbL*Z?HHD&G#7(syuZND zj;UVmF}JN)E6z){Z`Fd@cj5`JmAEZMrzmfO96FUu^u%sjfRpVb3wfOHE6s3E-HEQ1 z#rBco4|>L><>qUKP%643!*C>PyZYgX?gPH8Dc6bWyl3-n#qO~PHixBRI4Z@)x)<<6 zduU$Dbk}rpIPV`G&^6dSPIP~!MSomV+{${1PS8Y2WQY1(;Wl@Zg6sEPob{~ey5bg<4lPZ4UL41)vprsXFa=z zPNp9>NiY{D0j%Sbj`2l>z1pG2S|+3GK&Uh~Ul;mUc^$DGB$c@OCDB&g`-4pV*vtDc zZKOZ3_%hQ!ePaI16P>1gP*L6(aUPnxJC`ISY3#+W$DH31PL_nT5>q*GeH=Zi?TPCR zYF1+_OZ()QWRPjzp;752#MHDk`n3sZ{On6ncx1WRh?=L+4Ker{5p>=znYY)o*^mkN&$SxQ#-+ zw3rUIk7Zg=T_(a-K#kouNBTKDFC3u>q~6e6DVmpw?VBnW=CZa^6R3YuV*l1D%@d8E zC+448l7jWKQ)~gdcLK$OJr9pITREn zyuz#v<4U3Ol*kOwyvRB`)a01wc2e}W-x#o^$G@rxWn%v@+W>Fx^4a>6L>d)()B?s> zFgr~g%IvNO)kUUXT`Jo9aP!NG>XoIql}WMo!sH00;`$q6AMSRE#TNs1=OHzqVE%NZ zKQe6J&?H?_%`CU?xhW9)P%k#GB8wkgF+5l>&Mlkw7y0)J6gMO8^9z}594{H~HTcS4 z_i+MmLZ#WgGiT9`aCuF5>po$Y_luCkU}IjRokid7&=K{^2}=Ri%2SiXh^&uc(F<}i=N?mNqK{KR__h3s*xBK`>O_%1BCjMNNmJW zgdi53B+$L)$G7+Se=OhNll2MvZHev#;gC>87*>gB6t+_&CkyG22Xa?@f!P@1kP%4( zX>W4^G81Yf9DC@FCH&|0@7LM&r#lnzy7CE?@39a_!Hk(Ro5kwGQi=@~1pNt>2$NL; zyYr}M^5+wjg&bi0K&lI&UmczcA4H#Ea^qp|xY;TuIqc3(Fc5Y7UeKMJg<@$jGKUgi9fI;M;>e6ddfyWu0fM-kAU1Ik+kn zITX=ma4%CU4oTmKOpMWJid!$a6saVX$ljHJFw;OUUf)!VTF+#0;%#|q=*|Q+Or1>$rafrhLt56DJINt z06tRwz2$cbh01}oOo5e$5Lc zkSV}46+N8qicmX}%|&yN2KNxSdzfz8PDIg4pM*$oAq&XXb|^f9}K@v{mXGR-@H@G0MeDxvlYoen_8 z-Ja5)3Z>L^`95@zMvd2o@>;0n2i=FsPN>32QPX-Bjb6e;m4gk1s(P3(bf>~_QKO!w z)+*-7)LtfHzERV3CYG8IEw0TqQ8pz=MnGXHLJpH$*>~KIZ10{!lnwd($diyU$kekb z@r#n^gchi>UAP`1p*HwNm=fmnc$(ml&!9tKY^)t7(?3;Ra|lRA>z}5ABaPk9a{XNI zC~CQY<5TozN4&U_n@~8|?Sw{fw309E`svw>4^D`sl~MTMF<+jGw>q%-m)~LYrsd&( zbA^6&E#KfQ<3b!utku|8Yv>2YckhdZ?rFoYvUJB<5VtN-U5qFn*}f&yhWcWJ1b$I4 z&aHUkE99WaX}mY@mvkr6npT%k-bP8_^s*tCE?{?_@J7WrSCV5fCd{D41!Jxxfw)LC z&&1z<8%-YX8FVjP$FY$@qj@R^^yZ2D?smt-c@&C~VpvJwS1coLZCHE){gGlgPTYTT z$=8oA_&Xnb4K--lfEFWA4MQL#(8%}rTa2xsC6`!7iHMsRkT(A~1^u;yoTX^qHX=qDx z$0M&KnCz#X`7xkx_xO8D_HR_ozHF&KydYiQ0-)V}Il#({)U_RHnL~$iCI($E0(Fqw zk@c2%wtz4Hlosm$7_JaW{Z6PB&I$j$@1?*SHC>OIHA2TI9LY(Dp&Gq}9@aH+ zHJ2hJ1l02jwAPI8K0tRK{lyFPC^-bf*^E#h!s+rspR1v`h}pH!>o`Tk!7NKB`E6tt$^8Sjy_8CS|}efxwxZ9&7Q~U z;4E(y@ng;Hdy4*8iZ{Dc9Dk6_H!8*UE#ZDIJ~X&p%7swEpLpzzrM$>l01FYZs-4)A zc4vzHw?{B;qnR@aG(UlonmgWui}8cTm{WrF1s%TIHYl&PND%OpEgvfd6 zs9ob+Pn%rw=^P`%irZ^R8RH6`o!X1IM#-4r?4G~hma0U`4L zBk#{*ZQIhjPVhIH*{*i)efHkxoZClx9f6&88PaqmWo22#1BHz8rI2{AKqXM|fGi}C zQDI96EDIhi1P@45Nhu=%68VBErGipoQI&v65MUcS9L>EEw>$0bS3BD=Mm>CE&b4pY z;4m4!nQ?PU*Wq){YUi4BjPLt@|EBw0Z%S6p(+fCS(4EgoUaa7DCF}uX#MV1a@RI_) z-4iz3(KSofpdi-1k*1-nMW+ca`A=|>zQ+&0-eONq4}UIm34tA&gQg)wF@G3LZ;Bk0 z#$Df_Cne$0G0jQN{?t-l_9Uy8KDuC*W zq_>*g4bFG5I$Oc3)_jpReh6 zIiWZBR%5PGj(-hqzZ97K-fMQhenPTQ9RHpdXcc(!wR4EH?32l!FHA3ZzMG@9P`G^x z%`q(A4Lts5cRc&Aj@Z5-(-wk4uPh->UD!$1+5QzrNCLAD4Bb>w{@^v+eMWVYGkwoe zTn4IJOE89$Uz5C_b}Ex9-NWq{M31(3=brF?Dzw|dq-Xc4G+X^d)6HP|gV)?VT{8b_ z+;by^T)<^7I=@WxWu}AeLwQ_zEk-s&HVlY3zdBVczUfIfhifE5K#K0P6z9P>K{t)V z-qjESem0?gG^KiA$ZwqJmuiQpI`qpM!qJ@O;Y=LbP7CtO3caeO!Pa`LM_ge=<7f=- z;gJBcFRo>sSj<0uP5S23uMr_cv3W#nLf;GDH6k`DNk&dMaY~}6C7@evr`4l(<0YI8P&TAh)vN4F$VTpnM(<`iUU_zbhoT zC)viyO+6qX(Q1e0PPXc_8@-*|iiv-BgN^{iz6XZ5`<21Z%M16ZZ?5kPQ58dm|g~_6;Kw zqh1!FbnB^3tT>j$ps8WHq~ibaadPHUL-oaTX)HGl-6E$svP^S}x!%CG!ZscKvFsYY z%*UJFRQ>2n58!7dx)+hFSyj?-Eax)$=-mNH%Tp-xkE3-ULha2C+x3F{CCSHL|5JVR zF>DD?HW9-MYh`UP8g+6^=zBt4kLZrtRnl~1+1S7hnjDH8w8m7O=s~9P`{_-EEmKsG z!dUbt?l9%>f;72Fg3Amh7R*?KPYwOlphAky1Oyqf27&@NkzhpK^!OyjWrvA^X#(lS zk-gZ`&vTm75*v*%nj_J%rR$DlXE2o_zX@b(FB6(nP|Z+_^Ix)&i9`~^4wGAnX=+9Bk(~Q}U=S*q zl9*Pw+UXs%&oXi8+XG5;IfJ2tgvQF}Om>1E`slqcSyGXz@<3Cc3c_m|X<$%6-1|0x z^2$*k8QQs^n=T!`qliRJ>&M_P(H5yu3u78F1<*08MRx})Zxv*srJV5nMH3Kk^Az7% zChu=?la%eNIoe4v($6zYV$fAb(3Rk?TAbuA8D&Jku4 zLGtf}YN$hqfn*ky%A`!Njyq%ysPe?WGOiU#vFZ(!6R3qS|_brJJWGi{iewIZINk4Mzm5)w!typuf zKT}9>?p;SWvG`PxU$(L?^ij?kk$iEj1ES#yN&rP~h2|+1@{a0QrW5&91ZH0|G)Ih@ z57o;)r#sl4+sNh^(${4Y(%$A|PNs=pdwGVx6+8drGU2*9B3WsYR#C)EwRQo7z|HN1 zBpTsduBKS)2$=^X)be-VKj+JdLq_~yB@Re>E_~!rvciIWZlqDQ+%q?Riq-u0A;<}$y5XmQ^4MX z3qtAiUZ|cX>M`$6SbvM-)6s|wU$*aM8fRk|ROEPvG?5eC_mYa*cEV?y6jYBUVyl}7 z3Rc|obc=*;o?se}+4tDXHT|2%?9U9Q$w^IIMEZcAD6+c-{grQ_9-re*rqZZrLDqs6 zA819CR-DuO+ z%?-OVgUg{?I!q%R&w)?bO#`m<*ky}(Vks{Il~?Fo;Zqr1rW;2)6`IoYT?<(DKUksi z9=lDzYie7NE14R|qN#8*vFP1D2;-h29=lO>0}ov zTXBIHoz)VkOFbq<56P(OH=?+GC-%(gx@Yy7jOHj%K37rj7Y>(a9CeFeO|yC{A>9U! zf2E>bT2`MmXjf7yg?{gu{FYPkp7+y~zD#h1j_yejg-Zx~Hiqn-rfLfkvTOcIjSPPnmtTB3IqVZFf=8EQ!Ri-A&OxLnD}u*77QAtjNY)+d=>`4c&$52Q zQd|qgvw9$5hvf$q=}C&+8_G*ZcGck0LNaz9#lq(%kgWo&;>S0N>_){vK|xLXB9LFI zvDii_+KHks6wOggZ@;Rsy97N0XAq<^-XkhVHpk$^H{8Fr5)OBDs@XrhNBvkh{9g2O zX0R@g^fSAUQ`6)C?DS=zJ@N3;pkjz3O5R5Wamw324A?KNslGaw{DLov<$M1tQ}Sz= zytf85r_Tk1z)C~qgQ7k$lrKEVvz543P1CXY@riu@;!393rtz5QdIbo5DzzwYB27%( zmFlwsav)ioI}TOv$2@I z*%0;>q3a2=oRApI%}Si(Y7UdaAx!o5?tscCiHO&eL|)H+9IgLU9!4gm!{oD{=P0YO zTA_%!L*ITZ=b|zB@Cmj#BhQS4(x#ebA&zy^XOZHf7-^z^t(9JEn@g&j2 z0^%es22I{r=4nUzYkpQCF{$IE-QI17Pk9`hrO^}2D*nG=GLMcvBB4EpnEbAXRscM=L+S; zj@#Cv-D-{#Zr+a0VV4=El6}9u$!T*3nM0X?Hi7)zl;t-)cc0VrMIgHs3*z#0$KDpW zB8j<0VyUkj*bEV^A1Oi-=%%q*aEkggf-5f*lC>hg4&44OPw~o@{-YVDmg$2x0&dFM z5=d_~$!?%uf{%`a<%Nqj%8`bdc#>Tp-FoI9h~5AGq2#kNv{EC}Te zA{{RZ+PkSts=Sp(vb+$>->y_t4;1MdX7Bg-+|Xy5WZR=UPxD$4>%;_8JCX=cnl510 zEqdS3JudK8kpQZ0F*kvrXFwvF=(Zy)XV5tO)eYJJqCj202lQZg1JS+HNhVp$>dC%_iz}E;3G=B;LI(T7x}|*oF7m_`zD!4(Gr159 z6c#-zQ6928FFgOoiHJvu4Xbh<^~Ni7$0gk&p?|d?XhnH>$dG7fn(bplwiYk?>{<%H z`Ygkxnm$vc+kjdJ>LW!rQ>-SIWEVL4dM&P7y8{w+`#C$>Vwwi>8__A0&oudsc;Z(l z_TZis|2Mq_Q^j)=A`jDxt|ZvN$#TnWS>Q6L&jQ}S?0ro)fsg)Aiex3UBbOlpttUBs z5pX}WAvld{W$_)lDCHozG4xY~J*(&yG}eMsBRYr*BxOtIGQdz=1j{#>(r9GE-} zV=x;qj$m~wi12{mDhEmB=}Iln%?84C#AwCKB7;N}@VON6cwIpLuZ z5xfX6Kjq2ly+aINSFz!6Zq(7JG$9ljAy3fNM4o@U0&CGpBBDI!q0B|Bm)HX^ zqLfTV>K5HQ+_J>y3Eg>t>H~J~&|Rd{gn(&1%~=$w@5C)GiPe!9zYIM2>P%xA zXy2KWuY_9R|HE_ydFm6z^$#75^fOlpU)%1ZgI5shWxG5bC)<-3VkodXGnjZw2?a}G zYC#Eop5P11?qNo{b>tT{uC#Q^jAkJ@Pm}Xg=pEVf4Zck2r>WTY*1a^k*3iDPlwizh zCN5gNAKl;dYA-sot`lG`O;FPbiV4og0>TGrKBlEiQ?(XEvp1;4Oz4c8%}C7(eGhd_ zIGTL7Z_oeL9D0%q{i>=7&Y_nJRF;xHxq;r{ojzZ&>;!{nsabn%Qll+MMGG4ng zL$>kcD+pHOfZ3CVZerP=S(1Gq**Ut2O!&K*MR$RtZ?s}pTWYEYhRti`s3qCFW>6kx z?+3PTDEz~gkZ2|^nsFL}65U^RU6ViS#Iz{{ z$|pNQVrbrejH!CLW?L8C1H}1GLip{Y(pcvW0TNK7{q5oo)JG=@H4cCGxV%T$Eg*+C%I zEM%kZXBXj@Injl$*QhD4fZNr^YEnk~q4EwAmW+n-0?$@L~sOYDIqI#qnwmt`rJZvQ;CU%j^}!Wr)Id zO?D@?d!~)f5{>*h-FkMfXu72*ybudjqUhG^=mOLpP^2OFEnRi+Kr$VMf^hzRAYJ>h z=o^}k@tRaJLhW-Alnvk4Y#WMgL&y>lm*r_h#AV7e6py-%G@c+1Ism5jc&q7(jI4t&Z{PVYe96a2^N!^e)Hk${N&M%&UX zMbYBddz9&gBi?od=kD3>%33pqs%k+~RoA0pnsPTW>q4r|hIz57J$Zrh_C-3TAMFQp;KA}}(D(_JRu%;4ca2)IF9 z0=<#^4iGbl;E3iCvR?Gl!{bc{$+`s+!kE<|^a>M04%2NQT?=96orTnZA4 zk91ZG)u|edLB`9&fG1|Q^zyy?TqqWU_`ZB0n|Qr6(N1-+W{!69F?i5rhIXbfokmq1 zls0Av#ougJp!N-Fy+b>X1>t2^jp&&243}wCe7tfp^}>6(4tqf=#i=9)o<_t{1)1if z<2{fHs1}qG&6HN+s^>gZl|05;$rkDQgKhMu@i3OqdFVQP+e!15CWO^S>IU!SJc3YN z(?nbiK`eL^2%!**-dgr}LLj?sr19I;;!dU&;W(#WYV2NeLqaqN@X`2z!M-<9*rE35 zghrLE!kDL%>;k58l2c?g=32xHx;KZ=(s&*Ag~BQ*o>sU?f=^QR6Gd|@v>)Z6o60&c zdG4uB4H!?df%4LG_hkrWk9U?}J!BpljjqLV+wQ^$>Loj&UKJ-5?RqAn^0~)nB2>4P z8ue$oMF0W=s#BoEjY?OFbR`!0WcztrqKc60>8^zJ- zhPq9tE=!?g`GZwACOTc!&@2PVQ7uljoxwH=9UnK?=-aI4mFbF=e@MFXY>gSM%6$s$ zGT?Xeow7Sw>xeqIb}81t>CUr%Aosm1gq}Ls?wYu!;KFF@+m}ixdsh{v$#99drb+`R zQ%_y@^oxw$Sx&N7Lff3A1f#I4M&t!?`r4;PoE)$3AkU;(zTM$x1^dSZiIL|+1S(=3 zP1`|Y@nw$Q*P$3_6xaXw74gJA^7M1Z=2RR!a7scCAJzQd-~Pw^x6l3n zzy9J4LMGzU)2oNUBpqAxy9VRLz4 z7pW!5Mw$-Y1=@uaFy%{m{OV0BMZ*)r-4ArA%rp5)CPmzrc7zW~j=uuw#*yrLHm_!5 zLDJ5IcRG0rvnLMSN&#OVC+I#fe|INN6m36F-m<$Rx|yNRHMaKn>~PzORkX$@Q! z@9d$Sr6gNNa#v$s-Vy4WVzmdjP^%7kjYlR|P@LYATjI!5$XSI$8l zC#;D@wVjv-WSN8}4x{jA*Oq?jyl!s*_y8$Szt;)nRV7m@>!BGSZl&-Nb8a z`s){jNzU%g>DZX`#}jm!(a#ce7kK>t+elH`Ig+i5E>QB=?HeVg4jg}FPd~AAb4zui z1v%XWOc$8EbkqyY?lnd6LMD@TFAjReO>_!tg|_H&CDyf77#+CMTQSJkzuA%8TC(e5 zabwiT={{QXS`l9EUQv|K#T{_+yv3!O{aHdcl_D&?lYrK4D(+xICWlxVEBZ+y_PJX@ zCv`8hvUUoth#c$EkYCHRYWL8N=Oo!ee&gA`D!P`_Uy*yIdSHbjc5!IX+nK_bgS$>3 zyK}TNBZ=47o@DFTJxXNlpG!Eb-8s6crJHC>m0*>^u4>G_V`?YZy}X~GK=})GhXC&`m5bB2Fo7W84I3XhM`g%=hJK8V3Dtp+j6RX(uPO<>3LG7a; zeNsx1@$4mPGJ#1k0wU5_e;k}pX^Kh`+-mbb<3{{n_YvwEefm(QK-LI@qHd%i@t*$q zOSDVm9(N8^H~701p>AZ}s^&$5_~ z9hkqjr!N!M-+w|M={b^ot%bVhca3&)?&_(SRh(*O?<#a}n7nXQCx-QB4Z+0h zk%X89gxv3KAiGo4A52LjC^-M7P`mRxPj#%g`#w+cQnP#q?!Fl47M|jnxI(oH$t_8? zNG?&Nx_cYg>~ow`sI7^Pp@DCH^D@vBy1VNoNh+SLS3lFnL$p z@OG~S(p$yk|2?5T8iGj$h$$|_kjCy6;pvpG=`WJBushRCo{D~T^QO?-XCFXwB>&|% z0(Q0&9nS%DGr0QxfyENA+h`;FTpCK3L%mcqiy~U21B5s+IvnY3OLAM$o=s@W6q5_Z zuDliitA02kyQZf??t+yzO zg3o^Tv;396@>dA=Cl?{`(?9*wJbLtqqA2*$AN^6@dFP$q{+k6qHX&*VPf=PzRr<)O zR~!VU&JjW^%pw{jqBL2cfrt>tsl~pR#-kU$t!|`2AWaA{JW+yZ4uZt-J+&a6+KH&t zG%}@7145++^g~cP(@7`XEQB+uo9I}T2Kqupd*JA{P>Dm!h`tZn1`GW}kKs8G|6MUU zVhtf-eHp~*YUoXZpaa>Be4ch5pYNksO$X{a5%(y4c;AqURh``jlC31TE2q$zV@Lyc zg~u4rWj|xvX6RNy>M_%93}I}0gYVUdG%63OF{mn1(|I^#UE#k7+pf*BlNj9;tw+Gsl2$2sPxN;u5 z>qyqJP=tt1`qT&_m70;a&XAPcOZLDRhG@-bxS-lYE{V%DJ~Lv~34-W*5s{5(Mhqz% zu3_OPtMNZI1QgvzH$H*m6I~~OA@p=uBStIV81#rz^4|WQ*uQC|s0f1a44E%saOX>t z1Ip~=oU7RsH7yC#BHDx>fR91g7r&hRIUc4K7r&rY6rB2qa^Jg_>K0YCn94^{qX(_< zxs`PU(6wwV!!@D%fNjK~rO!qDs5>{>?+%kz?O-s;5UXiO_9C9NwdgqPUfws^%k*Rn zT?}E&1xeP5WTVl0BPeG8G@~tWFtXO^?r{J4C}Jl_W=dZg(Q_b3>9~g3gM;2+%HfiG z#vYy+&c>L7a0nHP8m`ulO^B^zN~~O58(PM7Gua8h-n7Ho&bZDF6P&^AW(=8(f_1dK zmg%_ndy2@|=kd*ZFU4i=2}KgEGJUk~4MNW>5<;HIJ?swG#CScpXqXTI51GVip$^4| zi7l*>>v!aE%k_tIj0x<+x`BL;(G|{GStFv=^>3IWegelQTT?{v#u~9yH*xKa=T4_d z6z>L^dUVm`;+}~GT@;xY`3PX?)?*s~F$RZnUYzz?k8Z?4$?hF`+e#X{RilXx!+slq zH(mE~twim}A%jni&l?O7lp}^8sxkC)aAF$i!r^dV*(QjlYM#Xq*2DAdK9FnzcIPEj zxfWWta%y~x9>npHA)s3|G7M}C1~fxh@c6kSIGQ^~3u3?I@S@gCW~yB?Qn znSf_9MIGwT!G?Ua=#R!Iy7TBdQq{6lYTm>U$_$^|aUCBuj3L$uR@Nb(nuAc?=$M{f z$<%bPaE=qg!SY@L4ZpMX;=4W(`D=geukpA4_TT2`fBxtB@|VBNzx}uWmOt?){sfD~ zf%tAZRB9blr`cIWMo|M9wDAwCJX#d$gpR3TkB< zPxjFr$+Moa>uKLSrFxi+Dd*`;i`g`&y1}FdurbL}F?q5l7{&TCCAx?Fy5suG8SBqG zz>?p2*^G6dIuU`Ut-$U)>AJ(G$!N(N${V(MRz- z{Yoixg;dhSi)+v24=dE`JN(m9MCvPz-z)mckko1{`lUJW5~%jNA-jR)JD$5>sBA*< zL~JqJ@89E{=CA*=|1)N%Np_0K=XZSn*>ire{VZW`=r1SOwIRDvOrCotFB*1_GMc$! z^+oa4pS>rD=l+o(3dIXGF2d<5P@O3z|HU=8PZvzyx00+Lk(#0CF%9Ic=uEm9%)gqT z`$T9WHRxZN;uF}s8R#aGG+*3GB56C(C>L11BWS2@9Q%hU?L>`~kZzs{Y7=QxDnNE! zWA`1+G8IRl7tkK1?9L43l_OpEm~|@%J78B8_G&|aI-@=>F^e4CI+BZxG_TnK%~l~H zC`Hn~csZVJ+@B>Ueo*xZ?yRbe-&T)8EE@_gy$X(RBh))`&>m7|dcW zG|r|Gmm#G_0XqmPO4CUCy7%Z^6&G%qocbcVjKypq6$1KpgI`Wre{nHRIG4Y63l}%| zH%~|H&v4jXhu*iOD``H=^@fmGn%9rfoyXL@6r)MZ3DMw>XW#<)i`^&^bjwmEY)Twc zs#oKB7>f-86j$=yZa*i}m-@V*UK;9S&Cxp@+2x*YnbR&T*IzQ^*MUd>awlu2QM7Zh z`p&Lu+0>46x-y}DAPMHCRb(p_CZwNw(p$-6=?nS0<+r3Lua7P1)-!qO*_~Ue z2b$tiHuC0JfP~|(cJvcXGt*3;ipY0&CL8|AR~n&6PDNMZ(pX?cp?x<|T>NgKpk=p$ z7V9HTx{=9Fde@5$_>m>uI40K>)x(@>mZBR0wUV1X{XA#)T1m2Xn99*lVwOuPznz&U zq<1a$a)Z9OA=EX&T2xukJzNSsW3?w3aa(f_k5HWxO+yHB&00g4meDONULI|Sd-f8Q zCg}6i!#>$Nl1s_>|dLa-boFRfACVwa^iZU?{@fENx#g5UO9x# zMw1+A!`TDQCPI{|J-_OyV z00u4-*Qx0T;sAK@dodir>3A`Bs9v(nl!q+VMyt0ByEh%_>7H(% z!p<^zqNC710=T&tbC_0iye?OxNyhdKD4)ahsi#?p_GbP;KRVu(mttq0-Ss5f9{X~I zUru=U|1zU^sd(+bzodOMr#h2*!e!#t)t7LS6r`I#an%W}uSjW*EM2Kcw>svSd6IpP zy{id{!7obDiFG~pVl9A0(-M|5`eWg?2CJ!0vyuH{cjB&R;}9bx7GGv`ixgY+n47KC z&PPj`{#P+oGqIS*52cRIQuN&h)*Hh41DK`%%h>n+;xGOpKlWok#vlH}e;9x_-+YsQ z@DKh0|K{KP8~Jh}@HhU(-{3F(rN6|F{n(EI@OS_2-{t)LoPYF>{tgG)D!j4O z$7URRx(q=Qb3roAUPqBDBjTa^0}V?z5R}FlfgJ5Vey(1Pt~|*~QC}2jq(e_OaWtwT z`q2|zYoMzP_{g*Fpjkx!{6^z5aoTWKnb_#w>2WHtxhwfba!S}6bRF$UqX1MW7m|4* zK|kSRXoJfngvbTPqEAQb;@gWEx{g7Oak>($Tn^fWv6xU^IIVqoaJbQ3%o3O=+PNCh zSmETWdlM8{OkHVd=Ca^Uo{JlZb{?5OccpR8X~o?3HzGhJW540bFdOF3MdLfkwu=eEFk)5Dc64ppSWw* zC%R66h|L`%-(5K;AmboDwK2rZM;p_~jSV5lC^}7Kvf4XTt;8T8hD9FUM1@!ac8fb!g6&lZ19) zL{p_>Q@ zAg)?6VH_tM$l79Bpu61g1*6@`HQ)-d6<0wJXQ9kSZ9wk`Ly%scL7JfZ7;3i=vH37T4OR=V=A0A^ zTH{NL-ZqCo!(mbv0yJ&ZhG=0D^wHMaa6nc;G!o83e(#$91ddO1tq4I9q4yPLmCEmQ z&$f2}BUG8Aw);ad=KVMo_2|XV!~z`MSG+O znUdG(KrFc-B$~T!&fV3NY%ObuPYx4^b_VrXk8Uh3*CZ>2sV!|?qJ7l5I>qI75*Zp& zKj>B(83}y^v(>be&Fl(i_EjQfvR`2w^u!ClM+`1lU> zWZ(5hmv^5&qS``d7c{qR})B&Amcty^aF&Ne(UG-6-J0W-|2{ju^zEddF`#hDBIw zvHh)tL)X8upf3z&mZDqf5{JX=8q5xSEYhNPf=W3lC|u_<;%fNPxzR-N8n1?uupykvKKx36GLB$U8ZSa z@=WaDn&p97rK9(^LFi20f?vtBLaaR*sSqwv%svcEpK5NuB($t#Jrpj74Jf^n;-W7# zx`C6gwCo-x+zfm@trYn#3eq9kU)qHILq#`} zMZ@j|HARD)hzo?vWT6Z!WRbL${0@^i{(kmz( z+mn5GLw`1B_ewq%ckNWrlk!qH_w7UzrkXxiROce*U4Bz6303Pyx|2(z1+dlVUCZoS zJNjA5_HinysyjbEPIZxDk%`a@lSH2X;d1rUR8X-O*Q9rr^jRYQ_FCgFuklrdE`$;k z>Sp{L{_JQBM$}aY&o5AmIsGfgn42A}HiWzHjLZ4mI({eC3HXn%74$8k31Z1xq=YU` zK>D5#v}A-hNAOM@g7Q>?AKMmpdyCF<^rQsWiCyY$kFP2TMKlKU+AAm*$gWzg z+2Grm;^^Iu^rq$R3neI6etl1Kl5wLfK|yt@DPMX_7r1%bj68K|baX^vrRkFF64@M^ zx!9^UOGwv}H&R}71gqGe+E`2l(w)Z+iT7G)vZnTAAKucwx@7fcHvS&LK(7^jX3$Qa z-SvFe#jx^_{m3xHW z#Jcu(@c1Na3UL$c<(zDH=(7iem`V@GxtwJ*CmH#(0`vSzim+O=Bw;pT^SL?2MN9h5 zv+-%+Xf6%N?V7;=L+@+!zLr44q7>j^pqlp{v#G&n=q_r1ng;dyQud|PV5%OwYN#Jg z=_i_WEzj>uEB5kFZ*fNxx<$_PiBL?d^IY7sN-e-#Y`#q+prlI`n>Pe3Om88Ln`?O? zw9M6;7FS5UP+SBS@9wFOr*sQPb}cTS`$uuI@Sh)#x?qB#}=oa{zH zf2grQ^dTrEL5Lj`mmMxMxJ1!T3~1P&S+ol*-xZ*#epmv+vN5SF)TR+y?c_;Cdz7+y z<>0=#c)usvbR@TxXpl~GT&{6>N;{P`Fr64o6G&DqrZO^38K{DL*;mZ%?l;^UVP3}T zt3`J`X|(b6cPr6KO-j*3hJ!WzpgmDQI9}l9Ip%gRYu9&heAgS1pZv+6WW8SV_SKBT zO%m3hDadafldoNo7O515fS=@arA2ps9CZzc3Njw`R5Qa6(ZqIe+}vmQ8}sgfJY2f8RO?Q=md`cjfTlYO8* z()1I^FF-pr@*&MN>>nxWhYl4Cb|(eD>J-%jD`HM72&ZmE@EA;>K1RZrIu1IOiTINT zH3TaP+F73k>ZpCut%%ND2KZq*6PSL}l5XUEZoj1P6Hjuh#m3h%zFsik>|lc$*glp8 zZQ?*XdvNGp9dG>iFty@;YKWw9j)LgZ6TahE1Qq=G!JK}5J+yKm@yZ$J7|Ted+0rS-w0|pBpbKg zLF@F^Yl6D3cL%gHkw!%}wPxfrhr|-<2K&*KWDB${YFff4*o*v5tP}7bUn@`=eR?E? zM%T&I!&+HXK@y~$lWD58Lgg9|=tPiFs#@Ge=91NbbC@)hX=s@ftd`%(YTVIe6paUK z4qBYVj!mIy9NkeqW*Er_8FdAip}84FoI2vaLje zU^|DYHDxNAG;bBj-jiSZsK=0N*&9Lcf`#f>i|75?k0Q}#Aybp=HqcKLH*bs8cDf1d z&oW#F>0R9Dx?w5PJ!gSLGW_!hDmcUibjjk z#N=s%?i{;U3tXnr=W~3b|Si&eKbJ{F=WitPNo`(!R~v}k)&Go ztj>v^tVl%nRW+zd0b1jxnH05ckJ&Yp16tm+u#wLZ%1B2#UV=5)O(PT2wndeNtQkhj zgd<+dVYipRFYRdA>+|?tT_=x;|NBWEpJYv;7Yo#Cf2b*{8r^o1Iv)ZWFkMe-B6yS} zat`ApMeQ`@vs%_$5MU{>2i`nLEzx$PE1y|a=)Gb8y3{Sji@n_MO%D^X_YY-$a5S@u zwy>B&V@gXqm+Ldxda;+TJTBF2e&CE|W=0n*(+09zC!wTsLz`*(5^zCK#o1bd zh+Q5h7EPc!*7!_7N8N$Rq*IXq`N%8?0 zl)ZE}F+v$n9lJ*vNu1!cb4f!tm00k$r!s<=d@BJ3>(2rj-hJm0s#o9@>o+ypMY?7t zph&XO*sY>@;BkeQOrk`S-pRV*6KP0>HA*?LD_1dtWte*UMCuT`SHc8&DH@h`p=g$h zZf3C2A+V3e7CuQvaA;tX3?>BPh$$ekxaL8ABl@3aDGUf<+DQGBZalV;>!_a?ye-i# zkluB;Tx|b`ERyWHk%>qhVJ#|L^~OzWn7c^UJ^d z%lyPo`~;65Kjz1O{Kx;ZUh^;h#lOg(`*VM8{PTLf=C#*e!>u-2FfC-X zyjtU%MuOW;j!}jD5J4+^5j7!gC&Ik@Q9vE5b;`2hU!dE`=Aur#*waK7*#I_yEm5ALn*A&b)-$$ zsP`yiqOxKXbjl_k@VUn{nk0%fi6hm43L#-Uj5?BT8mA{~Ng!>PfyFyQRcfcQXe2w& z_H|A1a7%YRNA(In>!DXP3oEJ2M$&>!BOALa z`J1)S6!Q!ITToZa8hunNTJisgf=yK>1mgW>h%uYC*r8{ za0uLz&0BXuP4kwR&MdkN)g!|CXg<-GLfh!3GVN475Us;q5%8s>UMHZmJl_Y}x!8#h z^o9JU=kD__qP`AvC7%8&!1Sp@m9Tp#znLELK8!*c`Cp$5IygBW zy;n>>@aSzzpUGrKFH@mTtoku4q?<$?Bxc(oE)@50m%gkh~?_O!)zP+ zqe8Bg-l43a&kU;3f;6THAx}ovJ=6B$fORXIeE>;92edjSvu-&si6ckB2hYl<)_&{Z#uNX!cgU60>K4Tp26 zzQ?4Atf`3=?tS0Ox%YwO#oZ|U4{0KzchAB0crXfxh9YXSM=3@7gO`4Ey8n8P>vR9NZJAzZV%+k)GIq{@7nrtOB z-(=lUya;sjl=T}4NhS95o7XhWabWSTOb2`ic&LuWl%jkg8qEPT1ffp?pkVr8ptx~d zPA%Ou;In|QW!l=5QpAVMVXdP%7OJTL9)aSOEnR2uUh|o=8=Bs-`RYTl0e__?TxU$) zx3qJy^sgT|f(ej%=rm@lN$-@nW@gdx^Ff2RhHjdQ0A3^76c`qw!BU!aH4>I~fL!q&IPjOolREoOv(zhoy}@n2Gj#L2-iZA9KmX_X z$)EhmaUA;n-~au5@WBWC?9cuzKmOxC&clZf0eJcHC669G8lU&_2Y>K4ea$S( z$g=D={JpXkGe44rGtUUS3c40m3zF!n8nnV39igTZLN4J$s&(kKAQY-<7y{oykrA?l z=0O2kkw4u))xf?I>%y|cElS)pr8-UNGev$S*&OQOsi2*yW&Qb?AZX89Y!&SwALiVC z-g5L#Pw}FrImz&e;^-Y0dBqCd1a#x1s8MQkysmqi zcq`Kqf{cA9Pg3%mFnW>?L1@FxuRF-Elw=Pu@V4bO>tjuQtbv5$Dv;eO>Z>WahV846 zU&Hj7r<g6>orjRDgzjjAI&$;~FbCPXf{(dbB$$E!Bo{3Fwmg1*5n=dR# zHjezoP8{AsAX!HQF6tO)8bS6=MBW1js8FL_?=iM;6J`r zgrnhFQL`!*Y6W6;aRfmh#lm>0LQcBF^mKy|U<$PBveNjoQK zQ}3jRK`V<*WFK{ITl)%a*FAPGMT6!s8N@e z-YIk^#v4f$*uJ6x#q2{zm@DdYC&}a{VfrM%6M1e|D*D%CYN$JDicHjh1tqjIfc)A^ zpkuB^N(=~CGkxl4r<&?iY|*o|C!`v;$k8rxx9?&j5dv)@Q&ZE3ON|PmQ`w&yluNO9 z7ISfj@qzu99|^rC$uNz$>iO8nCNDNJwakU0DNb3jA>K)jNOw}=jS_v42R)n0J@4F@ z8597z9&^);9B#@2GgwOx?pK|XboJrrd!Z?(3Dgbxn|G+$4EOK|^HRxuWWTeJvhUXM zN!Apscc|AN3ni`XWIgD5be0i9z}F4hi;hbfE$4BtN6+&yUD_`u^hXa+tw(oGguan_ z>z7kDpPiB4bfho0!r6D8<*(k!^y~T#7Bkw{jwHWq9d$iMlfQq9pXBhyBsTn!>X$@~ zf)ChjOVEmBs}K9`RshI$Zc!mnzH}6q3cdwF``!DcOx49sOJi*)1G>qoFynGz(33 z4W`o6r%)_w{Qs_@|JIbVe;2s>oThr@=uRDYMPDW|wOs_VYfXM7&46hJ%U#8b-z$xn z-4V@%6w{~DaID^x^OoQE(NM^xVgcS9snMCsREi>M%K%oNDFmfg1#JI8Q4zZq#f_l}-LMMWE1PzH? z^dYDRAVh`gVDo7j`Hy(h45LroNW$?jnjLI)LlW?r#}^(qb2KM`{dp9{RTBPZx`Pd< ziefo^udY-sPF5n?+|ER>maPN%l_aVAG>rC#eW_{Z2VUlApQk}L0eiQX0(5)>@MR)& zmzPAq@!L~Gn!?`i~Hzutc zBevji(G}ZHFJfM;C4WUJq0;pJAVhUR#^KTScR24sDH(s)?P&3AYKPs)bVNnxGgYAMjlASoOs3=q)0_k+L7$4RQ5Z!?|;Ak1?8=-OZ6HPbK__$`NAXc*NBwj~}!qz?( z(ZrC(c+R5pn(Cs6UL6{GyJs|*NUAV$s0T~SL9nWufmS-)mqP=>_}P=a2x`Ti8-~>7 z{6?A(<-#Z`1$iyJiquNUJ<8U8Tr*rWuNZ7Z2g=kC@EDX(PQ*MT9FS)n*W5}d5VBqc z>^=&^6CE3y1G;^`i5b?=0bClhq7oxbX)7Uj1C?udji93dxo!x%y_i;LE!WimBsdY0 zhiDTVtQPZv!AQYcX<+hfY>-Edhw}{C7~?)TAoNO&Yms~&xt2rk@Y@~qy{ujL4PQRN z;}cygT#qlJMK=iD+Zad^p`8RT^v$L@1RPo`KxG=ItU6|lR=t)=UQy02TN=%b-=({aH&{;dwZZ*`>7+$`dF*@*!&CKOUIhP71FpQ`#`pe z_h}M1KH3RGA|OGAt(MOd1?k#Bb`wZfkglP87MMJf`!U&jvD9r9NzpMFaER5o2+^~( zC%dY!Rir>g3t?9o`d+h`RG=Wc>&MTebB8W_+J&cGdRVsf6S4grt-fPT)Xkkx*t$dA zmFzus=f^t7)-l93QmyYt5qKN_|0J3XwSlgb7>9!aiTs|r7S}AXOOKYktxWFwA_i37 zuOs6%Gdki$GlSuG4VuF`5w#pXwTH=D9s&Ng6M)})*`s#RwpWXdFKs8F+^~MQNY#q> z&3AHq*C!%>hSy(zoiBg+%ly(W{SrU-b3ezQ{F8qY0HqW^@e@D6U;V3p zmCt|v^P|@}_k?7rM$UZ&*NiY5_fDED8U;1kGSN|RBYXp(IpUBmvN zZ2YsQ0hJ2>)9&TQ+CR`EmBUnuY}HX8Tk0>=m=_t@t%{*MkladEhG`V_nWz174bO6t zjTYKgub6!xMMXP<>O8Q0Bap0#9_5f-OX$&%I(qvD8ou<_N4)!wKF{R27l$4rMUTtn zb2rBUS9%_Q?vkpr)c@)Mb{&{LmvL%05n+5EgqxnO2Pd+?>Mav<1R%SWg|jOo($hdY zH~23e;bLZstvxPPT>apbY#liH^_p&CX&08<8rbz@AKenN6hBR=Ut7@pu4B@*!`2R+ ziDu>DzuIB;t%wt6CH}Louz$70rJ4y~_8kxY<#TCD@+3MaCFrZQ6dk#6HdR?j(Qc0&F3L-LPS@caV3n8R<>t^JN2pX53Lpihp_y(aATxb+%6ERcg>^*3?% zPz$lz9JFHqVLqilo`^F^qA9*{L8xkI6O{Y7XL^5B609P9|4JOVrll<2^NDDq+Me`s z1zNNE;fK+2FOJfcB3aegt7c4l_hpU_fn+N|b$Zv3-XzhTN!Ekub8$QAp9)oj0PR$h-v!?K ze|1!+3H6a;_bBRD?jmqg`;n`@JJ+;}2!Pa(K6TLTZL(xI(}68t!CDa~!Qy zYe%x}D8Bv@cRZ(GW>iNxLBYI{-?-05&Nu0*C%ct3DkPfCXQtwa)k0TFBav=B=|-%q zB{*5!A)6x!3^Y|BjgE2c%#1%-NmP z2dnRM*wYI2KTM>SdZEcLE$!DIFfjvdT%khLlDSBUQqaxR7-Cvn$^>?QF6&k|m36{@ zWlB2_RF51@qtQ;L6Wvs^esf9rGEiPRR&QAP63+g|1aA{ouTIJLuz59+Ts05b*9)Pu zfB%N2O32^I$67{5%}9MDwZP)57P}YPSv%FETd8tTzVuPQ(Nmo!>>i0tcyZ-urwWrO z@>^-bf>unPw`A{Mv-yE@>LbJcROqOScPsjdW&imZ`Av`AbYgmxDB4Ad-8vrse_j&u z1UHF$yn^an)|>L(2ED6DSKH_it0|sr$y2d_4hrn8Ox%2K@bdzlSo%dCL8h7zf>>A& z09y60Y`dfdCpZckv;?Mk3WKh017^iPkE`3ryHFRXKavGQsDKa zxNVtE_^G3PaI0|Jgrrwv*pUiSxC{%Q?}=k)X^wQfvAaSnZ@7F-guw-92rmrw zfZnKHP?pEPN=amwJ4h^3bD4WLkoSI0Q_( z5CzDBM3QAAnmqg7=osh`Z%p3O$px1FmIT!4&iZq zFON;dDNnb(pj5pCpQ$t*fc?YtBTgf{5%KZIY*6ooWTIo9hFoHTf<|hO%J{Z!x zY9%OoANN3O#gfy97~bi}>BpF>x0R)kms2-PGy zhiNV6YebWW^DO65H!+h*YZ$aeK^?5NOY7stH$>_oRkB* z!0xn|%xIzzJMOdhs6~AV%E!>*CXnnT9smw|r|$19VVUSd1E8D$ji6{3gJb4^-pjh- z(#Y%>f{ptaT&fklJLqzUMrIJ0yBM}OxOEM5Gt&|$p$gUM(PDhN$xxNS)RDmvshuvB z_1zo!OeoRzp`Kpwv< zYeU>Sk|a*#&At69eC$6J?W?^LhJm`j&wdAo3isnlzekSsdd*_7;71?-X>2hQB>3A= znyC927xCSmu&+?BKgO3SdbJk>AxjSz?)93m+2Y=QgZ3z6`#2%nc;^4%3bm{7>kaC) zN4R+|2o&IpL@ZU;dqS4n+f+O}zZA;W`7!n58JpMa$XQ-|bC0fjx@Astl(2c#j0wi; zw-o&(F#RY7eZ|QLLHLH*I@;)EkY9%}!E>MiG)pNCvYSJ)XP;~8BgwqzC(3hc8q5G9lTtk&+|++wJ)b zv+uB18~ilKm#H9Zy~n(`6?#!!qmP&LkB;zhqf1|I1jV~u9i|^`M`&BoI3$*Ew*sY6 z%Q=H{i_n!?{IcYqKKa|MRx9T7Pgc18J9!Li#sBf_|BBhQk`d7NnDaB#q$F&1a=uQM zvZ&sts9oQQWoDM4$^!TB2)%9K`d0p3X~Lru(PQmuL6oMsAk{{VRJ{ECYZ3HilE&^Q z_nN-JUp}`{+#MVA&QqPIbcN>R-`}A2HQl3SEZ$=ZcP|cFJ~dQlDYo)VfAs~S%;`=h zbTbK1Mad?-c|((51 z+b`r)r;7YqC=bPDkIxjLVrx&b?j{ zhiW>RdfeBBL~*t|U*a>1z22dkR;D1aMDTAtramjke*Fpm^u53Jsah+Bb>hF${|#w5 zLmw^i%h_o35$@LG`BI5R{f?pA2Kzpr8vd`PFBHs=~kdNU*8Zj`p=9 zHm_!sFNKEbb2CzFwe#qzr#;STXPS1ZrI8N;5>B3X?9UUnuWC-d(vd&gbNz#JTrPA* z+jx?-8we6olscK#1gj+w_t>&~EPH2h?PzBLfbJhf7DAka4uQvLsXvA$Xm_qzeP8_k zL6KdEUZQ#^989~@6fYFZZ}wb&*;1c*9{hU&GPaKm{REn2pr3le#GzLf(@4SXiooKt zx7=RNn0zB0DVxcbG0#i&Lg$pVh|#`$|4_bk`66Dov1tiLCZ?tn7qAd1nx+XPd)Pga z<|n(6=0tbm>gf}CUUBW%og4azyuQnzI``z4ng_quv3|``KTy2#&nuFvJy*Z`7$2#m zvyXbpUwz8%2VY_Hs%7(rG;)uAQNBz!6}Kz9cdXvb=%&)p47pF)U10jOCB3Q8>plL( z1t>-TL!YNzrtHoQ+1gWFbtKpO!~LEnv}e2ukbbsL1P z&?vIIC`4PtaJvpr&`n}PP{HJ7k8Xuh(HtjK(`eb-iSSc7g?c8_gmxJb(q0lpMJOd4 zMKB~g8Ku?>Lo+YL_VP}V-X(%=h9SG-!2c8^5w@>L;;SGIigugC?jP>n4(JA!Umtj= zu@KqG{~rt_I}yUwrvs8H$fRilt^hP-7lvdjQ!JN@h&^2^bR!FtOT|{yRIw2`mPI7p zMD!zSZ2(-M>9t}AQ0!*1_}W@H_Q7Nau4UAWOrQC2A~Ix`^o1S6r4)>udJzz6RAzCd zSPj~(WJajYq3a%_6nZZlOA^t0sNRcfR`l}rR*#`X_Yusnudy#zVz3bT=VKTafJHNx|IZMt7VGXdwedBafJad0c8UcZg*nME6A(I zY#TyqaYZ75gM~%64&6G+=MBmS{9+Qr4t*3fN@4C3g?ldC@b1wPpBd7vk8X5=6slO{ zND!uqz=)?imO?&T%Qey*+1RX0NGBXP(|sw$Ogk3?3E_l;cH%Un95D$vPBu-5lLbK~ z`%)T}bk&Pf*Id>tmnqVni>`qhZ{%K0_M#yP7J8!z6G^%^Z9q2?1{h{mQju@ux~~_h zh)9F{mg!a;0d*Gx5j9c!7bJLA$z;?`qV_`HLwAE%?GBBH-SuD;^>K=6J?Y({v2Evq zUfO++u01C1L&KT^klsoG;iDcX%qQdXRqrto0K-Fe(~Nq>+ z38fW!R};E~kQr>}uqz}4G>O`-G^IVtB`e})O>(to-g?ZwMfIM}mS7Oxe~{O-Rgda5 zrZeMxV%mVIdeV)N91G-qY%Nsc;<6Jb%$XtCI!x8m9A~&(9RlzeXx_5N>RzsQfOMrs zra>^`8fRb7N@4)qqhkn=t^>t| z1W=krsH?8mqWS9wcP#;gP_ibcJCCWNKCH+jjM#h3t|RX~>Bb1NVhBt%CQe(GxbyX% zkXX#VC37BECb%*odv7OofzkIg(~t^#r3vk$AHAbfxeRldXu?%WvL}9P++6r7sNGoh&SO zZwIhq{n<~TI`br3MY0tXM8s?IJ@PBYfTQ&rhW02>ypXBN>}f|gF>GEl^ravH#RVh{ zxG0F)5?H<@O8m8BHCjVMZnu?LyJK+Cs0S zsOv1DilK%rEZ&iu-6gUZbVr`q`45lAB(cC6i)hJ zf7~2J6m%ui8-FZ?(y%z2Hn8}b6stbBw2M@{*k>A)8OOOY>XyY_asyJTQz>TV>n8fc zi_N3);#NV^;vSxe<5Fxy+GDY!Rw1CO?jVYf7MlKUMYz1g%;%z&8vOq6iNln&VB>uf zuMve28`^IhnTAi8_x*_Csh(d3ps|O8vPrnV#)?%)W!(6EZ_Enq*~grDgMGLAvo|Hyzmx zprJXE)bwQMFjk?R*h1Rc(HBV!ACw|uf2JiD;7;;OvOAeTxKu&{`-ud8nOacA^1|b8 zhZ86FZ@TrAFWN|7i;alYG)p6sjGH}qs_9C3@4f`{EXanQCL>KW-FT9%qgj|S+sCvp zdEQ|whu(JtQ%HbYBSp9XG@yHpZ35YyXY$SsYPBK!-Z$toO?KB4w4$3vtK2%!%@YYB zZ0;4M9+{#=I-MkCYuZ^(x+R9v$vF&*vl#m&^ z;}Ye(2vc{W7xL3WnysfdLLr_Mqqtpf_achVQ+e!*3)Ex+i>Uy0`$`(}*qj9C@%ug6 z7zz6vXhu=As`d$rj^G{PksLLhXKtgfwMoRTS`Dg z(*^omTr!;5bCLmv@!`3 zjZItQS-++6Z&rkN3zDszr*>|}>515Y2a;W!3>Av{Bu-P(ND-?v?GoCB-2b{&lrLfp zL8P2HsEP|H)xOjgNw$(1 z6jF-8R8H`G7;I(@0hzSa_& zb__QK4iv1rH3W}3T0&LRzj%4L_OlF?rs(74L8RWaa_>0NL%HJ#P3qulzx8eRJ>7_? zG=&a9dD;#=DN$vCis3P)5u zx>J~1IG4>*(FF0_*8{aHQ#4C0Tvgx6S@=1SvS#waKuZ%ThOh?6^3?dqUI)|KKj6cO`4^2Yz za5he0l8sQie39T1gXx{nC2ARe>LMSxokUN2|L{bbotxE&ij1kJsUY)!gdOH7Doasq zN58q{(|q`Sg?D#{Ki{oT8zbk)7|hX;ph8(j*zNG!9p?N@&gu27*!D(4fB@3W4enV( zQM!+!F}d2%6XEjEq;>G&xOBkYbOHc-h&q{0I8Kcp^cZqbCOF_ zkwmo0%YCb&24VAi-xwPSr!;<^VyYh9^z<`9t z5#eR7P)-1av=8hb*oXp35!07u3`EquP&NV7R`evrwI|(l>`!yLnWDJzqvpi40kdyu zPD`4l8L1N4ZNM8%`vc1n;T-4}yN4E^Sn3l+b`v=MYE5;PvVJWgUrC`9luR_L2bSi@ zq90|#4R?X|I0kyf6l7aRes-z3`=JNG1K~w`5wZ(MTXIU0RfA7rpq!FIX!5)x+4hho zbn}FEVMXKRJjGQEC@fP6_v#$!T}QH2=uIt?h{Y72%Y@5B*E@H*1S6Ush*OY#i`qAY zG81w7wvnl55fjq8Ug%qKA`+Sw>RN!f$pn@&`Uf*Cpp+ghW+`%UU|Y-&VTD%}3ec%E z-XRtzDoIAWYPbFLt`&MVMRmwDs;-6EWDF!JO6iZ&*+3>seg852o$h-P_eLvIvunku z0$Bdi6{>Dz{h5^5<0C?u|SaEQ+24uiNlr)-~;V4#T9W~ z_a3#`VU!}jEri1NXv*Y8PjRi-of~wnm_F@D*MVe<)DNjpI0v90=vYW^WIEW+1#HOf zMCY*n{A|>T?aw7+1PrzkJy>5t{lH^B)XbhV?9Wn~xgx&}_;sM0iWVcgk=F!h=2AmQ zs9>PD^3+FSG|?O@T$a$z5q89_urh2VIcL?GBE6HTMsuu2Y^W;~`_njCexB1!6x&zQ z(VeOPH}dDgf`~S&OM1tIr7l z;;+h!T!-eb@t;0_WRANb29k$Yh`BW&~S2w8HlyI_y=(MRO zB^Zr6nW4H8n3j5?O_aIC*hxzk}IOJOk8TS6mzp9^ZyGatAC=0u_6HTfzXMC z*l17a9BN+)k2?gRK{+o?N@8KV7jdc;Ww+i-v4}DFG9x4h1WjidVOr817ea$-9ieVe zvFIGEJHsT$7YX)4kn{d^S$vXBhpD8a?dCH<UQ`q-mF^m6e`Fx zq>rL`TLttU>SLi{HCk+L)2$TNz86;;p9D-bq`7KZtLP?yFz;B*E4reK_IKp6GycXeb8TVq1qe zL18T32Ju?Z9K^bMpo|bLenkL$-|#Z6aZXt1b9AMTr1|avoK+gh`4|4Z282)M9kIaZWb9`1k!R!&Dk` zgA~cej7}M2t_VosG6*NNhMQ0KL?rY*-o?aZYw=YL!DAM4&?zcUWR#s)*jF+QDRaUk zN8PQ2qP03qEyuitBpKq76}N;;Bw7UCbXbl_I&`QJtqWM~ZwUQwx)eHmscusJ$9frMrn4 z*9a3|cd#PepGv~=>_absrB(!~E{W%QUBM)ml;g~zoa8&`PJR;~g~Kir!FsZZPG^~s z>%mJy0gSwCms@;h@tMKwqd_XObBb z_a|devnf845Hg$Ho9b&lI!6YjWRkMk;@4Y3KkTJqON+ITiiLHs26n&sgy7R~s5BK^ z!TU(dj5#biiv455@iA$wbCJF#g7lFdo=PyPsv6wUL~MB9eSd6b%wkTMPlTQs*Jb6x z!CKskP`z2`5!6z>m(Sot<7f67Jxg#L=)$4vP<2DH>*-5FH#0)r>>Qg{XQMHVse5$e z=qCw%AvMCmxI*rebQj34I_l$;b`Ir*M?2U)GNU-XT?V?jr=6Q|KlK)|_0<}C*T8v- z%N6!g&Y$jtnv|}>NNwsSVt(PROlEB5F{J>NeIfgH{m>Dt$EB8ZEkLSI6zx2a-W|XN zAHRc3Wi3$w(pv#L+Lb^7AtnY2H`m6spaXhGN zLM2UyG8(m*i&&=21wpY=-cRz}C0{bNZ!o_?Ugix51!f#o+lZoiPQe;h9>5BZHuVTwynvryD02XSlt zK#Hbx6UGK&xDnI4gVtqO^s+mldfa@Up?cht-WtgssiHOKI*d+0rX|{uy0LKy8hong zb1585D+|~56+tNaX&}85idlK#NLRASyTY)3BZj24M89qsSxbsEs6LS1HZ&(W+gB{J zk2>;~d)ku%pNQ*@sXEN%YE0Z!jW|@O-VxG-=9Psw3Jn%t$nT*0K>lPcrU^H9sPhN3 zuN{$obPHEEgg0No71Gq`Z3E9Qq){mgsA@v*K*y#dP62VAA?&QVe91rS{<}|=02K~v z#eZG?u|s0AwbHyPg?@A{MZm?i@Ld;ESZ(p^HF`c5U?T)+WbRgk*qrJ~iAoc(IZYD6 z7habfmk*wzid@93olx*p%pmH{rs%52UTsFlBz3nDpZ4HUlalW7@%S4yuP*3jhRM5Y z^uC4=aK}?NpP5o#v?R~h^e0nXA?W{Mg5b$78v1F1%XH*C51XpcFuYaxOw;E&2ImF5 z5r@1(_#rZ(iE!0G`P5E|1M%z^;rjkOjgC{Y2BjNMH?w3*+-$CevIPg!4k7Om>`j4E@wZ$FM+tAsUV5IHQ|LF3aSFBfFAmX0VF-M8a&lQjy#6JU8=StqzS&vFsmKxEBwO~d~Od^Os!E>hu+t6&1m6n1Ja1}PX6r0 z0dJ%ddC`LT^+u+iMFCwmimM4hgr$=S;rv9jlAEo(h7X6wDJ3}?X(9!NwRF1`zi|EE zeyY}r`=%C_WEAsCq-J8$vRO;h@>zrdZFa@ zy)+HEOtzahPY6npUPQsLmg%TZrCC)WkX&r>)12G4rzDjpT|2U8Tl8i}|L91p|8iWW=66!1P6rw~Bgc$Tp&L>gJM#mac^Xu|KmB zfQ&9sR_-?fWE)4HX?BkV(YKZCk3MGX4C{-_pqoqGkl%P#pV4%)z~pIk$sDv8K};#q zZD99E3i!U1ETTcr5)@;;N3xT;A*p1_vHlE{&lQvB0-6S`*qv*dBk11V6JF#j-ifYy zU0{DIx|AVzDBNq%mhU?9o1VMR2}nHupr<}Itl!iz>m-cU#lXnANVlHswrBO3l;&75 zdFDqphffu4Tx+@+OrD9s5P+#X<%esbl;_E)7xk$nWQOWImvG~+KNn-9JdN&IDr&-H zeefr9c5lropH-L_xA>De!D`HtOZlABQoxS873%RheqP8V*L$)4wnpleUe*;A1619M zi;wT4aqUq)K-1E9760_*|KrmwRv!+fqP6XCI43C1AW9!mVKpwsdNz}0C9zTjww(xA zGeM*1gU}#A=q*N?jUl|uPvYNsnXdv<#F8+Xf5O!5K)x(Bx)Sy+dv5gH2;9h`gzLw9|Mi zp_T*XPPu!?q%$!VPo{uM3MLX3IKu{xfVnD-O5mV1s4Q`U)QytfdLFlQ* zL}lH{MsHe~R!RV%M@55*!TwXnV6Bfe|M4_=tLVx&b@kDLe6a9MpenUA5mgW>qYtQ~ z=sM_vSfR#yaX)<|ZK1 zwV>Q+%lWB2B4SO5=PcTrt0541usQZIE+8EyqDua()ZyL@LF|%Ubga^vkXx`??*F0b zt7}1(J3m_fD(7VS(TfJm&2up^$y1r6*~4Bod~Ve^NVMb^X<17K3-2K|z_elx(HBDP zc4f?~>B7P8yAK#Ag}jdWWrKyh6y>s?sa8xS#!QQ;yq|JX&?j2~H~LccFx^8tk$ZHQ zWccI|AncPsNTML!Lz6002T3JONVax#rJ?Ude*&>iX=VTR$zf`to#YRR{r7KNkH;7S z7b)nI$h4>#!v<|F-`g}{bQ={)X^(O#L-=X3^Gu#e6BabIg}hgO7wvwtLj&eAIrpX& z%D$}~eK3T%zBh>yU5lwbx{1@VJ_yBc2r?b6RfT|-14UR3zq`h+_oCa_Yy}J(>Y%rr`* zIbKRJXEbWPBQy>EtMhS#t4}QZ(~SK?h26p9f4-3k%f!+wGuop7PvnN{CQ_&*J4RQoA=F^@q!*3I zvBu?!s~@n^wQqvZGg1HmbGZbeKwpr$@E^o8&=T>;Gl$LyPi#rr+CU$Ar& zm_7-kXSqui+s9IDWzlH^1-n;7h+kX|DbJqz$j}$Co>@#6n7nXeBfQY$x1Qp%qnp`? zbaVs*&BCyKtXO~Ek=+{dOQFR0%u=06X3G415&EXrHT9#CzSOwf&^tq47+kJNHc@kP zT9QBCqS_ue%ki0I|HU)Xy9Rr)CX`vEXIND4Nj|z}NazkRD?~2#Krlv-i%CI$R7gW+ zgnDSMH)w0*I#&vHv?Q!I^q1F|#eC##j>1dtWdn?dO0DRvKCOq3G_2uB69FEsZe-d~ zRVe4sMx*i^eR@K;UCFfK!7(_8UKb4RH>8rZtfmq)7v6gUS%&`1>q5_nnIr=;tz3<* z8)#bmW{WCIRG!g(?h!82|;&QTs_PlkI$QQSK6i-!H9 z9G59{BO6~kGvWwS2eBwE%?PR#mz^|3GZO<=Vg05V*IHY_(KkA_uUJ-J^c?@1qWGYt zIZkk?6ay|*B0`M?0a2Kq-#IB*QiHyQeC0>mU%QueubXI0Ez^!}mQXzqB)2-x#!1Qk zO^>M+?JTFb@=RVdLXC2P-J4T_hWxt2G@fLu$D9zK$h4?@UW<5q-^w&xL%%F=`IP;6 zf^x9@wYBI8DQM?{HmhEq)16Jh1(K#E6e;~ILrpUX0kankfNHz3cpB(H!(>xMy#Y5X zNj+~G^!X|7cq%S@-C^qCn?{g(vgjsh2u;kecyun;>eU?~xG7IfkP-eqLanUJ=$C32}2Cc6(u5l*Qq7 z(+GODy-dNYS{{Eihi5Nww<}VmgaZD`60>d5mv`gyZQbIhIaj~?h-4o)`~NjK}BgOu~gp;qj^OXp6um5 zYM3nbv7wzQ(v8L?uzg)I{Sc17_JZbf=WJh1X{VBpQ9ZCRqeCVWx(cHZy_>3W!aC-N z#mn1Pa$QYc_}BoMal%ntb|kkorY^;~t2HBQqrC7;KWf;%n$ax8zE_waUK*LLrhXu~ zXz87}TrI!Z(0aD^~u=x?}r#&gL~uy)*=!v;1Zwl(EvF z+racmOMQ~iEYxW4tFJtLrr14F_$x?uS~R&mB)b@7TsxA^Gi^NW!qU#PP{QKjGehQ!C1sf;#v_#<@YOG1P3B z6nU$n%^>(XhW-rb#ZF=N(g6yWHg@h>#CFOtj-_=^L=toyxkl<&VC1)Vx01RXjK)nQ zC@S5Ey>WKeV=K8vOnqqlB-ByoN4@hH>>7Aa7xk|iX<=$>Z+n}dYX_zCe3ZqfB zl=Ua3sMED^QYaJtaq`Nzv>hgL=3a>6r|?kLqB3b9LNml^>o|2XLbr?*@ZjU`Wo>Li zVy#i+|ys+Qj+%%}3$Uf3IYQp&oVh#fpdf;w5Eca=1taiX1WLj)ToOf{s* zxE~MtF(B#}#Sv?u{|qJzx`i~6V!h8}sOO}R>1MCSNqoDMnm{Pi0t6}_u#FhY*gD`J zEa;||K05%gqsDPyDBPc6x2b%d zAqdsfJ*G?1PSH&R{Ui{MTl~(Ft}MnW*#e?|MI5RE=|;!Nr9RNVZ;%Lpofqf5UT9Rw zj&XXTdplYN1NhX$>46}rlK2AbrrQGAIt?YkkBI{1q5^5#u zO&)_)hc(CtxmJr@_N~SVt#DYAV$-711fwRh$M*jl5UYo(A~YV?G{9=K6jS%oRD*Nq zI-ZOy#Vsb1fcyN0P*u3=8+2Ks=QC6-_K3qsI(hE}VKHO>*(1vLSA>7}75KtuaVInM zd(S{={F@JHjxzRVhRF*@a@&mIWG>TmQ;T}_B<4YQnj?$L6i5F~+%wuYA4vK#pc{wY zw`7^PPZU>5{ItK2GJWP){L&5Oqa2qR;rgvAf?XaOgLt$P;ZhgZ{vKyryuUZErBvrq zC>rz9q?quWW9QI;O|JE^^R}JY# zlT?B1wv+3vb=aN3R+jDKgz8Pj?1?8`IT4*&jmt$_(icjy0^%AI^ueJ<_dzl~c0H(s zt~{Li{i)o$`4vE*Ix*D80tzIR1dbIq(iA0|o_3LlhkqGuHBSS{T2WjNR3k?HRazK) zrr4h+k}y9~H4gOD`A5=Fb1k`kbJ6n!)uAnu_LWsr+>iofQisFr+#D&d!_|}s#2v{7k{?p}v zvLaaLJ9NVNUOd#KBpe;1ukY}iXinihezQG1Cb3|0)OL^B?g@(-%t{F`HkxpHJlglF zJd?jm48dyj)rwH&w688nuJ`DRTbPvMc(j~|E;Q40Q$zJIWBR_uJgLXY`TXlE0VC!m zK2PYUl8KY-#St=S0RV^4!(>&XS9_|@p3qMW>5aJar7KH6NvMx4{nW63b3Oub%|g@8 z6x-JzU5i6qKT$EeM=WXQ->T@R2{+%rh&dvWe$@qB9;Yg8q&lY&#Owq4O+dRy=}I)| zMzcRPRA+}N+v>k;2({tCzc!=&?%ih-s`EhcQmB>9GT<}lr;hASGTclf%}e{hksVjO za=hZhi(~ZrmSiLJuKmM7qb7T6eyd5giu_uQALX1z)zrtL zy(_Lo%hpX4#kDx;wF{~7suOw4;=P{irX_iPN3%SmnH%=!GD%5qm00y2Tgr=${P~uU zCAi#*CRM@onZqR-JX`pxa1m|TTaRGIUZaczaDzAM%hwEqoSxR{S32uAu z@Bb6W_jDto(p1DWMv$7&_fl*`F}hhUQHvS<*&MU3QJcLqC0YwV-UrOlkt`O)p?Tq6 zWXEdqK$^ z@af@og!Un*j*h4$MC7)U0>m^P?R-RGh-ujg-Sl*HF-epX*Q-v>HDv}akX;{&UUR#b z&1_nL2D_HxHyq8;ohMy)VyH7+Ats{h)n2Arv1tiKBI4xj9t*-L@14BH z=`p@YNH@|*_eVt>oik3;TyD{QpnTcM^fgtacP+Z=MFedWDw&J{tLe^T_dXhH7_!Um z|4-hZ#M-u{XQALXs#&dam#4UOIKp-q9{7PXElV^Yu>?XwLZV~IdZK}F%MAnwi3Uhm zNJum-Az8{sx&wMWXpoX65@)6x&*`KxV6YwGh+Ca=&)M}VXE};&d}GYHPq?~HB7%s^ zl#cE_`>ef+x#k?>|G)n$SVTyHe5VkEggJ8RBHJFm$S};*m|`ppAVPAe3&;-4AZX4d zyRB(yr;S5sK%o`RoK5P;WGgj^9&#;mRD`S?3y5iE7cg12yo4*UWy2;4CvN| zfI>-Y;r5KhShn|YS)5X2oTL;Fw9e#OIZb^ZA4$)}*9uUrgX%cx=+>IF%LC7K3RMev z1`#+hs%{j#iUEm{(j_}m;B-a$F1$z33d4CtBzMb=UKj&^u|_Zo>fy)tabbW;p* z>M#3ASnV%Q5F~?b<@Si672G*NBwY^}mI^~D;iKuq;w4|-8-eE84F26YvYkbF#Q@Bp zB`2MN4Gi^QOiNGKzG{Kl3*OhdA*cXwU-U-c_*OC2EH0;&e{qXw;T@;4n)j=2Cf%6J z1-wTLDx_%)CkfPjcp;!(XS4^O#n8c(M!y1VNq0=uahghV9a1=VKeS^0NGXurD%ise z-@Gj$dx>ElARHfW_R+C#3`AsZO1^UlQlp1Jw^HyXM}F7Al^TcVyuXEu4uU)CLXxYd z%w+tWq{o`Qh3aHncYyjrL0ALx3Mj5SsMf&FNLB6E8HSlecOsyA4PA3h7d{~0g;Db+ zJh=Bia`HrA%_;k6rVzuDdGayZ$3G4(4n+p!tcO(V$Ph|_-^M`BW~6fE8P}ck`%;cZ z3m9S)21q#^4`UGKp8m99A#^P zzK5uzpr`A&Xsnly_?rU@v@+*S<^dlQX6-x!-a4fi*hN3)5FpwPx*wqS25ynVm70m1 zQXtz7(>M%{{_IgeG<@&`!AR&$OO&eM>-bEMR0*dhZHCPSy0e^!N3^IzO7spG`Pe{g zM0z$NE@!})&j4woc-_*KMp}@rWtrze8dreodG+fyidbVBDozBEg?-xe0`d*H)x*j_ zwH!mr!9%!!yFZ>|SYY(+&vqiZZV@>Qn8aJdGDCeS;eVh(-)f+fPzOaS#XTDn)dko} zpt%6%pGv6Sjbi)MP>2B3PbCiTq$x!#iYy(!AOO{S_(;oQ(mlDFK}!rvP1;(tX%?QG zb(g2HF4I-bJ|N#mfqHmE&nOL3)30|3xj|40xO)HqxF<`Zu2)<5svu3HwNTx_$7%`L z^`m=*T+G>YbUol4)c(kVw<_a;z=;TCERchpCVInw(35TymU9-y$C|~6(G;s6ju1=! zUFdHat9`)^ks09F$8oWRh?EK18OP>f7&r-;RS;!Ku)^ADt%#H?k+d`^tH?PPYEqHz zrWJx#L`#z^PI5AejbPA{PBQOS26vArCF!1AG~+qYWn#x(hIS2YnoHe7gh!P`oCkL;=V)Ro#qNE{=P`7f0f73; z0=niD213APGTL`fAj0xf3w?AjH#LU&5<^8w7=%W9N?uyQ+W-LY<4Ht8RN7T_lu`!=FALZ@kkIzb7Ep7ykf$( zYAw{EgPY|T&MN3#2hmuB%@$%dgDXxTJI9baS;7?r{!9%l|Jw#3H)!6Pp}tgT&jp_R zf1}1A&)`af_C!Iq0r`XF_2~k{BDt|}GFjbB<^*ye71Cv-Db`QOATY;d?!wSP-I98p z63JCZQ=0MoMtzaV2oTtkMYh?q)({G)u0+&daJuLXFf0N>9!8P6>H&B_^{gp&A58mK zam%!HKw_8y?S+Tx1zays+^jHk&b=e6A;ZLbsnWc_8>6K75487n4O5Bj9h!N zD^AP$rwf9XyP@6zEsf$Yci%v$Jt( zs{ecgx%tr2$nu~3ln8T5L^g)(@K zMmJl`u1bWafp6L|h-GxU5cEYBZO38`7#%S9bB(gI<7gGuv(r4(>=KtVz?eO)1JMcaH@Pw{fD$5N;%s5GI=-%f%;O7Q-{pZaJIN^MAcE>K<( z*&yN}5M+k-G^zC^%toQO<5b2)7cUXSSp2x0T=V%0^5XL?U2o*z(JdwPsle%A1HN=gGZ7qPVAMue`N%L5q_reY8YVLtx7F%pl)) z2u7iPRwCaF$agh-k-=96x?MuFJ+hB)`R2Wc41r_QL&F<;IY)AELY_f9yNq;&qr_hkwe~fa7_!bKd@Q9I3-6srY|S&ZvY5~<9FZ={oXl3-7wru z5bYF(1x0v#zKmhx=K~9f;}K!7Tr*PPk&3@~$Rt*uS8>YJ00Y+#I+Dbq&S*}(0CIU7 z765)xLXKuV~=Lv|MO*r5H=IqFM; z`DYsHI6&VW5efr$QBAoyQCm{p^axVGE^>kwb2Ylz0Mvs(oWN&X6D)WyR<|Bz@6erS z7X3;=I^g8DJcI`h?^UQ?_sAYB_8-h>AO0g1qyv^8M;l>TtYE+c57m^znOebWL07#0e;@mPPek6~&QtP7vV@KeMFhZCIQ-a^-o+OGiQ{UnSR zj)-u!8>s6O6rQVQfG-UClN|Z$1LUqoc)A9HfWA8dO2X%cXn53Y0D!Lwh{0mTf{)`9nlc+8sU z2kLA9gw%}W8MR!Ug-j^&U?G;I&gz$UQ8%LabLSyD1EFH!A48I5bmR(3!dDsa18)NW z^r6SF%5i*$6yWOG!IlIj?J3tJv$LoK6Tw9Y@QaGzi}P4~(vbqTP{{8+WII5(9C8Sl zy=W1PM0=JY+c;$R4Gv#gpr1>uey2t_NbKG%VHX0;6YlZlH37@!OrT#SJxbItL>;LJ zq;NVTP+ut6N}xRt$nR1v2U!dI_t=~)K8)a>0p>3vkQ&FBYG6Gv%m||9TaR|F;Bsn0 zg8Z$-(->x)NF(q)n8suEApy_s-P7neCRjuC9`jFHRJp?NT1EFh4|V7voP&E- zAPAtm?I8w_kQ;(NU9|FVdkoLkaJixqF*;}YobeN3QB5_iXN`(Y)PTk7cXZ8)k3mO6 z6{#f~4W-~umb9F{xsQg7f;l4Ti2Eh1g-$f)7`QBiO)Tg?@c6!NM3RjjLKN|>S4@jl z3ZWkm4oCR91~ywR>Ovxj4lst|uq14cG#7+G%e^G{jS~{#JVI5#%{ZbXU89SO{$eZu zlS_`UbBZe?>K57-K?n?`WY$BO6U7pO)Qf;v;FF6Sw2UKlUYNRx4mX=URF%OMe1G1^ zNbw-DFxuQY1~mGo4AjvLCn#P=4tC?wujo2qY7ZNzDWQ0sX`^mQx1P{bSSCE5mx4@; ziR3APxL*(jAu0>FJizQl%=T~*;Yh+TinsEe$Kfr-n|@B@()9|ml|%=20jdRBGv$bg zr~#oMjMOmM$H|0e(lmLc62(1z)*rsAsd0Je;VO;hR55k^XyLMqcE~#szXLJa=($WX zqohqCBp_0C&w?)G2ChV$o_PQYwh+)!=o)gmXsIG63c4jo3~$KOqdj!S4}NR9Lk@ZkR^%hZH;rV%(|DA_oRBaKI zz_831!evC94kS^!z_2jU>>-Sy0LMT$zklZ7k>7U=Gc!yCR((M6;L$H6`h~>oGg4Sx zMk;8(6wCvkS?f`_yHt=+j^8LW;`*Ft67wiyGcrMxwKGL^?b6k(5VxgAo zj?=^{HE5FeY0wrZbAA_65-3V`y=4Im7XD#F$Gt_Qe+AylNoz!!4cQmMu^I77B4lx5 za_9)E%>==Kg9R4=&`oLZP_2d00wVIQ66-=Z5B<;p>jM2M{>=Nae$d;Nk3G$p^xpK* zB!VUTktZ_DXpEzJOjAc-y0;(Ewr$C*OyN11@OBcgt7!S}2hu9d!J=Pj zQqbab##VIN%kMe_m1A&{Zk$@6J0Z6qEq07=`7G1c(t9k){>eI3XD<(C5*dBG4v1I%5S#Iy$W9ze~kP zi^QPFGSabPCK>lRt}Ez0vx(-j$Pf@yfbt)5e1A70Qb51;45951jz`|;EfdK_oyEviXrfxSW2Wxc4Js?u~@24D@;hd1$cyFAnWnb2Lv+QNHdduKe_l;CU(y z-p6DpR0HNClT59@$@YWOfA|to^*uXU{^kNRTo9`@9NjJGriZQ_mLCV$icVa^icNxU=sMOun^OJJD!khKX(hmUl-$2&jQpq(KYx>m0%wx{5A|0?qC^ES771aF>;g+;Q zJmPJOvl9Xu`y<491$lW+%0_aQ6q0*pJX{1z;G>qY>n0~Sr2vy7^q(&+`TOzkbpsSF z-GNTmoFXNY039GsRy>~%8-krZ*I6hvO-a%eC7O=}C0R5Mkyjs4YGDjQp2010cr9V> z>ycU~2Ftpm%*Xd8oQJ+?h{Vq_m`#V%O&48~;)4Q^T^|UHwmtCd6t-f(aw<|~&%#vi zfD*i>d}+|nC0s6`-d)1f7K^WKVAmy%KX?k&d(2+Pm(UXC5K!C#)%AepLZdw){aJbe z)e(R^`E46DpaMe_yLYGD+f@u8u3q!++YcBBsJejVH`yFCmz+lEHZl=5T}&8PI9{@- zALhJQ{K7QgfKIO8d;BQXOX?$qkFc5Kh;rlw7Uq*%x@j#+PGmPbsA$#iPM3fL z_nD@HuN%nK65+C9t>OKI`?Qf&bapa=@cx9;JNd~qLfgXEH33b_`uZ_5;Ej7|vjy(% z5uAe$pDz>O`@0cwe)OAzBy4sUe?JsNT}3xUD`)|q zYv`ijcijzfszM|K*yNxAEUah(Ton zkAhHn@4AAgN;smFzLwGPCP1qY5mOlf3OR<7rXt@K00P%Q;R3XEq)5c|BAHJlO;=jW z(xLamG<8THMH)CmU+(qt_8@h4CI zKr8K_WSmf?{eX`R>DsGXZu;tx)i%KCeol+;QA;8Pr+MC!eigqXUe69GaBTcpLNi0) z^)J=ffPCw927n=cUu-EE8`QK$KHk$G+jR>c*U#8c&o?{U>RhjCJcmt&d z+xn4aC(;^`=y?Ex3e)s&Y$l>PN?Ioz^#bE#l%fDW>cLbS8;*=D3Pin|w0_hbym=n@ z{!%h{viEkSfzK568AE{C59m&46v4V7z|KX?G;?r4!o|H$O29RflO1^Z@pMFblL%~- zyaBo*h6*}bXxnwN5~s!Z;|UA3qHK2D+C<7!7;U=KM8{c+F{na9qx$`qkNXzg8$HA@?N`CO>6%AezthBZ z=vlv(F&8JXDWn{)*%0py+6D7{gr<3O&H4k5@9Rdy9}e)1ox+FG;{GV8Er3oJp{~iT zUoAN{iW(33>?liJWw2Hcg&NB?}o-@62+i>I_1BZNJ zc+;T1r;_MpuE<8`w%k0b39ApT3D~ zHp6mW!Ov-{D1qr3=`H+bi~Rl!HoDFDOhI-IAycsPIl~LLJ@l@nQ&#l#x1YUc@ZR%F zI#1LM#C8v{1qEP{LKTijsMicE3eF+C`y3&s3zP5xs6uqT7!WqQQA{b-o0UXDIj}77 zMLuMnL5iu6myh%@{6Q?@tQ~E6-NP0LF$hs9g#J-joYtJ67>!^w{GxztEwBZ-<<>$z zxu9_H^=;(eQ^#ZO>&e{&;6i@)!0+e$Wcqou0R{jl33-T3_kup|upafhOV~94)Gs4Q2z4B7COc ziULC=BEMV0992w524=6_nDjh;ZE>@weK6@)st1aj7Ov13<`jQQ8*qGkj<^rt2C zp@)9;K+xgz1pf6kbxj|WO|pI2=gVEOMgyT?bhdknfW`jtElxZUO=5hm zMu1}W+QJ+yf-J`3S~VVJ`-s+98u&ut@I0eNYeswE^4^W^cKtkNoXi8{!0eR6bA|h_ zDqQ@h0oi8296&!;s0DQ(stcrB6#@@m1t5X-Z((%9beX`g2&gYP^||qb^uZNL{ZX5HQIk@O(Jd-%461mJTG)mw_yqZtFg-&nuo86C9RxL^7JQB}a@ zDa7_bT482rZNEQ`0Go*Hi$ochAHM_+{}behAcScg>KtUA19=|x9<&}rL?gx{2}q-V zI{IM@WD#8tS!+%(jD{$3h?s;tq92PH{JdbX7d%~&ga8D)_2h;Tgn*mJz_R-TQVJ@P zqd^icde1I(y`UX$@1Se?PY*N2+>Ym~=zc}?tGJKJzpVq1pKe=HDz~<52rlRFu?-Zj{fHg=!1P^J6{Fo!{ z_-w&qK|Rz6WrpL^3aSV4hiMW+>#hJbhL-z7ACgzSCMkKjB->M68P3UcUyDWp&-KzRy$9d$oQ zk5BGda~80n>zOIwJ;&e91638LOc9yx2Id5$$p^q9E=>!Yjs;0o^0n>bwJJ`mikxc) z5GOW*rWyT!Y&&o|H;^W(I~L`Sktn^VNrTT7q~~-KDa=nxger%qDUuF`ucNv+1<5mV zmlf9zZv>iCCadcv>QrJz2R!dhTS^3F5Tszh7r-2)!ACTbg4Nyo1+t@uYW$?b5`Y?j z;=x1p+^nUeyN%0v(`JV-O+1AF6epNE#A%BS6P?IUlTjbFX8vT3An4SW4%G$Z&O@fp ztvT5kCztWLL_F_OQw%ShAL%#aXfx7v(-hawONf%MC5EUu3WDf&1Pf5)bft+@K7YD^ zs56MomcQrxs2ib9L_pUAWIZ6X-B=jN)00P&RZ{v8-JVjgnRihu;xi)sGTKW^!9CCD zH}}k>lL(yT$aw`k{6Tlx_wONR%w!75t~(vpk}7N6Xl4@zPNU_P>$;B=H_>*{;#U(H z9)>Zo9)0{C3Jo%NcV=JE zqPOyalby$!5sA@_Qp71@hyy3p22?La6t`1LLSqRDRVY$A4c)d>7Z6fS;4zx&6c5pM z+y?Xu>PfOa*RA%FrW`5GAUlR}eNgQ*CGuLp=A@UoLNF9r(eWz?0;mAsmN{Hb-L1K^xII>dT}6F3-l=(CmAtCjLBdo$$Gy+_gju zaa98TDc1tok`l<&bPs*I9~neYiXon5IZaL?MOZX3W+2ZY7Blpx6^wNd2htVM594%C zMiYi`s3+&h|7q-dy@yyXAnFF*$83*0<0QjIeFr=WGqRUUbSF8A>l)H}+Mz`Xm^}25k=q-LMt51l>^j#c16`rAt$-LDX5ZYwE(_Gpa_Gjx94K0KnPkx*fOI9B+K)G6vbFUE9dv93bSDAB z%E8nsdWQ36?N)%T1o|c5D%xGjo=#jTVbxXwot04CQ~=ChO(JRG$c3I=Ih0o|h9wit zyH-M4puDASqdu1an3S66RwJFt1I2?waob}5eno-m-2=qQ3WqOSn2kdIEt{zD9^w80 zFd1?g!>4iuS@%HK!z9GEGzdzfeg7;L0UTMv3UqIkkbOY)^&LW$qkaDjvUkYu8E`3_ zhyVBmbsO?6gglN@W8o)i@`}azDcov?{)A1eZhLxv1HhI@uE>dG`rVGK-o`1 zoiId!YyK!X+XKQohOf3gvKN+3N@jpyknP2$g4C&>>*(H2)Z# z#$uKSx!qi=>bFV+!G!jdCsMs0VD>#+u0|S+@PMl_HYLF5L=}z=L>l0MsR6DkHgwkUaScHvDP>%rCpuTK zmY~M0;&+ts9!&PV?zAK*=EFqk2FRp15M*!>2!rSEr9*ZWW~VSLGuTSS+zAi0Z|UZ? zKQcVC%8}o95Fy8_KckV|E4=p&8b1W1(3}=%&&Wp5Z9um3Oc|fc(bX~;*Vsw`9vJ2d z-GVNesyD19G6k1Sv~pYWcLCm;oZJHX7%+QLqhDv(zpdd)))m7{LOO-!oJr)fSB}Mh z6kMwwFnb9(0JBez)UW|?`4T}XR5vuYx&LZ5S^*dL0rSu7n4_W(eFUM%vS?4`$T~qF zNbGXb)fO*l6w#k#aG8uij2KNlf)Z%YO{C7#z{8dTav<%#Uz<1L0`mKqD`Xv~-$tT; z=Y+0@w|k%;pb|J$=4jqq|E@smc%fnc!3;qP%s*`)O9L@4fLC{LFJ3Y~FHSyCq`!>7P>YB;Gq8SiY8Jn9jZrG74 zE?kIcM?k;S5HlS$DgkB}pbr9gsZrfnn1h4t$vKt-ClS&L$SXiNA_zeM`*)fCn(aub zN|Y@G2C7jcAA`q?!2TVL-Me#UjVN01>SI883z(h7@+d}^EOX4p-<38_LMn;P56)nY z9_7KK`O_aDNP%bnPrCZpDlVWokZm;dPC%Tj;TI+LKe&R~JLK05hVu$8UohEva6qmh z;Gqu=>e!Py6~%<*>z2h)M73n^U>+KXV?zW{0`l^L#qGn6jY9P57uIoFp;GZ=kv;T~ z?Id1D2*7Lxkr~)0E68Sm+SLdT8~DSK3xZO#m-M7yV7*|YBPAy%j~9kKhkolh9o_nY z(~~dqAqCWWNfhc~!!dH6k#?2%tN=o-VsbJkA3{om2rkIglFt>V7{BWf+_Z&@TyLcy z0Eq1okNNqsZn<6<4f*sE0N@ry6e?)^4@Q}1F9_FDXlG<5>Tmw*}4y$`gKlq>pH^sqEnHrI6tq%i)4VZleCJ?}4rb3xkLHvVh~``&-+FS?Ljnx~@@;_lkZwDw3s61R0fx8%!$ObRI0`?( zAV(!&XVhnr2Ez5RUva9NZD@c{6LZ-*_Cig8TU`BHy7N_%~s^As{ zhGkA_WzU3VxBz)^HuB4PjS0G_1&n$ErlLnMY}Y`hV7+*0gb+jZfJryz>69mw5u$ix;r%!ZK?s_9c#p6@jDPpXdeqjW za|LS=ZtsCShg>e=l*w~?r8Tga#c9=}DRn;p84xPcWJPBo4X(S3?w&S&g>@DP>2cjFEK2Die?re_!2hNb+wXAi7K=uH<{mTLf4#Po;3LKx(z^1q-^T3-p0T3}HIZiYCxq>TM@2F#k{$v4LN=OHoBOtEmXyr1AY)^O1 zVNT2J#6pk*P`wT)ZmBQnmJ0J%e5^MD-AbZ8WsQ^^FGT=`RStcWP!Bb--7o^I3~%M@ z7xz3D?OHKgZ3vH=F9M+JZwztD0Q7TGvhtmeHob8gdl)b*3|uKOf9a@oiED3pGfimA zs682G65c3OuR3Orv<#f}Mgc2ce{L3yH#XfESR0BA5IMScPvA0%{DEdBqn-KFGl;r_ z+|^kAcAS=3&xuT?A!j9IyFfCu0RT}JXfI1-n;zNS9-++P%PbnQ2)G$*ocV_bsJlG@ zxhx|CDNS1=upt+V(dPqVfkAv+@e6go*YwB!PA~{ zLQ=en1+|SH`7!e&K09Oxkb$E~)p;}*CXOnZ(P55&ZXI+JknI^{m_%pN0dSGxuyrtd zhvve-mICb=6W3?2$+hg46B4Ng3dB=LT2Mf@28N}F&se#XujQC6pleIsWH%5sa7);^ z!Qr`%!AK7MLZW^maPqZ)Y}4c6t0iO)T>SE<7~VO<&7Yc~Uj_7Q4_8E5+OooMQsVej zVFsXhHbAJGX;GM0Z(Kh}f=TZo z^9=rE3Hbo>#D5tvH$lwa5wnHnR z={P+z8h$ZjZdLPWZR+&qHAxIV75xCwX-FlfVzc9@(yK2f%5_x<~bYynt9Qas28fsnl`WCkJXj zg9Q2&sfeoc&|QFw1~);_(ic8~g$mw8^O|-T&307JphMH}cf1kEH#F^Wc>xH(nHa$A z0JHZ{ZNTxF!jJ)rPuU!_XBxwtc_iKdkOBFvj1GW`HIk?MUZy4brKXTQn){Tu7X3oS z&|@}FDWhqalO|riJWgx;`^;0xH~cdH$OwfFwKC5#5T- zraJVH9Uabsm?4xJPIL0>a+>MLeLVr!nL)@jnhV1mr;l5L;%$d;wnl$BL)P>_-9X&l zbIN|QW^++d@Sd*Wbe{_V{X)VVB^}?Yf^@H(lvAH8=tB?n@)rJB!`C&`dd0drgf~Jw z<*b5_nM1NDAf*1{HzIzw2O0}mpfiR*LqU5p57v2_Yr?-919nAZ+8NnCF00 z^jWS7gk=Ts`VOLLNngnfbO`Z_%-~luh*=4IcFnQXd_HpP!owE0xdVRS9SqA1V#ymS z7>S|M80L})VDE{tw*wKf=sBKTVSGh?H93@ufqSWX8u9 z5MGSVTDBx#T(u7UIz#<~6|%jDZhW-u6yp@f2d9vDxw3J#cC$&QBq{XCqxV5U=gXT@F__-_2Y1yMBbha=mbl zh1Y0tOj?RMKc^VAESSae$nfHg!xPmUorI1x(dUeOd%15%mn=NaBNBpCIe@}rADHK2 z6b(pviloJ2j$j?~*T=E=bQLLqq9bSA&J9dY-Y=RKLMilLdO}K7X5h;VYG4+Ic-WD8 zG0)IFpL2~k3?t1byS2zbQ;VP^CnBwbJn(sgQKN%hvH{jLC%9_g!kZHSDpC>@^pVAP z;$!DK3erV4;Py{bh`;`wmKi6NLj8m`;Onnb?*eembD5^?s43|ZsHuOEeZc&a2E)Q& z_g(>0a~&`Zg9d%B;By6+myo?jwi%$~1iN29<)r%F68SXDXMjYcSpv4Uc?d zVKyDy%wY4UE+cCKBTFOS^7rn3BpYd0`6j^ZE$XL?5IFhT00?0J1B>x{QXT20{eo^_ z-C9Bp3fU8b>S{pw@_@S^U1OLFEI;N%TDXkvWigOdxPa>Q!0_3+VpAW;q&Q4zONgRH&T(4 zofzU2L{A?rI3JM)ZX&@4{!EBC){dDVn$~8bY2gk>$XP`cvg>Kb7B}WlNRGb)Q|ZK61+#GQlyPT2#!&$2ResPQFN9>tqG9`#|DVh1t21a1^I^QGe`?q zXDEc$EG$Hzh_qiD*dkG&K>Ak0_n>+c3+yCL7o$T>YLFPx7zJDa#F(rFh79V6ZbWO# zaZKt`=nwzsR=^H?t}#UEXaTQaN;z5uW?KtkJ({O^q;Ez0;sOv}PPW7#Y9c&{fLcID z(Pxliv=a7(h8!I9riJVrvW=n$R8C=L*)g7j^c}@8G5}-n5rys?8`Hf=Ow){1peg}d zO4#H^rD!)Qt(-I;z!+L5y=R_@j{?|76E}eLy%6aXVY`Ep5@N-qWnmJ@mgWs1Ek4!) z$7Z4~Y6ZmC2#hBSzsNVi7Go*QN2!aRDN5$`_1+jpKMorZJ1&QqLshG|`BBX3=!ewVwpB3S*F? zwB(YTor64fF?27kB_YzGJPj&b#&hsEgCm8f4*9f>q;*gB4k8!^tPKLX24ojv*evN~ z!(71}0I`dkbvL=UsLqd6h9C(ZsK~o_MVy$lfR}*R3aU|YeGL#QAZRu2FG7g%`|*mC z5fOtU$Dpy~ycj7Ts&2<70$P!F*T)QzWHgbklSh=S@tR53Tv~G!O-urKt-TR~INDLi z$IEY7ryRr6-uO2uN0eSDIsIHj8j*bT{9mv`i0NJwk3VO!+)d|EJ)*pVz-Nde-O)}x zPMQ+(3}9L};@%%ZVAB|_c$3XKhN#KG03ijN!AHomaDKekg!2%VRG(xzLr!QkHjp9) zBl?kbU<)xiU_ww>?lOk$4RZz6#SrCz8Zd)6p^%D~O6xIHWH;zqKt@rx>>To~8;u%d z$^mh#N8}J7O#m>}N9o>Xu^#I-0Sq(#zB$HqLq;26O?tHmj13Tu*<`c@7BEN4EH|Ih z*F|*ae8j})I6?857$Xqqz~{$vs2dk`w9|E<8|vbQ8P98wJfAM(v`Mr>1Y|*~m=|N3 zdUEjuxCY5&T%i>0wuOj$GOftvFhx8BMN4UyOAMtTHGH!tcy73kglOf=zeg>SbKLh; ztX1OPFSL&Po<^`1_VpFyd`|jt2(g}x`(>nU2j`>ajLkMeVCb)9Zj}V6eTu*wYmCo# z-+g~KB3%avL*ZT9LX-v6Vh;cA69n%O{`1!X0HVm@cRPf^LM`V|^RwxT2d43QqA?f^ zIjbN~*VCo|P$1gHo8Qo-q<^yH_;24q8jWx)fNp?(@Q~Xhxthxg=9*T0>B12QT4sjT z96nmw=@)zWk6u8(_ZC8xkH4Qi%prFTgVbUpa{s5#007y+(^;k&BFEe!4*@tg8GW&km0g) z?#Kt7zp^9uahM6*|8P!TxCgdhQZPs0^fw*yhXKWH!15#Bn9U_Q=B`jst;6!`Et=;u z94}RDUM9Zz{#}LQHsI{Pwm7_#qdAp0`^^@zb=bdOa^q-OOxRqY*f529^Cbi60?vNJ zjtjG_d#HARUlbI`e{=JQV#5(@_jHb7u28+mAUcQnhX?pf!&REb0`)Kzn;}402le^^ zv)2!p{RfZXOHa{U=2-mp14P|IUaolEMu(GN6ktiqO9HXvJRvtb;MoQG_b*`Xjtr+d zSyHgr^?>tGukOc%#b4jBIQq(a5W^fw$Ve|pIRt97+Vgcy{$`#-&MKhDp$Y{&auNNa z9YRv%59cV>Z5sI0m?U0zECNGXWK#hV-OaE+j7^G0?T49p(+cb34;?`D!eM z?I#uT>mxo6N+XF9p)7&o;MFHPRC+E6D3a$Sp^H#aIDAXG_)Q3!vi2Bbx$?lQ+SN% zr)xho9+?4PAeRej8jeR&H{;p_0IvDsQnP|{Tr-OT>SP6fzk$EsKxPIou}M!XEUjr_ zDg=wWo^&C0czymB6SRHLDaoWY)%#5@1@dq4tRq#1h6X@zPnikoEYkdV&l zJv$@eGl~43d!EnKR(0gA-#lLFW5K= zXlLpS6J;Wyok=VfZ8Al)u|w<@kr2zwMARX6mvIy>e4IMCiLWbEjJ+2Ep~#VJ*0|^- zWICdmA&fyZK?pWL^BF=x8dwT66P@FN_x4jj3S@f^HxN-!F?BR$S@1oQb8b&((S^n# zJ4%?ngswSq4N{Iy7fOgI5~VPWqgFRs@bQU>b_x$51quSAm2PrwP<IPJipX5jlme4CT+kl(~$WzMx=AaG(t`p13)Y;k`Om$ zEQlByH0DD@#}evvB2A$%{9ctD7jJ1Ium8|Zf^+BNl#b6Q>jApf;|89rojL9D5Iqr; zX{wjdO1ixX8{b2kkVK6@$XKj~Bw~LQm^3;)MH&#%&X}s3XAsi95#Sfnb^Tbg^hG@$ z6%io?Oli$?k&>n(nmq=XrNfvwY7SHWi1$P(6S8OBs6~U0lMN{VJhB26l7$}tSPNPA z(BQo#Eom~3h3#Unqg`kEJL(R~1sX*FMD#n)@T@xW+BMe|uOvdUjy=Xi>?nTsnH=dx zJ|mi{8{WgJ4I?lkEYUk}1O>~PCe<*DMRc?gWf*CisK)awCGEPUfIRAWkMlLtbTLR8 zO^7&I)g6VZoQek8Xg%eST8lvSb9A8I-`2X?u;bPcmh-;gTnwMO0KWRHs_R@6Z@wGT=dtxY&NZ#T)8sVS!pfo`r6?J;q-#CBXDQ;p`4~vXiQzZ}czk#t z9p!%CyX^b>ka4XHq`CNmobOC*SmN|47|mSG4;bg*hy3Z|jaPCu7`;`BoJX_5+nnot?( z=5Z~M1E3EMy5>|;hzV>JK0q~|!Ou2^w9YhC>mq$^sijR2M5vg zaBt1viU>^P)4Cu6#-LVHTfhT;Nq0W<161dc9isTW%wT6+Tk{7_fn;YPOS*vhYG6HUp|<1tAVg#cc-BBpPV6EePD$e=&j*NM;5C`;$rylT()&$lC|_V-4~0h9@dx6unq30Ij(h3`~*^HIY!1#V9Njkqax=D^eov zH$*)bGj1q#2Q25@$oql&Z3q;EMGh&z4a&_j^v~x|y+?L)WMPqKaPypQ2p;6?=X$ho z9ZoCA^s5a0N~4J) z@$+Bb!R&gJHyLEl@&4{TgMKL>yoAgHY-z?(>&34($UeNr{>R?JP)TI_>4H){H+Z5A zK)2+Cp*hu1eL!|_$O0Y}G#;n_$2A}&?Bx=!)Ub0EXNQca)T-hsQVqteNBg~ zS;;9_Oh^@N2XUyWMeqT5c1g-dGieh<#|=WX9qEB>2N(mtniG9%+7XeE1sig)k7Ct4 zi;3T2ENtA_f(!5dFnWB4y5^to`GSYOXosvK_c{hUg`poO8jla5BoXKYCdBYVIt~eh z{Q;rt$?HzfJ)2EVTOv+mv;xc;*dFN6^XU~-W`MIblAZ)o(mZ2(Kxhw8%W^7W`vEu{ zX;I!ZP(Sj6u2%lX+o~+@XopM?^c=Tr#q$`m9_5n}|eqO=NG7PgQP#*$@ zxrVd>>#rT@JAa(CE~4pZxFBb+r9^*{k43R9nLwUB^y361_2LO9WAyMiDFk^f9y%U~#f|(T#>2 zG$oM8?pity#pmnSIdpANzTBffpTU)Et`d3~6yIaE=^(c?!mOaP)~-d;gNbecI!;Zz zmdJ0JIb~00Y#{rde|7@WaFQ`Kg9uexeL@9bhtuGEPt07ILwOp}^B*1;!BANCk;jz!#Ls zDTEj&o$mGy>d7UuSpYV0Z3pBT{9;B5))2K?DMh{Q;a^XBJKr#bR?R9vDxhrvA*0wl zf=0=@sz($1oJD15THx#iZc#vAZ2%vLYFm%$vlgz@=q?J# z&O`S=e>sE871}ce-2@h}R~y(*KZE+}m*Hm`va=X2N?iSzLiI{u^%2(y7S{wO)V7Ac zmndEv$bADeE&4A%8{O`N3$T|<1SL@1GJU-{*OOxTPI;cdD7A zrUkYiPzb*Ikj5K6m&orr=#Q?rPa6&YWEH7ufbIaZb1=IOa&yG~Ph6rokyyO6Y(^dd z0k)!Rmh3!aOuA3+-=36c&keHc1910%_T&=%LZFHuOmXixnQAQT!VnZWv;DK@7LbcMbU1-n6ga+BK-z%izkP{N73kkNf!=gb z(Zx}C58OTgc?SFLC1huzwnv29d)VEMQ&XkjuWva~&DoGYhUi3*LktqWZ2|A#TgPi0 z;O~D<51c=;RnD*c%CF!r|K-1o=g*%*2!Vh3FaPBm{~kiXKllg#0MDL1Ls^#i$)Eg5 zeEsWRf8#Ot_xJeepZ;kqmrJbIYy9=U{?~Ch9PmdyLS0j=Y2EZm61toaihe-Y?ifav z4k;<_P2q=1(FGu-C#Q?c(E8U`W=hF@G}(Z)(02`mj>Z60iLiR96AB*A~@{<)XCnsIIvIyNfkcmVAh*|_!)M}$7~1H!Q$>3JwAWW+E)-fa-JdxU;~ zC`+jI3NVILin^IZt16=JMGoW{CXr5N+*KCx6nRHxo2;(G2)jjmKL-xR+(~xHny&XmE zqqCx=TbbUqFq<}J5E&MagPXqpen6P>eEKSbF9=SAsvuP}A>L(yP!&Wl1#?`IML1lX z+}9m5Ao7eTWz$T}igldU&u6ss*4&GPbAVJ4u*i75Yduct#A*rs>?zUUrs4XNoZ$w7 z9!Md;Nt5<%I=-jY3Mr!V;J|a&4-As68v;KA10?1CNNU|+BXw;cI1sg6A~TSyCD(%4 zjORS%$5_h%+N4{GQx#-}KxhONk1)*a=@$acg+X^7?+GQ~3kB5%%w9Vh+!%%ae1_)v4BM|%IKEwx z9pVG&&^_x1pEMUCAm2NbucJxL;8AQGij5mXOkE6eE;bIc*Bkis zWDR#Zryfs;arz1XZbsXDU3<)~9d#i&nJl(4IKEZFXOiG4;*_^#RDu{BoS{L`a9TmE zmYBcnvHEa8wsWM`M;fT!Hc;JU#|u!$;&Mr6zc{rLJsY{|YC!hTL9Lc_wgVvV_b{J5 zpnBDjYN{wUH}?&jkW?eY*nkiM)V^gySvS<;#A}cgd|pL9`Pst4Glzkpx+wO_+*Hp5@| z3x5IaBNv*V{^_5_fBmoj761BQ|7-lKfAz2ME5Gt9_?e&inLp}Vf!iIKdj1Clr}(ae zySs-^v;+|K5VI1Z$YX|rhB!ST5|o0Rq6jz?8Qjc_Qwum3x%?bqiJN;i8Aij;3%HXC zzKliP?|cOJ^$*Dvf7rn950J;$xFj0Q)h%#!19^21*$&Zi&%+!o%xCvdyAHeeG<+sd z{>BRiAm$pO%8Afr3h)8?W(TjB!7)@EJr)~>;(=2IW|c%2o>HQ?8?gMOMfu?aiWfVW zqeXGsWASkfuLas?74*>}zwe+r2UA-Vw=MGf4%w!IHv;{f7Ja6Ue~!G7^qxfl1kleU zZhlnZ;fGD6a4?gkTS(NG68(Y#bO6xx0DR+9sK#O_`EUI~#z~9E?A5>~;N_l9T?J6x zSj;}_C$tDGD0JgtOHOK%wP)g_cMFbB<>tsnWS;RRHwtn?{&V+aj^xv>Z}%{p7Q+mH z5HR0-4gJv-)QcO0Tw{2;!tvcX>UU=to~+=`7VwJ_eo?^BCx;}&=EA;uO$R3cel@4P zbE1~yD4`Rnbbe01H9%zUyIMy@q>uAbMXEY&>9eYS>NE%`iE!Nx&EijB3SJ|#r-GsK^vX~!u?Xvon`+;OqpvvA1_3u0r~ zaGb4qZ#PVMMhL)S#$d+X5pv%^?rW&)E#$UF{q_v)Q)b$TW`MqHU|wxtUOkY8lmv}J zAe07nRieA7(4Q3OSJ@jB2kAUiYx$=kfZ}pmoD1imt~QXpqrIhLVWV0Lwd;|8@&NO4 z1NCr3etkr7)r|Qd!qX{AefA^zn`p?`yPIOfZrc@@3$S@IdAVdNseFvU9JuUM?w0W zKV3kq7SxmF**MV(eII{6W*2G2CL#h2axn+Af;x7P#|Gk16P)O&CqdI99P7z`)e?vZ zWd=VlXlXmsBTaKCJer<4ko@4t16&sP3dNo_o70(r%U<{SOuoP&{C7N?Rf&;cv&_|2v;~ivY;d71V z(qR9##^#5B{W}V_GC<5BksX1Cpg{VyV0O^*BZvIKLUs&8E^aymEodU4IXx+ETFgJ( zWByI3COyGtXqg~fX|q9(q87U=L;0yxW?=^ULn70=~6lbsC@@K@@?%N&rlComc* zgW_R_u-&nqRtjP!K4AL@pS%GsLfw%50im*;Tn zIUO)ufVzI*7nsDXWxzFaH)}spt-#16J2m!;A0YTC+fJjBu^3AX?qOzhNSj5K> zX3!G$q=Xne)UHD)_#NsE5puue`IpT=ap`6YoS!1h%W-k{g(gaJw_%WA+d;hjjF0JJ zF}Xc(qt7St^vLNp8ltDLOk`QKnvImAegJ~!=v2`GimA<(NQqM8#wQ**7WGi+XnK`F$7JBF^M<@VTlkhoK{5pcKry_ za2*Vj?Q}mNC<%8?t4q;2_)^0ann}fjhnr_aTMv;#ucz0r^9)b|vaxT7KdC2?fD+J~ z7C}qwe_$~NBW7C*vt#(Dus(*wk-7kY!u*0%2YqB=JuEWF!9#DG(U`(6bGS@G^?vm5 zHwO!Iy`Mm%?SWd2C+DPhm4^3o-AxnCgi;&kbp#!o(4;Q`^+4%8CV_qWPW`-OBebnY zbUJAmQ5IYSk~U09pzGl`TZl3OYjJ8JmW$|?L~eO#BYL0q2O&m1T;;bRdOw;dvs41Xf6%1ts}kXzGhh8vl&$DkZpUoO2Zk6?12-={vz7{+5pvB$R;}H zDLLvxU_C<4#P)unFjSJvil|cvM!k_~HdL$!vOQ}AeYBAtsi9iW@Y0^T-s?YA!smc$ zfa=;~^_v^kDbAz*(g|$EKvfaK8>!@6XB>Q$G4|j|KGrX0#}xXcx1-im!p;qw8ZD6R zEM)7@Ugl#sDnLzY3QeAWTtjUe_<0VWYxL_ZhCT{92)1sdzXO15E#&PM{&a!io*?s#3?Z@4d=uOW6v_`7?E z)sniQlslE&6;nWG(ryUJ#{n@@DApTsI_vN5Sv#kDeCWAXDG9&bBiKo_4y8tkgRH92 z=Guh;|BtKx>mRySd|RQ74?p}6uV25$PyXajjz3$iR`~HB|8e~4ul_0k;8%b3SFv8N z#{~lbe)1=O5>iV1+OPfE@AjGRweX;L&4k~e#L&OC!J4H1owqGbjMS;*e9VJHi7a#IsxRJ3u7c6(J0 zKQG~yIfYJvmYJgKDOU6z=H-Urh{^WTx`>=MM8^h)er1?6e!Yj@v`~i*^5Fon*^ir} zDxf46gT8FqV&;mio#kh0zvZM5|v4?Y$M8Q>ghXHbq`$+P>mmjud3%{ z#M~XBH!X$t0z_4l&0X@}kNoFgh{}rnak5yHQ9Sl?1N~6LR|a;Tp}25e>_G_jmcnt@6qaa`1nq(6Tt7kRsdi_VGO5BK5)$#hEYH| zt`Ry;M~axA5IxgbjG1YYBm~VXq)|5>xFNt5nugTNs(@b zXDAs%N%`hU^HGOxG&Bf;IbZqKA$#ayb^{xMXunVDmV(b{5$;Of-`S1;r>Hy9S)C(I zDHG%5vtMxHq7OYp)5q+L04UZ9wBk;p^*9~P6l7~-))~fnMs^OW?ne`i{PiB$eKSr) zgh$L&^N`ybYS*!*062|t0WMcOXLS!(a7}=7klQ2jPd5aLx_)FUq;nwm4T6$rPZ_-+ z>wdh39yd2)aHAO$(xkF&k+ME~bdU9m**Jygn~(HiC3$aK%UVP6+8Ptmqf6Up(F>40 zlxLjCMu3g~K(hvs>gEL0rF|6m+$K2RRzAk-*RKHpPo6w^SlDd& zKR%|&3ONc#!^_t!JkC$KF<3XzT#AeqsyAC&Z2qaQBHSN<*Ef)hc@!Q~*fzX(L3_?_ zh#cbpS+MvJO%H!E!{MD0*)Ad!ivm~_bYw^f)=)sq${1cGfc%W_S<*7DUr4wjhdRl~ za}GdJ8ai$PaB~XSWfYs6Eib0#%N4u^bQWNX40?4IoiPH+S4RjJ(4Uh3`1tpmQw3K5 z%Z~=A-m^LIF)O5XP|ZMbwo+)%&!Ku+a<-Q__HQYyKC;Mf8`9pSfL-M=Ni<-X0mDoo z-v-RCJhDv;2C^Qqw~);MyDniX&BaR#G|y*HjYIXx4sMZSSZ18y41T0N6*pb7@n+cD zv4LOB5N5HE864F01|iSjo}O_5-s};Uv++j8V4*fO)LtSJ0)CdmuS)2<1FsPPLPvW{ ztyomtZvpS2amvl5X-B(8cXb1Cdj}+%M4l5#|Hj9pQIsXA7s0a_7%W`V(#T9Jh~)x$ zxj@+MIWBFx$*MLUVzGe8Gq|gpsX-rxG1LqILNZhTE*#&fbprVP*NV_~kS7=PMt}Kw zmY=!0$@;FHsy=lY-&3plMIq=27AL7reU;%;uo*A#gUwOCAJZGH&a zi7!g{!a&_0Smd585tKy!dJl1I7>=qG3sl1iZ5RfKvVeWMj{M^uxVeXDTA0OrYL1*I zryqc5T83}t8Lee~Kyg*`I`n>WKQc7U=q@X$I!*%O&(*PmY!&SJf>}lTmJ`FaoAMOi zdyb$b)UJiplAmqg5~Vv|!Ocsk0}VEOu4y^B)+nz9OcU2dDPiX`diPff=I9^~4*f|E zS4hZ#+KJ+Jfa)CdLyhj~0`0j$`SpfH`wzd*rsLz!fXj2V@1MlABfzeRkfzCp-YLks zhd4CIUOvER1-~pIrNH9Q15&`vbA%;1?Xo-J=Rb51#};N+N4*fgmk>cMp*3)9Xcmzf z_|qANxrW}EF=s}2&pk*+bi5<)KSZB?znVc*1!Ody2o-}i)uE>55tyd=kFWEdjfUSJ zIE5>6_@4K=&~*P38L2Mr_MU$)OE%3BOcRMCE+wz|bj0wov=n|fj_-C&fu58%p*3Vt z#7WYl!Yj|&oHcFCe<&vX>E#*3VBtS$;F}imVFT56P&p@oqAaE&?(uuwG?0yje0|54 z`JpedSbcrNJstqeDTI`m{njn_nYLr`dAg>xZ>BikAbe?6t)GA77wb37r2Y3dy?@4G6%m zX9NrC7WrKd)oMCz88#)|TEpdY(!1_zU{w(m%>-l}kZsAJ7?$~{^IUw)sbsfQPy^kz zf?64T|fAQ;f)#5lL59(7wBQ zTEQG`3_)fCTfW#wtK1EAW>5-1e|!zU-9en4(gASW#Y{K}x#RsW41pfGUh%tneSj=%T!{vNj5?fB=@Pd}ahQBZ92nExH@ zKz?gPA!S)|QGJYPJwhK6!jn2ajvqad<-taAsh#v8gZs#;E6WfUg!Nh4YisSFq_ zk;W8Y72k(UKGXeV#meBkNTJb^W8O@|XF7@^H_r9jpD7u%^od9ZHOpE;OIA>ED2@*sK`nvbO5=ZxtgXwQE*C% zOhmd2d6**-mcGY$U8JUT{Eni=ASA)JoGe;}b1Z0WLS?^&3g+CKg(@&28>0yF@gW#? zG>Th=m}oly|4qnvohPJDOj-y4W1!*V{b)4DPTep6SXHzJsusQFbHKfT62y^6l*4w zDs5{U_?(`!DbWo?8XcWqd_wO$-&Y#xhun++0NtiE5i=op-NwhcSq4{{ z$!2ss-*J7Eae@%(LY$yJdR!F$i}?B?-dn-&yoe}TXRy#$!ne8Wk3Y6{`#oFkJ3Gr;RB z?H|cT+6SKdw6=`j@njDzTwFgQm2bRfABFXfM_gCJBPue&qx)Wp>F?>^h2+m3U%x`c z_Z#i+hvE04g@4~2zwbH`zlU$N9!*rOF{wJOul~(@m28QaH{w~Bgkv*JL`S>ubl+1D zFOMz1uZZT4-(^S>PR~hwyibxoB*YL_pDSt!lDl4{HNwVRl%D%fvbUE5CnQ0s(FRwz zIAv>E0vXLC$F{WZrSlQ@64_g*V+XzMAfg_^6)NgOXbCO{-pkHJomOcmWH)jQb@oO< zIPUq`wnw(@VGaxrjL<> z>xMOnBkf!EZ;JNelTk&q*cYHpZ_8#r#EBLo9wG}y$8{$lnrO(;_$0*Xhm5wzV_>Qe z;~tYNd_!!4k=PM&oq^$Gf=;fE&Y49K>8f(7anc&?;#!kp0(_(zraE~H0FQA8(XRS& zw%)kTSc@_2Gwn&qF8p&G-`0u9)2B}X09RL6c=qhs`17l)EBxq>{^+9<`e$QHq z`}_Ox_rLYX^BnnOes(-$otH^Va%)iIyH3+7OXB(!doGLnW~AKvuWF^&RPO zPtM_IIqDz0fa++Y*F9ap8$r~fZYKmdGw|~gc9oOYyKOLB%*orm-Vrq@iC~I;;CG?3 zHx@pjHMx{UKBDCCfr7C|D5MZEH$=*jrX|l#M`~bNn0(VBI0tpQ2CRiklRkiY27t{` z8n;H*obj6ZF535gr`8GJ_g^a*YPx6k&~m|`wxk1*3Tio@rlRqDjlUa%5Z!)1g&(Hl zLl!VXNeC4uYmu+-A2x7x4YgRXsPB7(etpef;WwCLNRWu{r;iD$+VY2DDGe->p8{a%!&`5+ddy$;RUN!5nf3nE%EV9F{3cbrtupTm{Z zb*ZmB2Lh1YlQxO{5qeh9>OGHi+|;y)>e2b|5P@1TS@*z;2gs!JJ6%(w(b9<~%pckC z?v4nD8veZ}bWH?E(b(3I+Zx5T<~dBoTtXHHOS2PAw=FSPh$ezxaSA7#8~y$v1jKsD z>*R2ZNM&3@()}F5G!d186d@rv{j(iWeWM{43r_K(Ri|1lM?jB-g@?>@1m{ULHPNMO z_!i*gJ9vDzYl;+T7_GjgQZ$}Xk|=coefj~RZznW) zwE(Om;=NiTtmdO;P^^}`KR^DAQ>v#IoQ_6k&>#fdIlp_^TKH7IbOUrxq&*?k0E>1% zFB!%dC;2+pV}?i&0(PB4b`C{tArI7@iuc}PfxL^ZV_iQs;@vwZ@EIvtsQ@cTdEBZ*zs_LGIPGv49X!1T_U~7~`xR!d=mMyEW{hmUl#eO$v)2Puo4{Ub zR)iys94_$n7Bj$mWVc6BC~xlJ-+zwd2Xo9mt?3#T!$|$*8X*NhYRO>HczvjSM>=Yr zK@1MXbqDj=1MAhVyv^*l!o1Po0YLx3B}BMn-PQGcJ}Fo;9uDwrhj4iUUufvB#r@}G zjZo(BvmEl1D~Rn5{g3@He6En)*7(-kAHUnfH_bTtR5y17?axkuet^HDjtGx}%qL#ANS$KrT+?G9 z6^n^T=MrT>RKmG&6q)$3A~QgqL(b>yD3g!66k}ji6169kkgvneF=#b*@nIN%{gG6! z<${k%=x9XPg!6AS59qiV`SpxRnvvQ-q(LGmMHC=y{^^hPBb7-wE+7EtX&n(i#Ec13 zdt`f${CsF28M=4YaA(X>3Gw`9TOhv&s;dFT10Asvx}sVi!+;{X zS>;Sw)*Ks$Dj(69@sLCe*dXzbKJ>`$Tg*P|QC@dZ>Q! zsw7h5AMuG5(~iY_2CNpGrbNU+<~c1Nh2RDyM6~tgwZ>~!jdq@}7Q$#Y$B8x+^;0Pm zL!^*S8DBSD`)N}6U4%LRN30WX=wTwt8=MD(i~((7oPg4?NKJ@NLV|=u3O^KatpG3~ z%2JNjrXg)Eabk;phRPY8x&Nkxup|=gxt{(;{J0*ej^fl%CSJ1Uw8nYZlG+Tjvk^g5wByZ5TM9|;<@nhfWPh;P!n zNz%aldWP`ilql{v9iZD-5{jqum3G9SCADE%O(@}G7rH!~GG(G=uPAb^y`7~-@A$}$ zIc7d2ZC_~UszvMhIGt^Xrand^srmApL<|F|J&_g{x_+{fcP@S(lKY(2qitu>c&Pb| zmeoKsGlS%KXgG)fq_$N;8e&H7| z3F)q2&dW0{1a$)+QD%{43@Q?_OEn6?RB;UH#{7nmlV>i90{&RT-`zuf`2)DqIn=gc z0n(8#{KgSe*Tu0xSj=#EZ-(-=NA}yF0qX+8TtYV*Li;f|%7ne^CLhu28QKEe|$L*iYF#ptG`61~|UP-KfhgQAWuYUvL zWR3QNbGlJ=1F{>2vkhz74EN`6a+*a56JHXDg^w7~jIp74{XoIy-92QqU3Fi1j_y>W zyy>ADi|UHr;yzDqUCA{kzSiJiUTq*x=NRS{MR7~ol0pdNSM_xMdI!0yAs^|S;XK@C zL(c!jDMUL!@24r0x@V9X9=k1RQd|6rsDs=br;xbVAh?Sa>^wtuwPynpX&oZZ5bht~ zHe2XtB^x(EUTauZq}9Yg#4uQh*^Jk7LDwviw<9tmiXxgaaA8KCbCb*raQ{GLBmefY zG{2YD2>|eQ0~GV|@4?3K!aPT^)C|t^XNCoRXc~%owFWdGQzi_+khob1aeF_FpM{w6 zN+L&=Xykz4BLJc#WM)QdL|8WeBHAMMXC+kYptkKOVmF_1S{k~J7UT1Z%}Qw?j~!qg z+!@n%B{0$ngCY&XEwhONsVEFJJ3vLZr=TUwwi_q1<2j0ffWat;Rv>)(3bHC8tLGHC z?)MNEC!CsGZ7F7bwjLV|F?hNFtr?=0-?p)+p@3Q+2e?Y3uQc+eB4xGhAPSB4M4`GK zkbm-k;rR;vDmm~d^a}%XuqZx$;AC=HjBB1NnZqOox_0#o1N)TDHtYZLKwX$o5QBr< zOyQGZz2N8U2`+gpAqq_Z!8#(_1*gD1Q=FQUL= z2To8Q>pzm1db~f_)X1u0gP3O&yf@RD_w72qr`8JZ5jqRGUO}9mz~9`#-#y6eIqg-|nW6(>OU70KuYYL@0#26=DmBjfP5>*{ACBYfc9dE^d`y|2gvIOWV;%sD$uP@VGDs_Ca~HL z$ba)CeJKgmW>x-)D-s@DVRrv~l0fCvgEmng3N=mhFb6z2~P;?Tgas?iZkbp}}o z=+_zgxxlb65Uzwwu6$Auc-ULGSw7V`f}(%fd*s&x*PWX?gdh15+VcXlU;mV5Lnmtj zThW$^BI+I&gM9#Qq4^v_S9>FRq}3q|Qmn z@ijuEv5J|7dw#}`v90+Ycl$VD&1rJu9N9zZh<5YxWDQ|7!oz0D7)h@oB+&PfrSWKu z`2&tWawGEZ{@uUBpZjxvZv6Y-`dfbs0PxrT+F!#j{^Bp<@BZDti{tT#pZS@e!Dh3; zpZPO?2EX)6zl0)L-~sq&|LmXPXMgr*@#p{ipNEtZfAz2aRs8(V|NI~ItxShhQzl4H z>&*}X7g6UC?jMMJCVN6_NtLn=c-X#)RwAOA-i^p7l4HQ*g*&1ma{qx(7O_5e8Z+ocNXqf9gX<2c@1Q3%>8}!eY zI6TiV|E!1J#LznDpf?;6-Zs&X3%BzKHbmMl&I;C?frq@rNM5fZYYRGQeca5)_49QPeK zzSq_Xkz8=nJ**VhhvY6~A2oib7@Wly5>YF_U?t3v#UVW~C3=mD+(46B2 zDcD#GN6l9-3U-x4wsAshq7zbdOR*P=*oZff2LU7H=>8^(0zyhsy{v=0IES6*u%&`3 za-biew+!`jrFjEj5dl!gh~RqlGwclj~H}dI{@Doz&E}h&0Ja2zd-86>(Y;tmS%M z7JU4?0yaDNrs3yF&lQi6Dxo;h3;jUEf4OA7NnI1goKNNcm5n} ziqVF-ZlMzO#knanZLs51lrC!7_TzcJr zY{vw1b0pT?yDy!W9LID?x|UVM@H0)+6+8 zq^1j}xt1R2Y9*dsVwfB1Y1a#a4rw~y^`n(;P+ad+bg5IPYXX^vew>g6aE%uwnHHg@ z>z2@DMue0f6zC``%3_?>3q;M6wNRhkO%7MzGQE)N73=2+(xvqW0K#q`r?#Aeq?|rc zM3ArRxX;N9_#ArmKXN1TXaDS<{R1tzgb?_-pZhud+|T{o@B5h3(^LHOfBw(^s4xBd zA5s8PkC_TSxnF4w3_aXtORCF!#xBn?a{(d1Jv?w>NrgnTJfj$_;|7ptT#Ua(R2-b6 zhkML1Ng}e5-qo}a1p{n+wCv5l_8RuHSI}=gC(n4tqE;*y@P&q5WKdTzA^T*BASLu& z1JRL|g`0aWiqZB{C(-qG5BI?dj?X2Edj&H%K$4Oqnr1>eqdU$d+M=jkD1%{P(4Hvd z4}!>KAd(0GYTKat^alQ7jsASb1;w+`5zfOeD_YRKx`uye&Fm0QvAOKr=%GJ;Wk=Ew z{CWnj1-g}j>I3q73w?hCUR@(R`3i=)LJ_)0wN>*%;o&NQV584fVr*FKbfJQOPGBWq$Y2EfDKaJP!m)bsE+oU&ATg@Z4dS8 z8gjj&lTF>g*EQtX3D2$f<77#6QOJDvFu52R4HU&l0l;n#92IFBk*b$&WVu*CR3%Zk zp@;0csS$~fQL`DXp_lZI4t0 ziZO@faj+ny;sgVr6H<|iu}Gydnv3}3MkG?U#H?bGc(9zNlsT|J@Oh(c@0d>nAS{>| zEI0cRVTJcl`}LT#9#(VsijF(pDD)>8vh4u<`i4^%Yavg0-T5qTCI!Xi7%b5>U=lm- zYdQkW3`9E+wU1OTVGP2&LcdzV><6gV4T~Wc3z9gc0|2o-AQTz=Y7SQ!ia`ra6m@q5 zaswH`iZ{N3m_!W#IGLkcE0nhZYCqAz+$@9a9n2@U2+J8WOiaunsPDjO<7g` zy(hFuO)fS{jbN3?bFM?yve0u5;bb-L6Di+=*Ba?O$sU&(E^ZY1BhTPx<>&$_y5WuW z+|No*N8@!YRNVXG5e7R3?WOmY8V~e6P}h;FNr%4R9O)WqY8Po-Vm{;NQtI2`gkcziM`>&!$FS4Tbx;=>M5SZhVd={Et%eSdU)Onr<8A^- z+LneVY5z#~&oHnNF)5Y+oSG-GdOT#^LmpbV)eNB^^-#0}-9mkU5@MRD6glbS>4*j_ z!BC^=a*6WeJ%n@UpDbWYg<&p{Zyj{!FsyR~Np^v3d&uhth|3f7>uC~gwgYL*+ZrJ{ z`KiXj-1P`@fng>`;~WIgnQPZ#IIS?uNySFMm^+g4H~O;*X3x(mo<%Sgb=`-7Qo?t6T!J@3g-?-Ab6;= zQy?&aS*VGI9IS;b3J9scGmXgi(h;1SXjH(sn8}=@|Hr7mZ=&U-OhR=DggDyDbI6l5 z7vb%0L_mGpL0Ah3c98NB0s{b|EaBgO&OobI*Fag2`}x>SB_6VO5Y6z$R3&5v{wwbQ zlHoeSdFWlo_nqgw$R*tr{K*2xA38^Q)i58#c?7M{UvLztRwas82fXu5@Z2{RQBW&|er4dZlTq-ljsyI%!0_c0I?xOO{nAWM zTrR-uHN-53JX-((n7yWFxUe4Gc|oq`miYs+?HRIG8s;WQVE#!9pD7GWg<*LLeDxHv zr_QAR@-y-|V_>4{$@6rJf{RMxo%93r%?|criSDvM_0bM;e?F(5CZJgBeAQY%_+J0cG3cjPDDMM zd++%@gb;cDmLk-qg{V1g6L}ujBZ06#P%pGvP&|6yBMgry7S555IV&+-ETVJM0C~TM z3IXc4WKpp@kUA2LGDO=U`)oU|Tgk~vv~T%s%V6 zQ3Dt*=kSrzWlIHr@r>(KJs{hJX=64Ta`2>y{4eP-c67dTB^ycATJ#q)^j}#)*B+{I zq+TSwpqAs*MzkFTsxiP6nSlR+XOPW+?9)5a;0nVD$gD(I6htJWSqRbb=*(wgNZ|2E z%B0D-x2zXz;F2w~q_7n|8$z*MAS~zn_tc=21@Pp26eW+YjatRmXn?kb*dHLYhJNe$ zR1hOhMHV#CK!|QgDNrwjvFQ-zQNp@mjzMyE3Vl!B_iD+&vi*V0(&uAbeBT|SEFpy( zExdhQ6BLRQfB!(MZyX!yJ)_H_C>5s-i4wJ3GEg*XxZYqOSPQu&bx)K95pJV-?|VNs z{6M6D=GmwP40)V@PP zN)*Ye+h_>qkbU|vf}{Ce3$v5(xuSsnzg;1mu28?X#4uN|g+O)1xPbP|KzJa_B+_`P zJIxVP0bNs5lW&+i(w-ZbqeF3LaeTXkS0&c}bpr?i`_2WasXIIBXZsU|yJmNF6tDx` zd5PmQgXPB^%)^^3f{+^w%M51ML+x5L?=0aniSkvApe6b*KZD*j&>vqzbZ4+Dh9NT4 zI*+=Zme%1_EL?;gjLQk$a*?xd*VpfBRW6mhBV;)P!#N$kk&5j7b00mn}*j%8xvCJr$X$su-J>;Oq zlyz?;q!N>uI|QPQ0SKDtQ8?BR?vz1DWqd79?z-*QnUz)C!c=(bU5OJiQC&>7EeLo6UN!>^y<}^;F zRkcjlCop9@wB4kGP>M($0GU3sq)_|2s6G83dkBt_p;*Ylxv2nq<6)#cA=>;tMuO6M z5(dk2nx-R@xhq=dAjLIo3%#28p6tS53>#C(I45ItCg`yO&J2daX_Os*i4pxaU~=`#%p z%QY_+%_AK|sYsuQ>*{Ee98EKfhOHD-=c!AH>#2+Oqq1l2k1ZK$I@)Uk(bAXTNSdM+ zF2L;Kd6(3^C3{V;1^StUummwg8zut}5gl@*Ridx^Kh(Vu%zNTkO|mD z#%b@y#dTaypEFI*(s!SM=d3hP_ioeyj8>YSHt`}Eo+LV#Qjmg9fWpOzR{XA!_9yQq z(fMl0=d~8FkK7Vv65y*TkP#RsuY8|!yoSeXKY=Cja|tQoog?L9@g^Ymg*uYKNMt#P zM!+XAu#{tH?095x$}QDYON7Atv&=^m6ah?A4)1}!Cn%)#n3|3hfct1o3Ngf1B+KUX z9%Z!W72Hp#AF>cu0CmI3t*julMDPmo$VpzPBZa0cxF2cB&m{x{_%aDs2#6pjAv*{* z${|dzFF-9;w8RbqqbNE&TSR+WLE!JuLHL+*9!2h<(6kgj)Ie2oQrQhqy+DvTWFMWy z7BkpV#vo%%G_Xv>ED;$EdIBwjb1~K%atMG0f6ubUaBpR>g&3`heW}3!QCgG>>!JF% z7q>CcxG?ZW!WLla`NN*tFhzq5Z(t8tr^RO9O#3+^ z_$3mc>KBrk%8BBCdPDND(EFqNk*E?_#`# z`~S7~X0euSS9$O^=3LG0PgnhIZPSH79DV|p6@^5?3PDknP7xx0NRLR2L>fgX4~dh! z5D_U4iIDOV!9$`nNC6b2C~`0u5gErA^CJRWY;*0~RC}7;@72vY{)aK((i+Az8k4&OUpuz1Hl;7+(_!=u!IKitrQG8?fgn+`=7cdwz&>_;zur6A?-i_}vcn zU4TmCO_{MFR!viGG-2|^zVh%GLM$;nR zZbj})ThqQMVIWE})OgVGp|sO?1^j#gb{_V|HIdEy;vK<;XDOIH%yvs_qdk&;Bklia< z-F-kN_F7aSIJF{cd^BwNDpiBY@6P3L@zM=3S7b(YIE1M!l0go0dI5Jahk4;vl)=S# zh|M<~V{mT=`-L}AfAdS&-pEu&*hR@?+6d;8k7mHxTw3$jt^kRJnX6VEGpKAABN~t4 z4#sk*crcg4#NiZlu>^0nNM1ihRISJ}U^tZTTxo|d&%rO>0zAa1C{_7ih1U4Rs)dDQ znMhB2zh7|&B0m9T3Ab9kH>1wnxTn*tyTLgS%| zU9?aunoh)N`1)1gd;$01fykX2BSc?j;ir@(a5fh_x#D-(IcaeNLKZAaoIv|1s7ooH3Hz zBt}H+5(DJwDqYn`&el?my)uc$T<`-i>6@?Hu7g4ssH{PhqPaQ)Igj!0E!4+D@X$yM z(q$EutL#~U;TK+)YH+txaqkpF24-*_NkT}s2I;DXS?4k7qXf~CNe!Z3C%qAjDOk#FuQVU~ERJ`J<1|=5$>t2w< z&0-^Kb=80;BbY%hpVv5GE;ws5n~G4yYO5-37Ifn(m>KrYsdBs;xKbsKubjxZC^~S` zvJ@{IB`OC)PJeL`xeKIZb+5@|l&n^0V030D5;Z~QXuisI({}UI7W4nCg%~`Vu}Lh_(&3xLQPXgBboPQC2CWnp>Tvk7u?G_ z5z!sPLFALL^DxV`JlFXGW;_(}l<5fmLhM zpF^^9NYA#Yj)$mc7WqYubWtMz^;hM)9nPY!&2XLrS&HUFD&gbbTYwV-H_k+yW>*38 z71%qZ%L;CkpdKdxC$b)RhN&3!(ExNHiL~9+uon+K0LPJ^)x7`f!HGe(XwVE50;>&3?nu=6d~T6nR2bZMaN`uk`>tW|#WNsfEdRg(@{0ze-?=9VWtL*}%BhT{ z!!f9K7`<{|5|qIJxLCkkEa1QXd0F>P*Pv}7Vk$SUp}sbiF6@J~6qB=5Y#hQ^3ufBE zkoRyR!W*X-Kv71Hm>G=_{KROn25)zARvr$d(|RE58h`N(;ff53cqVC+=NV|I=Vyg7 zqpai{?7ehPvn+0#0WA>uNo5KD4l$gUI}x!4sI>bKDvN;L2$ei!me#W&1j81o^f)k+ zROo|ly0$Dswg{jl>=_~YwVy4O&e-K}UN#IR0Rd2FZ6&@^$Mgj)){}~|mF(53WvD2M ziH*}qq}7SKX(15It$Ie-Z1WsG9AH#t7IjOiqK1X99Bx;qjYhQ-^B(6T`4WU^92j{e ztX-a63A=4TT9xpL0a63I_Mob*o|s_x7FA%py15c;sji$&=lu&&0>Z%vKDB~lwQA^? z7^%*vnUK#!${0#w^SOoHHL+_FrGa%J1OPwDV75b;vf9V%vO2?8q97BD8*S-ZmwPpp zVuibyG?j`#kO0jy6$Wt8H-KwZpsAYu&Ki-Z-#7;pg;W@{V-k#pqLin#Qn?8P;HVeh znF~l;)1kfUCxf9?W3L=2=d?2yzWOtskT}L1l}e+yEd}ySb{=z1_6@wXR%v__wwD`I7-qYbRAr ztO5aCes9{UeOJ<0rAA?l7;t3*F*0S-u5nqqw+4blod#^AlN;um6PaGBUA*R?q!sQ7 zh2lx#!L3ks1qXcb`(v8qqW)aJ%Lg7Jth1jU_O_*ce3ruw=z8T1Legr{@ z#DE&Ds8$NWHPT_-^Za0rYdkd`c2`F@ZCC0z9Q1<{8CcBB0v{p#u@t#_&7? ze5x~cxRz>T=(bC;(d@4SdDcE7Zo3}wb1k)dTZm4FFowz98Bc!e~104Mbr9I4}HABWne#k`mVy z*r{iQ)43Kptiu5~u}F3;TvBP9b7Zbq1@d6P{<7KTY>u3uhYrCEyf-sFy8FBALnl~f~LCC_3SuJZ< zTh5`n_tzEJ>)f`gfM=|%Yrz~+l^{g`BirYvh5afd-3t4pB$aidYqlKbO<3bp7N0=R zK1YP|9N0DBLa_4i9%eX%S8}#53c+X}AA;8#_{~GkD*BobZoU8(OW5NhAZy#t0s7OG z|22mPij}P;OI)rZ6b6uk2xnhSZYB4Y=UO-&wT zQtc#?%7pV$c`%X~`NJv5d+?nHpz#R1Z@C3i3kN5;a{;eX0GdE$znNeUv)xJyb0%8; zR8;YB%7v&*U^oz>^g=uXg7^Wfm8wS^tm3{-%u#IBi6;ny4Z zvV_%2GM6RTSQzhx_&ZR^@vz7z7C1hT!}D?#rF~fqzVPasvY8FCR#9m-k$JBjNGde} zu4+I@+MAaraGAmI{vaMS((|n-tOaS-iAXfkdIt{BiT75 z>pFghn_QF5Z7to~blt$L3h;UZ3&3QlT$?4h;|a{Rl8(Eagvnhxf$-0J544QF* z?5u!YtU>p-VvhXMbxB4xyLgY|IML#OIaPs^qggEUAWh&0IXIV*V765YDeERR;om@% zbd_->2_Qkt)UXxFO`eXW*kmL*;#vvYge5VhJpuMTZP-v6PPW;Xx}XpfFzm3h5fOYMq-cc)ox+n2GR6QFhiR z5sWZrb2;C54;l{OU$_aX8sx9s1|Lq*9F9<48v|y7;qN-|W{3RKp98L)pn5^LpyDGW z$+Ca%b6Vt7n7C2jFO|Ip0L~Nb_-$h$)m=N1B;kv9U`He1YHL7goIoSfSMPznhyRA> z;0G4vOULbNDk&0go*x3t7{6Hni9tQJ7~Lt6JXoQ*I)xip@hmI7h;vj8l6wUXwzWX5 z7{Zk~5W{AFFahU6?5_?|xSZhrz*U%9Y!7^H;d6uS)dcl~FrFSDT{|&%Hew0DmcXgV z@!G;mamO(xzqgcork~-n1l#vb(F{n$cNPxAHz>+E`{_`O3@e9ZQ!1xIyAE{&syyoJ zGr-J{ECekB1JI@vqwPG~Q^YgdofOozTkTwS_WGibz3Ajvy304Ng61pXm8!ueog77j z%?Q_8ZNwHp$0Hpc07Z%B_8mE^9v{m77sfeJ>#+lXl2i(8!-4Rv_Ps_Q8<#o}VXa(B zMY$Aw+rtM3=L8oS`~W(C8^}7bGHR@tn+1~?twwX6tD;Gw4_qZV1KCSA33+41>!q?G zQ{&*PN=QLRhw=LSVkwXebzR1;0I`r-#s7l@qsI(t#Fad~P(rAxE}>D3dzwhquM*QU zDk`8hF++C~C11^J*i|9wR*GMhBt+ZEgB)%u)zfs{IkYL{DVqZniekrO&~zZAD$lT+ z3Yp?oeM+dVjgc+{-VopyJ~5yy0W}%2MFVOeTn-26a8zOj#)AxW{R)zG4XULZ;S+;& zz|Xd2}Awo;|2oxrEA9D^C;!(bp|ZbVDwk?hptV_QoR zk|4iRK8z`WWK+jPpYs$v&e2RWxZEPyHOl*7>0)%6vDvByuPKUK)RQzC9}g}Z@&zGV zHo{fYj!HHcIb&0~s7e;sWQE8Je6xW;iENy}R#tg69(;TdVRuwDu(hn=aqS9n?#kt} z3IUIWgs?vAJ|D*uk*rUuibrW8ou9g$tMMG5P*|i%tDea$#oPc3tSj)+#|}+Yd~Ea_ zYHd7EhqcLvB3s}Jh5~1v%QZZtH2YR@sS}aF{|H2M7}`640lFZsR)W{=Nc0Lp(1H$T zpj`o1SJ4%cwYuoHTTwkxWdWp`h?J!st`qoi4$2alWD5VH;BXy`u*wp2e1ztuYoO8z zMCW2I15>#r{$dWJZE+JJOftZ^5Nxn1D^W+7iewu)iRksz5X^zeF1B~ugNG{a4io~7RG(fT};71vnQHtI5K_q0Q zYmf1pXGk_XnC%F==cm|QO)x7O*x(hSF3$pEAY}K}$m#~gOGmP~R|0u3s~z0&1kH4c z?2S3>dMiFGnNHI44fxHwpsOdM?DOjD;HrXs{uazyDzoK_$0&|+?5^iXrYT0h{+hrU z#y7NEA&ZJ>yi`8RN*0So+uO4V-0>LYagJtaFxEt@8K;sU9t_&QpDW);iCpx%UzBk) z7=Vut&>T;YDAa)ur%`G-gg~iUuLy+pZO2G&FPa8!x!jkW4&fZ!*}1^LI^7Q56$lD( zAbRxgz7~Q=D&|3|_u)_+JRneuy+lqEyP!70>rMOGH0dNF7BtMj%auqvPp9pnFWmkt z0}dwAEhq|gt`&1SCfaXz1G4GsoMvYE-0c>;*-AxfyOoa2*S#zSjo_uU7LO1l7U`RF z`E1?%f@lE%g%Mf#T_7fx73`_kq+8KdGG+q^UuN0hA|)x`sPFjrW}^^$AkQOcx>?Jwi(D*!uyHQad(*D1fnNYUmvNyp{d^ zS_r?{0i)?2Z1a&Ig-dD$nm1c94i4T4hX>NlEJ{f_6_$_sBzyYko-0uuzHL~)X);Da&BqZBS943rRUYA;?P znMJyif}NiZ<$%7}O7X8Ft8KP2r?R<-LC|^!yEQOdP2TcE3W-evd*@tG76%i!X@=@B zMK!VTDKI>h?uw}eir$U%{yIwT`son6ubY89U@MQ&n_JlPwG?R+1D^{YEWI;V^~4%H zo5*2)y_Gqv5LPN{83)@P@-%^;DAdJ-H z#R~TD02qxlX>siy8O&3M1MtOS-+S+E;&LYI(MmMau)pGdUp77w}~zMpM?nUcCxf3wySf4ZmqbX2ipUZfV)jR}%XgY0aJW;_L3!tlQ6g8QSHEOepYegk`Eg@^`#w8G_=E8X~wJS*+A!OJEE=f%V@ z$jIuVVvY_4Tl_f45FiPNN>__&n%ozYrC=7ZhQJ}=s+RdM6n_GncwqkJr`%-?vKGFo zrLvxOfL(ZC%M+KRVjym{==bMv2OF zR&p>2ehpkzt&l*sI|FFNiXS~Vs`(vdnfy)DNj9@g4%dwXjfbs2K=_Q{5nwt+52xHH zQeULdg-fJzPDKUdJW|DN1CGdpONmW>rr@iMp8O!&{mD{pt572B4=wK%DzlLH`MM)xS zdQn8qAD?#1FGN@hYlkR#uoD^Hu{e>l;=3sogG95d zL6b3TmMY&%iXhy$SWN^V^WPYeR)!=t0NSpo&e5>0n28X% zd9jqWdyvaIzS*|EBZbKG+u2M|7HJABH?XTMSgYN<-U90_?AiVr&)SI~0Cs6WtF4gM zuU-Mt1nIdv6n{94ReIqyIhjNHT@buR(nO$tq1tYZ3N`GsL#Lg%!vpa&%2SxtR#Y=p zyubtS>kX)?Ffk&D9r&rHQj&V(Vdfh-ysHtgKO76sYg-C$!$bZq&(Mq$QQ>k^IoE8< zsLEGQ2cooD%>Yv0p|Zj7O9k>#8cmqlh*}k~fyqPx&lJr*L~>VQ`h^wTC`B_7h!^Sx z{#ZJnW?cb^L3Qgec4O^g7Yil;V4~ujAYo`W6=~cOMnR5V_Y|(G zxVM<`5J(S{pQH!?<(h!>Orbm>F3N~PB1%=lTp(znu)@3DTPO1m#idR}hzJ-CBzx~B zB1*!Q%5*LXL0!RzR@1|JsVE9*uUUg;nyNHi*%IW2dOgmA z(ZH@sfkq7yV2}V9B61 z1Wb@hNA2L$(OjStHSD4z6S-IkSqhNDK%T&j2Joptc5fvd480FLkV6$Y4?mC%-4Cqj zn@0LtrT&ZpuRp6MX=ZJh;;73Fp`R)kcLRI(y>9c zgAFA6QW80;YVc?P8f%3nA;F|321Yjs*~C?4Mop}sKR4PT^Shn2=(7|wZl$Bc<{zC& zl^`74&&@Hl(vl$pX;RI!Lh^znX-TnG4fQ&PhEzB3fs~yjfO*EdBnppWSeUFMI+3Y{ z{&owbnJDEs?XUu1riibPGTvz6ZQ(#7gh40sZa9#RSl6S)Q0ttlNl0|N4@yHobYj zg~&Co<-RaS5`KF#q%z65N})Fb^9pK$Jj}sEA&?TYe1B#j5yB-qCkMqWRrsaei|tNe z2&17S|C=4CPO*J)CMtrSg^KfGs#>kXbFPPvY@ z<(5S9dzwD;i3n&PT_G^6R=i*@iSr_SV{+kcxz$Rh&S)4rm-gsLpxjLz6^JM}mn*-N zROyI|A}W~$Q`>kQx@Oa^1n+k6MIrlYV#HqpqSnOT%bW?~IAP4O2cR8~z%8X(4*HP7 zBg&3|4j=}-lU(*XBYPulOTCUlIJ&D9lEDBp6jMWyC>OJ1DqTFh(_{=Hk*}pnlsf~& zk*y@}J|(aPno)|xGm@o?JQ_|2&A`G;WG(f%h27RLXLFcME=kV8NJVT2-jYh@s|;@U z5!Vgq-bOl7xm9&951-24+Oh)M9Q8~TwE$qWEVOu`es95O8i+|2?MhG~X4oQFq@UHe z=!N7%!7~V9l%*8Zs|v|WFUb5?j}A9VK;=V9b-J$v=(`^e+xOFPB0rEbD2U`4*G=T4 z$eW7@1tA5}OwP*T{s2-aDGHDUkmNEhyq7bHcOoE?rqZ=WeK)M+Gda;+mp~iXH%93y0b7RRBTBb*imj>gEt!&CeFVjVq|$dlhykia&N& zOEmd^VCQ$%FGaCTNfYVL~zki*-A(w>#w9BI4x*s}7MaWF;X(DqoZd zv5W$qSD{z-_^3T(1$_Bn08jNB&ev^wNw@-V+6ks8jWC% z4&tHL-+dql=+OwBBZNewoTOBZtX3Ofv4+v{8sG)2Wckn~@uLiGkRUzXwtNT;vnpWk z&0C!FwG%DaXyQGcXmXH%R=bw>(l~)Xq=}I5OI6&_uAzVa8pt`AvnAZMBkZ0Vi;3%E z+hV0pFF@lF{B!`HOn})4v@K!QTW}=>oBH_^Er@L70J7c!W9byv*QT(ggS|f&IpnJ+ zau19Vv)IOglLQzHK%+q`%R3r?4Po@!QVvYxfxQ2#Z^~gO&!t;klprE-Sw*pe2<_G9 zz=nXyNH~4FA}WO8d@c#Tx<@IdCO3I^DdWAJ1M z&JvjAR*X`ET4PY>GbVQZX(BuluIkv?h)4uz_s~DGf{1`jVzK>(6PW{FlFz4V1hS>f z=ZVhAOb+#Sv1>Ul+VSO^SI~?EYUzgw+>1v@mzBugr(%*gyt@-}xbniHWGyq`Me!>v za;9`}qZIDt>!=PhxPd{oY?KS?<-K3KCmgyCY*QWz11jBZN{9OD7<_Gl^kOI7gPn9@ z2B{T~m0Y2ZNdo@1Z-mb*yzAU60zicH_C>3d)i}^jW%9iT&Uf;xuZje>zkdo$#^Con z2fN%#Qo33Ln;md;08SIwWhLF=aM_07U%V;80B<~yZjE{fg>$1B3}k;{5!b;W7e0w{ zevs#KZoYmk?lHXCz%Q3Dld)J`ES8Z|_VAfP){s;RC!yFHI_Nr{?7<9-A#ncX=i8-D zL?oMQw5ldjs1afV$RV%RNidYEmZ*P(%7$+Z$@Zjq^@cW$5LtB*i9{eEnomVzMEy*z zn|2Woi%_UiCY?&2(|)89g;>q;V1&TPs!A1M8jWt)TJ4P2>YNxAri%4W6Y2caji_B1 z6SHn=gak&6ShWB*(orcI_|(EpGJphQ8K4lRQHff|T2U0UHIz#79Ht_FXGOx->a&5u zROH$W&~#*hLj=W;L$60(t=WT9D{a|^VZ30_ zV?{X-SxKrcNE6ZhU&}%tiQH+Tq<@u4thJ)3VWv>gw3ei=?mext#UrgVMupc z-oFRDf547ONT=e?&PhQm6ZoPJVgiqRhLOWvS%P<^b}hBTro1$Uc42~Sbb!gI#HH}U z-2VHk=ZGYs!p9(M6l&D+GvwL3_%}o(rdwXRdB~|Hc&l+9joS)Xd!M@92Dx@p!ahhO z&nZ9}l^YkZ-X@qU0#X4^l|vCkF_c)2#LD<}Lc))qXaIPrjB;+#jD%kz>mapjWmsEv zjzy><>l$T9x)nydAaxCLB1}Sz_MRz>M3Mso6QskFM4pqi0JL-Ak!<4I zt?VyKdW}$?Ku%V9=P*VX56yd`D4k41GLI_}z=$SdUdhveunM$t&RMFR6`lK`VjpCA zyW``nLWKn$eg*6OjQbqWj7TFsHI_sarVfJ{C=0n0GgO^D*RKQsgWQq^C;KR~RVO4i<=#<1qSp zxfKW*Lq1cV16x&}Qq@%I@UHd*Hnb~AStkB!fkv?20CfpqA_b^Y*VN#B)HpdS5#(8i zz27^viV%1g1!;NOU(=bnU2n4#XiRH(TsIN+70nD4EfM*Zp>u9Y&(M(0a_G8;F_k1T z4&Fgr>O{nEcktBgPbyMhim)(P3o{&wvCwP`bKgXBmk>0_MZK!?Z!n{|eYf+o0cbJ; z-#>-l73x6AdL3JsH}8QCW-wp>a=aEQv_eu=KvBWW0X#TEvs}X-9Y{v}>T6LZF|=xh zJCeX(Tu3$Mxtjv%IlB-piOOwqYSA1CG|AKsJV;@V4q=A^<#3~1TB!x1X;Si_MsiA` z;NqNAGKoOj63z36SiC34!S9vG?=0abInWTyZ+u=h<*O&~vmxrk0n+oWv}boEY~A4c zr+{WE1aZ@NBt<3PgBi5k!jA^1uZ)naE2MW9a3^9w#w%@0tFnYC+5@;*%LJ|ubE)3W zS5nm+Bya=8UzQFapq^z&HW{*_f*Yvxa3d;Q&1?WaOpq1_avg^QnA&4-U%D~>4 z(t-$_7a8B_6l4wDmqeP^T)QF_(8W@^uHz95Nuo=GL7SlH!HAY?+0b5kP7eF`&t&{m zHOy=(*F0ZJb&Le6L*ub*uvW|sIkhlrHN%>(1lxWf^0#JJiy>BB1IGt)7+-Cr7;7lAd@>^e$j?>AZz%GlbmEK(| zw_~a@x?0VR&)kqWK4+P9;jMvv;kg!Gb8;xj#-011JcD`ey1;2STR?I4_F^TSdKH$S zG--`Vw_E9Q3`Iz!IXjmz(}6x1O^^hattYARNZilwJrD@7j^F0>+rm9k$Y1D=GV`AK znBQz9p-R%0Uld>-0I=&EFun$YR470oCY2b$nYQy8jF7o$U`d|CWSN{v)QFh^k3a<{Y*Dt|*oW1;PS2$v8N86X^1+)OxT!@TLH7er3^+>w zbrY9AVv*Bk5C75)K_uM21DZ|2<7wnhj=yjb57QJ>uoQCIjB{{mkltTQ=b+PB@h@IS zb(AAJFOZ&Y#hf%rg#4}Js=7KxGqRZc+8eUYjjzG1cW__$5|Udtz=u;LXPc-TC|$k+ zNHZi^ie!BVH%f(E?mhg$xa}m=VzaRKjKkr-X+WC-2?4~ZtfNE`F7NXM_F^Nl-A4!D z=?LlPZi9vctp4x~kOPv97#^GDP9UD+0m|!R*wP_;-M4dRI+o;(NbZr2BlGGTz|Cu@ zUcQR#RffNqgTMH?K)O{P8aJ;BI^%o}TgZCu18-5KdTBJ&;-iV@U_P25C}aWHgZjyM zHUbqK4q!clS1Y*nT11)#d3)~Zj9Dqpwr}CX=jXYq?A1sPWF3e$5 zP_wdl@NrJ6(nRt*K&ouvx}`ZLuyZimLOU_MSG}S%X)Bo86%jHZx8o>FwTh(* z8deEmwULTfnnbx@4mf)j>D54N4>Htotar^g8>gHib@YBK`AueVdj499uI#So2(Jj8 z%=qjA&mcUvhdUvixdG=D9_nRX(&R80ADZCC?!C8d2dXregKn;puPP5Nvh-TL4lqHj>LW?zb3(_BIVwl` zz?68(@%47`M74Rhisqhz2R-n2?W(cRsYeB*3TB6T= zC^i9Ry%nBSYUAfn!J>v~t#lQXlS(Cvl4#X{&R6lA0IxnJPP+=>JfVioV*Cl=s00p^ zm9>ggMa+*<*tKuFiwZ9!g}+nP2pS`BEfr2nDhMKLq@D*A>P1C+7NFY0?!w=ixTaDq zTuod#f**m8E&OUzDJ;K>kfHW0;%#)}d}mcr*5%(?*XU%P^uiAK*+j(DhtVA5H|`+ z5?KUQLX)ygw9W^)RK)I`O6B5U27m7X{AMF#H%q~@v0&O)YpFzxhQbYTE-nPkmtK$0 zGf3?Pj+0RpEI_zIkC=GAMezDD^WYf{GaN*NF+lLF0Ta(fxwm%654}`3A2zuQczY;Z z;(RV@b-{()d+BVFfxU99hZ=#3@<0-K@+_MrnRpNe0B!<7TNn0PxC(x?f~jku>AoN~3A;;22{EVWppE0d_yB;QdYT*wD07NpIycn%fQ34l> zcpu4oQ0ak%b{keJP?d`$`oT;NQuiK+)b|U|$stGa@th`-+&4~m7IiJpZ2jD^#sP6D7EPxJcvmYrE);wp!hQ! z%DC1pE;mgSS_r-*k0rDx={s^uzKlVMZKabtGUvWi4VH6^zr5a5fbL#C*{f`hv+JBq3pw%k$Y4;9FNwACE-%WxbQ4 zXqL&?-4?K0oo9&!?g(JtDF1--M3p#O9+z3|JC-nl4HUCc$5^>8W)WmUr$CCqpv z&#DkE91n8vFoo43q$q>NJMeZw+VANV*rSWP(*-q&pk?3mlx8WT|fw4 zt>Dc&D{x-wM1+D2X}}9R*|>dKwpBn)Rzfw=3B>23K{ISnbMfQl7Qs zqXehdaqHX4DTgYK8YS8+gI{l2awUlzZBXWlodNR}-I8Y{*zw+K$BL~b)AD%0 z(oul5B5a`?uyEf4XAD4F!QA^0j)EC6OpEjP>&@P?$1Z8%H6i&3o5FacIB(ZhvNr;` zF&z?o{CnrX`fP&|6?tx}h5^TJOq9ahyKX?n!e}6`DJ!k!t9)jt{&vHA&~ywx8;RL! z?P7rhM6vs44i8k8+{O7CyCUl?Xtjx*>(J5WTKrIKA%YWVyv%QAslsNdkU8~P#AlLa zK$;>^f2Od$Ly5%fS&B$OSuXH1^t+ky2*J#cjH()XmP5R9ugq*B^Ju;ib;G)rZVfYt zQv~VtD32K+ae+s;*|yvvO;SRlOBV~k*og0s5IjISoJA$qkmn-t>*PDqa)Y$0!OOMG zYfYE~ksY;;T|+H*C`izT?njsxfj8#%O@KpJ*fsCW8{nA;Ye60UXb7%qIZF%&l57`c z>|k7+zkRE0UnSJhoM%mBt{Ug0c3t9x?f}&uq}~#2xPKpkUV#5 zPdEZ;Ds!yMMXhS}3CcjbPG>Q6CjgjjA;pk1lj6aqKz1%15UIv9?5=?gD0dPCxzQUN zfk=*q%CTtTz2wf}+gl4i$*LLh#BXl`_ZuQWUimc`DnF?XR#oqZf{(Z z`>0(H@f*^!S)RdoMZp9kO3&Ku*h$AUvC@$#m5-4mt)gL3ib>F%v(*G^B!u+X z&9O#)W@Nqd^Ti{Qx|Ad^)2ZxlMY+F!={bUkbZ;~wL$0cfU5dm1pSa|Sh$xeUh?T?+ zzLnBMs*P0*RFza45(_?`w~NJFRDLAHiv(4rW-mu_*ac#@0)VK`46;~VEFpXS0?1M{*JdK0mk{#%3-EdacU_cx5=gt1 z^A4m&Tb+hTHT?$&5`)c^NvzZ++gj8_3`yn6Yx1=?Q$-w+ZS}iC6se9TqC!%XEo?@K zew?K+bpyr*JdsX@e{d>T&(R1p$i)aQKudH}-!mIjyf5WhgmVCh+!3xT_>Hu3X*d9~ z)=gE$qaIq-%+n0y0O_||u(L4MN_%%a0_oV5Ib&nX-US1$ECu+T>3v_;;HCzWw!#@O zuAyQ{St`k&l0Y%YWo|py=}>gIB}w`yoYVWg3TF(3)a_MO1DUfC37w&^MTbV~;J@IOucr<~V&eN;;NW)S)2MKqQ+s5I-+Uek$RYh+0pNi?(8o zLcIHp^(%xvPOh31f$7P#JMZfld=?iFp=xLSimoqz-cZ1 zH(o?WD9d1GQ`vLYZD*7QIS2%|UO&z@ME9mo<1I)iq#7XhtdQ@}ch-gm|_)8B19z$?lqAotHf@&p=_Esq&pW z7z0@X^XhFmG#^PZkLpGc0cpF2u(9xi6y-^dbWtNI9n5MYiGP5EonC+srYN5~Kz6

}uZ`$Xr^j~@u-unz+K19~zhTE6;?h-z9u!{8)k8c6kdFBp{~0MUIMdg>HM)=`ly|H%y<&1`#ri z&keSXlvjfw-?=7ganUF?k^_=$9p#OL3FR9(@S@dto3nkb5=vI0UiC9WKas;zJ2?!s z6a7U@e?le*iD@+5^D(xO2X`;*-n<=X?g_=gZY7OW4{`u&r|`fq^SE*1ZL0`2qFO_? zGWb!XsbplSyd26Q12++orWzFMw&a{+cK1cRoA;^E(}Fgu5R*RR*5$^RA~rU?xUh|VAWxxADncwR42tZg z!LBq#VHhSEZfvlt4&C--l@TpMkrS%|KPfP~9(z+$yp+OYI3A&UkG-konJ;owH^@SF z0W`SR??~GEvvaYrwf0|g&-uz-F-p?~iMr{CF$yANC47)PL!X`CkEXbJL3UYV)^*b2 z1kC9v%qO_B8QJHT_=`(a+hcDu^N%!U2$*dr;g+REsR=3yl?$bCkI!(^oNi&rwk26T z#!re{2fi*+p4apz740IUyz$uDQ!M4Va+OYe@N_BIJ`nmvzLGVb?*jc;ADVMwny3^) z=kbL!HG=j>+POhZO>%1yw9i%GN0DqLVSW2d9ygMI_aos&59bwG+8=zLT=BG+NHBBQ zS2^W{V)w|vm`1Tab>P(@Ux-n_7c!C9>ni*u~&@ZHzIKQ4@c2W>5-;>5HUnaeclbJBX;jHsc?)g zyy$U`GP0e&ZA6qfXGNnVg}HI))=?}SS*@j^RZzco3IRqJ?htCG261IG+g^C!g*oJC z_9kJ{9s$SXoN>~iLMsme=JE5k5Or0tTx3wE_uX58u zGzeMhV}{9|ZJ>m@vk6Q-Z|D~V{Zz8d z0FHjtlE+9^XZS+1dA-E+w-)j!s4nFBY)=$=Fhn(#44bhSu-s1a(=V-L&EzXtAFFre zS+=!Gj&-so0_tFd6D$mi$Z+PsDbyhQi`^+^pL&_*O*FdEtX;|T^9A-dw6XAkGo$>kl+%#B5rk??wxs8|XgfuOivjtPyW+9`Br@Y^wbv*TOGFZjGT;-Z|eS>(c?aDbKi zs{KYoQ4L%^oe*_o^4gkiQ=*@js2hu4S@NA|ZtA;Y0I>Kl$i9`Er0Y{ZLBaKzP^rqB zKzZZo<`!RYpo@2Noir+tt#9>j+9lUCEuqzVh)iC(gZmmtUD?mf!TmGe2q2}p0gPri zs)X&*ICSSIS8Zy%2Uw5h!>?=EWGQN>W`+hDskjl_CSwlfqrS}YhtJRC;Nu}&hP znCLvBMF?3EJw{|>R0vNsZ5rAGP8tp6ljt-FwA7sz7Zm2RQfLzi;k0cU14hI`cYh;w zMB6~D4R$MZi7*PNrAD(4FpKzcfFumBy9}j9l&_@WsgDcH){t%FRVPKqjUC~mA-@vZ zNqaY-k9$rhJG2foi=6hw7&RzDZ(va9+K7;S>S;09MsfVdfo`hk-U?tNUI{v+J?K87 zawQX(&XB*bv@^}DY`Mikmgyds(+dj-Tc93rl{Ug5i?cg_?};M-!TR zC3ZDNt=8hrUU!r);%&2|3$acfrA(l15IV(ig&S#^MvM%$$|Xl4*9QTrUe)MXkwQBo zrg4~NkVfRuIMH-&sZRY&LPv{hDY#7=(B)5x3`4SSb}5fyZ-$|wH1W}>gSkVnLNgc^ z9_57wneBvv6_T)W@4%Id zV0tMSq-aQwqLwU>Xkeei;!F7)?2AaYNe#0L3iYs3VDvQ>@xWbQfhFLC?lU_nm zzp7VUZJ?SGorkU_G%eAk&%zZf{ zemWE5lCEc%Sn4|_3Av%Zuc%%bMlTJ+Skuik^&MHvr{8f>_(f>$7PQBj@>5-N}Kn);yxan65aq?t&xVeL798`&nJD@F5~Lpe?P!W^hf1kmx;1jgrLZ~Nf! z71x_F?KWo^q)5qjB6xO%&=prhg}TY9&J~+!M&~rBh%G#4M;lgoMO);AsA%e(Jgp@a z6|vV0eStY`n2&01nmPG0QJ1|?Q6>MwFx-(Sfbg=!CVF?5drlWyc3n=_W&|Tlg0Qpb zMgSPoiW{d7ng_)S7mQFpN5>FFAnt)^BM8^NNpT;*-EplHExu&(0vdvV!2`Ot{Ijq&@%g#@eGx$`0sAt0&_w=e*O$5xp>6qM`y3zL6O{Pl=ft`}=b01`T`wZx zeL`wk(EZHo64LTwO&C{%vl(X7VqdN3AD_tRwUeUGY;wB$Gj{hgM&}jTcEGG#ROgw1 z(5#jltOjC+>&*za$rwK~L($B`&TCsf`2}Qtu zT#=LXE1luVE1?p&QN%ngi6p(@By#m_b>M|B-^rwKY9hfax+9^D_3-LPa+i81KD;!4FRK5;{8a`-5JqO4c$yL`>ZEhb+mWnHLI65 zVu#lcsI!@55R@5eaM*1xX{hg{Fsnh(OI4L{vLGr&{(LD-?m|YcsN~8OKyP-$K8HIa z{3IuP`wc-(LO^|mdEWqJ8UDq&P^GKagz=;}_7)742!1@KhTqu4S+5-f4+mp%F%sb{L)GI z=Bj46KVz8K1K1{+6$9$|rM#wA0_wRmNe!ZjFkR2+azk9L3F|H9;a<-|6c8cX!=A zCEAjG?vQDF2!Svi3xN6JLM9`5hV30@rO~wrbGtjIC?7F@!t_JMNcFNMrr^_HwS11D zK*cHAMX_$(iRNVSu~^=2UMnQ{avjiKCTQn>W{Pbh)6e=8co!Kz@5x_nx%@LH3?o6- zO&6JdBB7tnnIa;NlVYx-*t}`zjy>grE!}4mMlUs|-y6_%l{P;zrOP2h0Cz(Up zTBar4vFMP_uV?sOhH6q``Z#j_XR?DsmTBP+e*Hb{0R0hE&kZOe7P%&Jeo>;1JC2UG zTwlykwV^)_!uZ(T(u_xsI{y5fPx$@+z|%U*&mX)@HjzDLK+schNN|Z0co_8sh3>UXN75AKi#$PTbi~3hTCsZ5y-J5#da3>U z$`itnXM%?8`@U4n?2}gat$oPEX@&rHEn`}MVc`!V)WI8kt8ukO*FwFD8sebkz|R6| z&@%05rTec7;bHFYiBb`ti(`eKNLsVGvIpxy)hqle#{_wQrd7%6FdnFFp_byUpUL0r zK}opLM1B|TI0yuT-G4Tu@WMo|P;yVz{@KufLL^*hLUIKQ=GGojHXae}hAcf#d*mtE zXhtm|WWgZMoHd7FGGFKvZsdu^5Hm}tgxkq-Kv{Ee&{F#VPoL->&SM+dc*rwiKm5cf z{HuDYeTZWSvIl_dAAA0F-%E0|wIWE3fw-96<`kuyq@0%qB}7!7$#g0gbBw43oi@m$ zV_J6*v+ftD8blv99GCcsIUI7j4-$s9cj_9%48xUTda<95puhyu#0>0q5Nc*6&wt2u zntCKlN6SGp?Mr#iO#6j^zAyYa+$$&IM_(v>k%HDd2NX{aqA&ARynX#tFqEU7uFa%~ zK-MTEN@y+!pHAVXzCc1r;oukupmpSIykk4$Y*axPB+N{?6ws!{5s#%MlmUuBRrM$p zi7|mbOHX}AqY6(93ZFiokV(?9?73373;FL$i!?B0en(*(Va3e`{aupl(FmYBa%qxyy$C z&T9|cn6x*9DD_2Qh{0gSBl&yp<$i$NFY|>3w6{05ChgrCUCSuT9aU)>ro;l+YSDo> z0kJfi;;Lns=5#at6O;=OlKui;houa&wOcGy4vR>Ac?h(PY zlf80QcC1Q=cM6n74T%z!7$Ac;EQb+ao4+Dcfyd=FQ@h~FQGGm|uYcP0<=#-JU@;VoKF;ZmBKeye+FefAS$tvfDb2l~!#h9wlxM3s_2*OK)Z-RW1Z&~e>pSL= z{L)Z;sHyKo;j?!M*_Z@$r^q%!DH*1U_Kqj!k?M1c@rt+=w~W~b8!rCLjQV~&xZ#*i zIG@Ejuzbg|c_T3Yv8B8Ul-G`E72RB%JMzp!omj*I#7MsntScoXuX!{kYREQDs4AsK&vIfWzV^xmLFkndq1hnMKC3MZJUV%Ns zmzrTDhlTEiSM8=YA)SHoEATfmcK5l#v=(1#>NAV>ayU&sZ!xP5Ul`oPuz6$-A$hu& zX-6~)S8BQ=Idtr>F@sAnaJ*a`5_V8$2<$63%=7jQ)5;f0UEo z^qAJ+ODkHZTw^x_*~OyAm8^f|5&6nd zzW?IzE$;CtzOv*uozSLgp>n&U5h0iLU4C!_G19&>7X*DP`9iAcF>Qgb4A1`qnfN{Y z=Oy`i;P^XR`m-_p!cw01#7uMf3kALeU&$F}yU6DCg78*Jx7dSWl9AP(MXFaY|HyOs zvswh_h138i-;1C$!7P~1HEs+y@8qEJL)}n+qo)`R9FJOZ5Jo`D8O(|22(&689=<@=5S<=59m`@wtT)g6k>Mrg{ zE_A7lCSOW}v}6i4uzTH;Ej8770v5}_*~2ATMJ`uo1i)8;=_i`wA9k$X%4tp&X5>&K z$MQYV`1+}*cx5PVVD;^RY}PSsbM(eC{X|nNBh{s7w4zq5-jtYv%>#S5Z~I&q<)qtN zy&*L$hLvJ_hd_{V?!ZlLa`2vK3SnwTb})`HwYQr`>h??1>DgH zvo)x?!=5kY`=(>ab&??@cdXSGe|d=>jf8D+_mttNqQ09m0`m2qV;YHVD@{yQ2#7kW zVAo*lmRRPfIQ&%0?#tbX7!3&xP??1wDe9_skQuo_MiaGkc2OxooSa8DL&{W04iinX zHjEKHqz!&9aGn}M+LTLlZl&N$ou29(w(;cKWZPOvcOEinGE65ZmI_fu=93&Z$@wqUg~?!W3ED>x^P2Ssi=3-|h(VwW3@K4a}7? zNiY+KI}ph^K%UAgVt{PiQxuNAw|Em7OoTx)L^e$+;YK5wyj*O=b;)~8v@wld_f~QW zrQ^YQBUV9ZYf7AW_GoN0k#<|a&K|Tckb>MiJQ%N7_XWFb3|T;BL6TFQMr}lRA1hDP z8q*3A6b*-PHPy>zGfX9G#59m?#8NZg$h``=pkT4sQy?U@T@8XlMFrdYCJD#nGYlz+ zFlu$+@2en_rx+G|a;Aaf!B7S6w|<%a0agAty& z+4ksdmu!5M=$^C^BtuDI%&3Hr#={B8!x%AYs5Mb_sP?NXKm}wk*eA=UCIn*+=%t=c zWk1>fdnWESrjPh>jy4LtZ4Zd4pOu8tr0}_<5AhM*I+PRJ*)Ym6iy5)Z1%SvU9MvAp zq|j69AS~QZ%MKQdDX8k83E6+0kI9)vF^s|V1-8y`RnneRi57UH4^!4)W10rYt#D%z zw`X+}p?M)9Rp21(jwaDIr-Nv#QjjRXFp_(=YD$9B5)M3<=hl5bC2N#SN&(%;`-obE z-%+P9)s%WZsL0*XhF6mr4w?QbzYjlCXdM}*k+v6$U<0_jJ>FWv&WOo|5^;L)idaOP zlS#2mKcU=7#z<%lLvF|!Qbh14XAjz@yYBoGk+)S^t~_EQ&=ENo+8(9IX@Y&FCr*#1ghN~I~W zOrl~{z{HC7E3=qhToMTZ%7U0@xKSpcQ0LJu1s`gaA_3CGvCL(%)u%?fOTlqQAI^c| zO5IK`lHP3pyqMhp8tkq-OhNWjc;&%_qXch?>?9qpY! zD1^0u0#zHDE~oXD54Lw`eMT4sIva&bwVxOy+S5fl;p6;_Wm8Jxx{8FsK)jG3d zY8~jMmc7$~SsR8}K(a622g5d}_8=k`g8|uV-AK{gNp;XZNLnY|*q|s@V&NREKCosa zjM-osvE<)RP)!>IgfH?#EfRB`f^UuN3$qftZc#4ar-jtKRv#vTYE)w8GXduE96w56 z=NB)d#Hp{U*qgbqx5C$2beH?*_@}tO+>MA*nAI-10~OG9vWZ+S(bhmE9Bx0aq{-+! zv2LJg(J51;zdONh2XV_liarB`(z1Pfj;%e_M_2TZj@Ud-eBU85{%nWdb*S~0tm`@2 zjOgx+X-~3LP$;@1;U$j?BTfZvPj|AQzGKKY;*w)pDaz}+S^~!=(gE9zqPmcAY;#u- z2se$`l?b@|BjH%;L8d0^Zi9MWGW*0HvMu^ST%X#<13b$pzc+C6wVdtiU{4#4XEhwb za$Dg)o*XtoJxEdX-p{|{wb2c~`TR{rMbEd7U+^!Uyo3L6Li_QQ#zMF!E;s6r=C>4| z*L#k>eZ$qwL`3MlM%zH~wKbXX6q(~{JfUqZrtm_E0>UPv{Gp`lDnPLk2dj5S zuV{S6<>J;dIm;bGZ^@oyxG_|VhVE5{88~pfRVpCzrKUd)l&@{@t2yKIAWl9SMwbp( z2m*+L?nDZA(<*-L=RTnImRJAmEt+G)^`9LWeUx+hN0EL^%5e~}p&m#mhHMtDQk2($ ztPV^*xBHXF{695AiHVNs~zF_=l>QK=)XT#bRO2*TZ4wA z6VY`~)EXY#k!k6A3)Z3+bJV((N!0xc)0I>o-ZpFX!;<<;bM!%v-3^JV=uvfx9cAdj z(%c)NPb*C437Mv!h!uFhI6AzJ=~GTXl##YCq@g(2Fh=o#H(iiIrThP!SNtV#$sTA-1T;Y!#@7;gJ z2RDy!rD6J6$}BksU2B$47K!2pM(PjMl?hcBUgcSYA`jQ{ya zCbM;*{yF%|Cm*otD=tR@{4{NbyQolEpvWA&v!Qv-GWz`yQ7evq;hI%bvI#R{CC$0( z3=A5IfCt>j;3kpb$WdNdMlT1l%bae|ls94*n(d%Fjog3dg6A)e2v-G+0Kz~YCuP0pUSW_KyW;f{i!IDTJjk*mvr`c9t0DWx!+yzr1Knlp_a zG-ln=KAO^;7>0>hcn%ZUONyJ@Mr3?0I-QW;HbEiN3=@OtGE|#mw>`Qyv}Xm(E&8Y+ zU-o1#m*`Q3FO5t}`vIM(%%QO8dJxAPIA|ea-wTtcDq%VS=TV)ayE}m&{r9{;|2?_X zxFRl_!#?33y+wPcpjZy5KFH*%74*EtKeY_AoXt28 za{(sQEaH2E%QPV~2g;(Gh&Hu)CT?e(mQ!;P;o=gKVI>T z({q03<2Q)QoN6PvNpb9`@2kU^On}ArrA}y1WKE9F13tO>EqWPk8^?UCd{ttZgN%7n5`$%E2%b-Bz{@EZ@oqIYga{lO|xA zK)xFA^AdMdQ7i+&D%#`xkVhw3P>RX(0$Y200z6C?k{xw`vpMQWYOG*2{akW$Z2B4y z@FL^}PUq;}-HO~n>X1=^YWf4c{ZG5T+>J;-K;xz1m>(Zd4ApkRRZA9x!D^INsLY`4 zso0pdVzb%LQl>)~OS1a57Jh6H3XBTiPp1cWfkTJxf}m0NP6W-$B~3lsc-+X~&22Gl z8llp-J2TM~xKtP<_nBcN!cV(XjGrn@(sZof6s<^kDPQZ$z1Cx2T+5p=ogzFFPwws{ zQd}o3NG^*GFOz_NZUymIk)h7H44TjzVwb|N8d+5JgFrYLa6$7~eZ=zBl%W`pnsR)!V{+E<`Kx0> zP~1CRab?H2mBp8G2zMu-f}(sSo&7(0{w*$Uro?BJIOr4sx6TDYok(EOZdqYf66htX zVbcLoP#@DOh9Ar*cF-=QQ9#4a$mXfs?bJzmnOObiAHM@pah95m=^y6|6L|GYD&1>A zJoX&Xd;{f`yA2mo5^C1GzPMfN31G1G03j0I_(B@*;K|wn6$(@|n0gRLixfN-Oeujw zbxU}37v6pdmm5^mp*A}~>Q1HyYL?#iC}$ZSouJzR{o~JtZqT@chrKEb_%{nf{c>F) zf*XYI?LB0jOhmHd#A!8BfI*rXCE5f~TnlQ6F~l;%PYPMW4w5hwBO6X<`x3duuF!pfI~+5b|aZI-*Qu``F^jg5nyA zD@&2`S)vx+_sfep)wIJb8g|d8=*DpV$>%T?b&mOv19=t?QX~9EuH}a;@YwOYF`w{$xvc zcf|H*7fe3yFx#HdXO5U@DQXqOQHkyx`E?L?rz%5lT0u6mTTf`^{l8v3_#kI#nM)e@ zw&yE*`NWM+mt8fCT##w#;6xvmIQDwmP{c@nBZez#kbu-UDhQ>;R~ATA=mg|F=KfyY!m1op8%3UCPk__=mF|82^Xs_6ye$&CYSB8 zP$`FLq`Hu^Ilq>J=fz)`5=;s}ZF9P38L9;9Q%GNxax7X!wpO_Nj^mRJ%hed)S?J|; z!qlVIVg`{f)8A#O?g08Wqqs1*v9KhDrr?P?k|{!zgda`Z{hc-*2@;PsOm zu16i0FK6I1A8hYXyPUYSWGh2)tyqqyd_O8eZBbFCH+oPMpXb}>O7Lw zLg$vxT&VuKPtTba){W1!WJ_H~#^+*m5R80ZR*MErVkI>B4q`3OlRUMUX&brG&a{^g)lJhW|gHW~r_xY#P*bOn)cQs6r$^-=Nwa znigUqjY6VQg@qv9)e{l=_7g45K`1ddJHoC;%_gW2$hHHaFmxvcuG;g5(hpCKNPBPe zg`(1vt>r_P05Umf%&x~z3c92GAY$@45EW*S5q)>+$d{J+lL6fYd}+A)^B#iY^fxj& z+{a?o>BbUfBX)l&*ycu%%I=QC))vzWQXeuBH6o^9H2EFW)({$l+33S0#I|zSZr%;N z^Y|4*FkI{=aK~0H@@ZzI0>{>H^sc7yQ zhB@RZIk`Vchr>#;N!rtRXxR2NH9rj$7lz{>c$yPUcO;uh)Dn269oUqHx~D~%4(8tz zgsPv5#o^f>c0B#dIj{ZFGoF0s0p*1j?M|AAWIM=LJ-(D;Bq~9rH;*m0iHx5oJIIvg ztp-oXCI`z^Jp}Zo#wrCWN7qT4)b%2s&a{Zk>W1d)XKe3V?)-KK>kaX4=41F`SX zO^5P<%!}9MVm+Ir3 zd=0}?=$`$VgQyrf3mdWiwU2jL8`xcqghE<+l=;cgf40^PlgK-7oU`q7uGeFRM~eQ` zaPs?x>N;RL`P`Z#O}0_^mnFwPv*O*w1^?fd-@w+I(KCCPfOLz9J91>(42X2c@sPT1 zl}e3>07cbHp<8t`p}f=&JlRT9EEUzoKygviosC2ncPZypKhMy8AYY}3WhE0)S83WK zaY)OW1VUvpS@D^|6^dyWQ6GGYd-L1eyr(IzE!pK3Uc5q872#|5MWjB?F)maA5~D54EGnfk!6?)B`GRUyN0;kp-!hl3C|2_*WZ3W5bn-!RRRm6mWDBcsU6$L zB|cZoKI@2DQQx^0CO4;YzRW)fhiA`?6x|VYM}crOkgp1|O%&ny40gX#6D~^TKh_k> zKvqXqZyGVj7)vcNdV9t8$(+#(g`PM3*?XVyPj0>mtwwj6PzADShpR_o^SuQ^I(v)M z?AMm+m16a7z}~HC>zu|H&}-DlasSSe7cY;nFLU1fvoH9?qtE%zzxOMwI?Kz`8Jftw zqYY0lDzdE-o83ZFJm^_98H*3#)vreWH{bp(=0>vQ{x3iL59vG0os%`QT<-199zEme ztmYrOUu3hc_;hv5uFc8T(u7Q&1>7iO6Q`(7?1k0c7JpMP|3Ifaph$b1Xj~&P#?faj zeU{U&Z?zunSs>cT^b-k<+`aBFi=KPOYsOhm9}KJFfr$Cnj_S&={j6mEAsqeDn&xbd zTSP_|foz)`PfN`(O7y=W9BL$2Df+2m`ajadcGKd=8LlcYwU^(e z^OAK|4}?)hdzxXl9<}>PG*UTFyt+YYg{>+vxcNe(t_FV)vmZh@dndp}KgfT7it9_= zh{W_us=6hAwG(7VBZWks;qEVFMA`?;u1D3~f!3mK))?Tp?g*2DVP4{oC+MocPYZ@g z#?`kAvBCS?W1Ezso!q5%@5~@VzH-U+BG4Td^mlWztx$2c4^v=W?{MQWo5zNH9m#fq z_EzkCCSppDep)j9 zPEJ3|apMSYN^vl33e?2GQOBZc+4-FQ^^RedQGIS1RujHIxyS11oW%!<54+d-;n5@Z z_M5-)``;kuL6Xs*R*YUKb`K1p3i5LhI>>P1D8I2q_ZI66ej(37k$GYSH&}da35|xu zfVP3~d?e`SNkf|#+_>9?WO|u`Ei`F85ZOdmg3oV$~QkL(B}bPettBFLJ_JfiI@gFouY$ zrkHL_b}jzjX4^>v0p!b`i2`-KA~Y@b(L-X9rFGyXUj$G-F#qnQa5zto#iSv(;`S1w zSO$NEFI5)A^%7N8=;MV@GzYQaRX!w%loAl45i4Kvj4&zLygNs`$mB=Y*ma9`5;ljA zG_Or1iTc$bmb#sn07E#0O-(=E3Lke;$Q0z^5zz{Q)-5c-!r6Cvl#BS0Jy1LQ`AE?5 zZL;%;wy#eEbUoFb0=VTLQ~4uDj6zB z(-ATOJlrJEpGBE2GzPWI*sN#d8!27$7a8Z9Gs=fsl#28}o{_bRszyYt8q{^ht~OX? z9ewZVLxxp>837txZ<)Uk^sfDDH!Si&Y(bYf`DG?3WDyuwQdBe>(RrXFe(o^S9<{TW zTH{NhNPYP6J#Y%$YRW6g2D!fd5k{5VmoBE0;gyPU_njBbRd?@JC72?gld z5OQ!RLMD@$n92Rhb`dvDL9tU{r&#>BXP6lDU=r0d(w=4v(;3xyOB^)qQ9(b^^mCO$ zBO|lV-K_xCKq|i$Y>1T0AOiE+(;a8@W1;TpAu|6&gyp>ZI{DIZ_8oCi3uTUea970X z+n&9nTeKQQhHk}jJdXF_eBI$|RMU&t+Iv)05+9rqgMfajZZXRZk)ICb{8C=I1&2^K ztvLiChps~@g+7(Z1pams=ihrQV)bV$aV31UCf;ALyRVsj){?#2;*X|qIzxYPn&iAV zl`W=(GUw)N5_)*_eoM$T&7E7@SM9{upuUsKly0n2vN;qtY3&^8gL9VhP~3p>n!cCs zX-~zn8y(S~RumhB?jzk?)0}d!m31RAp4i-s$QoG$yXRB>oAy2I^8!PT1$)B8`;5)KpSC|N+&n<1QS(XFOHw$8IndOSz9mDR9p0(s+awqVRYdcKWi8!Lc#PY#8$n{CCCaW5n%3O}#B zPQrGCw&imuuJ@uenV{tJjy{yA77=dt>1P-@G*zLQ@Lh)QSk9fk2cS(fNr+$u8T zXVeE?d7fh=PAXXgU$~+VC>*@J5XYyx zr_umf&B0zT{*+|SFYA?AqW9>%vq!Q#jl+<5@UkzEX9s)VnAyYB)OJz!ix8wB*-CP~ zelQ_q5nGEZ-d@-n698hh!d%OS9&?K?EyG0Yz$JGkHM!?IqSmzcg}$UBB0w(`*)F+E z?Wuk-6$_anUrDn%%%!;W+XP-DAOHQ@4_U+)5rP<9w5O5$jV;~N32LbilT+Pu*tdce zjg_7CC>`*-QQ|mDSQtv&`jm&_4M%1@aVwcewvHmYu1JaJ$!;{ju#y8_EV-p|uua5t zk#C-!Q<;IQ^_bukcBgPv6n?sn_@HjZ>|TM>1TR9={p1q`dMn&@(?Y(M_p>|cI6L0r zgW~$d9DZ!mXC)1sO=o7b`|v}VB!d(kVvn4r%r+AJ?H;~=onWN_%WpdLkdq$?tg0J*FPuI6Jr#X%G2zBlO~v3e$SVpC?X^ zQDWyE5S>D9iMf%Y#77A-G@>I@E}(ZEF}IMX>>QT>K5H4~70Lx{j8M0P?T(oL3E}Ej z>H31*Xf#^vo0Sr4@3cRNF@;Z}bWOh~7$%zRB9r}La4EDniOesq31538I=#9-=)us6 zm}mHDiJRmMGkLD{Aeu5)-I|{WH80XnbkZV-Aw;mUc8aBE`#|F+vexZRa>+un4&S?J z`Kd=aMfvL1(8X0rkI-|N0-}IMT)cdqKtNqkB_kZ&C!642Y;&WH_!Nfv`uv8QZp3zd zB-)V*R1qjM$5A0ui>KKF-&(Sz!Q2o0%HmW0`Q_JGHPS?A2gRkP9v4hZ$6J#t?pJGW z`ik99@ag3-lTpiGfAk}M`|?dbeR77f(qu7+n7-{ZdS__11?oDdTx#4{_MB{`MbFuT zTR?kPnvkmM*=AJ&F@$yECaKP{5ta01(IOh%Rv0cJ1L{3h^VXn3c_>-|D*E2QIwN0e zq6IgW2F8s5B~*Gh7Dp`8DK>8k)531mEfWX%p6WVann17?GeEJ9lvllkX@(KnW%wdX zQ4P|R>?h>WsM~b+wnOy;rcLGv*5FHv8yj+SYXy!r#6-=EMjG_kwukW3{hq<#WNjpH zGj>0n3C@?g5efHCvFB@4mJsf=0j$4$BHiA1FXYC~E9us%@)jL>beEW0hG|Z=?#MsA z6dpO?@65@4Vf_t9`O-3a5veW%<+Y^uwsXVP&nZkBDSl@{q2$1e7P^tbJ!)Z{ zar*n3-2+Aa`XFsM5OP83?Ty73k>xK8n43(vmh(UydyEcr&QM>EFkUPuhna*Hnp$BR zgWnkX`z?RvYwz=4Y)342GurzOGab0ujOcc`=q6@x`OtDR8j}|Tcjp@xRm+Qe_aqhg zk0;m$niGYJ;+}(!#5^!ewFEH&yk2wtz)+5Q@S5_sCZc)C6m4Jf>&@384=5eU_WaGA zAVK||fOQHrKsU+A=Z@)Ld_~h|tY1vYmWI*uFHqcC2`=2DOzqu(sU`5RJBcaqQCxn8 zsUlxRj(?OEmxB6ECc%VHB>j5*dM4DColHNXg7q6EQCFf7NED2IlrxMCqZb`^EzeRk z5^5B_;FJS0b+bDsT9Vx2@6H67Z#(pAN7nSjhj&CUz1m8S$haabCdA_zde@2r3&``| z^(b;ErSOPNiyDt$`EOy7{`+!;fH^rn>=kNU$&_TXkw&fQ4p{*HbV_$rP+qp^y65y? zUWosC(+Vn729K_E|f&m$srE19^5#A7M&FJ`)Nmc zp@>&A#sjyR9torfX?kLM&^LzslM%{8b3Y{Rw<1_^k{OOXdNMGx9v>9#SxBy10xpbR zM%>Tu__+tq`R;GOi`|MXr=JA$y)C2UaI<<_0#SeK58e~)N9l+oPyHAskJg+`c6|Kf zd#Ipz^s_H1to)LnoSzWRONymTJ!YRue#q>9_L9$E9g+R0V*8r7{itQmMZMq~UwcM# zoYS7nq;Sh)$`eutjmP+@6c5cAsfddQx2od7jt~_7>4;$xS-k@gQ9)5%NLvO4^0T8+ua8zwQ*Je(Y!X*Vrd zy_K{0up@hNBZV>$H#>*{m1Tst?s5I~ilYx(^s`!Gph`=7HX^_2;g3GUoSqO)#Nmxh zs7EmqBLnS%&_V%KmZ(3WrT!{iakGPRB6O+k4vyx8qY1-%4*EhTtz zBY916T(W(0O1ANwe0PPL7WBXPCU!Gmb_4yL32toI-Law%xE|0dAPs_s@ zP+bhw2B|)bvhtDAsbP@lb*38L>DuPNWO&GClWEx%{1Lynuf{e z0vttqOO@PD!FG3T3bt(VrD5|ZNBIohjSo_S>Rg)M{wOEg1x{afTz$LZ;+Jyn|AuGu z=~|xiJR@7S_)$*%<^t0N^5uZ4I|%{@m`~Vz<5;L(n}OkL_dr4U$<<+Rz&Tk1qY@?~ zbl0J^hx$)ncVFs8L?v_*5QNxfU=7-*5U$M*vJ6$`QV`@>vh$UYp*;d2N4_)Sc;##n4jy~KeT)*? z7&EyiS?(}4$lrTG4-Sc>4$MXbeHfWo**0-DD+pC24xqInwuY@P$&WlCD(uE!Yb9fD zC&+Fnz(pulf;uUm#GwO+pvkD^Gl)thn@dl~&B3NQ`ACu)ao^zG>NrwktY(q2ADgRq|#`DDSl|Nn3+(39XuB|5NvIHa%3Kc<4iYC)Kj zrEbWy1W1*Id`>CEObwEbi#6$)Q4-`8gr6&~E4+WP?H21+lPFps&wjA#fK=-KcD?UK z)7eJ;d)PzvQwr5-p{eFGzC#)e)=w6d7MfL4eK*ie$iyArd!qE;^ z)@tdAQOQ1#EG2{2v_8X^X)!54iS2G~J=O$PBe4VB?`hG?p1ePV2XCYp859@m31vPo zE_!@z$+zmTPF*R$QHYA@5_+kDA`p?ET@Oj~HIv_CZ_^nvQR%AyX1HbF$TT(~&>CV; zxWSNZ(|gp?gebokt0#NSz4f{xO&{gw_#(Y#pQy5JJXkENh)h7ON?h(BBIpngd~DNx z@etad6GHhsJf~Vg&=O4MgXER$A7LvV1SMkBm^)50N0dC#6$*XUf%D&0$R-#%~@_UDS+OYI`%&7Quy zpMof%fe!v)y}X~6>OrV`dWh+DMB})(s|Pt-_70Bn#)LjZOq0XN0hj;*A3)YT`nDFa zCNT6#Gc^&bX?tO$zSvig`}d|~DiVu8UZmWN2&=BdMUB~MY^`W_nM^d18bAdIQIRRn zIO`Y{Im;s4eoYV>%kjNL3dqJK_eMpbTl)gk z#IYzFrn(_SMdvN09&lRLtGEmX^kC3k65?lK7rtu>!Zt(oN&+8C=nkKSy4B|?VY>`B zCAQX>ULDq=&lT3oIq%9;KNdoxXJ4y14xjx#9QDA2Nx{l{r>&5TCl29>X)iHdz-(G< zU11s}p~n4ynvBKJ=?kIVhYu~!lF5q~roevL?6g0^ zd3sJP#weF~oF`NKBxmyd3)Hs8y}Cr_8OAx{Vv0W+F-$U|QB=boVmM;TkgG1 zn@%6FeZcOVG%lGw1dr_=mh=UlHq5L3YI}ri=XhX^ok@0f2iLBm@L>qbZPsO3aRbqc^Yng=jQn7m! zz>);}Fw8Ty_bv5Zam>;~5~A0UqxT!uZ&qCWT;%KzVEW@7!+0v2K_BTSitBHRP3q#q zUheOrz?HIr%%1dec=Q2#Q=?W}IsCLH?rn?v0rCuYcfs!Qh;F7i`Q94U^z;vpBwOU8 z&rz90=eaa2c}Dkmf%1{!$1h>KlV&BeGAVRlVcs_ocRMI=ZJ)z(McCEY`*&qp+V#Y= zsoG_YiV^ebhPc_n(H!&_1bS^xIG*6g!napLVE3>TYu?%X@O9Jg*KlzKcTNda#xRp4 z^^hs@CFo5}`^GW-!iswvp!3Ku(QIBT$X8-^0T9wS-L#R#x$uem`EBz%`%F%r=13a% z{S+6HsB%z@R#N1IT+yCFd(UzFhla@u&lYnKxcVyM=8o!VM)fLk{Y#E))>Hi97(Ixq zPWvEm_pM9%cqFKHKJuHMm1HzL5V??bbQY~K|> z-StOjlrJsg7Xe>t+QKk?upzgOC(lkKa_7C8a9%QcuIXnng~du!;qzOef4&ridHcFd zR`jzG`AT#2qaf6ZN->P27_wbFq$`8GH&-cEZx)BcTMxIzqR?z4pUCv0A53W5BGPX&}H3$Ruu zM}TPtbczs&WsdF!Cg0s0=v(IF4aNu5Vn!U5_*|TiPX1_vFD-s#DPMJ%WqY zivP)9{9UXL{J%f@I;)#8=4H;RnXnmvxmfIuKF(5pR%AGFOwM*RF5@?^-)7yF^vBvHH5>?DZQ~+X^=rLT}JZi;5*#9eME26x}>IY$AKa?r|hr zE3#T0G<^Ul=#J#`8^7>k^FBm|S~Oz&{bTpAK)cB3!aLHU4LcY+#gEy!|}rBEn$J1GIY5hT+ko3aD9dnL%$a9k11-uGET$5e!f6cfq` z|4twccl%cuyw zA?p-jWBBaVF@DhC6}}Vk%JsJ+cBiS%1$8u)$0Y=`Kl6|U*kuH32tgBr1R(k%xfLaz zcGTdef#K9+Ru+?j(|i&6?U%1pW)20c+k$#m62^fBamGBtsoBWlU%g2x z(&V0oOvdDh@{EK^Xco#RXQc?Em-4xHM^^0k zTqLUnJ@T18gk{FeNMdQ85i>)3e}WzY#nY8gv_=`W4N1Qe#WpWl@2T-fP&;b~lM%5n zm^Nvd>g0N}cfW9s7{1z#2zily&nS5xMUL5{H9m+g#9C?EK=MVZLV{9#KnV9*bR&Di zi#|wzX)Y5laZK}RdZ7rj3eAZ$IzfEimD3!2MDmo7Jw&pdGzs}u!V2Ztlf$Q<2s&3T zLvnc2_)?y)Jr%26=mXL@j1}F{?KuD7^FNa3DwsVLLk>G)62T{jx&7p&pQZH|6hob% zX7NDdQiI~{Y<8}(In@Xc_55}*!~WR{6;K}UDCy=L9u%}WykGw z!;Qr)YM4ghf#(r68kI+esrp!^otJnuL;Dc^3E66(CIp1!&k${r9X2<%D_^Z*rPl zhS`|giK~(6Mg&li>-C7C$;d`&|EcwXt>G$h%lf^`*U>7nYjR?LJ6VWYD4Eg7M&(C= z^8Sv{TedeNnp&EPVV%pHOBrLD$iw-H5EaMcn!y`Z<472J9!yqza&v-T=VBJ2BmZjr z2!Q_7%kQrv@uY{`;a`qKPnHR_d%LQrZDeID`dtpa=Jd{z5EZK*jPZq{o)p9?vUy!W z7V*w7%w#NJ+jwgb;1sKEMewp0>y;(jCVfsO(}rQJlD$A@a|IMP4m||?tdv8`M|O{-7?^+X1x|OSh?C@e zQNiY22ZbP=<|n|#Gs>#AY#Z$4l`Ft!y$>r(u9<6uW{QsSshUm z$DQLf7f&jNh3D`5@;~C*P57|6!yjBc;%YgeK7$YxVUw{P75vKN6aH!WHKK#vV^5rl zy{@V)`3me#<5nZ$Oprqcp!EDN|LSk@2RDy-_Fuh$FQ6KAY>zCy(!BBZIX-C4fA1dA z7>0$0(qjvcU-WpV4_PH3&R2i+?GFy`5g_)4=3kytXCgY&tri5}^@ho7E&cBtqXM*# z`h$LE7&JJ=@pr}5=K6os5(DHPRY~x=r$$63p9wlz-xuHRkSiw7J)>tW^@EaOw5Rq# zca(BaoD?tpQBHB$lUvR8HwtV6XMeDxeo(S~XegFq16w|AP$4k9KEEBUs{&nR3^UP_ ztlu!$UF6PHPNm6>nL{BE@qZ8t0M{H_h z{A#;qF&PnG2@(+jedkoTtjo=`$&FX9;KiifOxMZyynr*Mwq3ce=wk|EJXXf;OLJmtFKx5yFH^z;c#zH4Ju2E zbv7`}Apf+$){45$ghsZO^=TT&S2@Av=&v`-XEir%#aXrEfBoj~@CTdM_|Ex5*6WI} z%cMBcuzDBVI1tWy_6!7@d5nq-+Z^2(s+Up#bc;mkY!yd85(9|c1KDGTu>?SN_Z(*I zBsqGhK#99hd7(J^U|{uTMsqJR`&j6b+XtFp#WrdCfOqdI2u;g!0$-BcYTW4}cgn;pvFHQ?$nJ#Hzhp6)2)wUZ_P`#1hy{HO2#Puc$P43H*i@jT)xxcQ}k z4~nfX_?4q4{Kb|Q_~`nS>e+3xcCosHAA9b;aZS@_Y?dQ_ z_Vs7{%{$-a|J45tcv)aGk9QjTLYxd;9R^y(J2oq_5rl0ErWzUVI0qGY}={=W=kNAgdPO60`Sw4=59f|&>a8q z4zuY}Ba%Su)UcS=p?Zg2CXho0y!#g6 z3*pQEUDubp5s8ufd@DlJt!Da1=(t4l|5H8B0e z5G{;fISIQv)!0Ug5z_;k$n?h+pIez8L}*VW(5j!w$W8@B@Eu|ENFR8Fz9hLZB<`|< zY@?{3P0*9b<hWj=vvK4;y~r-cx>K{SJC< zIA2XMCeWXH2_LLA!7E&^QAI%6kes8y9XVoe`DdTJOMfxKZZvM14uL(&Ya*ctpfvHO zV0B$E+a`)=V}w4^i1=Lhuzf9A8}Gz2&@{J=;r`0E@-uuP`lDghOpio{yvV%RA^XYh?tulaa7>$&Sl;2Ik48^k0+oMb~g}mLo6+mk7e%M-k(V5 z;3Pk2BeL4bgf{W-RkMRx#V`@)EGAYarE1S7R_GxJYThR#UF$;tUVTr*&dNj9h!fOa z*HOKaNlJY`%E59`VRtf(IArA<3GH(HbWgz&L{kq!7x0A~O3Fj^B*TrZpqy18jAhag zds!#JM%M2td=-eTVVERZTP5hZ-=qU5$~43@5C=^*9>~72rm1t{bq@1^yc&q-Bi82y z>w6t9gp}s3k zmrvT8U}aLS0*ue)?5LCFw@C#gh*dklL))!kzWFY{i`&?Y6Tr)dc>q9)GWzhE?7C*L?dgvzx}%(I>kc&m zfZh6(Ri!9yJXtM>b~H-t|JRZk<&zFEYMFo(Yk5BO5NVGLFaNA$(wIh?j;O@RPNxaz z`axv4H;_Ngu{8%LNH>y3yuO!QGMk8>iaw#a10fHDk(>>~s=y={IzLJvW9gwW6qn}K z$*tDJLQ%ZCrtd8Fvysr$TSa@{qvkzfRp2g5bf@^Fv;5QJZvxQVcj!)@`Sy-{1o?}M zo82-0&+X4LG#LzvU;Xxnyg9z&{m~taihOVL5UnE3eMkAqVj39UYnhBXu9g!4owC43 z*C+gE&7Ws7Yv>Ax`($#MASn;|O5+RB$Nr-y-=fGIm%kQ?HeeS$uCYA-@fqd)9kY`S zuRcCO4T|;8^at%1UL_|#g>vfFdCv%_SzSmz%f1OQwWd9my5Q(X;8R1_r%CDF-8A1y zLb@9%c9o>lnl_T9%rjSMwr@{F``Sn9yBV&`v5o9EDss?&**Z`t7$zB^FjVI~(JF?C zm4Msc%M_)`aI;eYOx>fK0d>71a~``aZ^J$JI_)AySu669#T+}CK+~b?pAO*sayKI0 z!_`udnzlpbncS37B_f{8N+Z&?xTA{ITY@gx+GA@Ok-EjLS9kH^8u$Dq>KDI(A7|L~ z;q5ngCZ84{dzcALaoF2&n@@?5Nf^YuVHl5}M~ zNKvAlG!VrqBn^Zlq;@A_1MEhkOVNXDK)#R=A(JdDrKpfGsT$<)G%XaDhVG6>pENw4 zE~$)cpxIUtelW!s;+7Tjct|$h|FJ7W{$wQl<{(I{X~lk0O+5dTcfQX>KjFvAGycYd zAMjVF-{*H~pi4(+EyGn#d8NsA&_qEHN#d>j`;J+}u0$AT8=+%K^P$MsQW)t0mTx$Ud5eEB z#wKgReM2W7q#XRpL$ThYN1ojsOMAATNI`zpK#&4NlB}g!>F3G9)N>Hdwnv&`6)7(V z2|dgd?Xe-N75VorFsH}(*G3GLAh-F(V;fJg4oO(7MOda3zSMYRBx~A0wiAmAl`Qrc z22|6cjA3~Fj5yBFrNwMI)YUT40yL`p3R~d-#7H=r$bfUbxot3V(Tv61%4U1DAF~!R+{lpq=yT$BN1@-AH09EYttFtFWHOL`zS`F4Tnf~E2x7hw zfoezsb{U21L!$cL+dnAD2?&`SoOTzfZUW7*Cgh6IWuTwH`s*IuX|fxApk#$yP|`T@ z1g9vL;44KJWeu2C9bB_~E(Q>zbD<{Nzx39%%j1BzR2Typ>%=kDz;q{Xn9*vj$`iDP5d8yb`8K%~pysv1F#f2+7 z_S~Coc;+>k_57{ZzQeT}^GC}Eth$n|D(F@vx;7F}IEqw{Hf%4(WSb1z%7MOlD~O2p z%1E&5*kLXTCZ7koBXJe#j^aVgFGZQqxImCeALMY4k%LIo^pRl#{h24*h<$Rm_=2GO zFuf8{YH`^UGflfFgwEH5gEg~l1(?uYs5QEaXde^(PtGdS22hG&WHDA_foNn;P`$jl z_DExTO>tEU#q7o(C_!>gNh5<7!MX`iT;cXt0x>8HNlVT%p@{}Bc)L59dWfrPv2pfWY}7)P(vnb+cpURiiUhW zNN8;(51MWqYLJjPp=zi16e8Ky%k$BBcK0ea?>MSwmLk#4gs>bP zo^R7Dyn>&-`<#n*!qfN1m`12Z%^QKcr)w@=-XUKL9jVbdKUm!-Mn!hiNwX2)?EZ>P zU6TFw6k99$X2j%Dk#8dP*K-~gH&pq6^O~od1pwJmN4PR%PI32S#ZlStgUd&tBiXoT zyR6urPk8;USB&N>p8oCx-;MePi_lcsK8_t_STl>nq>5I#P_*qS$4<~iQ`H#i=JN+cFUh? z+5KB-M4ml+#^3(if17{&kN+`sUGvU6@9_8k{@>@9fBBc?jmF5|`8$7yzxVh49?RvD zU;DLRj&?Ap7o})bdWAn87)@K6=M!QU z`QQHKf5wY`&j07r_t=dB8t;@lBe#039jL zt+-=pc(%FA|Mk^hB6J3h9NI*DZzw)3P@_nA+~T(uT^r~Op_9o`wpN^cw_yE-rvI6m zW}MO0hNB-yfZOWrwCHU0$0D{Ku7FVMzqk}352mnRUVwCyQ)}xAk&6m zBDRHW7Y+%vSKrJ~0m{q7+wTJTHW0OD`b?~Kw{J|O(Y*0OZ5eCwwVE}@1$e}g)#EK)^UO&=9zjw%KM90w`iEbjlF${B=M(Re;NaYoSiHC7MK=CXG za^VQuL@lU1S>|OT=rledy={}Dbs#%y=+^~iW$0%~pAtnl`p=(y8$St5?``<#yrM&Q{CIrY)U?SHKuxI=`#3-TEfdZXYgMC|G4|pSZmkxt`qy+ z!!xXBO?%$&e9n7@s#Al@Rd#u{!_cNtkVO+EAR-jGBSk2D2m*r;MnMV|G7=IJLP!vk zr1{XKJKZ64=yWq08;pmtvCDRir|Qh_xaYmbXS#=cxbC&~DTa2rDIah>(yOZX?D1Xe zx$oz`uIvB*{Ru(ye$=gQ6{{y>>{@=O<%0mzo@~$y?doky9>FaO^7)O2&XppM*y!W? zG1T`Qc4o+yvX{6jnLj%iJ&E)~Slky0#^ABVu5Kt~n@hefQk_NyXC3_{qaSLTy;QJz zLwO!4uVwP7VkG2Q3R>;yrWxzQobt+(tsH|#bCG-OR`ipcs}B#EyxUT|cS)F3gxs+E zDKZ0Fuo46DZj3cxlkp~#7aK?5;Kx74~JJUtP=l(oeE z>)>&IgRc*2uP{$8z$>CQC~Hvb2DOH;lyR}z+aV4I^m`S$bvKQQuIJ$APPg6>jF!V% zlxK!%rLgNWg>jMW*)@7PMEe3aw8U{HU2CmyM+J82DNb+n{dVoKi;hqT-Kd{tl$U|y zpVRb}Oha8IUG(vzAkwO1MfT=^fB5`Ulyhm^9sP>@zKeTCvW!kGzJT?uDoPL$@Js)|KPfy>a2^pvTn4cZI#31XrHJtNHUwDb?os6f;3I9^R z!o{ULZ<(xFtV+UFLA>45KL~{NfOVU5eD{iVm$94=w)Cym8%nEKe6*8v_i*Fk+G28T zL}h`x&seoN*C%7Jk@d$Kn)#5QzJ8VJRGOBjv%B=8NWbUNYfYB&l_Ij{?OIVjlV+;V z75SB-ivy~sg841x9-k>LKU%W958d6ConI~(oChvGE{)Ui<3O;QW-n5mD2hu7r(EBb zu)};IkpjNdbQ6J(s3(bpn3^Sa9kACmZYsb8pNj;yzCXdVa&K(_81{StZAZlszK~+W zO$Wqpe}(L-L0>J1>xQ^m6WSI%C-j}M*~#Xqff6SHMw`_i(MW++ruZL+6IX! z6C6dH=dv-Fh|N5xNPZ=W?>Yq(iUIq^psF1VpLf_bl!FdkIl{oFf1~7mggl}fp^0Vd zjTSzlD~B#5@qF|BR1p}C8woC|_175tHZr;`>aUbTicG2^p^ySGt0UR0!_I0UCJi-q z?a9`GY$XRn<;4@U`Tp8P@`a>uZ-Oi3&?ueBSXde5t~<=E##}DtVHYC04`?4H2rb); zl_RPV=C^J->BtvJdSw*BiWxHYPBxFak%B#ht-L_}2f%TDkoyE6Q=hcaZjpjcNF#)> zeNFtpKnR5E8LI73K8Td%eP53;TT`DeEq+vNk*2y!7}SI?47rvpkU~p9VX3yJWgsDT zRRUy409nX{*0#y5&~3mpsS~e6<`cC7C&70cI+k{j&Epo)DTT%RUIQl^NjH|S5&be? z1f3lcGBRqBE`>}MfUN}&Y+5m7Zlo9?s+*~49v~0+)`<4ndeJ#4!FjqtMD>z%p3j7a z6@tdEEcP->n9Rtq>?q0(H-K1r%Dg9b8oMxLOZh$K%K?jZLDyNjHlu4S%IU4_M7w07 zP1B$_bPT68lcDI-Rh0cQpUIvS@|)L?Ak&krtfBO>=f1Dd*?g`9%Bm!Rg>049x(pn) zonm<&q_x@$#mfz3x)t(7(NW1~vO!3v#(?VO4UFl&2v(5Wsueg(+(^VgCK^s~z4p4n z&YLavSJkcTL0S=;mbemX9!d7MxyLsr0-468@UjpIbwlj>o8Yn!@cJP4im+U!K(-C4 zEU?9VCyeiAU2i1YaU;>XyoT%fO_$gjw3FbuO;bq_&C&qfV0q>BXS-MQ1C1Y;tw%+I z_XOh%GF9m-c?Ojie%p|gNxa-g5`ZXSp2H^sxKRP}Sx-Leu}ymBv=Ug@P2~AxS}3k1 zl|8>!=vK}g(TY-H)2wV41!`r)tPfx##s;(wTrP&RO(yGp7;)1;S@u*}PdVr)haHDQ z2|~VDRdk&|aqbST`DposQumBZ%fp=uKD=|vCnis@;~qbV)Lq7TJtFjm=rnC_iK)oQ zMjbo5lJV1f!?YLW&JuCE=Vo)6?rfx*VRP;qM06&5eZKJ9*Z`kk zD4~>srdWh+K;_2xZkL_B=SfjxS^*i@^xRNB%DJ}>TR$5yre~4?f3x>&h;O=eLd{FX zwyO-j%7|qlX9lf^eabg0t*i&hT)$_zZvVkdPb9=iUN9-M=jroPXaFTPesa-O&hN zX!?=arXXi)38hn;(RmkeLqol1lmDY33@pLu?F|jk?pT_=8@Yn^$pC$<$mg*8m5$SI z%jv#lP5$|c@*>jg$pLpS6wA3b&`6NsI`URd@&ccTaF2g0YGuCHA@(V+GE``ec!=l}M<@On0eR9O$OC|j$R($l%bKbhzqwg(QmXdanvE|^2 zkhWYE`6IvQXLwxi^2>kc6NF5p4dQiy)dLSBhb;sn?472pI`&3up1ik@Sr|V4>9?76 zCC&fiHa=G@@82-8y8}xDS zr9MzJM}aVQpkV(OGIS?hpKJxyiD!LmXm^n@bq>|1E?BM$^3RU8gskDC$ly}I0NO=% zK7UPpcg)FmW(*%kCXf1*5uljgx7ZpEe(8cx<+KL_nq8rp6tf_?F%hz*r+9QtcX!I- zUcvZri@k2Q+F{+?7#mgVBuFo%_;z=9#hajo&gCjiKKDY^S+tUSVHB$FBt^X_WGc8^ z5_^Z<+ZD5Ao^9`W)%MW$xX|%WPyQCO*^J3#^7SnBf3NF<*eBp-ulT`-|0k?2*klF8 z;ee1^ISgzx@|h(LOZ0qAT&z&TffQ@mrf~82ok}{$mmOx2Oq`jaxmA(P9oZM(#eL{L zvsWty=MKB}(n#n7+2xvkuVVgiu)W76Jy|+hsuvA;v!Ag#HWb%^td_zPB@dH!s#&}! zhlJu<9&Rc?b>>rwv7*`2tnNzDZ#r3%z7SGgECR)DgL`+x^sCYg@j2ADf=u+zgb?Q{ z$=Xpac^J|<2^sXG_i2weDB9PSWSOV=>QrP+xinKKL`$w4P4!&kN-&?C(Y2QTsz7&= z4H7dk#=Z~yoQwbg002ouK~(V4DYLp{@zou+sqlFK4Z7Au6S0R4HuGfGvv@pV@Z^R@ zxMBS_hY>gSm}yVwH8H{ue)P)}+VKzm<)gb(SDiRcn2POSTF}MhrCT#DmkZH2(R-hHV+cwfRB&;|n2$KP!%;a;= z1)dNpkz*KvxPiv5Jmou=^tX3d z-!2$Ft})A&*++M9g~FtK5Zg$Glv(vsgjmh;K}9#xtZyrUTwDaYk-%yC)L_^Yr!9Vy1 zIXXJxQ=j@2f9r4kt?kF(e*0~nKYz{-{@@R8|J!sr<-5M?yZHH^|M`FG_iWpi`F#F0 ze?Sa4(I%2bS-^NmoQ@MtHHe|6cj5!Et}U)NXcZw7|I2%` z9iCrLM7~tAHJyvUMZy_Y|3-;?&xiyrWKvxEQYL0PZT=`l$c1|3O0~uG zZ6-ItD*B@_t}-|G9Bj>|F}H*=!;g~&vv=FWLCmDM&6Yjc%3uh@jP#mo|>L&0Bm4%K#YSj#h+ zdbCmqZt$gBMBygj?R|kya)5K_#tACXC^*^&tte)GYck)29uh^OQC`c`%p~H8AaO;r z>jvT-+vEgvL(vRxawcpO#mm&P4bSwsqOUZrl6#SuLdlfuGn>PSU1{{%;CfjT`7&-v zR5EIje_O~B(sm#SZI{-ytK{$7$!khi4mkv`@m}Lb9yj(vj>&?&Y<*(*r-S+GdO$zV z(T$L{Hq&0^6fSJK%+di2!&Jz5MVL5|SmjREYE&W>8wzE|RZ@U7hfxSVrBq9?*H9b2 zcy-Jdu5S@D!S&V$ntqasrp;t>Eg41KSZ$Gi zPI)`c)(W2~Nl(vYx?^kDnA-h7%b~K8X{+udZk!WJxhKSoDj}(xy(DUd?%wBRw9>hc znHAqi-^-pVfWqor-*rX9^&7biZ~# zREZ>{GNESax)&)*?`86wX_-dnQh3BXlYFN1KA6^H>aT5fDkmU|RTUumMcxd#VoJ596ebU(qrHjR^p!Un<;3^aRMLQ88yKP$Mt9Hs_@qML}~ zW7Fi&t=^tfwqc82rVPGJ>)@bI0Kq^$ztb4DfvcmUV}G#b?r?@7F!KY94iZ+Z<#0WF z8Dix*nUBS1(PfbE|IsUa&~(9KOdu8>Ut5}Gz8N~nzcI?0#YIgY3@&JTXK3q;y3OeQ z=7o&J%Atpj=c@_Nn=!}PoJ@J1HB;GB20_T0I^u`Pu%C%fqqvslvoD~&EpjzC1UHIQ z)0%!7X{QR6_C2D!N8O&M-GyeV)1>=ms=aCGkfgc3xXBaA>WHa@re_+pO|jpi*1HtO zihu`vp%aKnio&SnzBFBuc<+>Qf2M34<)x{v`#>02{2;>*<|fN93)y-r{fkjlaQ<{K${+=lJGalBtmgil>(9B(m(R92WL^qLrY$P4&EaxZ99xgn-i;Q~`s$XI^^T$nd+r?Th@L z-7oNe{^kEn2sy8H45kgAI6C38UwlaQu4U(F!N(4t^S{{r3jg^0qx3&@!1|8ns_eX8cxryXYGfbnY?>n#oI?do{%_sJsa(Xd=3rlvE!CA&z?+kGh z&%qCzvpO4-JN$1}RJFgqcD=z_vJ-A89>Tb!^Yi7IoXG@KW0n?M0;zk>;RyD*(33P`;p8w7Rc3?u`E^d??A-+UIuWFW0bXg>Fk*K>4@@5Z*z{cgQK6$geZ3$iP=Ub zCZw6Vw}hw&m1lUc=HtiD_{^7H!k%SJU$|m#ux8cg)V*a@7gUEU%&owBT|iX4cK11@ z=~?y#&*l^6rz6b5VAhK3M}ifN_Z{8sp7>HvzsRxImTpI~6n0;ism8@8M3$y{g`0R( z=~;G#PznJzg#K>FhPB;>LdZ5FDegw^rN&UD@LnZpjvPXo0|`sL_3JJ5VaDtwO}nG; zxurgmLh|slD?(NCzjB@QK1Gh|dcxH;vFnL_M=U;ADdz`zrZ9$Zc`e|Z zT&SCbKz#g6#0;;zC`H;;DqOTiO-m>wK^+C5%%wPaAI>*>c8yVresZ||QTBX+y;$<- z_aC!*;2FKE7@S2$pMOr64p}`M%U)h)GAU0v6uwa83lhjiCZokXV$OuPw?25E?5~pI zSpt>;B~y&qCpxn8jNQ*GbT4@P*{hMofk?2-N;7&d`9>}^K9^!&w+ht@NWxX(w>*69 zod4zBFY>qD_upW2HB?#0?ZKQ^s#88Yzt7X<6srTf(-r6UH80;g}bQ z7rb@4kA9Lddgi%)*-#%zXroq<|M$Q8G=sgG-}B<@{9O5vvx6zd2I_TAmi%-_FJExJ zKjLayV%CylWLh~JZo;NRCbY7}Lr^|v_%xASdqq}@CBWyhxBFZgRmw-nHZpP_D6h$u zhJ#;Qqx-<}L4_M?1}7c;*mC`H$>d#4v8<)xnQ8Kinvh$XqhedU4xTrZmn+E~sd8qY zJe0lX^G{JmV>S)DB+J5gnCBPbAKTj@o?qclPBE`Ml(q16T;K3QB!s}HKmBQb{KtPB zfKPquQ+)pOpXYD>&A-VH|L_n0&-$J}`lCO}kNn7wZ2vx=&$)m9J}S4eDa1$&fvopr zS`c^)2dK=-L89wXd7g+Dfb&$(TA_^e0p)_2{7UIw5ZK)K?AoD1q&_Z_ z#yP{FPuz5;DooY-E<+VozjdS3yLE&k?rNc(W z>z7A-;p`TR6gfYVhr3;>MEOyIzYA(>BvYj)21Ryl=;{&w_~PTJ zRwgBzD;hw)K|nZ>Ok&D0sDQG`|{bEs^-U7^XY4R$48zv(Iv z<^9cP5%InRDLQvG%0;r(hJYrt5YtMojIBLxU@&cD_$(w1XQZ1*m{3j-2~5jY-yd>A zHl1vxK^xs~994v>Ae1sy(S0DMLRZLc9(^H&Ma&E;1aR-WpEH9W7wBvsJzoppVbfmv zfUe()eFFa7dj)-u8dj*@lV3Z~3cWKGBxg#3jaCx}#dbQSVy&ushdrNLGPxU^N_V|J$P(&XJR*cNy=WEB-`OX- zGE@siHx>VtUFPZgBrjQ~FgqRh53hK3H6eIS=M5kapSsR5b3?lugyM1{2iVn}Bx`UA zm&=qzcM{e$$Q-MnF$=@W4ET~h#-3*sSBh1WQ&@)!nx@NW=LO0}lnvY4_lxh`5imvW za7~8lgdV2-W>SjmD~-l2OUNVcu*06^=vIh!(v`lM;JC(!oHx<8Y%NLkzQ|L6T$)mK zV3OHg_ffjGUZhXjr7ma+4MRb*pWzEdwubUb@}Wd}skTkEs5cXph#MOEkwNtp$_4V7 z!{?fIHxn7fhR~+LS2?lTO(A*NdhP0iCD- zVOnjyIn_zTbOv7{leqoyHh;mi0kdf6_ba-Ir9P0KF*uJ2jKH=z>IOnm%+_%mptEo`)jv&iNjfb;ZTF;tS7i(_NKY-xw;g?lazXk;8Jy8xI|L#p0^Mr0leQozZ5V z()7frB-3o-WlFis2sWV8*`RMM{pkSRD&ldAO8!;=*IH4J1h}XxLR6G@R>Y|I+wXi2 z%cejNd)y*pc_9b#kOvlBiHn-D>{;yu7IzKpe#DPG|Kiyzw9b%SSZZJKOQQ#zolLQ( z8QRHv*N-K1vFYH5vR@U~DI~c_N{Uq!tHG@)rg2+3n@+xx&81q8>K$%>L?}&~-Upd*_yFq` zcQBHlvGJa+){t3Lknl@gRWd>SI(;JF@IvJF?c03xqaXd6|MroOe1yOIcmFN`w{G16 z;N;|l+qZ9TKj-A+gin6*lmFK5Sri3D@oyRN6#0#m0tBz;J^t1{eq;&75K}ws=^V)9 zbJ`A^BYX3in9quwFsbPF24X-nkj?t-SSngg9ObCqQ=E3_*$P6Wf9alV8in9=eO8Ku zs|jK(b7DerrQmm~(?EIFpnO5!o2`a(__QNhO*hu^hBpCMY2vMh*~(DcbhHN=yHt!{&sg8K{NYdj zBmRf8Z{f4g#^9u&+8?gbDzaWp$rhUYI&}iak+b)9IkP(qpJ|Hg$mpp{5)s4I?`!!# ze#_7BUwrkuIe#)`^wo^KfcoVQQ_AAFJ)Uz|Ecr~Ev$`5kd?86;dg&Hyq$NV`=y6TP z;7p2wVy3xz%~0P-U3`U@WdrnAr4&m*Hx;dC)Z)!?l`Qm_MX&*F1KCoM%^{@Xp}dg9 zcUNf!C!*VY|D__BE>N8Zs&nYZhHj{64nQ(WteD5vq{Cof@N|W0d;AMKWGhegtV{Ae zL%lDdRwf<9Hit&-A|W?~y)i2JMmG1P+Zz%JgR2a7<GJI+3l(NCny?<&ReTUz|w zQl1!&_vZX(cYclkE`E|(U9xU-8Xf4ppS7Z?K-J&<~OFIuex>ADjK(BsogH zh+9chh$?wRWIb=X*&9h+eVCdT^GNl)r#M{^>=ZXpv^zH#XfX&!*2gBHz&BK-73^0m z?q%4uChIp+OC@G!qp+DJ76zXyHXyHPHRP7&xWcYI`I9SwSacmaL`hrk-4^_!tVNBg zo3)fhIQb10_&4zSAkP&2@swyw?D>*7n+y3W12q~+5w=`ISrDef?boQ@W1PraLT+ex zGs$^a^n`>}Hp2p3z^)xJ({y{Kzy~tL^sO4@1CM{#h;9navAot%DN$rx%xPblvO3n( zw*t0SjNg+?k>awWImqcoBI^UF&g8l0^VCVtB-GgF(xiw6DMX4$eH@s+4duJnjHdg5 zq4?ICZeZyzCI1Ws>~@SNHC-n%sTcOH`0{(Vn7&@n?G=1+c)ZQd*u6KS_lEVm6V3)D z*V6&&jUhYF<>S79`i^H_m;6%m0(S@3eC)MHeBt$b*wY;Ia4Bkxg{2!P*-!M9G3B2{_J2)L zUU{nbR)k8jpZcMg|EqUpYPWu20ujn9M?W;Q(}L+64!uk|J}p3$t<0)(&^z2X!xx(T zy2mskUsj#O0kj|9r`a`R*JE^uxbt(AG4k;uM^EJ0s=|Mu9Fgz)zVGAp*I)md|Mr!y ze1#WYcmaTi4 zYluY-)(|F@nDN?vOa4%!w2^fEmP}$AnXYUq%52t%j&|LO>}pgHjX`qfME~6e1|6ay%rtJOSsx0aBx)Ev0`*RrbmFjhAcpqo z+ktkXXs3#75y?a9f@oOYm4{S6j@YFlzBT0eLnXwBs0ewaIglxeO6lRzND6bbk-z?x z--(Zk@}Q=zGh(NC=e;yWo_e_5a(sBjyeaTa&aJUbOJ?sJ6Eel>$dIoh)oIV=ql*7- z?^^}+>qTqbO(QSfKieYlF6&Ap7ONbbqCOVHu-a?sSF!*?8Nf!yWzRZDA+@}(xcnp( z#|!R^S3LXbA$Fm$>$GXU&#bq;9f<>veI$iQb0k?S<-3;VK;tKx>S-ijMV|d`k4hVY zX(iyuu0_M&k5ZZ~;GM!}H_N7*%H~>J%HNv<@sQZmq0l}udreGQgVSCxj;$ADEKr>~ z2A4NEGwrS%$g*X?mj-`(M1IwxeAvoz2g9tuYr1 znI0qpPJG{lXd7%=nC;{!S}g_0Snh@Lw3dd#G#A}%=drUIdWV_hfZqBGKp61ZN_4mz zP{HOhO{BaIxMzlbX_>wiB-C>0ST{NCuA#h)2^DR(lR?wK=xt5D5NZla)V3efb*5{-2Gh>CosSl!kv?`qmTF_JG{5c8S3%m{-(`&v!iW&HQgK7mq^ zaoN&&L+1?VbJ<_}X~Zuwt{RJ-Cav|UXKd%I@(In3 zWHSsdJl)jN?C;PI)wV&UT%gJ{st;%vXm<^6u&J(6_D$;hDXqTXr&&=lRCm-}Nj%b&qzcnY`0rXD#`&xr82CjlE8AjO71o z_lj+Zo{ADc=L>@hn*A?1i52jY6%{hY^5F>eV1(`>gY&?(kpd-Or7m^4RFuhRG_t;< z2DF5p+BHIbQ>h>+B4iO7$pl*5S2R0^m{ziGW?$Y(%{uWO z^)dLjo})-=vAdKxHZ zo~JKaqJb((1G+j%m|+dmuYmH3>QuhZ>fvacDN-zi)aIrGLZ+$rO;TnA^0}k9N<_z< zA#NzSRx%Mu4U{T}e1~RFWW%Nv5}yWX-j|x{y#<5kLg$Qw0<*It9?TfQi65K%>q}LK z--1HqPyWe2$@hNm_wwUE{^R_iKlF$A#b5kIe&Q#7f}i+_p8!B9#h>^Se}cdG7ylx! zzWOQ;A3o&I|M@@9ojZ5<1ApKT{HA_Z%rvnVgHC*37*ljk4tj$URSgKK8zD}gAb(Q$ z3bkN6Hxd^@lmiFIc(rw?<(gO)_|hiRppgx$cGv?e+U!1V(TyQ>BJwt%S_!O*3i?WK zi5QzhrF1M5ZX}%opGWq-6e%wp-9);k{aAR^#kHdyXSfQAnLPAFt1U^%u8R1Pr+g-a zi{(L%%Eb*83W&MKoLP!1MK_g-+z;fya{Xk2nf4s-&p7iV`aZ{8iAy%#YB=7X@xQzO z3;go(MLvIdo1B}_EE>nL!t`KQj%=Ru{Ax^WoaG&&;~=%<1G7q7TIo-@fBp1UKmr6QlDw=5a?qDJIb zg-7{J%=}qIttCLnmzq#YS1DTss{J)>lM`&o24ko^H=U(~Hr>#2l#knl+F+r$l#zFR ze1lEay%^2vJ;7pD&l5^>GpV|L$^NVO{71)N4K7s z4)YC&skVNeP4OecpG z-G@ZolM#7T!gV)oYJ3wOARi> zOs+PGd&w}pkt2pO&`q@jlD2FE4PB>*MT9{R`Jz?Z{0l$!U;{3Ts7{eBG~F<=zqe%F z<~+HavOigo8o{}!#eHFqsZaTlILzpTp2OiEAZ)ahr^BcE}J5hpLI|Z4?n256h ze_l|Y8vH;GTwCcxCMMK=-=Vx5CP*)7KT2{oEgfb(PZF7wKO)pBAtMrR7Gc!#*XnsM zO@~R2=_2{OXL+~SQWZ@TG3y@Px~)_SK>3@g1PS}9Tp*iugwoJgmb_2Tvd$B7L${kr zgJSK`%QbPnfW2{QhO)J;A)lS#^CBrpu;VP{Mznf5prkB5PNEC%Q4J3ZMdf)_P~X;Kp--Ci35xi>O_DF?S8ny_C~~a(HK!JtTb-l@u7#$c=PlDqeqeY4ibEN zQIO50Awq-?RnOr79#=bj;q*mxE6?k8X*lo4TwIPAzo(de3lzf+-j+#~-*wO{;;g_Q zwv0zLdjn~JKFNa^+Jhp?Jh#RRX8RS5&M~!6^0Fhz4RT$MX=SRKFB0+38Ihd6Tw^mY z;0q(qa^*qwpjSo)5DDlJjl5>D)qHgKgtKbIJ8HU>aH2QB9+5g_OX)<|6?8j7z0zwf zA*MSGF=*@?mV6c&TzFh5^80-5$>t7U8e%TW2wMwvudf8OQ=NHiEs{Vtv@}zhs00i7 zQYN=bj{hL;iw9QMY< zJVRFlV%MYER*I0YkvxB`qU7IoeZvcp@A!`I;P3stzsHaM=#TPaKlWoheE5*R`d9xd zf8>w+k?rUFnLqPqSglt4(Lee}xxT*U`@jGD`G^1TA5xa(Z|Z01b&p=v#P)sTAFX99 zq_rS@7faOXIqL2$-0>8f#z*dWigE$-q(!Y8@)Nd5v+~_*h!J-<2CFe$PaI@&c+G`^ z)x98zq9Uh~F>JS!(H$k-umYc3vmx-!j>NkSzBSNlnp+MP6y@Vgax`9Bay(t|iM=QM{PTyL zKbvA^MzqttB6UDfc`W6UcL zsP7HwCKl}sgGUR&sE+bPZ0g8P#TV7@RgwTa9TAnHJe80`V#J)zBs<{F0kJC3N}+lu z8^?S_UbnP66(8jFLGBX(X10V|hZ08k&NJAVppN$?w5@k=-O5H==0e*`Sq)Juk$}2@ zYSzR&BUWM_HLK*$(F(UWOd9ablqx6KX`*F;tv%Vi$Crj~YU!qiU=4$Fzoi~+u4sj} zS6)h?a{Wr4?i;qoMpr4isg;SSf$F3u6q?J|BnU5CD;6(6cjVYPz9!d!>#y#i0yM{- zs0`U$it2t8iMu@nMfpxaG$Ps95ao97%*d^$`GmWKJiI;6cN_|KEi9b-BH zVK8yryM4*yH;x#;safBNxa19!JfMJzn(o*z&Rae@e#U18FXBfU^Keac26a^swG=_B z)#%O;_d2wV_)ep3;CeM6EHko|rnfheOXW1(>l2iPSbptmYg(|sBvX|^B)xw5W}IQyf*Eah<-uG%kMxyd`GV;E`&Q8prLjYlaKoK91KK4rS<>(i&O#!j zNkLj(i2>ctTH^hJegxGs3A&uWJjC>o{92|R%7tw+BwKjwN(vP>E~sx6vPX3hdtF1< zGym2jqETc^!Fy*ugXgE86T3;eSa z)X@|!f746wfA;l3?iDdL8_dN5b$X88-60MN$|pS1D6W8b+p-sj2Qf=5h(WWA*XdBB}Z61=+MB3cc?%YU{(jyUlCWraFku}gB3lZn_cW+@MtnMoGZpUQ2=BhKeodBO)!O4W5_^*E7 zmQ0tuv_##Dbf24GYsKIBG|v5_W$Hp>KFMhzWhD(6U)`hnz)oHsM@Jf8iLcf zwS`VoorwJW`V)?Fzvg@HKH}~99;d&0OngxDsr!%lm0x?A!Q+gdYCnc@im`*`{m4hZ z^KITZJD@(VP~MU)6qC24=xg>AKK-uED#!Jjfek=l`HG`EH<&(6)-S{(;s!aBH^n2i zAt=sXN|JsLE)_XG1#AnxU7Fz_z?#K_r zl4SKC`k^1G7JX==F|~9Kg%A?9I?~w5p-Ah% zGU0!t25SScH>g$-N`=({t>V}G2?n$cR9Pp_zyO)@WXdt`3i{5XHWa>2Lr{VzR>_23 z2zD>#ke9+Pr_-3VmY|}DnBjv=tboK6kCIo_$oF$Y=_artEv7I=<&)ODPv?6R3070g zf}nv@;cps`>GihD6}7@HTB1_4yF;0%^(p^h6JDm2+?z^m@4?u0=+2?LkRD>vDc^j) z{QhDLL(BM|pi(zBpqh9iFY1#V(aHCU8`BwVL;aNdE!hhGC$A4`p8%lgpcrn=w`7($ z$WZIl#85h6PmR0>8?-TOrzoWNNBMAr<6X8yt;L|~MII-6h)6tvn{?aOr*3FWohtDR zfIM(E^1RIz4MZgH)NRgFO7;MsDO{nq2x_%ir|EMxIVIT0u#kV_a(&YkjW*Jc)i$^= zI+YTo)6dO%E?~V^fnt zMiUOzMpQ^7nzWT});!^6{VOM1FKODbkzfT2F;R+icXN2!zK?0zrF;3gp-9h;R?wN- zbsFX4+C>Shi-1;yToFq#m}@W3pQx3DkcD{j`)#sA*nAEN`RjxjsT4|Uf=)}!v~0WJsC2(~im0V9(Fy3HG?2-2U#+c#{^lYy z>Ak_0Jz3`2uU1@`F?J0uDx!&utCrk4&hxSS?4`(xLk6l>gw_y83E8b623gC_YqXNR zX!}~)$l-X!s>@l{1*4*+G!B*atUg-$U z8gKDIe8a{B##t-BR|0h?snP(j%1emr=5=|0|0BIOF3Cqxfe;iiD$sE|$xx{bWUQVs6n{hO!&=z}M$J{oqd@-@q$8J0b2IZ2zuyro`cZ*mi>5 zs~aKL?C$|!uNz`+iA9FJSb^U;sL$H{U`^V0|9Z{{ri$NTUdiu{Eo{_T-uW|RtD^?dy9Grp1^vZ#i< z{E?@;G(P7i-}o@THJCi$=NZ}D62DsU_FE5#$31@B<4-E0jg-L2iUpc|Ni;!OMpOIR2R=Jz#zkh~+Q0Nlv9+%OV>!Si$|%wX_bu!ufWXdf7ydwi)_zdON< z7407Eenm{CXWy|)$RJf?v0G6-*!mM1N-mF zL#!Ve)^{SS@2K&Oflf1gBPUp}pT1(XEV1vD^g9tXbX-22qIyks2Owfr@;mpV$mm^- zT`A_TMEWDo?mf{+KE0X}OV9ijg*t2*6g}PBW1@zO?{?r6W~q7f)*+9c?t#-_BJ=rx zu*jIar&-+(RQFai&v&SvE8_EvP{8VL;``?wOvL9fI$kmvG@O0*SVG2j0-+43fkR&u z6j#tqp&v*AW|BNaFsCuG{S_A zU~8GGxKh!LQvOE*fP@JBP@_ATye9=>dn`?%@**{l0+g2?TYK{JHTAs_^ZS;35h<=C z&7Q>!4Wm_uy{;LbFA0+YZj|Gv1C);p&N?CJ&6^t(ZA!XrCA^3rJO@w&4mI4#Ki*o4(=SwUJ961&;IAU?4e~w z`D8%}xShex;m%4rx^fvNg2;|bsx7W;V6|PMs(r@xzDdGi$>y*K1h1O^e;82;El`C(~F)Cq0wp}*6Uk2|Wo zXTB~eo>}@yL?1QOHm9E(_CBkzb;(zcK14SKf4>7~_=QI=5_P0G3hcjn!K%s8?@Smz zR(zp(1veCF>)=czV3!}0g4M1en``3hBl=rC*`yQVUt_4A8te*e6Y!Z7gSM85nJaFP z?#jzEAfE{#tJ&4GN-=sW(Gc~XWQ>?TGJ3bhUa#3}hJ;Mh-rw1VZ*MNU>`=XD@!=ha zFgO(-YIfD&M>+kp#5}(uu9KlXL`)_bIblzV$fzYdN5zQV9p5xTcE*^2bk1UE;qBje z-Tk&ML{wFwtR-$z(N*dyZ^BlL5hnVuB5J)grEd+VnGthoA26%_W`jn$OEH&3)o9pG zP?V3DC>{>^Z!&5RMx_y#WVYOAfaixQPAc$-8!H4O)o{ePk2z1s8p)g%w`qEpyznH;HlHNwZZ6sQgIu$ z7D^|G@K!?}u!YCf2Hj~`7_v?XG0{NVW(jF24{1RS2j~_3=|E_rWgtdH=d2u-tdb(c zE7X-pT-zNfIDngA*^mxnOTAsIn~tC_Zn~7+G)nla*Vsk?B2h~RSf~AW(_!uh3ZDs9 zJDP;WOjFx@DFI^5p2d|ge~@F_NVX2!sktj`2=;D`NFhd?DJfnZE4yck*P=2DitR=p|le6*?aUt@^P@qkm{1ZQYq-Z zc?*%4XEHG@3iNm^fDfB|AwEi6fKuX3O%o&4bPxi@Y|b4T0^$MlVSCL zaFv#4C7U(CcB;xoxzPej?)z*hU)vl6{H{Y6ej8F6b;MNxqcl;)ZE)u#Zy04QkEXkX zUUT_u%II*#{&3A3=Ldq*op{g@oq3U9=2Gpe2zRS%3hnsP;1scyRM zz7eYuor$!NJlpz1Hi4!}YiVQz3 zR|DM91ikFg>ju@Z)qVS6!TMGvfpk|jZm*;p8-|b8=+@zPhucu1U=8)7DC9V_oZ4duL7AIjLff6e8i9kdr?>#$Yyvk9?; zSVZkTWk7BAe52O+tLY`eXNJ5$j&7EvENB!QU(1aL${LC(oX`% zFI;l+-X7V~;y<#&tH|yDtHl?Fr$1nm`ApG`rK1FC)AmN-0K#2VW>HZk%HQ)#tdKQjoG=eCMWk&!kZKpmRh%=u1@t z*xiNsig0=^xd7J6z7ZnfdWLEWtPj$FDDs=4qIWV88C$YtpFX$2WEt+k5uvcySxqzs zH@!iEY8NrHp8UOYVrE%>{1Cei6i-EO9x_F~kd*9t|Ay4H$q}(lB+dmy5sk<|r7*rB z*=!ELt`w#3UX_Fi9#>5PS-DK6y!?@ffl z6TD))zvA|I!JE(SQJiba3nAAmUJS%6(9H^%cPBLb&*gB??j=(%;9h7r+*`2d zk0>t^5F7)A)g`&tL_Pp?f)RNHY|sZ};T04qZFC!vX!skS_z}SqDntrURP&EMeot zJEBu#1Lx_FCxl#6o=L+Ylo_gXsOtqZEh+}wM_Kmja`I_G zyPKtK5&7Nqc?wO8f`W7d8S`%r8_~k(y(AN|60kLT$4GUY{3DwV#3pPnWD19&da9YX z`wW&UNjf6^NXQM@T*k2N6q-FlT#KGC7!Zsbn5&GYHCPMYM*6D~ReFZgn&l*;IkYU! zCj8X;Rhrw9f=Vd|+mq)zPzII{A!-R(oYf`H8TuVhzaMF`KDREnKcDa_dA} zo{4AVtB;O(=X?*PB3bEhhY{Brd~L7`Em;F;>Ome*YfE`9k_b0cL@kG;Y$dwa)k{LF zIeD}T5!wS!tYrgw_C2{AOfJ}FylkKYo6MGWM|A7mI8t7Sgl>IjfIhf`8|p1xOF}KB z16p3mec^M_bB0_pV{99lz9q$AtO_Y86zQOt5s#;!6}l4>nu_8{0g-KF^InK<>sGYk z#t?_eBNd|rl4#lCR)5{1jKNwNSNlQ>)vEJ^=}@}Y z3C*dxo_yx0GDWr!xzC2E2hdFn%ex|Z(0wFd$o)HiC`7i=JBDm2V2ger`+-l|Zqp=u z^xDXTb0~X?awM9c+@AzRbmC<~LH0PO8D>xflv9`{CH5XDK~pP5v!B2Wmm>Et`z@=k zq#tS8-9Rj4TA>Gyzx~#Cart~oey!=Mj8J-PE=7#7p4eLnFgqWzoDEP%E$gWvTM02J zmL5HH462Ux;}LeH`Oc4jmA!n$KYH^cbi=^d4U@WEo(#1A`e6h?KGLl*=XVA zt@gQ)1C@A2C8(^36qnK%va1`Uw(CpIpBD^zDfl*pU?`9&LsaN%K_;uHz)OK6x^3|c zN}iOE@wSDblE75$(v-zW283xN?X3~I9bi^HZd%YyE!iTOoBIHLNY5R%6I#796%Bic zgnLIatA8`fU0sho>oKd6e3niPF%mN?O^Ww<9Mo`#QVJcrZ`!>= zD4Df%fb&fDQJ}xG3o&Bfd?uflloKQ*I^N59!x&WW2}OnH(K?x;giJ_J;k}&UBOyHMKHv*Oy)W59ivH#dUgy zX;>c_I5gr5%cVOX6A8+$6#2El8qk87^<^Y1a@06*@d-^>S^oK(ukz;M0j)R03&}kS z5!6A)$bwz9p`MG6TMdm|~89IvH znkVfpwa8>(%WEU4ai8UjFZ>C?@E1A-d2XbDxwU6>10=P=_vG7{0B6ve^6Iktzck?gOND;-(2F)&#`y!$cwN^ zq+U1Dx#)Y8Nz{Sd^2AN66@!p(| z?>*xu-}o>*EitXI2I^H#7$_!HgR+7R%pT_ubHXcY%0b6;B)J83ony``%CpGozG&4= z9taB|l3#W-M*=%2u0`M5?q~)Vf$=+{Rq<6W_nb;{ zFstx`9J`i4Je`8{!cHmVm8%Z379UhxtO!kmx_v}UX}rn>>1G<0Hj*fM@J@m`L)T-5 z6=6C;uWG0p)ZpI|82U|g#q}EBE+z4GJQBHE3TP6SxoB---=p$Onq#viv2Ee@5g1MO z{F*Qx(A}QU?q;}BQC>=?QPqMy6&Z{KBC2_ZYJ1$I6yti5QmNiaMo|#T77FatY>6k` zNU^>h89WysgYIQYuzant78+j9?19*av? zm-Z=F3cG@S$KaJbR6{QC3g;3&bRi9zy-%Jo%sWoLdQT)#rKcLU+?~#N^Nk6`h2r-g ze3sYp6Mp*fEA*A6IacIXn(|c9?c5LzqlpA1hWu_v4i^egPThDl3YmK7R;D@qt&ZWe zp>-4NQc+yp$h67}k*G=tS&~cGn515^f97+UfNl2B@>)oJzDQEJBGT+CLM9Vxn4TS5o*4PJ3+aS>7+v&Qe}z+MSGgPg7b&w$fztZVRq3y~m_P^)MZ!n;n{4HxxV- zA+BrshX<^WGX@t9yGjp@E=~CI9Gzz}DKv&y<|5C?jKDzvikvtoQ0w_Obs-X#EA+6E zGejyxnuA<`6R$fteQPbRM`op{v-ZYQ<~$5Cd}T3pFH+cHoxohUSArDS;Vw3deW0E<;)VZjAmDpts~`?nAcT+Zldv-tbg022!N@johX_E zIV*sycVEOU*1Nb;R3}mZyMf~R+k2D(eVGxaj`G1A|MryZX~w$?dB&7in??z=cRau2 z-W&W=|6$gPf+y!YTvh#Ogbn{Goah?WP1(EHm467%78Bd zckW(taydbNslp8+p^&{$dob@SL}ttd}5>w6XbK#{G}gDF6^jw$R){+lli zeRk6Y_oa+(ZL3(_6%6L^nS^L`vCqmL>MfBc2@;T;CoL&I__eI;$wq&r0fj!%GJj zOz$?-#~IH)dyC>)v6>b1^PGBS1x?z@LwkJ(iVF!}YYv5X?sMpNpuX*~E1e9!k|Xf+ z^&^?U^e}j0;7KJ#nt|1*Ky?zDIC~k6K6%3Vn}-x92D_HSgjEb_K4K2f20uyN2>oVOR2i3sw^|%{pP9O&hUIAe%evyb+^%BYuRe zpAxE^=6FC3=<^wBIDqL$if*M+2eTv2=Gfk0u1d)Oa2}H$s`~hlO)yy;RfK~HVY&Q3 z*X{>>>7xV8U@RR@?{BoLd4{qEH69X+j4&)xAs0}GyPy<)T%cNyKD`iv4p5$V;sdZZ zozXBHuzon%cGBZUE51ryqsh&78wyK5vgA$(T-hoRa>eRaj&>4Qwe6@|X*SsN4Bf%v zo+JnlF5I^0_&2qwf`T<2xKe-%Li7_b!^SV+DtT}%Ukrr8qZ{#^flM0xFwh(r3F&IZ z-?sB+i|z|f)iJS*GL5VP!D%jk^$^o2%36MJS0M=RTBrO2=)W|lc51*;+G+Q!UBH2=2aMvj8TIhDcihs~& zx#YuK1qsOQ1Ag#tKDM{99A6rB_AhtZ%l)q5-HA|LF5(fA^hzbl2QTM2_a z+`(5F-HzbZZR2SV2E^k^nn#V3329-e?+wX^8ChzW3S~=l`_19a`@2y*tdBF)p{2Z( z0J_1Yn49Z;Eqj@gDV*u#c^Wm;2bSv(E8HtJ`Ijn+%e1CTk^6|pK-N~Xrzx)G{uzC- z5V`n8q^~mi@h;<5)|XvbLN1<>d@ct0_45HgJAR4WIv7L!?wF-5_~qVWt!KKsqJDRe z(WA)4VMOPi>RC?IFnkV&T?$Ndu*NOMDIrh}|Bf0^z)EvGrr!bzY&)#7} z2{g5)zbd(IEjITIcWQR3nm_jNpYz`iKFu4y{xU@^lZSR!O!u=lk5Qdsc&S+53EX<^ zl#?$UF?_w`pFjNsZWI{ZpVPJ(?xZ4Hi|@6*>rj=W|LiV0!u%sWs?%g|R)l*U)ko%p zpFgDhilU!XiM%KNyKa*Fz@3tFNGJXgIa{*LCTsQun_N8?FU+b>K4p_Jd@QKmdSBxU z@wWy8tGfl|c~9|t#pr2{X^do^BO%~3`|#ABJ@IY8VP6@P>4w{;;Bt;G$k$XDuCFuPTO zzFJB?K=;0CtnURq=)H`dHyYUxWdmNPeZ?muXo%>!BW4;mmW@SsG7gVM;fATI41%(Z zM#*8NZ{e5W{f)^s zWI(4;PPF-Mx94{pzrlZfvID0^Mwots&J(Tt1}w07&unu;rBL3m!K}LSCJb@Yg)m*h zIvXiMLMEF^FgG$g6_P2eX{De>OkgS#Y8zUNkugaK*cc@@K7+0Y)~LRh@InxCr7?22 za0wf^Gr|o8IPlGU#iAfgD^xAnL&TW&0RsrsB9vA_%$jrPT$Z8veJ)y9)WwKL*9 zYvtY#R%FN_gJLGstd03RWU{^wcNbjQN*WuRLum@Yir3pi2A9$V+B6+}^5$)@$hIb(n_`M>NE50Jsy~Rd8wLF+fqGEnOPO44rnM%W zz4}U#7aEMh)ShCYSRd$Q)R)&v(9`lca$_L?m1H>AokP`)JQI}!VQ$w%+hZ1MA<`P1 z%=8)xn-JpiJlz!MTO|3{d93(tU5KbvP4(py;%be*o}nK;AdX66nF|kna1&;vVnl~1 z# zibcS#e98upMQWNranVrUs+c{@lKd(%dfZR|z7UjM$kL%UMs{A85xy&h#01H7w(zWs zp&ckrKP@ch@>ENB(Pd=#NHL!sOII#k+KJ2}S}~kv=b}*#S?Y>7FmppZ8)5^jZ-X03 zy0TpvqJhzeuUI!Z{=FgopksQlVE%4Jaiv(_^)PX~eE*auS5xd;W78GK8&=PC81-oMhLGh(8-$S>;E%y`8YU-)p79U5qE1RB49>9%m z(wC9%y!(hZh6k)BN7xmN-pFWo;`{XB3R+2ucB6pW>zIsd=5OtYPP^8rLle*|!+-Nn zzmMIo!sw~nPOU)GSFpY-3ePYBZ?^=r4tFB%(L)YeibXN$dx|iut-Jlu;S`!YYLKbR0s`Xgc zY^SIpGsIj>0>$~8_9ybzFUG-Ekcw+d4_BEmH zgRKxeTZokgPEc^45*h^bjw_VT8|}=)UFgdiZ>$^0Y8$UQ{@zc*X5ABcqp<` zb(s+k17+1?>&W0DF#G@9p}P%}?>%F-9B@7>P>sjV4TBTOO7H`?{t#UKrw~p9>R;_L zeICeGfo8{Gy2$8pOFywRyN1PmE#w?0rv3Q~CHX>3!mgACM{&I=B&4v*=Srri2?-D2 zD(QG{G6P0Wd+L45?4jlGS32@1SFAsMi;yX*lYU#=W*2Mp)e?7mSBl%k3bZCK#Iq2~ z95q`Kn}&G*7JiVSdyi@y=H!|<9nl|8u*(iQ2l>88KhG~kqBI&x<`Cd7zIpeG?)DB< z6Cle(YIS}oIb^qvh?zxS$zB@!UTBc{?_=MTILAgSBV)cA8wp$n2AcG<%xsS5jc+Tb}aDGkhL+`uzpX zgO1T7OWulyM5jW+{Ia2a;|O&G%lmNf>yf^O#cLilv*dFrLfinFPt|A>sD5Sy3KsXR z_${jqtVQlg5X`*_P#=mE-9H)Nh7AX!71s}H`gzXa-HiGLxN~pDyY~;dRvGq65ocBk zf+Sy(<5y&VXUQaQDQ-E=))9YTbotH}CT@onGzRh}%ToLo%t ziwx$Lc|KsdD*4}k`Tu}f7zPnsDNVuQE7v^Sz2pnO@Dc=(HrbWtmp}g!Y7jX8lw#-M zB|0jyf3`<`9QncD^I3lV;to$wb{Gshj0wy?)}vR3(Jxl1sTnE$MZr7&;#JfH<}Ye# zeDo2!jPyeZo;HmluSGr|wc`52(wLdP-Lkr!(;RF_sZziw7b(w^+1x=pQPeNn?Kz@6 zi>V0$i@TP~*LJB+g2=*`^08v>$*+6##T<8MkM^*nJZ(^IFG0u(bnDSgN4&fuzHo#AiD9uel zBV92ibOw;=OKQ$*AEjHG9w1xvW9q26QWm)GNS(PG9IVf^7)~>pm_!?Kqa>fo<;KiY z2eBK8q$*laLC|$ks~corM(UEL@1Lctf>yx*P%=%4Mm7oWb?Q!LTr#F;<$;R z%5hSUSvG~d$4R?t3x!jg)L4;~Y`T@9*R1M%+qJc;4e~c)dWEew0cVkZpts%WO}LkG zVCvN2Hj2a@z;qjVmHaVXpq*&Qq_d%X>V|kJU^bmoox(58+MzSOrEYBQ9|_OeV0@Cq zYGV?!H^^Aki6&WDd(+`83Mk8Mc7~YMv~>J}glfgFQ_K0=^->`Sdb4-Z?X^~duQo{U z^f|OnUK^t^bx-WnwqqGGxz}tPZcL}GR091(JZ2k2D-r2P7kSzr)Ha1(yNHi!3pLmj zqwf!-3z&&a5SE*5)1d2jUKB#Bnk3I?T2OJW42w_d7m)@%D(!FIZg z_Y!!l(}X0?WPeTgZ$MD%36E^nPC^ll-md3ZWCFKHooVunkXu3~reeCV-Cwd=o_T&; zpw|l3I&7WtBleOipbnT$aL%Sh)@WoqokJ;HC2J~MK^@;Wq0bQvzGvG6L5Zz+6BrmW znZj(s_MDObzR4p2xwpHqG&o}xS*%JrXSN}`QOnPHx|)KD_(AIAM{v_bwTudFJz3`Q zK~uYo2cs);?Rb8$OE&1qbRZjb^j@LX2Hl91J>+oJRxFzW-|6jyFgQ&Jiu}x=eQK&G z`F$RYm)xmld?CHXaU0&Kh*<;^FgnsYjZM?d<9yC2-$&_4TW_ABfl#Pz&~>o#TsK{$ znvSBX*Mb#P;HN@J9JxYpHDF}=;4r<2%TFT?`BOTXb+`*EML$uM*-DBNr6lmF=~0Un{?bE9XC*+FtEocrjZr7oMBEK*w z4^8D!t){qA)W-pJ)WR&oEX|D!LdjwuJ@H(AD}3xjk9q68hZJXucYpDoY~nF3#x^oI zl>^=EJLQmV-z()%XEo(J1;tg)>aP4=qxWPpsgJcBunO7qeQs&?)po-cT`i2B1%^)= z&c3yx+YvoywvLP+_uC@2JgqU;YkYA)y{lQiAd{KmN>R)M)uRP5J&Zyj*&x~JLZ)*G zr$_Iw3ri?0ZkQ1#IX)jzTr?D4eoEY%N{CsAsMZm$uH}$D8Owp9Y4P_Caie_ukcwsp zUH9lkGPorU{x|j2b|@vX6n}MvnM{a-Qnc{a5+_4c-4f0(#i%+ciSIsvuE)OgKumZb zM3IE^MQilQHO6S%=!kso7=C$%-yPEKmox_@DilIEOOztJXvv<>&@b%ak25B3)#!Ck zdo&;#MSC#74K!|`#JIe2_(IcHiq(-$(k)r%*}UWGLpjYpD(YV3ATTom87}-A# z#0Va;$l|5I@_{0Ip3$C8QB^=K4a+A5Y7kjHbm&@RRvJGF#9?6dqBI7SQ{-2M?78UM zm522$DY!%iDG$8jnP7xxuW7=_q3^V0xnoi_yfC@qh3b<3<`=$`Y%YGSkRzx3Nzbjr z87F5`+Dm!?6PmI4i(oCw~oS>tk-Hqs8 z4jqecl@QhCgB)8cvZYADiYu8i$0Um*LcM1wuLI?I&*FX|vbv>o6@8whpaYdc%)oRS z-A0Bdl2g@BYzjCG+iWZCBEcy7kwITYvXhyl8c#>)WddOA$w*7JQhcl45q3w!++xmV z=n(P8JKN=f#6gbRtz@d1X+iTUs7^b4rn&x> zz0@3t4BuLyua@%u7{fqAdsuP$Z6k_VpqK}Wi&i@0eT8iU)mvADaY?sVvh#*#^mx;t zlj5|UXqNZ1B&;XwwhA)kBSLv1MNvN%Qe<@!2w5eezz`u9znzqkaoes$l zdLHav@s(#s_{Q?PZheLCp1jEq?th8*+I@a~c9$P~`77+$HGlX2_kC2)6tkB_=lJMf z-bY0!ql7t!Do8kLrztNL?GE@?*VxRHXO3^%d&Jb#TS=uagb)@-H+brccXrXOqMRt) zC@^;=XR9Hc7v$ICJFRbfVjfw3q(iL?<*CF7Y{*%ghNRCFtJ`b?sk^CQ!Lx;&7t8Yj zzJRlDwOf@%KLoT$^NOn$bG4?sJz@4zu`Mz-WY&lm{w&e{Lzr|-7D;S&mRWYR3VL%?Nhfl(ma47w znB=$6UGj;voqU~1DrL(Iq zGL%!yUy_8-Viu`y2|dbgH05d|_Y!`&Dt;sihKhKv6bL~pn@&{FPDP&6jTF%iC<;qA5|i5G zEzyJ9M$E~6n2VuVgQMZp-C;U-g3VwH4Y0iYt#BS{R5?mDD}+g~&5P zuA$y^z#_I$1TSq*3EaxX4Bv=EaML9hnx0H7+FhA)3QbDtj9T%Qz+&^!cL76xno*4;%^gB#Afn=O2f86K#zKYvZ!8TmRdTH`z@g} z;0>;l=_X2TWoAKx--A#Fnl2+`LJbS0N7+cf&InQA%Z|6M_j&7jA2smQcOXj>Rpk}x zEa&|B5exz`lj(4@Q2UH!Ux??eHJDb>pAWdU1-r>lXX=FSMfM+GM(Sf}L=*}N6`#HhqgO6)?TTnaxmnm7=Ithr7TPo;=uktQ56$=OIaW0|A6 z5|l=j#g+mUwMJVjkcSwzd(t=MWeuv@V0fM2zLgRgR%WG3z3M2_Yuw%4A-k&4>sBVy z8>NNTxPkaaqE7ckjN7h#)DTj4+f7RB`-0y>ZZWNA@+f&wJ@n&jyN?H>=nqHqF>s5ireWPZ0lx(K6kPRSB7u$$qCKZ^#EIOKH~UmasFFkkk1( zO1M z%fZ13))S?e%?iw2kZKlT~kULWw!;)kUp;uPhDp}h7~Pc2a=vz(HHTYaQx zZv~308!e}hv64Y}YuHsx-|kT^QXkkf?Gcpk^1kBm*B#|)OMP7828z`!LpOnTKj4Oz z!Nkz)%R%MVKYc2mfg;BpjA;*(hbcgHwjyfH@eSF()!n!6Kwgp}Wr{LI!9zk@2^5*mhXhU>K(G+Vfj=060UI)6DsW^$uz?7M z9YlZvBasrzfM6r~V!)0hWUxevq&V{qef!=XYCd(wciiJzD<7V<_oPoq6i&q;c zbXT3>o%UMmdH&CT=u6A~UYUx~IEGI#1>0!Mz9$q$+_F|JUh)DKPh`V4ZJv1Dirrh0_RwQ@7PO*C6oLF3CH*u~-}7|y zTf1=*MRW23?)}_`=1xJgG!$1Ix(ify9KMj$a$Rdol?swPlHJ{7ZD4m*5`!F!X4WyE z)@*e_Ut6-58PS1x)KVKq*c<#oPsly}G?NUJbjbDxJvgC4s3OuFftvJa6X7z)cbaC> zus)lSom-|~U2*rVEgyaR9x7?fW=|C-zftqz4;Iv4tO>QGLBHHD*tHp9Z!vp~*(-)p01Vdi!(CY?nR`fsmKCAa~PJTr~-eQ@L07c9V{p_}3vsD=B zbK_$f@J3PH%h6p%`LdGShpEM_Tk>zdARHgi9~5lgE>a$Z#0zX66|^%&yHw1c1+sOI zAKV$cfZM`Ei>9EPtI@IU@Pn496<0s#B(F@%{Vm!tk2+{MI^J-#p5VSd8!djzPYtFv z)W=f1_a~h+KAom`Wy!DL@Q*y_Cr>`+KmX>B(RT)$^*p|F%|Czob-ua1&$HbDA3u8= zw^1}NbBq`J+WcB3epf%J=$3)`Uz^gEGydj3vSW@0_^tokr}bg#G#6Q1=BU z(M7XOq`U~Yy?{*nJMws@7PFAXCF-V8OkPE@wM@&piRJ1C<@ej27?bEurnLh&8!R-3 z@;Nsh=sqLU1B)Y4p2>M1GBZx-?4?0<8h<>45HUA

?PFBraz7d4Zoe_NN)9jTGlO z?z$2dLDP**_i(8qCmzhjK*ws-t4rc;^X=$;%fyTJ67O6cP) zzj&Cg$V5W|hz7p7?m=&?bk`0k7P1t?ho*i$lj%n%E;Mcjn=f~`H zp?AFE$EVKAuaIz#J?P&88KAF@d2#NEeSWVp3(*_*W#Ak}H4Uj)&H zOg%BvuyOP&N31mAu;=|BdCt_f6t?4+e(6gTueBsgmjQj$j5qAXlLM}IhEN2&i~L`I z^Ct_5fI^JjKt;l zcOw#xmndrml?43B0$*6NXII4So>(`ip+QNGd-^i*Pf`kdn3nX1CH0+*Y}I2oE%x9N~x6s@n`k$ZUd zB8*nx)g4W9q*#2EoUtC}GKRmWFrCl`%h!thS}d=F0k=t$Jq@)IN@li_DQaKH-q9XN z`03SGXNl&ds7_KohfTBr7YGr2ud#cD+Gr+^8;&Lw-@YlOK(T=s6uTo(VbOGB2+`7eVYT|Z}ZacI! z_`3&$OhoMTfwr`zm*`FPUFQP)ZoO3BgUMz3nP;-E_Fl4_>RtfM z5XSvhci>BhnwIjlbeUB}Nt#yof%^W8kZDX4!~t&~Mi;9gH!Nh*2#=x4cMj-|CbUZd z9NeDKsj56{Xb&=~#*l5qjT5C(PL=2l+PR`zq@1n6AU}cjm@0(5NHzvEq}D@ABl;5n(6hGF@eO;THUI@t9xu*1KfS zGxC+xHU7AR#-Lln`u)hwyhpDscBk3BCG^tv^%S$0r1EYd;&%HY=jK_?UwZmes8&&& z8@g#^eUPKNH2Ej8$ZA-0bjnc$LvT@aT`PHR&0Wd)$)9H90(t;d^4I4|g1h1x1I7unwraM&^}TW(%1FdIXDtwud=yAUd+sic`0%rutY zQlpKsPFCQ}QpxvE#oQ)a3&pEF5Z6@Q%fGo@99{P8PQdPb9mua*^uEJqxoAT)<0MW* z=^lSDK`ke@I~wA!JK=rDDC6X`d7w4w^hAoZS|%d>EW_13 z;pztU;1s{e1qq4~y{S=s!0w$;c@8t|*$OUiP$zTzMAIG{+{RP9+~TJ>zO-V|8$o%E z>LI)7(?+AQRV22N^&@di%GREKqS-tWPwv^OC%*xgDVn*YxaX@k1$6SCd?np;I~9?Z z*~^VALd_&Z?}x+mRxF?2$W6Slk>ll#)B8f;+w~dit10E{+vIlL$?w{|-(psl#Rsx+ zwM*&vo9=dMq0(j+Tp+u)l;?ulX)pAz=0H5b$$~h~W}<(wR}S4sw#H_r`RTjgd0bMRXt6=u2f9UuX)Jb~^h>QLWP*&e2l8IJbuV^*rEqw4U@Taa&#{%4dk~@P z#3Cc+R_GO7hd#TK&%`-m*Ad%J0zE^3VLH<}!s*QC#Tu_vBEI z3i?^np*6A}C=(?#FpKDGjoU-%dJgmbNDl#sy{7LqcB8R7MSahsYsLJVk}kYGj3^T^ zCZH>EtNMcvKBA9?zp?)kW!`dB?z!SfXj>7Y7s_SZDVnVndKgfg>rwb`lEc{cp=S3^ zFQQm4O;dgynZEM)T(dhBp|I|tn<_Dsn8(qUoMZ}MHu62Qmp!@-Y#(NH(_~Ye2h_x) zdpQTx9VsfCqinQdHCmpN-L&YYM|a|s)XnW^i|R8)KXItE?oHhjy`ZG+TvH!vjy`C} z2A_W;CJM@Gl$J(O_X9Ua3B9umnAHxdny}v!YmG7*?j8u0xE0M)tZP)BjZH^PmbEHI z=!A|Ob4T1azoTpPABn5?LMgIFsA*csbR?PL43PlJIf$|rqfx}dC3>fXqpE$487Q)C zhrT<-5ASONq2%5R_#(rn3=tK>XzlLj1>MZjO|+O2c+nM^HsUUKvR3na{M=>AErtwz zktos=p<9_I6~$Iz`XPhJ;0q&@hD1Tu9^6*bO&K*FrdITG4@Cg4P>m*gtw$4?b}mko z*=vjPj(!?OyYGEg@ag1`;**?%4+G5t+NC0!bo4e5Zw%(N;wK+}%HR5pFJX6v=2-4S zcOz$GKa2DSJ!amKKb??YNBr}2KK2oFplIUlM5B)ys{&cs(MCn<#au%7kljdKQ{NZ+ z;^JbUi>LY}kCa(QW;`!Xg`$3Xcf~SKXLh2Wy0uJmX3qorQ%!rnqbNI^_0oh~iS8?E zpfSl!Ph1x~@NsG3D@Ey^2nnsPrMa^NNyJ~43%gaEVLsQ;T!}HZ`W(-O+gZVm8 zzHTs^dNf!HMyTkhm|VDIU+52VnbPhB6vZf_F_2l*t`d!Pj3PX*YjBz5m1Ry`w49c; zk=!?9nW5?qcA`;>RtvT3AB$x5`4q8d3h33A@b*38m*0l-jWimY4OlC2^L0BO z*5co~14@y--pU4Z|1RCVIn99+Iz}s$CAF)Wd{|R`;h4>1OSU?|86#Z#HXyc9>G@ba zI%T0?avr2`Xgu|C&gPM!xDbj~aTVl{+xKL^^rhU0?b5P&%h1iGAh3H)wiQZ7JJa}_ z6mBTI=jjtcG~8Br;PsKh?gjnSoqTWew%FK)GT<{w0;knnT+iisN5!VfIl8mvN|nr@rM1Ko@fnr ztHgXmLo5_A3y>CdpWJo6vrke_iG31J% zpgxwSH&}&t8PN)AYuYHf5UWPcCVim2Go_yxCVdc^MkWWOYC9<|5`R;}#+30;qxOoYRYOc1+;r9RTwDkD=0TY0EFQ3=<3`yivZ@wl~O z_m#Uut47OjXxQ2NRzXekTQ+i!0|5|`T|y85UrAm(9cxLq!1KNzyYLS zct^fgzLvcqyEdQ^T+=Fem8k3=>3k2Arr$-B7OqvC&xTj#}v<8 z;zNt0PCt#w9SiJQ0Fj$70V-mzE#{RYwxW@U2L8)${t(eC?2DXLKH++@#CSnxEIyXKWc#)> zY^GIXzCy9m*eGCwX%*Q<(M=8Q!mxQ9S$)ZJ=a(bd#?zOw9~758>&K4WTX6Cl6Uwue zZXrcfanYip!{;V_1{uYbXvn&ml}Smiu}x(8X@_n+v29?ve|j z7xc5qB+I7j;LZ_YR^SUOP0F)#Nke}8keGCn{$x&YhU}v=X|U&0RI4OGc~=pu8tmUi z>-;{t!g_V)WJe1S4~5F>r}Y)RWllU*lkPs+6YZ^xbh5tJV$S8xV%QqXT+l= zcH4;)kybLTx~!zpi;*nT=)z#?9$#24f2bf^N0#5IFtsO-QCJy9;kE%4Bik<>vU$t0 z{z3p{AR6W$%RRTh4-iEgmd?Arj6@|NyG|>Ls}|kM7kw@!Ho8;9WR&B!pk7#fA^ND| zOiIN+^e_A(0RPYb$4{V?(6omArGKZ!SWkFeV)mNiQqiw+&M)q=c%6coOD!R!&nH9| z=?;5L(ER4>`}~m~|5c9Nj{nU*rMa$&YGL`gl?VD9ZFGdW<7pu0jaf`w_DW4Vrs?3#hln09{xA- zzF&Xk4wuP^FI#CQjqDWzfRJBDvY&Uf%Z%-0&YkZF1@H1-sEARazf;P@)kSdztzhIq`Iqd+sNU!YMHVYhTueRGf;VV z4>Gb%pnS2z&oa7WJGye_n+CP3iDwt+<$`dsq6TTWz7~P+FmO zdjT|yLdC(mbGHDm;SD@NUR0b8Tqft z0Vm80d=iYxA)9C{eX{P0BoU~_7J`(hID}V;^_d7%Rr*=RBwXG4F_ds{YY>Ek(JNZI zXK5VzsT{m$2;C5zm$;`Y3Ej#7xil8T1$f()bSE z&*XdSDkHN!g-yxSEhq;j2qNJ#30mxWjV}~#(xHuHt3)I3>tO9{8WE3mQ#C&Cs7N%M zh)RCoQ4Iy5A`Ci!NwVMUlZ7Jbd(-zvEBAw`)4h`DeIYZF8`K984`*`!(Y@IezhUWH zw{kDXNL2dv-UpPE$zj}F|HH1r-xXKb?jWBEl`TfpzD5r=rI{qE<0HE1M0}oQgxnBv zEB&$$qdSP%6{vlU-&KMzN1D4dObSNT2TT>nHsXpF zvfDjGg$TXE=!j`VY&xv}Xw;ZHqN3b)$`3Z0GU4?_3RSHgI!08O;3t`cm-ccl#i~LT zh3L>yaUGL@J+>WmEvhU=-2)(Qaq;_@o)rS2=`l?*sA!toU}U3&@(lt~wmo*+inw>s zpxLx%)b@67DP-ED`#^LW)rHT{xKtO=E?F(-MktX3*&veWPl9d_pLaLa(mZF8Son0W zN^-W(2fZW2PGQXL`O?nP1ThWHqmp`|p9S(Oxi9Ac#0PeaCh3;fsq;;nd z;|gUxWzn%QNrM#SaV6MK;t%>l)|3i>SI}#GZP=-tw~H%&xOm22GXK;#Ssm&Y2^ZJki+BSYhG_>+_We4yfqSwkVnczP1R1I zF~r)SS}l7Z;5Ml)M5eYXk}QFxiPNo2B&6npeB}vFF`YE{sAyveJ?IqeVA@E2Eha|I zQL^gpg|e%=fLlwwX?9(zEoCBR_ix-2@^nOl7{T7uX? zD66_d)vZ`~4`JUw zZbVem67DY1*WzESzx|Zl7(pSNB|N?-4ndbU`1>a`cT3@DwjTFF3a>aV=?+T~`dzkU zpVoxJ%ErF0iA6^D_A$XK$_wFWhtf%rVukbRbH(oQY!p#4aDp5KV9th(EiOkQZSoJrXKOWpd!`=7LytuG?yP8Vrq^0_Jl0?dJj%p$3ONOfc<}c ziq93*z1z<>zf5ivKeoeK&-!?R*%-2~O~{fb_x^pU^pE~_M&B#(OV1+x42lcM0~y>w z+*Vv`y6uGRq-2%Bd@Tja?k(9Ii*pf@W><#xK(r*&U!RIa=U$3}d>zEW$SQ0T&|T#C zbt_trLrcC3xK$eAN6<}Aw3^++Qc%*17TsnuYSUyPHW!C&~+Pf`BzlFehq?s1Rm(jixPVi0|oI&OG;dc~?LsG5vz zHxrk?JSD2Pn)0P#@+xxuLlJ-2OU^*0$e%e8p3X$`rF&SvFP59-bBpd^^5oXp&@@1l zDUu42*)y3G)pz4K5n6pg9HjbpYr@)b`g3};3%>UYf#SSn^@Wnn+ew#`!TKGC-NE74 z5x`<$>2rBLE;qPMNB+9P&oX?j$yTidZ=PL3@KRX5_khiNQ|6y^=$job#t}>y9QFp6 ztn8*CIK#~s3skU7bAt*cutfEuJ8@Tgv8wigxZ9&XsZsMeaWTccx`Ckp*PksS!s!uy z;^6Dw{vBMY|NUP2@Bpp$L?7VtT0je>#1LelYZ)VS*s8_8+!N;$LhfiD9Wl5Q_R9h_ zf0$@7jCwzFCAzaX=+O{h$!F4t*z1a;Z`hG;U%XU_wNA4WD0GP(s! zUrGVnF2sOk{!|KL?-J$GMXr8CfQjPLCWk(#AGJJqaE1SsyG&noJo{&}k=k9HD`ww} zZ0{@D1NguE)=!cb9sa$Vc588$mi$WL){(WDuwHo3k^aE5J&vf{Q%qV`^C|n4rakFV zrRU&i%k_&T_x?Yc?OPeUw=Dm~lON;fXYXMj?5P(S?mX#G8ew6WMxhhMY=0W*mVsTD zQMV3SjeEFbQnXyZT3}X|qhHn3CncZ6V{GOnN?@Pky<$19&^l6|IQo;0FC1O-X;joM zhmn!fiNjljMxxRn=SEhA@#*-J2oPISyG=AOrC8~)f;-&-{$&V-H6ahaFFsrMo1x~ z>BYeHj^c>ZOOY|4P-1T=h((xWV8kKI>^k(eBIYx(Ni|ydd;3=SbcIf+vPu@PZw3%1 zd&p$#YZ^bg6sfK!0)1h|=jF582?zRiggPPtY4QQLXr7GS)%ZB-joML#_ahj|h#pNQDe+3KAUF z{eYlGBYTz32Skn0X16|&DM+`@Fg>EF=;SfGSwc(GUSn!_wVu-l&C6=Z_Hx3sms|l; z$?wHP=rjZcIua_&)AK`l9zh8SRt8wPZT^G@KoTz98a#d5_Y6(-g?G0o{k&_d9X3RnK^D`AjCIgBANQIR`LR zC-&m|Rwi%OfEK}YG=k3h!op$Fat-&ZO5E-M+Kc&xMy6Ndlr-2b3c{*u(K?8gbv9BJ ziE%V(h;=QrEMtTqFoctJ9GoFT>Kz;45 zd*eLUgk0Y?B2_=GX#mxG;-nx&b_`AutL_{@Oh{I1aVKY`#`pdqxCBY z1yKSt2S$O^C%RXoR-|1R+G#p7HA z6Utuma=oDMjOgD$#NE9jxzTkr2~V+&zR=jMAeriBGm3fo*%6yZ zj>);lZav*RAsjEI&=?vM)28Ag7Y?LpCG0C2xcQ=^FQxFXJ4UhCVC`GJj?AC7D4)|D zX3U?+bKN|a8-D(gX7V~vp0{isWvm|?wvVN8%dQ3KG}W!(UG=iL`0vcfJZ#?@Hr!O; z7|5@Z4&_J=)wr`{SEAjh?mD84Okc}}w|~3GZ7lOAp7pziu8ds0T%tP7aUBV{Xgu6O z!_jib|NPOfaOzh4?|O-f7yCDIwEzGflSkxOKAJjZsiIKs8?SaOy_f zS~7?)UyC^Xt6vcFg4Ir%ZDWPDWkgs#Hm}AAmEh_cf3t%8wvhgQyxPZin0#_A86icE zDsnl~>xQ`RZUwvZ8T2wW4TVEFgFe5y74X&#Y<9%^C-lpl>a8h6B%D&efl@b~FwgOY zVe+yb(`Wmcqq^%Tt~}XILw(}#PBD2dbN9ZyrPTRC>=wJZ_`i2ZQP9lK2Hy1jn3J_JqbZVq3vpTIdvZC8ijQCq31XrJF&w$mO*) zAr%BM3DonkiSxNacai)|fDoZ>N+DZbro`k%5|jI7PIk5tbP`0v_}~~n$*4~<+|Dz3 zzGwGnLOaV@eq5s~=@f(0gsH>b)PmaQj_3@F?+937Ry#rRGlzQl8h^dQ{J{H!MTSXD z$Us+Cbt_FsRTHY}He1M9{Jg+EJ;%R%Mf^VAD`K9ZiZ?Vcc_v|zrDXP~?H(0^h;s8x z%tDlsY3h@g(zHA{!B54o!e=Q9=Bkn=FLOfot{eLM2W%df%w9C)ulEe8)x+eoJ`(ms zuuxulbQ@`xW(2i#x?hWHPqtGua{)LOPrbM-&4m8j7ed7{ZDjIN8k^0d+f1*6Zz!f` zhT^P7cb+@H*08&uarvXN?tQMP?|NeCnSPjID_K87iZ@7uo~@)FIR34MZf<$~Pe@R+ ztzhv#c*Xzn(J%3T_@#diR*sFD;L484KYvZ;4Q+2|JImQVN1f%kP8xQ%QIzMA>#xG} z?G3vpixf>D)bHl$OaRm#^mPv8WIw#ZEh<*c0n=xiNB?!rtKVO;%LB2|s8+N5rhqcr z#{si3RM!XeOOKj(Y}w;`P4+UUn@8^bz-z8gCtN=&nEzJB{0UtDfRTKmX@D%?rY%I# zVpJ!ZexgKBo-)Sj1I6}H3M_5m=$oE=6L4GMgoX@sB{Z+~J2GiK{AM6ud5W_=_34Dw zyN>cAFnca_gzh7DE!krA;{(iIsDgPEvx8_9VO~(53KMAZWXJB^8QXh?>8Bm~X3Ope zPLpwkL{)SX&GN%7`uqZry$CZGK>d16oK1++g0Pstyp)MY6w@3vSYChp6t&+I%aWkK zJJ8~Hbt8f{66Vyl#I}>-!dkK7e1n^&X4AxD^C^H#$tK+g35l~>CL=6Rvk7L~VmBiA z#c1@&5dp}qBy5Th&~1-yEHe$Nk0VkE;?NVV#wK(%W(Dux~*dKj!GQpn4FlPpK7)b zbKwDN`8lGXdQnMQ`j8YXTz1)Pf)#{BG#9tLZ}AyVQ-+{$DFtp%O1l{Aw3Q-`hNSeTByZly4lOD-8by3>Faf#bdIk`^n>pMzATo_xeTnul8DYp8td3>WKRFMhPNbWO-XIzvh;G5>ntG{4 zLsE;ARKLy0ZUj}6U^UTcnI?(SFGVx7c}Kox_aqIIWEsJ*=cr_&0J{g`m=&F5k<@pU z2$*}>gH(jL4c?vtH()0H8^vb78EiS)GbV&3kQDnepNBK?Y0{PiE5L-UJZ>jBNHT35?jh22RKOj#mFavpbK_?niVS^n2)!pbOZ7k| zA8zMG&*8*TO?e1Li(6Kj?wfQbMVo9kN3bEGq0Y$9zjcZ^JrPU$wj<0-nFtQWwlnCY zhp@*-Ld~ih(Ey~ip{G;g#KCu$Q}(;>N>fuZCjo}L3bs3RUCO?@n94LNq=|IbQ@?ve zKhey5lxbEUFnjs0o;aC+`UqOnA5F)p21+q|))1VgIVs2KRUA;~#Pb&&qoCs1#*Z2^ z5bIy59b|p#UYr-L)u<@@2Bn;7QHfI;L4diC38LT4HFcx$nNWwdA6)W8t7RI{wZ@w$ znL7IR-1oTzt(qF#A#2j4AW8yihfqCss=d+>_0uicdzDGCVMELF1PR=8J|b`j|x zL~IWGyLS96b`O%aZe!3LEIy9ZM~q?Brj1OWC!I&K*o`*TUwf(fg0qBdN}p>?ohV*L z;np3x4?^ioTEl*l(Hv(o{qhl}DVR5DPq3Qeyd}F48eq&E*-AP|UG;>C!_2HqL$oHG zEQwZ&@j?iYIhg|PYSCQ}+K?Cp^c-&MEJK61asJ~l5m81%vM7yRi!KYHTvRn7O(IlT zpcdi|rJ4@EoD!WD&SupTU%tlNIi`N+7$#1f1U|ilD($poL4UeL?_1p2N)QmOg$4td zO-3vo-8>r$iGFGzA)C=is8n@i=u5EM4)y$uY z$?RpIx~J)vJ^l+7ew8u(#G*PwUuoR4Qi}Nd(gZbcb(l+s-3tZE`qU^)750Z3DxKlB zE(zyF%fg)o_q7tc7u`)aQ`G4xMjLSzqwS_I6!qO8Hoh)WzOa~9Hf`l)I;Fh`(}I;v zNqLe`nUth#P*JiSbSF)Use3|hSiM(}-9#3@zP{xdrwN_iC5qs#6?crzqqi-3UrU&l z(x|H&p#hZz@vS>-A5WOPYO$*df3gtDPA!7!{_+Yvoud7WxR^nf8WA4|+wDj}QZADK zv;FsLWg(Z|HiW|iOw-~ouOx#g%fwO7XrZYLjY!)G2r*nmJ{D?(fO1xZs|X08I}yKQ z4QeKZUq5wZ&u>tho&0>B5f2LNbp_vfiu%F#sNbGYoQtKaB;*d`cqwE;W{A0=J`q4* zdM32NXrU`*A`7HcUn%1Er%B_qij9gtln2R$7rUrCeH9t2D+-u%I&spBhY&bpb< zN_-h8pNm`J;7n#(K~poQ=$6n=JU$bf((+37-FE5Ft%&aXQc)jh7Ek&#DY9cBGk`V9 zM@-d|ZS-hr5{%GahX%y7LZNeOxwq;&Ikpl?u%9~mWiC?^tJ&Tc3-N;wYoYl#ou(}@ zQS|gJn9-yH_6^+uB#PNof(b)r=kENjg z=BLp2lA>&kfO@kGUVkrF=RZ1^8th1&CC*B?Ug0mV(31&jI;FpNAbP&Khh2@@*X&Lm z^|8WkXOi2J!r{yglrP0*IRvnV<~SE^My8lOt;xRqlIn-wqCT=@D=h^ijJ1T@1+rB) zYDw*`2a|w;QjhM7J`*Dce(;EH z76^0CPaS_7r#!!qy+?Zt?J>+hv>bokv%N2S$6y8%U4Wnnkm?F))_e|=-*?5;`GS+b zCEDF~AmY7|Msv1y==FWs@HIs|A2-J&A&c>>iGtFo*a!@J- zEvGe9AS2ezLA~?LPQQlKOkOs(Y zd-6;W%gy5wd-^5Z)|0KJ8y5sE(#~X4v3sG0^i!E2=nk@*$SfrLwjcs06=CspH>RWN zPUuDTiH!PYzmXGl4kv;n>KiL#dJU78;&Ux-Eiwrav9@@Kw<(QPG$rzOhl#kvm|C%a zAc9d;Ae51lM>kwv%n9pUc-O;pJ3`+XFp=#;@%rz+zQ9=6Jkp6`X6Z6XYj!)~U+YeI zsohM`9(rOH(3!`dMAi$<>A-MrzgMEWJqy+0Z`H%?y2^$Zw>; zG*$Bc&NIR!qnl^ARgG#q?V->h?CP^L!>ASQaf#0~v#SN{#p7Goy*O#CD)jjc@o1UE z?Ut~ZU?0B?jZiJZ!xQ>>PWDn9;_RchZXY0_dv=<^+4p>f{-blPHW;sETAJtRTqZ@I z5#(A!SWJZCvJpG*P+IKy25~zxn5rYLH<-G?WKKraRuc~9BJRr!x)0d8BP>dom6)qF zsulayP&oAakMOy{?mYFK49F;7-8O>V)Y2~PcsMUU3HS_F?^p&m8|9@Jnw*8y7!OTH z(y-}U6uz5iLXsAk8YZulxNdDD&4H#bq5N7o+QHgN@`ma|MY}XqZ}pG`vX@RC_oYyi zvJLFsn)BkY#JzIloq#1F6U|e8Ezf32TFtH-(%#?r**IyDF+TC}S zkcpjcoXEzqds|Y>&0f}3KNZ(76(pa;=g=*Kps_2VoDQ0hsD)qc3#cD>>{>JZ$gzLu z>F#=>7V626cwF5bG&@KdvKm}+6mAz}uW*X>V@rJRmX0}n*@;8ek(dvdCbGX{#E@iC z;`Wi*(^|lbd6pVcm9j-r0oX(-08(Q!Xa;o~WO91FO?#6hBzKDpyXnxa2%`u6n>Qka zFJA4@YcV`g(}}n_`hdCK3H2~dNyG6%G>BS3o(tfY)`wE+yXJlWZoK^A6noR5nog!6 zvnh5yBd#_OJa$!yQGk~BJUm#EZ#-_V$Y1SHA<&=9q?V{U^tM57YW%@O+_X}5NYO|G zN|9q4kK1Z&Ez^$Xz=|u|M)ZTeFf@mjU=+o*!c?B@yh1N?f^)cixYZ&l*gl$!ugA2J z$*WXnc*w7NqE^_-rova40E5|0$i%vy$VkERIpo)h$ty*E6Y!bh=F4Cz4IfW2F4D~+ zXFoB)?aDN*1+z1B%fRa&hfwrs?HI~k;OBqqeN>~FJ=0XD5&u?A=rwd2cWF`G?ep=o zfVsACCLl-NLv=@{GJpIx{#R@+res-^v)3#BPk;NLMcK&YprWZW!evIg6w{x<*)P9| zbe+^1QAfzYyuIaQzT^4VPBE>b?M0{A%@n~%gQEM}>1)(*{Uw76u=u7Ooh^e^s0_?X zMzgAyT4w!jDU`Nev45B}BEd>(`L*bRqK5q)jW2{^t9sc7bSDf8yBAyT=I#Wa3t(Xy zn7--=PQX;V6Bozo#6eI@UNcTfyN3saM@RTVC!Mhv@VKj5_Kc<*>xS&QPSaF7N)lq8 z!K4sv+2E4Z_poZE87cB{3ah(La<#q-jPrMOBN8)5ECtO`g+pz3B22dy@{E2_V0{z^ z5I`vnN#GlD2f0BfF`)KCVr?KKdX27zJ1z;otR}i-znB@K)3kF<77=?st3iX_R;b<+ z>_Q&56Q=^Vm#(@#(j0#1G5cQ9RFT6g>XfdW8lquZ0_kSFmMMsc)n!3UUj>4N{arnZ z#$>t@S$rgib3fIxvD67gRpKCJ8tIxt6n7g_2{ofRj`Y)H`&p~orox3J+CxH%iU6I0 zJaAO*S>+|De6+tD=vg6A8M>JiQTer^U5NFkTPsvhbiE#hTe_1XtDmM(u#2O2z0Eyl z+Tve1$xSFl1nO3)fmrtRN`ul&pDXMxvVB{`ZOVi32~{*IA)1V1Zrw-BPBy>3REYv6 zc`x$5D`HSW#|lE*0r~m-x|OEkz=^GMFWQiHrm&URBAR3b5DJT*So(>uUsbw<>nI1)yOx{RQ?|MN*+?$X1 zeR#EvXvw^n{ULJ_O7^C`pw`69%BZ<%Wv!RV4qSSK#{isDj_hedFLZi%&Xq&#ow3&Z-c7-Qr&aTEy_SE3`T z?iHvIDPA{%eoxG32OO4q3_>%VSV!tkY^Mi`XK^lL|N2NQx%0IbXRlJBryY}7L;ZS* z?Zm0e?F1ZYmzv;iQ-s@N0Vp~G`HddKSfhpJ(85fb1l5DC)hN~;%qLV5pVvnsuFWsB zOetqx#Ox9L!lN1qN{pJ(;YW8dWdTW1B2+Uqntg;!es^EUpi$A zL4$3gREIYx<~nl!V9k#oKjE)@dBeCyP@7JSD!LwBb;Lv+A3zYCC1e&|x1%8r z08K;Gg?v4Cgu>#o4BU4|-Qt}?H$*j&d63WfiSJ0 zq~i0Rs2B>`yVCya&fW^cO{6*UvuGhmyy}ap4~l%&n1mEWSZ4GHVKJ)`dp<^tBA;;#OI3ZA6$$XG~HARNYh2(fK~&t zaJw|SQbxnkD43SC@7*CddA{wvIr?BC6pb#RpS~8Sr)epF4(I4?OR=g@o4uGPqyh$D zaLb9)&(b=+-!8S7)4g?yz1gEKZcwv{2uI)aKks_pjK8GQ-6`;w3> zE>4kboerM5$G%>ZIm^M~Sa{=gpwAO8TtPpvtlpK;_$=3BZqV*j(=Nq`!PcpfuOsDo z!}dYW`mq*z)+(}ls8UW&q&|W57d0UdL>F++3i_%fZ)I)x0=AC={N4toXaE|A-mD|EYi;+*^NqqS7{g)p9cCuv3V!yw^ot*6wIW@eXB(E zP`%v~Cmw&$5?>aWT2UX#`q;nQp(?}OpO^j27m@l%QQal!K_YMc51;X3y`cQ%1G-t{ z`uBKdA6xQYnWpAUj6w#KxIGlk`n{hI6jv?R?-xV^)v?(B+9sl3lbQs1k9E~k-^sc9 zK{)(|Vfx9IY%4Zg^XI)#Y~FBDa+|@?suT|Ru9s#uHxi`R1hx+??LsmCRMu>`b08Xz zl!$I>acfg;kDuidlGZZ;vAIA6y#tkn!J63-56;s8h_hV_(1XT z#ppCf<_JZOeZ9tNP4o7__*ep5ILx}itQ-712NTKGo{%Zpg%Rpr6PTQJa(~~kaA0tU zha-prruyAq)SBaiuL0OrimPWtD&1(>Jv?Uq-d9sqpwQ_#?c2tpW2<0 zP<}Z-_jfct%TfShNP&a`HtI(5#ex=4Gu~_X^Z(@ko&W7O|EH+`{FuuhjTCQfx%rC2 ztqsM60F&20A{P0(O+nZ>2{C@VMcIJOJpDQ&KeIGch0h{!5=Twx%~ykf#6d5lcuMG*{29K>rj5iG{VRbeT^Ce5mks3 zFSp$M&>=VPYbLLv)F`_^$P}B0hRN%|^rMxWRUtBYF2MNm!-$_)syi9^RZsqEOMg(} zOU?Y5$LETxFX!azz~bZ75hUXrw`nowE21^@cNd~iX) zbSr3=>f3Nh4MV^tO(Wq%3B`;` zp_&%8t)TD4=DO`}1B?di&d=GB^Yh#%hHD5OQ`U_3-16Fk2Np_t=jS3QqW{uEVl4x1CLcP>&FZW?{yFZMU-9AbVQFUuAJcMBl z&5DYG{0~iO)IzE3i(6Xd5cKIY-q?!r0_u;zfw>s)%jk=n^;Rxl|9%c$AVLQI*#6un&o)b{vKI(J>lSxShwWTTG(H4WF}j zx7ObS$3GNeiZa*>`-u~M$X-6z!9|TAKckyoXgpoK-BZ#Tqmql8P;ccPi^j-fI3t?H zG{HctF=Heuv5Hm^^hUsxu|PILGyBX$P|0Je-V=6vnY0?AA<5T8ClcTMna|<+Jok#& zBw=n0V(2l18bg{WCtX(CCGa7jYeA{S^-9asr0FDRS!-e;6IiT(mT%hlf=t$x_sP5@ z1>2=*#<2F47fRP~zXq#DjaV@09!&SrXPS_-ACau0eMX{U3Hq)ANe3cl*_*-1Xi&YZ z=V;_S9Sn9%E$1~VqB1X5BvN$icBxn2?W7PHlutwyh^rr@irDg1L^PM)oS8i08OzX zXQZVM`@>)f9xb3EW}{_Vn#;sxFu#z%N2!NQGt@;=$LJP`A*hsq7QF!8qy}=>dvqrm zWzi0Mks%ZrVUphh5FtR2&p%{(WIu#VCy~1BWie%m=`M)Xdn?T|y%*DkJ{kBpao8iz z#*8BRUMSpYJ?Jjn*4o3mNoQ-!o$L>TE%h!K%3GX_uDjNMkDz9o0vQ*g<|#jfmFdMMZvTxc+iU{UyWh{T6!7{9BgEYw2h= zj|-|3&Eh*!OkDg(;$6PZ=w>1gZB9I~2xPAw*;Wr^)d#XcCbEw#U zse_OjhDD3Zd-S(vxQ&RXRFr1Jrp~@Pk#VQn#@jKU7yk9~+u)z%Y#)h3mEKBdn$Kjz z>z|YqdqFd7Er&rR8OkqKT*V35M)VoN(-yw!onIB=Xtau#KWX6IJ=r&=a9;tvtH*_+)FDZz9D9FLCQ5x@9hY-RW{`&+Hplgn2=? z%-^_~kpiV^h?%2ZI?7!ORn6>geFv0=JBRf1l4hYPFM5hkufBQ}(E zgSlD}>xSq(FP{q1DiPcYA z%tglZTP4+Lq+bNu6HhgLA#9^^MVGgo9^VbU42z1GkzB6 z4xs`GF@2Vi-^k$}o@u&;qS27ma=7pBM?w)e`ZeK9*9R#uHj`$+ZX~ImsQ9pXM~odN zLJcinS@sViySF0`|KH&DA*J3&x#keO#hQ4tg143lT*|Ojpm?zv3#sLI z(uBk){6cJFbt6+Vq2Oz_=I0JOiuIt(SrhaO)PmuIP`Z^z-Dr zg-|g8`HZZ>XL>}}v-3*6cHfO4K`=tc&bDG~;B(nGHV++cFClre=YkMk{!q^PT|;{$ zf46%<-Y2g+Hg7xXQ%|-QbBM*a#cI4g5C(?ZMs9upV&R#5+u<*A{@2|fqj>57kEx;F z=Dg|VYHKK7-j<;GwG{q0OG~dK`I$w}BH^71bzWeasEpsul|cK@cf_F zEWdEgPkr@6ZrYL$|K>X=FX4o`SI}t5EviM+(U%e_Faj!8rX(l{Dcn91kf?mEl5R}2 zDg9Jxoou5y`K_L2Y1lkYAWmbb@AWeAEt1H5Bl-@vi-}?fL;jtA=ilLHe&%NY_)CB3FL8Q$%3uAff0cjfU;3B6`v=oX+-lkmWwaog zAe0oX;buJ|#X56X#fU_yt{;ELDA?Ue!Dy-;-Fi4WAeI?!<8j+w3X;K%D+ED1re*ql z9zV^-&_PJZdKJjdcEFS-9TLMxE^6?lLuE!#`INSdmhRcT7SDTeOOTK}<-zVE)m?=z zqd0NtgjkeGq}gaxC8BbnD+v<$QNJ!RN^FU{sc21x0*we^XQ^w$(OxzJp+dpx3lmU`j#$Ad+*&q%aia01xUt#FgM#+KLU_TO zcDx6J)p8#u=Nq?4l%XO=dHJ{43G!y^#2;1?8f132OF|tVila_K*oaXMRBMIr4TAO! zE*CKh;-S9h!_nXN`ds%3q_9wvnIJj+fF#L;17lFu$wV}lFi2e`9Y~C0m|>XZLeX0L zboeWLVTsz~uD7UGi(uV}Xno-5j|g&_XvIl}-pgoPc`5w5sZ0<|Er_Z1kuY&!XN24c zH$3T%x``Smnx>7II-oLv2g@@}wv~q5Zaeg@p}3r(yh;ta(47Wev~CnCam9TRN4KUT zSM;T(&&AZjR${8*b_%=C$7w>gQrOB+-%0m&vgGwCfQ=lO(l^5 z#t52RwX)x0(c8iEThL;4azu;~w{8hmLgm_JhG_!!x{}YK%;a|slL)Oui`XHLSNGUq zV5t@T%%uj~h<2b3pv0jqx+{11(ihdrV(vKU&uY$mzp@!1S3G9ijZB&n(Jp` z2GblEY38@`I1CyqC3$9||B?b&R;m}UO)leD)faTztrj6m3!CjQmnv4^j136 z3`D6#qJp+DV~sL^8m*IQrJn}c%1|#Q6#3?6$}cx>6C<=I9$jnfM&3XjhN%w(m8KfV zLYGxh(U&Hfhsd7U97xUN_F)V}&9;GH)EHQ3cOG9#vidOTEnf?3Cl(IXcwD_F zluqpE2mNy{+DNl)MmB{?lUKw2^mCv)f`|L;d5 z@(2FFAK)+ig}=bJzV$7>^rbKH>%ac%{LR1lH~Dja?#}`6@y8$Y>eVZL`lo+-{F&u) z$?yODzn`D~`Jex9-87n}p=oa2gx2e|{ExAO*B7$M7R4CG6i=2ABVi@qr^^QIJ+>}o zVv;CUfV`PW0BqY1n=CwI?x@~75{HYIThzWmy|K}#&J%M@`(T0Db=Zpy{bbJmt|Qw@ zC!61R+)YjR+6Uy_7pRYp#o93w7X=ldId*AeDpajr`WmuTWcKWKG#ia#cPb7UlZ(LR z?}OsF!e13)CyAhy>VA#;#)R@Lj-f-r3QE^arI{!%#B#1VR1}xOTU4DUztSu|idX6c>@%Q^o3w zk$TFQdJ2rTqxmbB95PbDho!!wxc)so^KV<`PXoLA8ehP{x1>R>k2UqNjIOJDfiU&t zYeja`)6Q}UFiVuEs6@x(Gsp^!tpf)i>}4`@GN)Z;^ixf6f}j_#c65gY7e7?6c+xZf zP4U2tTA>c)HHLYK>I2#HYhv!wq)n!F=G8UE2a2m?^I165^Vj&xE6ni`YBr^P=LFRT z+}Y|jNqka_*0g{W+v$pJC+O$r98&f>u}{E%_gMdRt3yT+!z!J!(0XM&!Tc^3#m!UP1ZN z;1UfiYB8`-JuEL91_5__;P81a_getF3j`}x-fk=IZP}{F?mI!EDwsX3=qHZm&`JhI z-Lm}lp7to?E{Ea%Q3^YJB@>O1NACV|pm^QTEu4s7FLvx7 zEx7uMWpXBTql-c&2vxGL^jXC1RMKL}3vwGdkb{kcGO}D$-0U2XY?FgH)%8+Fe4|L(7RCO4q(IxG}L)rt!?w%Nnl&>>jDZ_7KF!_T#*Pzry&8vorKEWs4=+G8Z{E0ncD z-RyhRdP_W95VR(K_%VctIX)zu9MU|Pk-yktpI)H)Bl>y9`cY1{4J^*q#7T~yW}kUp zQHwRN>e4;7tmnttYl?(HJ^4Jm3s z;S0~~;hIe`r7uOe@1Evl7X{q}-uY*q^Xg^+zd1(@MsEou33(hTU#8L&7mEBwrWVbD z(G*~yb_%^TQLr*G%7` zX_pzk(3m<x%!!ji*aa4N_4i-n-}6S~PyWe2$$Gu!D_{8v#u&W! z{Fy)VXZV-@<$oD~SFhw*ot~b4=I2gNPsgwQ-PfP}vwxO<_uu_@|K2b79!Oko=U`tE zng(;TC0c{Mf0}r$w>(#s)c&z)KnVgGGY8Z17Qsx;L$>Ns{b%`{@%TU{9|uBnaqAX8 zaa2EY7u`grFI((hc-`G1!%s4@cOKyvC8iT(5umy&9@$-~v5g3mOdG{nYp%x*I%+{O zgB2t%zY@f=e5&ymGnQw9loDb7Dey^|xTUfQ1&4@I_fTF2akQCeK?)~vq=Mwvx%S@bt@CYB2S3==Xd>1>=W?Y>=kv3 zd3G-0r&TS*#9-e$e0Cwq`)rM5t5_p@2htn3^WE6onSDnV!EA*7$>DOOwW!WxcZqV5 zib9ma);+2Z*nNOM&h62^?BA5v9871 zd-!|XN$6{lqqLDpvJuUf?5keT<;>zvj>S2KH&|WlK#YzGUgA*{p=ipYNGYjrkbJ9)a zPc-7#WOwrQ&3gh`sFcfLYMFBM2Z8gMArw7!(V{*rDbFM{xGxcX#$L1gWQp;zS7p~q z%yJ%y%ij5BMpHR#8AV@uEsfC-SgazVd2P~ur(`ed=E+?2UB}Y zW8_a8X$~_??UOxw+SA%dKXJr&PUY-q0{K-VfO#pJ68G{(_JWfmLiQ#o5isj|)JG11 z$@HGsG$^fwo|$K23^kje_h~w^oXa`+<{H{;r55jdg8%OF$-d`}$Y1#@e}(__KmAYn z%YXSV^VP3@m0$a{U*k{wi9f-E2M_q8fAo+3L;cQw```Yz`8WQJe`EandcEfDx8Ejq zJ!05wBqcgVDKs`)nUEaJM_R-BQYvLVc$xAbZ25esOE%Cs`b}yYRMN3`q$^^9`cbv;V_AMI zjYz-n=W?Y>=kWGe{(zKFpI^leeVG9dN0kIvqG&atQ?#XRNJG^u7u|1 zEUId;ZBP8;lO#Fv)7G}MPe|0^#&M6v2_=9*@y@JZfwJQn@ zppO(+F->e0LG-t@OQ8v5TPXt8@5$QCuNXP!x&`eO*;*)3ZrRW|N3fRSQufOEM>|4h z=w_t|$~Srxu)CeC+xl22t8OdE<^FyY>+Jx`?*!Z~&@MFXT;cB}TlT0Z&lTBCq&ZUK z!LGgN&s3)+y*Vu@w-&_JXN-?82K%&YPY`? zxrfg;N96OYDMH<1C-V`wj8#SS9#a+qPL#r-2Wceno{(9w`CiVXn5(2nGrN{CbvlUQ zfZeC8vdQg+D^~JqG#t>4C*+21ZtzZxwTRh?j?i~nXjG+yl)AkD7SRZ(QoL@!DEdMu zOUp~3zBLM1FCL_KO z)A(5u?}9kd!<$(l56Bo>}x(Qx!=Cscdj;-ixCBG4>k zokk^fOL3*7$(aY-PWGSu@2feO@43F56B}V<=vIRMd@fX~;TP*Rg{cl%X;x~CkP8s0 z2ZM{fxS8$mXnZH`o4S`k*lwz*?h5dcU5XAhUq#HW6UVy>%B#TiSuNU(+|Vs7>ZoNm zb(p;-yU}#>NIw9&Kt;dz#AmXu-L@Ae%&M2YXKiQ?Gnt0P2nb+_5er{mYPv;^+jvaX zW6oFL1L0_n+BbyrOZ4#};b8WewV?WdT5U&gLheV6@m`oiR;IhkIpUgD1`oll`!+iSbr~KJJ`)B#1fAo)X z@7_HC&d$!bfB*jYb7yB~{OFJV=zr_)%=4W54U}TIRGvdCXpcXfVgNmxia2+-6YWU) z-gtUU_h2C?Mb*hzy6=hWjcghrh|)hs^rj+OLwCAB6U0_AbA;0)%(h{&Yf%rU1gmIH zN*U!p=^;Y()*QF%M~5VzY4#5b(HK;oeqspDQd|fnBHISKQgQJ^dE#PA0d21(2rTMI zaV>~lb*e_^99Ky}(NAs*na$gl^`lcJ7Xh~oG)qg=u>25gB{x~0E4rzKk=ebXTgcAS z9!POMIg4W;QOFPk|02DMO8ArAb&g3K_22yKUnbZHN1o<5@aiWFsEE7KW5eU;p3o|~ znMs-#2rnJ|jV0U-U?MRO#6|(B0n@U8O_h+6E+vb4Fs-J&IpD*5$@1CYI-}{Qk=H-2 z2$Mi8dzQbJN#NUFkld;^PfG?|02gS)@dV_F$kO9uqgm*957l{ammn`m^dMhnG| zY4-Or{NuY!Uv%W>HMv&w6UWULC%7t-Uv(UOZHr#-S^eI7v{Ox140ex!zLbzEw+)y< z@EkuYejd1%VKIS)G#XLsF`ptT#LY{o(U(3PFVGu@zq&!|qtN1RgPg3|}|#TwcU-5iRuQPrYqg|500Ma`byh?_}&hhP=$ zQHI@l?5d$VEbygH4laT0+Tte}yN9_<2Md^71ni9f4DC#8Z)0+VnLbryyU6~oWb9OT z?5MFAayzO!M*jP_L$#XIzm*#AO!7*yZKPR<7OF}?sY51?1R@H0=(eOB4?$D;bV9im z%Whx5=CNjfI+yo67vyt5D7$HzIz(v%1*Ft>|kmh!R>$Z{n<09o1$VWWT z9ioBVL$U1iMI^h_m}fcjCjr|8+LS^ct(ag8A!SiRb*czP{(bm2-GYr`no;}Pyr23| zi?Dyyu>Zm#?ZVJ3NPWncGrlokcL2q`1vvbs2_X)Ecv#Z2JVbDK;ApXut z(-R}@doo>cFXjHE$i)Q18r0_IzjOWlPF$a7O=0gGLv^cxG51d8>_5LGZg;5Z1XY%V zgSj~3RTb`&Gu#kvnmb9J-dCvI9#u+Ua?Hdo18*+w7T~qZdDtnld7GBOs~U zihiP-EB5yy`rRGotr3!|q{Z{{Z5Pf^{e?ikLwyq2ysL!85eemYXvlO7395|OkZ6!qR{E{ZP zV%&RzjqLA9ZQ*la#hAvT@<@LtPntlfqq zqR_&3p;!N&S0DTR9<4w7YmG64)NQ@{?z`N(caOjEH~z->_4RtqFZ{wU@RL9JlmB23 zrcDx?3iT@H!fOM>eWGiH+qoCs{vaZag-u;v5(s-g3R3|oG^*x}ba1g(^C>q#?Hi#@ zG?8e9mXoc-VJBpQMEF#6s-*uI5RaHF0Nq~rn!1$-=_eARH-z};P8tr=y!rpP+|ME8 zCYT}QN)}9WB)nusdrm2LjzYijLdCn5b zR-VcGDBj#c)$%hB^Nz`~8pU_IO;)|NMtLcw27YLM-BLW?F#U8(aV7|>=>*Zp*Pd+c zN56I%k;;ASa|tU1&~=C2w}Ms`$tu+-5i(xiB->?qjf2HvG(yXZ$s$pOINIy!P7-xV zLT0hlvxM9dN}I&XX{>J~0E=G4*Df;rIQ2%gxrBaktoKASCZzrRIE`&(N=l{m8@p_&6a6qArI?)D<= z8)!8l2*0-OMFX&}iMzeH^z}le7~I#y#&)p3O?#YGV%0d%9t0Q@v1zX8X8~VEf{kM_ zGgwac6Zs>ddc(hoGgQ8;VV-nzQ4UA3&5om3bGWxZb7{u?M+IpzP(shh*5KAD;BXeH zPa@5c-1{nu2y+l`4%Ab5&5@(|4zhsmrMMAWbFn5Kgrsf_*;+~Q0%NeD*!e~YHbnNg zY%MetxA7t#PqxXninx8U+U{=Gz+ktj0*Rt29B*Gr+OhWX9!4Wn)^={Fj&IY?`%2R^nHFCxT-qQc7`#ukP!gOSAl#TlTtdp=Ja?Wi^M#Rw*R`5$Lvc< zc`wfzx_Oj5FE7P)zx4P?7!4%`I@1_7TtOlM|6LX;a>&qdZry`Y6osdkon zo8#9RW@QD4P~hhQ7M++(43yFUrj_;Cml0E|(Q@2v1z-&s=sPuP(xWnuF#)C18;~Z% zgZt-TxjWF*&{CVV%VhJfkm*hylE^+;^)@0}k6Jzt0a+Bc_QA;jWNIj{dZw>>%JZJ` z(o?Jg*+zg@71C$z#1+jCnNd15eZ%BD+@2AAacj~uHUWhr77}(EoEA0&+?udNsV`)2 zvbXo`Pzwxo^$?PrJ2@+pz#T2d4skC5-eUfu(%Q+yAm$BS+HZG#&nF^(-2G zGdz0qh_8P2tNiM({wja&&;2?6*dP02fN<9T#Gm*R{Cof2zsDE9_{Gs`@4@P(l-3yLdQXl^gu?)=8k&K32^U{&f_ zzf*uJD6YkRcXz6jund+TiQ`E-7xZOtHER|k6r4ZpP;HRHzwOccj-ziX>Z6R+dyegc zyV&Lq%WrI$t#-ntbXJ6@6KMjnRfoOUN}~X%w!7U(COILu;$+c_I9(bNgS)O!&(6lf zFg!Y?&kO9f6_oz{$M|JQx5%W(ZF=--F9mT`6MIQi59R94dVVv26)eLWi71&u8+PoShRx6bk5jZ_yr4$S(KL z_LMJosmW-FMNTZ8IG!m*duN)0<>d2GuP#N0Vie)d0U|ihh0z8K@_6m=kzY%G(BxdeiEbwAU~(R46Mf6> z1+-{)bBZ3KmQyp^h%?{n3!3~|P`}_LFT_uzx#){qhn{{ahv)u5!0tq^_GX615Dut3 zxLz87eC<;xd&TK52JzmvI;EaRHjiWiJNYEy zGpLUwWHh^BOhK*>4PaQmr^v41{?Bcw?-cA#t>li>k;NyXqw7mG7HGp`Y#+-0Gk+?{ z#qCnw*WKfpe1DV)m3a5RK~*qPP#pi(ZJ2JzG`_H+H97BaH#K@wQ@wkLFZGC=hUEmk zsZrN!;zC5IHiaCvON*%k*>!{4cG!JSeK*ISII@Mqtvl>DJ^`0uAKsVgUY!c*5Q%jy zg47}>78zlZp|4kj)tda*TG5pZXXw?92vwaUmVb9Q`a64lo_j^yZsDy*DUZRVY>$9G zJP>!mvJkpv)e@Fd!rkRaouu~y9F=)81ewx2KB7K$qmI*Oit@a}e)HQHtzj`CTX{?? z?uusLa`@joAueZBZ!hqr>;=Vz#x$PtqJ;qc!Gvz^BsBMpdo2!G4qDcFc^(tfp~G!E zs=JP^6wty|k?f{p7NNM-Okb$fyxeAyNS=|RJ~Xs5ae*;4($L%l=Fb%Cw++?3y`niUn0+cHIlf5mS=ys~uGqXKCNm0fMP&6m{Q*ScRT4XCk6h_9AC(kzId@m zZ}#YerGS`COWarZ)f%&yiPo%XiTxW6bid8@J#R$*(^>6)K>~=f;_#gk{+}zyo2mjz7xe$w3d)j57l0@mh1%D`i&sjzx6VtqZpHGH4iWSsx{|0hkO^Ad#L;f^GpJDNELD(h z(pJKK@P$cw0Xd|GQTv;LLxTr&z6xntA_o^rP_@1gx`C~rxRhk}U>P$7>^_CmG%}J4 ziK;Vn_9`%1^#zl{aWXZA@93TsvL<4+`an@$DWP(uB*p;|?MvZAX6r~d*CLYZxDELW z3f~xfE&h0UC;#r&$-ZtXk1qi`@}ctl9b$_b2In$$%daPWua9Gq z7z!r`R2M{qYSb8@q=sN0Cjn&r)C!%d65cT0L;m+J#b{-MXW$mOeDj{`dZAY+B}K58 z19JS{Fg(5>ZK~@<$UX#tDkX*XY&N2cpV#%d?h_z-vNwM$gpqR}twA3h%KkBM|0dTj&z07Fgg#;`MSjg^ri;Ns%mbk{g6bpGpTTZ-3{geCx0`6Rm;8;v;!>wRe3)hq zcDuev`(}i8_U7J8nhG#dyP^?Inca)~plDpu?@YQ8-GQH2nOtO`wxX2@Q}xF01(Wti z7395=X}0VwZIpd_Xjp)8g54}-I-)x*0{l1hoCCdL2$6d;z)+f)+u+lv<(vYUNJOJ# z-wA7Kn|CWC}wP?F$=&kQgLECKZ{| zV~FvvXU4QY4r1|;fv?r5FVmgGCA4#4e8d#!sf6K0ex=5#a7bsq>PaqN0tCBCgy*{H z(|)bSIwDxny!ho*^r1@06C5T>$!=S~QE5C()f0?PlMK0EB^Xi854_X{rt+vPP0-jo5Spqe)Hx-AP=4G8#I`Mw7{3VjZbuilJp%5@7v#3>>hg-9~dTQf%D(1 z2zg}jp`eZX2Z7}WisRqfvw2+7&K3Du@<^_KAiez_W}m?9mFMOQf*Q=91lqac=7$4z zqsgwtE->Vgej+!r-HS)LpL()uLv}N`Udg7Ry)+-eB>wtJ=w{FUP(&4;)BoDh94J;l zRb!qO%s+ns?Zb@8>yGlHE8?`kmyY^W zxY^}djV~c@-#M z*4R}AZAUnmN@LJ;BTCaBmUMGV`CROy!@*Pzlic90Yt+k&(S}ytzbm8Em#@doLEkwR z%f8oZ*vkkt_B~<0m+@(yqfd^AvkCpHSNx5O|Af_Q#bWXKPDg$xuVJtFXWjpd?D)=S zzNWM$oF3szN4Icfs}}R|t;K0AuBxHPx%u&X$$qxOt{Tj0N0^s{ z+=|0qh~%$#=uIV-WHOfy&B<9ucDBPW3;NQq zdyo;#?cwZpfqtULNeIZKGiqth_otfuy~x1_Fg@#O7UI=EeOAf-Hn;3fE%k{M@o31d z<*~b|gnAzR;%l0>52;Tao3}OH9O`>Ly4K|9TEb6jMi)QRNP$z`O~p_PvloHlqT}g5 zm(edh$A8C2c-L2Z@-xfqNo4y-(Jcd$XCkm|59DXFl@u+e5x%-Fq>xcTnvmiuFniH* z{v!qZ`;pl*K{LxsPhZGnd6<44e$bO&w_JUt6dFe>1w?)$Q|WG^C~gK9vp_#FtRGpj zO{Bc++24`;gu@R6y}bT%J~l5PMcQDVQ5}ob`0PbL79`nCi`g{9!j2S-;nMpKy{o9- zJ)v6|W*@Fl+r6A`gL~fT3E^;txmZKp+!hg;qrbCY|8RocdudSKFk#W#n)vKh+7Coe zhE{S8YK1yHkZEi(feBRwk52jPpZp)cul9;zpZMvA{~OHo_BE-tlh>b&Z}j#0v!IaH zLieNH1ExY?pa?PBa z&CR_I)oAA5F}QsSa6S~L&TcMy!Q@5KUYrie;SskL3gq(R^mBB8v|sP*At2_VJPZsirT$bW#)aGZCfRD$!PR znE>e)X3u3GEnl~s|5(ZD#~SQeCeO1K=da_h*Hm{huD>jQ!v;h5^!jP%zbZ^*l}=9Rdc+A5H(By6!=Sh}gEKGYn3*iw9QjX#)(TkG9SsCwIw z@|hHq=N0;TE5=M^&hE=6^b<`xRm@)Y6t6^!6qTYoEHI77ee(M6y{|(Mw#Ct0n!2`= z_0aX>8R(zB5GKL{`#xG@b}#-zULE>&-2pL3C5Pvb-fwLmKJkN zlM7`n6gjb!!fVJ7Ax7CSe8608h3gq3%2`70P^M zl(2pxqmSnJ_K+RJ3zcv)^D8ylgSu@*=ZgKQP#UuTA9;VaYg?A41%lr{n%S*(cW0l* zj+wcexrYZHO#yj9R#j3Lg$k)89-tJLNIV7)z$FqAPmtHB#2uL|Ns48bEhai?=YdY!KSH4ClC`6 zEmJw|p3T&V+ypCVu1@^3^(6opL=|9-yM(D%&~1RJDO{D1!)Fv}q5_`t8{ zd2+;|<5nC7qN7TnvlXW$J|TDV&BEuqcu8is?qgu%R+W4|>JFxNoG|q6o19kffkg8b z7r0k^_`T5*IY!K1HVESc14ytw`TOSRfNEM7yR zFWEytG=R$$y0w9;mT9`kHD}U+1jP}4KT~j3(mQydUF*~2LXhltNxO)OXkK@or=Jm+ zE~2=XpYCEzUT28az5SU|}4#@6|Z%wuvKNNDQyEB9G zy})moUE*`lMJH|3!BYPPVIz{?v!UVRNz&?J63Qz#T5Srp-^#GE(P0U=xuChS3FIL?Rvh=>@o$)ph^THjVbv`Q z#u1Trg&^AiGMXT0MapjooNxk&*1&GtWG5ac2P;uRtz^bFbtU;WWklg{$8t&;ipjc3L7X|941@ilW z;dl#$U@h!NPv9;}PX9VKD`nCP_@o!H$ApsWG$}MZPsQ`h9<`78)=3UQrTFyyDj& z5$4E!uDKNS3r&ic2F&{mrjcaZ%lgEXbi$myiW5jQ%=ve+9h((bXsC`aRCgY>Ndc5v z;K6z(Zvwg{!5rNSf>sc3pj?DK_-QH|1#lPh$!$~joSY3aMGz{P5+Tpv&*r2ThRBAt zrBdWVQ`v80*Gp{CASDa7p#2ocKYq!m$QVeAjUvuniMLd|DD43J%Y`Wd57 zlaSwVulRO1BC92&TyVn}{_QqlV_I@7bNEFLEOOr9Z|>P-%qkXYuivEyWib&dOE34@ zBm4RRvB(kTCvL2220#g#3k_Q<=*Gd920mBFjD|E0+0IW$Xw(`p*BBNB`nf`R>!JDp zm7EaWJe$OZJ}3H6-uX%FC@#RC&oC^A7|vfiL?w9hf6^3pMLHFfcLBwn{UxTk+FzE7mf0s1$DPnNO_7d zN5SGHQ>TZL)_*<&ZvQG#hvly^ZQ?q;?tVo|m~N5iOkBX_9g!S0uz73GHR>lsE9{PL zUp@n#{!bqHX29mN0>via@}GQ(aIr@JXa)%;g*OR;0NI{RP%wh*7@*t8V5dqW-*Llq zB_}2O=L+RbM79s`IS~*U0>tw94;7K-evv`<8P0!lfKFU))h-d$64|>0!!F zDaic;L06?9MM2tPS&-AY+5Shayl>wnMM2JLKOhc0bWw2Xxj#~TUe|O6S}sn%)Ao?` zmPV~uggAdfNgb(fp=qK1^#SH=jsCMor{7PFjP5+0w7P+hbFofo*=l<1?lObwBFbF{ z=|eJDVBy+aao;K5wp`Qa7R?!h$jp(V>+05Xuev#6IIqyI8GJa*f%!{LNsdoA&Q~cJ zTsHzYW2lzhN2aeAoQ$Y}&V2cUN46UfGKH`HW)58o)<3V&uQO~u%h6sk*T>BQ#0gfv zB+csZ`2f>cHajy;RqE#+s!_Q9qajE z>MMog#{s(6$Tx{rk*6@Q#K~?h73yaZ#e2E|W`_uu3${PzrI)PX1g+jOH|5uK{ z(a7mHbwJ*F>^{li3c%K+%ywrf$7C@e|8;@lJqs7p22}5Q+NYjtm?L@HdfPzy0XcwJ z=4d`%u@PG;%ml!mNTnzRoGnSCeDj_>?DYcrb_d<{h-XVq(eiAXdiaup=wU&mQg zRfr~sdiffX=V%{2W7GK4FA)FwkFfh#VQwsRN7~ci1i&gKtP6DGU~c!&N9ug`pHxsj zqIhtV;5k?}^x{e7a*5jQGeQ2ohP-%%?CM7tW`g4DJdXwrDvWQp!hdCRYZ=crP$5 zn<7_|5;e>jWw88mKyzU*%mwy9>b>sC)@UzIq@U5<%74%Vxhevy0kKzr6X^GBgpN;H z{CDTnqRn5*WY#fz=Mx1}!!`kDKWosPW$0Fl)1e|__6ljzqG4K6tX1b>jw(^l0mKpT zap>n3{SpvILlOvWgJ)mXuu37@aDBJeIaEjLrm5-p*I@fm_u zP-Ek=oUuq4`QTc^Yn>2||vx*A~^g0ji4=7r8q(bkvH#>;?aR^^Vh)-Sy0sBvj zBq&XKlTvW^STiZ~y`-XsZ)dkwliN(Uruc2~Yj(%sgS##2k^9I^qP&d>IY~cj1@)Cd z)Ihf)=Tx_Jt?4fv^g%;6g4^FUh{~XS>|k~p?fQGj4)px)=L&AdVr^XP-P+*rOhMiW zvYm$nI#TSOC*kNFr$7BNStSo~ny_`()wFrd-Z@V#Qg>ROHG+LdDOj>xr(4(6uD-@C!0auXjHv(usRgDcWie`C`>BCxG}a-)=d^Nk70{grEMEYo z4G3vkV_byPfa-}Bx{}%l-LSy$87BnY84#6*I7?ozj}(619?+d%pngJ~NO?oE32N5J z6W2TP*WFBT_&C7N1M>G8x}_-87ZiWaz7|yPXp!v;pne<>$^a=n@G?X74p_VpgjYEh zUlSQ@&X`necM2*kh55?>iOe{NLO>zgN66R0_h}$)E?5P-J#9qUp3~D&c%N?qAcE#x zo!kXIC)Z=pBapb?J3;kUBikxu$&IT$({MR8GGp*u+)AR`(z%A2RsrTPAc}>x#rfN`E+QWE>d zx~3qv%%RTKq<*J~QaIL#`vdIP)QQD;MQc=m`v$-)s8kd9(!y05`EPv>h!NSQ=hWcy zk6~($^FJfE3_nLD-cP5yB9ifi|3w_Q4 z-_(L~BOgp)IGrtSBKozUc@`i?1>Gq4k6X;=E%vXLkb@xK1oY1}x*s+Ood$Y^{EjrL z<`JKVsRi9iaQEBk{1TvFg~VV;lj7rP;-BpZvh-^{M_)z6EIx+v)6py z3{<85WOUOqDOmFOR3Y06>@H0_`VVxZz(lPb<_7(bE-}nlZ;U@TxdvLA_L!rfxQod5 z0ojI5ihiCUXu4sMopKBg_hf!X%w9kl&FSF1>?_489#*H@|W3 zE3$q@7LZ(DK{=1uc2n@T6a^{W-2iiB>bd|3_Zvu6A}mWaPth%0<-N9wZJX%Bxq!lA>O08AjOITPK9C=k0qhGM7mOq z;av24roX&BrrIe3d)=GIyyeiP_YY_NSc;%5&15_6@ueq zJ^j5{c`VOrc$*^_pt)poLAn!1sNJ5#0Npvq#w2()!x$4mVzOD zfONF{4u=EOtV#*WE>Tw$O)Sjmq>1BaAwpL(mDXuy*oZjVp~4u%1v7`>V*(aP;grEc z9|xc?=q@uprU3my;O4;ctB~B#)Fk2*PlE{nbiG;;AQ;}JLdS9H;47LK=q^rlAn~LF z=q{qW5KI+0=vj@O^ z)gFQBeZb<2RAeeab3uBG9|*!s;ESXEE=K!Hj5G-a*At9zs~lRAk;crx7tDt!Zx!-- zfUh#1MV&i|MPp1RD-P0W;QbwZT|+;6LRwKwHo(c=`x{rDL6k$RfoL@R%tD*w9Jkv8 zKEQ7_Q1dy|#YyZQ?>l@~uh8`qyF!dXI2;kW4mw%-LIknx;2$2KFE44#*oPLOFz7D|n4?2=-yr0MzxVSO z$gZ#8ey3!Uu;;WgR0euaJ7BXP5Hkf=5Kt8l6dUTpbQ_XBf#8_W=)Tsk4BE>?*IsE( zObn+L`7WZq77P_2k@bl$kaVa5UkcoecCak4N#Tx`^h~>t6J05qEk|u>hcOtN+R#*6H3Oo_NCT@<==33S^4@g7qM)N-ODehA zx0no-lmg%&+MWylF9<+1rJN66?L z1I5Bd_Y`ks$23~~pnGS*9-)Q|^|?hR3>vFH;k04(3l=ZB19Ynqj7GK_AAn6q$bfn! z2wBAPS6pN_|JNR|*0}s*is$kNhxWp<*ndG?#^#5K+VxeO`0@Q(Fw7&$8(It7V}#u+ z)a?Q`3E5YFq9ISG4fb}l|f&mWCGUgX#K)()9gWzz` zQ>wj0KsN!^iybE-PZnq|EcTx$L{(yetI46~!}rmxN;KCQsy7|X?E%B%1-wm_dYc~h(6Ycin{zUj z;!vL&n0_F)Srqj78QkvhzjHPI#lB=-AzVL#s(Z-phWMzV6I~BiYxsGN?PnEi6HvbGpql~q zzCL-ncRkcz!E6ltGDm-wVfht5D|2)RrNP4w3g`})z3CB^VS;%R6GC@7&~zV=Z9QhM z8H!cjcF?thJ&>m9vot;3dqmMFZWNYZF@$wkXif({kPWGU1^?o!fP5F=uhz&PdOZFA zob)sof8rS4dZ}RAi0gkj;QqHQ_CIuxR%6)BFx$pN!4TvR3ieMed;vWC&|p}w>5)!B z?hE8!6tGrsd?F~{M`S+Y@KK&ZUb!EPS`(iOw%@l1np6f;N6cUKI6TX+{hYeBY{#iD z8Xip&zO9?{-uK}1rI->iC1C*$F8h!_g$UEt*YDtx?w}RK9^M=92|< zv>Nto1yvUCkJfN=i{{dD&%JF(*&GIh{ej%?vOx46p{}7fdssz&w^}VZ2?!B-y#@f% zI4{o;78PVW1KR%_tMtGAB?9={yXoJms-R~T!u|jefm*Mq)w{glL&7yOSuL!WD`e?34q ziNbrJd!Jtw)QLVc@UskIX{THpmCRMLZI56S>L)prr#5u|+@QS>%)bImtB~y-vMo^F z$s}?%$2f_xgTWMf>~emu>IK`+cwXy|5Acn}?56}^o2x{nE|bJo z$}M~NF& z(eiumaQ>%m0vm>fMg8A@L^h8DO)V1j4>9uIYI>-{0BJIY8e0wY0r^`RV#LkvMEQJo z%jV?CBkmU))(CRGCdIHHNDEI4i@4pv{2FZDn-;3b@tYR$bDR@kIHU+kci4s8SSGU$5JO&_j+8feV7!_D73t;yS!-B}YZUgVBk^a?q zNU(s8PJ(WDa@gTltYn{OkAIrqL`$IKF$%sYrq5_F*DH}@((2$aR- zN;n3zUTQ3}brd>}HPHG}shY8q#N; zYxrcx9<+kdX=)Uh12vr;047>+;6WlG@(daxXWpipiRHY^b76O=YCp zquBKQnD&Mk0pXb^ZTHP{4NW?kCzB3u!;eN z7(?KcLNt8OWDHGJ1P?=|fuIO+ZT7=t z_d9+jAqkkH<{rZkJU(CDd8Td~g=p0jc4`_Az#!OUTVF>6%lbsOp0&rw02#}hR0E75 zrz%ZXxwl2cAc&rgf={8ylV!h-fDN#P!_X@h_AMtV#U1rv{fg^$sAx-@Z#EXz0!(`+5V}9T4vBp&nlo zZSI0UJEQ;s002ouK~#D`YqZZ-^xr=YbRT+m3rW23xY+^5AY3lVr`tC$?{_e_3jNb1 zhGjMh2F=Y5s-u0Io|g!v!TF9Nq2_S`yVL$?wfo*F_}WBp5Z_Vu-(UquYdfbtDRt&jiaO8~%&Kl%u>*MhU3^?3hR zGIUP|^otDn23Y^of}61gj*m5VpJ+~AdUD940E=I51o+FnMijL`oJJCvzkHW26|IZ^oTLj z!#}-%pOcQGIuBd7Jb?P)8&pAr0M)wFp-{JocMs%iW_GgL!)i{d;n^Cf8>qvPl%uAD zf7tNgJ6})K#s6lm7-8P;Ajbyb!0173>=|jlZEuxfm{H@VP?qY6rEiad~qIW_rrHpPwFS!0`$9h~<|7hi3}) zW5LRC2n7sx*`lk&J&vUeEh2kLq!aYt>V!Lt% z$`!EN4t5LN|IPyaGEG8iVDVK%dFzmEdeoN{h6Sf3V?eF$lR?Ps0CVVZd_KeRi9&rX z$woLLJ7{DF3zw@?-a|U7%(jDly@k74U|3oduMTVo#^mC{BIE{cT|n;?WZ=Y1LWFr| z5tbE(RmKprhXdlQKrkir{SoH9NAdII!j-bM;@Oe`W$siU=-G_ghWicF)dga1S%|B^ zDT?R6!_6Jy*RSE-cXS*AK*|bA+(c`Q+a0y2fBCmKar*Lxg%*&2gajsNP0_g)s453s zAYE?oP@pC(YC(TJgKo*?k48hzR*3gos5cz}hdf8TzF=|K4~S(>)H+fh#N4p}bALQF zgvsU86&fKExM~TX3%Z4ZE2*!%y6Iu>YTW(hGXTKy%MRu^K zp*~JDQ8!})ZV%iqiaXW~$EOT9&bAR}KchCITUGG6pifgyUqxj13RNwrugR8>V}`OP zP%8dJFQTn9pZDg6soIYkJ}1>HdtlAe{-8xTSj@jn4qZmDd`+j$(Iu>SYbIdT)I87E zzhdK2Uy&i=^HdwX3^+W|=+4M4Q3LSN|2v>P7yR=7VPSX73{gFj?KnU8!!rg)*H;=@ zvIc+nk%lWHF8(zem&0>GaT`&-W=L}|g87Rh;3M{*&uPtj!H9?AAs~Ob0q!@z_nyMd zEQW8z^u{8aQDaaRjj<}ee8kzBGJMJZs0pW7CVxCBviUj|g?G@kZMg#z$G@=hs zhdRa62YeWfBIC3~5?{6%U_dUu42e@GLSbq~v_VGhTwqr#9c?#dG3WTzq$18}iVOj6 zPFnFpwY=HPF(K8NCA#fW$kccl1y?3_0fi|mqu9_<3z8-Z?Euqc&@GX{;n5-qM^jN7 z6UynxTMkwb6op)z7SQ2}T{WOOCXVVZ!tUAL+dZiV$^nQJkp~M5rJ7P-Dm|zujZ;>m&m;5~Jj>1(;pD!0Msa$-HI)y;$mT2s7UcqeBXQUaH zDBWqnhQ!+*=@k6IM3r$#4DA9W1N^#z>ODuCfe4yv_*lNQCo%F^gyb1wl|wyvpiih9 z()X+Z$|7+-fzhx5{V-7qMN!ib+ZGs-_DL%qvLO)tx0d(kcYGj%etH+Y* z)1?YpDrdM%RBIX*p?xAZCF%m&o6f7iqZrstR zDG>3LLQY<{?!z?Y5+BlpTP4d-Aj~aXb)rUPhf~_QLGzI(z{Z!(5?TbLwD^BdSWIF>1gxEc&~1CP|Nz(vtuk z)09|-K-Vd&rm1hXV-sPI0lpw$WZDQlB#>c9+6(-78XJuL1*Qv-I_-&l zn*3@3svI$)pE1{TKm-z%r-8VnKk&(Y&4t86kC1kN-Sv=WNQH-kxDR025%>@}0d<)r zVqfH>SL_qzLaWKuiIY^#VmTSV#8x4O2r+i5zrS;r67G+R(~215ltmT=oK%ndeE2|j zGqNI-I!#8R<{BP6$rx%3(2a;yp7Itv_nNXmY+CLqS{MZ?8A4?dN<$490H5)`HkQl} z=?C~(0Y9@TI8%~Ebi}N7XwNmebqYGp%oKj;bH$L+exTdlL8VYWOu0ki0ZIBuy9b++ zbZhC38nR%ySCseR-5hP^z@~F2G z55&emw=x;yjMEaIpTN!XeZ;U3G>-$dVXaKLL#7!SB5Y#XGk#{=^Ca08Yq$!qTMcs% zsN}|{9MG>!nr23>?<_e1&X^~nJ3)5vG!lByNy8BkP14wu+>6JUg`jCo?h2U%xDrZBSDPTzT%J{c>8mg#S z#e3d)o`XgsE@nyBG$0lk=~#mUJ}6~XQKT@$WdCgqRLsc|`3)px-|9vr4i3635ZexJ zzlWsa;2T$FAE`HwaY*pD(7(V3<+2(XRyEnneL3d7R<}x>YFdxM{rEF0rZ_ zU^So-gJ3mguOiNV;i=0=6K(28I8o`J4p2UW#F3iC0w%wUDBrXgRvG$*LiwIuO17t0 zc0X6iOPeUD&kY{`PY+PHTOiLcJXz!YU#ZYMj_9BC2w8^m=41-6{v{LWIsG7wsasH( z-d^%G<`3L7vmLF8+jWllE6w1iLg7O#2msU{Rp{qx60v1l2Q?5O#o#7g5n{yd^EvXJ z$L!txqKp!R{xx1L7Kg&?n-3hHop?9K_D_lQteBY2hCi^3hX9$bg zv=;pR1_&Oisvu>7xSVmKve`oBGlY4Cc=HzD__Qg%(j6XS{hnZ1>7P>_NQON-`qi-K1MiS zVE6eP+1{i4a-U2F3{*#|jj3q|88Zv<5oSN;M`&u=L=e}f9Fyj{!2X%R?7fFQ1kAr` z;7fytA7*fsU??q?FFf?^9>qFGzfjnHoI!a^0EQYO+?qDjZq5U~dP{J?9Fy=A!1|XS zL$bm4C9wO9!J}9X&~I~O4}$7F_sxgDq!FrsXaelLL4HSMRA#gs2k53}k1X`_ZGb&G z^h;6>ihF8Y%G&{lXBqY%bFZ;?bha910-tHPInZ9xb!+~Lf18w1YP}X;5|Ft2u{kAL zM?m)hrdBD;E#-UcIvjquLUTq?!n6^yHy&!>e(~_b9LHyZC;zNR@#cV-TLi;k(O~&I zuF?Q9*n@*T&`E5V862-qQ`gz+4tn1r=5}gce3fCCpU$jdRX`R=6SD0fU%!P^B}{#y zS7?C1L)!sO3$xj=cs6>{FU9qORICp`xwtQwdtD*h_E7I{`TKc}csOt( z2o@7acD({XiUKMG#9RR<8O3+%5~UzThByoaaK=F7-jhO|sMr9wC-5PljMw=D;ytlva$FwqS$zpZ<#NX-*SDA)Hc-%>L;9P&R-l+0H_Ls z`bm!Zkw%yo&>IW6+d%vR{^JtELPI}VLLWNV_j}||@&vHZNz1<9^M34l$a;ZLWauBU zUbPP`qa&6d#!ol`z?p@(qtAezz zL^~IwA!lpEVc_|fXOOallqGa1fZw3B_*OR}Pzqw{QWS@tJkGKpRVzet+?+!^*3*;& zNa#>iCf*x=R@Jmy4S5C~$-h_iaMF$>``oD6!A~eS63@J%BaZ4F#AT%2E^?^OLmxSH z@nYH&X(}25_dnIkrTZOL_u9d|LhF%WDQpl9U0~qaFvED)WjFm$y%5+Ga`B2 zN}*q5oCsvx2y_?GJj$o^&VD6u1<;(Ubg-WzSV4QPknJM!t%uJkXw4teBqX7Syokz= zs7d_e6>iHV;)RE)$wME-+cvpp1(TdD=5(eiUQnPW4j*tJ0apnge!HUERYt0Y1Qtla zF!|loOotu0qPrh1VV*BgzH2bd$#u=|1o>SCH82I50{oL;PxT&d#tnX0@cqa(++@m| z6F1A&F*O%GROes;qLH0T{C`3IFu>G0O`AxYiJ5^f3}jV7Qkt&Xx2WFdP%e=Em-HV} z6o6$&m_X5XGf^^B?~va|QY&U9DOQ6A3c~=*DudZ8py`2QpgUGke1pyv`+=e{tr?`3 zSp*THp8bH>v`{KdNsj-S*Xw`9OR@~=>=I~Ng#CfM_qK!FJ#ea;g51<>Msa%Ga_YbUs+Bo1`p|&>!Z%rh%q9&IYNwqK3^kTt`G`?`Bx41fmOlA#-Gqs zyBnsWQ3ek^c!VmW>sm;nccY*kbpqMep~~qFrv|!3sm^2eHca%YVPO%nGd_MDlF&O% zRp)f2L()CyWKSCs;42sG6SlzKCe9 zQ!&!YG+_of>F8FHngfOU5%ZDkp5O166r2`!G|cuL&!-5&F^XViY%LuQD_YjP7dMy2Vl(m(l3p>cpm+!{wLlGgzQbH5 z?W#P`#@E)7+Kns;!}EyzRzvr|_VWt;Lh!R!*9bccv)7m(lGar?5usbB5Ihlvk%o+W z$LePqs!y>3hMTHM;nHJms^ZR2HiDD8Am2 zLT)wG=E!qwQ6j=}nlWm_jOP8kKR~)3#Ukf@3qTGv3_$QROZTf%oYu5Gu-#4dM;r!3 z|KEUXmWU+UQ<@Q#1;?BtZ_T;MrW0dM$as|n5B`>7A9ZNqFBb5nfpnx$N!v{aXH1KQ zf-pdj$&ms?BM4Q>aTq8HgHm)zQ37+bL!6fwRs}tl>jv@q9Q``S?gtF-vOhan!_`lS zZe;s_s0Gc1`sVoGfud&@;0rb=(Evjsa24rKQANyN6V+@kRC0$p@izOlU|0z1YaYTB zt0j9sPa#yX36ty8>F?8;uRG(xfBnZje5UaFuWOiwg~W(}*dq}ZUvTqtvq<#x9m5Et zISEKd$BOzXQX>$j*J}4{teQswvsVi9S3TTJ!<7oV?=hMB(ie0WGemXgU-#I2o}pg~ zs`mk=9Z}#gr6l+BlnAX^@Yo|Tf7N4HXmm>rdknA#2lG&Kku@zR8Ci0+(HiEVnHG^G zN2R!4z%4R3n*qp>f7t?ci~KDM3BM}o-gIcwVkQb65fF1NbS~NKX?{%Jvq7H`ortSb4gmt2_gK@lO|tKHj)-I#{N)mAmnd-C9m3GT z-`x{HC`*o_OBM~|`+^V=cKZ_rqwg66ceO@;ULe1zIqe)Ah3Ts~r0EcEA6Ve6m*~$+ zNQlUP_8ReQiTaZjZ0#Up3T^=Oo}cX~9F%?lstj=~lt=sSK0pSBQ+=rLkr*L;K=rET zgtaoXj6By2IBf$=rl$M8Jr^`jJnUA%)SOU^N#a0qty@t@UfzMuPh%pvX5)VGlL5O= z=(y8do$R>HUa))-u>DM7__#&bT1cemQ4$r+m$cl>_JVxN-yh}?^Bw>M{ep;Nb(4%B z0uN(X3Hs{+#mfvAKRu#5&(WUgM8^b_S*rbW;!Si}d28I}7i5JF|)<{5mE@&x(-y-!U?e>&`A!Bk}aF1|5+fl)MD zNR5zsIPkvBJ~$VRA#Kz-qVvrM9Pg2$lz+GPiYdIY$k}9Qg?PW=H>(nHUZK6pFuykl z`#p4K0hPlq3dj(kUcE!;I>fGnK3`#2Cu*IGupw~2c(+0Sm!4tsd4|iMc&M8i{+tee z0N`et=(xo+oshxP+CBk?zMwhHjoHc={b7WF|3qAHL- zPuCiH*F8F8SRWJwCVb&x4vM)yT96$z>MIR3$duz@ThgLT6Oxcz zO<+WILoi|gu^?JNe^p@qPEg%2BWY|ZBrwBGf&y}i_SL|>Njz}z(-uD0I6O^L)i?_L z1BwSB6*iaTt|yqirKaxo_bgl~n7!pX@0J>-OKx9%fJ)TLpfOE?yM>^<4=8RrKndJg z1=S908eD`cs2`5XBHPm>hrlWY`NNvdu(}_B%^nzf=rTvBGW6>lSvw%Ue8cRZssJ9g zq+nex32=R2DRRU-qX^7tc+0~#EGmS`a(wsOSBUb6qpqXF#lO1SK4;gz{xkkt4-wr`aJ)8{zxL35 zJ_yd*)d>$rqM6S?*>5nMj$oH9LRak4s3+Fr9$w6)h`705RxMfe@_kMg>HUe zq1%YnubG)KEcNvLaU===-I>Ae(+v4GVEL6pbJPe%P~EUtv%3zyU=~2PRPeclYAfi* z0*jKGmJkq1rWyN+iMi(J=)RK~$UqZ>kc79z734uH7g0P!gbk^o z^RFVxds_EG0o_t3i(k?x41n$T4a6JRJ(0lmF9F@Tl>DBi4F`Zuf3(Fc?z#5+mpSu6 zEO2;gQyveKl&jYaEmK{fp#4BioGS O&kUplx-!C8gu;9*)p_+K*UE~0)?!WEp} z4s#-@^H-#LHjlUuu3ofgFEaEqh31i^lNWCY6q^9uMTFd-JtGZu`64DBJsYdxs`>^U zQ#`PG(IIF-bz|Xe#PQl-m?@aHpmwj1Q)6g%J#1}I-m#eJ*E#IAr;T?2q7_cPT94u| zkPEIA%w1}PKYI?B(vU|ExJ{Pb>ixqv^pF6!))ROpnmRKW<`k*zkpZUTWFyPicr54C zihK~13ILM@{+KyrGoG2d@9yX{HZ62fAo_rCtf8xtQ>L!xK2hXQb&L5=I$(Q%DhlA@ z457-&pzt1Ywu1JYP^0NkeEETM(8!`#FOa`I;PK6o6Lx^qa1#+Sjr_L5_1h-tP(Wv` z5K+D9m^oAFl*J{;?>J2@zuE(e0m}Fwux>I)u&f<)AF+5DF_Z*3>njB)t_$%%amNYk z<}Y7z>Twqkf1%-v66;@*LVCRB1hYLSi(vMidrdG3_UPdXh4!4!p|~UZFSCfvXNg+Y z0qRa*4ms?eRA}X?vuGX(d=>HLuN5fnA{H-Q(zK40QJ}ncaD~Fd59~B)%^&EzRo-(y zk19=4($U6TA=Xm5Whh{C&PlF$m%%gu6wq9A+9Chn2$jTpx+h3+c*2R~`j?KAC##Sh zfa(^By`r%E!ZWn-wnsDqSEwn4o=+@JjYRdjL4TH`xv*%?75YVqG66@!+(10@llrAa zuo}hPfb88K!^JFRg*eIxHl%;YJOiFwqnQS8=2e-irazK#xs>PFPI96D3Su41o;-QyB<+zso7%2 z2dxnKoP!tm$fhrS6q9*DC@ey*`FR*X^@>A?DuX_DP+Ph#p*STPkEkdqEQvnh9MGK# zfUw^~vW)lTqNEwZn2=m*PUza64TT6PTKa=2hohhsB1A)T3q2MYUB|b=la|FdB}|;~ z@AMTS;_(zb2V>Y=G%XzlM=(N!&BpkdC`~&hlgASkGz7%$ zk!!3fCrT$p-f2&Pn&?#G1ENI=t{b?|817NxJw#{lrJgKi$9;tXi44Hg9X{5GZi4Q492}lDa0|sJ(zUfYM}n^ zHX`sIuoj3toe`69$n@Gp2s~`I{P`4!95M}^vc*Q%JOEt3V>2hhOf#(zGeZj3{RXmH zGU#w1ND>PJ-4f)8$C@Jc%X7pchd%aD9o^GL!vfVO9m}ESnNVe?N!xVx0i$iLcuq-z z)(Kz)1>}bI__H?=5J7vE=ugMMW<&|fw?w>~^9rcAP5}ZRQE?q1ffGTqd9Za%(+cK^ z0DyfXKnfOQrcp@eZVEKE5&b&Cw35~m*Ewx>S;WT*=q^YrHAn6{%sJy8p!#IKp;DB9 zkHAPX7fehL3820B03e(~Tt^x{>FL}Td`aL|4H4$(;44E~cJI+AJx}#+oRBjAN&eht zKs)8MpBy{r$^ftk8K2KM@d#EyNrdV;n3j4PT@R#Q%?pH>=z7VdPS z#Jh*dCDWG{!z?i_I?Xf1vA&4?01Q3PDXZaDIS>F_cYs##vm8=)r*-0FGVqDp-2{pV zFrA|#o%7#!eY+cxET<=W`e*Dq#1LVwuTG(H9aE}h^hZyKrG9k9BH``r3GK|z5N8T< z(~^7p=z^o`H#bn_Q}{fG*>_NPJ5pe@f^B-l+`#?z$55SvY8_PF(S_)&g1A82UJ+O& zFb4|9?9X4(TI~lEDf`D~Q$u8G2Q2Mv4OmR2gFTA@^Dh;Kxk7(m!W_vX-+#hQp}bYF2Z#Kwg@g*h5)BCp768rycR$wL zbPilhYM@(8)Cqw#d`#0OpX?4$9qsl^OC+e=q|E}SI$r(pnBav?^+i3)?m1-5VI0k7L%COoGl@34|^C8tVYNb z^l>1KD>Ve8YlWPhu?Z;)Hkg~1MF~i=m_*Zc1NF{9FXnWySS_Hdl7iIWp+B(aj7`HL zBnd6U!vi3S;`Njx;$y&f`SSM<5V25Y0h!M@AvGFmy&}>nsn}?{55&3|1-l<+3ZzRm zd+5DJT+aFLLrvs)Rsu!Rtz}GNmTo}Q8vRu@i3_uB5B*SMc(fp@`HQ#QxXXe8W}^#N zjF8v2P+Gx1yM(HH%zv`w^tWvhKY0qb$WtysKz0bzq*Hu=>Kuij{WtfF+1ml@pAYb* zVRCOqesuM!#<0xcNBW_mSlu*{`@=$^U6&MkcOlWA0FyK(Kt#wmSq%nLlacM&bVvwO zZb^RMVf%v_w%^Z?KhTkCn9*J5@_%JB-CWrzzhm<`(a+_V3=%v(5v;xln7=qexfzBT zCn^keWbNEt6AsOG0sSIPQWMb7TxgW{1SIk;i?4n`YS(D%S+=Kjl;5;~5i zFB;5V9x?xw!*Ef-RVl2{1(?oELl0Tbfe_(ebDfS( zS^%J5zJbnj$YPd&hyAIhNH*c&az)*S656I7Iy#bFoRNxIx1@9~DjdE)hlC9JQHAOk zw+Qze=0cSj!x1%eB+SvlY-*a#R2HFFb1J`UA%lg_^>ohLBlnX0eS=UKY(KAH+JK9n zbZM#?arc)B_?-DZx^bAj@@O9AI9@Bv-%^L7dXH!n@*OEnQE}S2e{LoRtB~>hU%c`# zwTC$lsNS22=HzoW6a7+fd>)W(6#56vMnD0+bWokbqyL$J2I+`MS{WKv>^{vfEF#>q z7V0)b=~QZB1kEM)YXY`_-78K~+Bk(qKm3py($yCO>PMupnwB7L@lGQeVE1Vb-SKNf zrO;go${T{IcH2WdsqxVWywcNjR(zxwJaW2KUokHw-+}vVh^T&c3+V>9Cuay+p}Gl4 zf0K+$dJntth+1J-=1@Lh@nwyWX>{Man%vRMgG0zInr90XZ)>Qp-XQ$$r)V!N>|Vp} zHOwo43#nvQVVI9}BX;Le1fitmFe0E^(#oQY0f=@=Ql@i^!1$A&e@KXG zR7s0bpO6Eer4&$)2{jD4NxahJr#%p%2$luJSTKx}2<4NYE2Hy&uSk`KL0_qk4Ak0~M9A%>(UK;noSqH_q5&BqwJmk?5wMDfu%BB3HIvPB{OhQUMM z>T9H=jNy@k<9nabX%S9J#2V5)iw|7*rqHK>=#eq}3{8colZe%5(x}qG9t}T783Rqn zNk~ZO_TbVUAtw|Y;DpN>z;&nl1B$=rldcUQ5-w>f;UkpbgtYmSwvFL^5!sGN935)X zq*MS28op47nZPYF_?)y*UbB)4s$I)P$A= zy84VF%ZUaykow>X?h&RT_k0X<9g7Ouce4lzHi_#arhu{uIZaDqnCZ!W{Lf#U0xPsv z)c2W&IV1qksT2%0YBth@BWN}=F})}7wCPrTfU?vPM$PGQOoDj`nC;`KcTpXGH`oMd z^qic~W>Z6uY=lK9ARaAveSmVpe~+PI0MG~CkK_8E&c8%a8PV|&AOrUuNqdZl08PiW z;At^G?t$YKWBh==DAT_BoxDDzx+&q>OxC-nL_Y<|Gy#j?Q$Yt7axtdgOZ)7&m#2n+ zMj@c%(D+{J1cGR42*>pX0Zm3S(#lEOY~&fba|x>V#B^ z1@Plp%{@@Jk*_zVueY@RR!%|ES{Rl&Cz`eAnOLgnEOaH`D~9c+@3{zb1hq3FoPerR zXtO!Uv{w241LmNqQJaIhkaT{lp6h+g35g1b1Azmc_egZd^fHo>#)nfOpUFfymk?Q7 zX@M`|#IPvtV+xn%gg4*%w8sdtU6|@DfHhY%DLi%jJDR#Pd=OsD=bR=XE(KP`$cz{O z<{0>y4h&X}mNh4QNWt5IhD!4sL2>#mDNZC^hXog?~`TGV?K>uit?B^cut5lDF)E?BEk` zkam*N^^i6L6ktS9KVRVChX$)JJgQeM(RL%~o|aI3M1I%7KJ<{fL;J}Yx^s*DM>!x2 z^N9u+7F^W2i)ha%xbztkLP__R*;|jp6ODc)c=FF`=xvMPvcj-1I6h*UyDx#WpF0#c zJ$#`t%r$l&r|_Wubk}7&E~2|1YlNJ;ReLE=gU0ID0qbA&$lo3ijl$+Ht)P40>`wq& z2bd<{{znFG23-6^V48sPmVVjh=uq4M(JFN3C0t3$i0%WzYK~!+sY}E?_=qu`+u*(waCLjY<%fY)s9*gIgBp zFEkcE-$Gu#L;ZjJ9K%dw@vA+#-2g&iF?@1??6m>5dm`#17kk_Q?l$n74b0=~$^9ne z7VgnJ6+a&O{=nY_xDhNDK-0p#eFrt05xD><7jZdf0rUQ}v5d}g_&~4vUA**i25cK{ zltqqkdyjB9us|>d>g)_CGFlrO4VA>I&?=c<(0z|catFO!l1rOW*X7PiB4fE`y0#0D zJ~?XbYu2Kt~Ey3cUuy}{eb=VC|1ws8s_LR|J4p5H|Re;hx7r(ZHwx~1~Iodd~X4}_sHKLq4o{Xw50Ur z=48RLGJk58-(o+`s0r{`G|Ai*uZ`9 zCB&p`kz~n<;$#&q#z3^5n)2_mu|?P)poD4ia1JWbreezT(dTDu7>bPh^TWgGm)nk% z&$AVz>1ctvTp$)1)IIIozRMX*<6+|M^kF2tgSh11z5jTI?VpvA3e#Uy^?so*mt;O<7 zHbYU8KwbmgIjNz~|6d)3xk0x)O`Y>C(4H%7|8EBj4+ZAGGAQmM=C3_=pJ=!;g*5L3 z{vk`z0NjUY51gpgc|6%<=Yo)vRpIlbk##_GWzk#<`X@ciF@tFpF8|dL;sS2|$^sH2 zigz_lh8}25i#$XB=_L?=?8OaYRbaT9Lw6cFi|AJdzECLMH4qn&?f9N{ONGVP1G1Y2 zVMUFHD+!boZ%;v9%||o1QlX51>iqOsOV>jOKy?oF^BJO2C>S>f~hWh7JtAGUzUHxN^y_cY(>_ z5h(8{_^fS04^rsRH6f#t7N`sX5d)! za8)6s#ADN?$5VnRv^tFn7zPDN!G+n*!ya6kWN7rOga`*BwBl1}kr6bxV$-(o6AGe| zpEgCN0ARK~j0kd@v_}_f=qB-B3k#KUVN~MeOF|P8Z56Sc^S&EBy0xZ-Y#M*67@>OR zPpCt3b(_SLaVna{7^3WT!)7D##i0~bS)R}ffC!)c4x^mFM6Zg;ewT=H2Z8Bt)w!lkSFyV-z7ZqiuOWC%w;%^TN%Ys13q=kr2 zSDeaVq-1c-xbj03jQ`_`BtCtQ4)KC|nft@!c*?s9>lte9MCxlknnlEh;3pWfp5 zqf6ZX$ROJ#+e;;g$tJeBR2Y7%27Xpy`GNsIt~AK@oL(${w#9H>V*gQ&u%dW88d`AL z4?1GqMVOk-81+-ZFw0=;h-^m`S@i+^%Aj8;j$wsOi?>Wa*PUh&au1l}fU}=>Q^Dm6 zh2wP&(*|UR)L`^s5}Rk69?Dy|LcunC-o@)Z>2^hqFwFlvWvo0qX|7yyoV#KSJsj#jb|GSYUX52D@!xAAt681$z+auaDDcmR$ctwGly> z`zy?#kU4BavDTn!P$`wlTvXfHApn}A{i)Q=SEYr)~89J=Gg7oLt*F(cof zv;{zS$^vfL56hU!vs|HEp{j`T?8g8ahzU(2pBf1|xM#vQDEn3i><;a9nj98>b zv>8Zy*dHO*QX{ZGP`F%GK=24%2Z(|y3o-$QJ!BYI1Qa>xqIoviL5I}r`kNbw&7eO2 zglAx$bIS37t7L5Hv=_UMfL@*>?hh2Yf5#p60I&(^ItCv11H`OZOLQG=PmyfT%krDQ zsF+}m5Kj|T5wuU(h~z)}0&#FqvkKvSf#auh%zt_dyt{>Q9Qy}RW^B_l!~GOj;YGNdmn6zr~GDD$y}eci)~z@N`JZMoS%nhFKx(^EGO zHKNrxe6$9lKsf_b^Bis08QOC}w&Px~{T|Ql^3F~9B=gtYQ`y`I@(t~UkIw}5D14lA z+VIX_kq#X)1?3~`!NcbUKI89;kGT9_Xb7Q(h~`qEJr`X3=>WSO7+WyY05rNYfq&FP zzRpo>LfSK!4Wb`3F8@_cLk|HUCfR(SrnvK00jn=qdq|9U_18-bvxwyvY(#vn5wa3k zm$?5?iD4;t^v4ZU=O!(eY8@m6zI11NKU_(>;cOpJzH4E>c*k=lv+$P{`jx@q8N-l^ zLXdA2vJGGlAAsw^`(RjDwC5Vt+X2~q1H0`30Ya6-&nynl3smn0GIZMh1kjKAkHJ9= z4q;xxuL?FRy_+U=vCJWL%PC%-LGld#_72f|sJ@3<%zFH=)iV(?bJ=BTMW{7Aks$^wKtw?lqyOPYpeD4#)GH1t` z3cA=2kh0(hNSY0o@1K4f9B7;cHLfFd@JkJyetaR_~xh*vN>$FLI)P zE=)q^=1BzrC~n$>qMjDbcztL|JGx-ZUkglYP;66?<=9L#-#=$6I8JH85?GKNp3$Fr zc)UWlQV5paIRw~$Tug^)aUUW7yh8pEVUGb(u_18D*S=eE5>wu?F>(bnMNEq+J>BKP z@$cTlm9)L>mt3$x3mb?%5nSB{_{?CK35F%0+la;2ehOw(Jvo!jHPKOf2!N2*9yGf0$+*nh{Jv%H6S@|aD? zcJ~dZusAs2e#1s$%n!&crzkN(Z%2>mWGs+nko5{OZuZ^-nT0YX;$p@o@o+q$=*c2n zHv_FWFV82W3P*+yvaw6nQT(5=GiS2gpUtR^oz5@ltesY8q!rVelwgVapTJ;qfsY3Mk`RVf6_ zAiFtoy0I+Cg-=0}0O=Cq0&)@f%3%LIL$ML$FKT2lLe~jVpOq}2B2a92e$kCFg`M3o zvt~>@jvyKz)-&kT7>_hQtu!gfeGjQBPTP+);xO!xQ&H9> zy7kB&TDV0HR~oE;&evAn45#-oUD@%(5|Lm}<`Rp10$}oo6u7KdgBABZC)`(SbdP2j z7KVU@i*ybgXeQ8}Y3!aG%-_%$z-$vG%X{d(Ms{zZw+-ajK+1ets}cg{FS*Buc}eSN zM{}BJ4Z@D1qAIpLy7@hFHv@ z%7Vb^s0YmKH{QE{*Y)jgM7j=;j0nZ(8j`3}2!UA%)}-|63Vxo$G+h$Y#0mM4s(`y% zLiLGKG0@5^G!1oXg9F?Ly!z1#TnYN6Lbe0)js*a$MNFbIfQwSM4yvPW1p^xq*&ZNT z!CjQ3TYGm-G}2;z|9nj`+)Lo4|74(!?bJ+vYkiJ z0xYS&$TmIf1)aCtj2v(^01yS!q?F>up{Nwppm2ODKoDdPJ$z;0SDFWRJHVBxkZ4JV zFl~SV(v)4o%)Z04@-+v6ZwCLxg(Ums? zf>mfQEM|>^9BPC|XYlhJE>|#-PCvBKqgZuxIMH2zx;p^Ypno)j+4qpPL!6h)s3{Dc zGQN1nV!7{AL7Yt?g|W!l5Fd6#=29UXb)t_%jX1BU2l>!aHhJO4RBQt{HSWoIC;AV9 zh`xhYOex25zlCqpYyE(x>5oT1X}W5S*1qZc@p$6ziZN^&jV2W%fe1(_bXd=rR3E~$ zPlP4WA!(D7%3=oTQwZXYkL}A#ghIpTnhneS_GHm~eU6Z6*j*33Z`0JvL!5*1YyOSQ z&{DXg9!dreq{%A)a+Pn6Y+N&w!dW?aB~|Mr?v$7`6g2^k{H_IDK);wz2aDOYh+n;i z`mImW-l3)tGn!=}S?UUg8K)XE$MxaL(;n(GnM^5E+Fqg&4CTof!j%kJYXilrrsF!- z`wphiaFs&&o>>a-{%Q$r0e$R|DM6X#r!_xX>Lx0hZarMdkVji{pOttLzmAr{!73=D zAqQ%Gu*iWR)8hc7zewA|gaC;p`ehE?QC}oJz%(888)XKcQ7kNn<`kHl?x}dFX`#7Z zo%Z<5!p|&JlS2Tw6*nxKLRQDUBF-zIZV|h7%EFStA+|02I2je;npXnpC}Cj; zu<08=yMdHgb+bw0WCPfY2=uW*yt#uszCu`(q-YHeXlq25EX1EYf;*qV9%?c)z%_;H zL_7C0i(#%&ym!#OgV_Q|<}zbIDu9V56SbVoReA@X6{*>$n0)rnZxD?}`|+AI%AD5L zA&c-y%x>BUm$O;mgC-gi;zWbgA2`k(o>{c#g7z}dkY)&onZ{5FvIC$RM_POUlq0~| zUaDz*m=s{xT&QGmOL|te^T;0@bmwt=R-m5?^7owL13M@^H2(OSAp6yaoqB!h>~ndqL00M5a0chrd$WKu*oFyuGS336G6phiu~XY>K+ zd-%fvl4a1VWpbF5DK`zqeCQAK@4UXMLUls=}zIISU#IUp|Z#{~8kB1*v9G+?Dj>7SN9Z|hW;SspxGK4K4GQ&@ zhR-upHv!dqhw6s3tNS09d@T;p*EwuSWI=Z_@wQd(CyTzjzhn@s!Q+3~!|VryLc{Jn zmIn_#@aLJNEGRafx|%H~RpIdk>L&%-GlkU`J#>>ST?3KdkZXkNa}4VOAyb&WYKcf( zuF|xlhrJ0f4+%jXKO^U1c0?w_s)E|LFxw;4vLc_nWg>5AJLr#}qW*Y=;>`il^zchg z?DR&6Ruly-p!Y4pl2bH>mZhA4qJWeo!v28xu;GEJHPmVWadcFX`3zE)kllA18ZoylT-G!6s|=>`s9rbZ z{A&%j$flsP?4d{ba>qhMF<$^+@gZV>Ov9H7{)23rVJ1oE1uR|$l=}g0Ml0X)hAvw^ z<2`L2U!hy)80H$)yACo0xH+BrLMD^rp3VqX^k+FF0<-r4At9xvORiBB1*V6O3+OIl z_NJ#(pAkf5FnA)dri&=w4^Te9uL|@_gMO~ip3#`2yp6DRK+H^{GbosvPGS9AL6r*G zmaoU>3U=?1Z81%B@@+`3F=&@bk|sf@0eGSaif^SKN>H^<>*Ebqo7GCcEz*b_5d+sd+wI zPk@F}k}PC*3?NK)ys9W5vkH=BL_kA?`S=;{Imd}!%q=82XvL;E8NZ~QE}XC7*E8T3 zhyQX5_rLVzJwoRQ6l`}0X_^rG9x@E@51Z38GX}&Eq31I?*o|&{Wib_C6PU4>Ar=vN4^reT_Z>dgaiV2E9w8$cCFkRK6JxNf#3@Ha$*`PTvE zdx7Z!bQe&4eT1K9kdQNIwDxGv31;q}Yp9-7^3fq{^+kvCpA2~Y*B5XVu=yeF_0NBL zU}nWS$K8($bSq%-lKLvU=M;n*QC``e86o{b&@IX6SiJOD{>dJAn$s1l5Cm(n`}7%x zWXLmnCCLAT<`%n8G!`#e*JN7*4!>oc@v5KVBh1AG@UO(5LZN;Ak}Zal?wI z=h6?fR$VPQ4)>AB`4n;n=-NT;8u)w;L~<*2-LtS6?f%kp4`#G#WFg@S1=EJOTF`>{a!tQzua|`!L&a~$?Qs=VJ$$LAHlN-5#sg9%J zs0F@^&^6ybH>;9;=&9&7O@MewcBUSxbqJ-!kkFB+h@9$rfLrCMX(Nj4OUtBmCFF^R za1to%oCROgLl(u!PB=yiRx>jp(%ejF)rSxAJfdX|3GH6VOGmPpg&vX!mEoG>1dcg5 zr^yVoBEm5wyGWISJ%vb}6a`UG^W7GS#F3Kbl1*}&dQ6uH_X1HA39^CA&- zjMG&A!8$XVn|(rqVvIm?BvVzv_dJBtqLC5`h)%-lKL=lpfqY?R_;{NXWLPj=ILu4l zpP+e!YFT(FtKfs43MJZBGXOD$q#yA_4<+pbQDMp&QV!6qOM9E1gsIA<^_>FTLZ(vF zHS*Gd;=wblEm>+#_P!3&#KxC~`&mSqHhWSnG$?3QfY0;<-~a#&CojWHC0Ydl8A0a0 z_slWqHdqbG5&{?kbu|%FGYiG36#$s+o?upy(U`<2pyl+!rJM+LRHyq?gd*{ff=Cm^ zD)s{;!|6QuP(vQ#WVj$AwEQj#BK_m@b!M+y`L<5r=OKX*BYrS0E;*PQ&d2*b3Hh5$6GMW#h$BjAN z_3WJhZHJI+3^N0BCj`pU89q)S0HoX=z?GUIe?zkGHPo<KjC_uFydQ&6c%psA0hiL@* z(7`VY1Z&_*z*q4EHg;U2K0AdP+J^V)P-(!@$Dk#N!R%@QEDW7j_LjFUqZ*?OgMkg%?sVr&~-K8QQZHIU` zBD{IaH#fOsiB=Tug#bKkiC|PEWGJUz0$S6F2!Osg=im9&1N7A;;;ckimQ$j&bROl4 z4INH^$xc9%x#iET9tSAA>{j)rR7wWsYo@@;+jOUzOxq9$LuP?;!IT z{F8I|%D@%mNJ4;qnL6^lM{{9t_(*X1uOo{0HT;~#DJ zWA-{=^sv0m!@TS^nmIDLZ)zdqLCdUs<#6ttcefq(-g+k1Qy)PpgS|r zT|{{sXz43JcbQG$UjXS6qkb#fkdGZRPAd$s?s~qj4 z9J&dx$!J{Y62&}6A#H;f!&ZX8XC}~dMO}hMM1Biku@=3_9s)_-R>m`CUP}>8+!SltGR_)K{ z@G}d0Q$uZQ6kolEEN19_{2cb7fxLg1sJAM8u47%1Z4&T!v4(0KYyhX?LqPRnOM{F3 z0sZfMg67KN@_*g{03LpK1=9$!yB4bMAax6Mm@`LWTLYQJ@wcvM@q5cOcDwCRe^kL| z%oG|bg~M}&`OARS&-ai;4qtF;*cS%v#R~QqP`<6vT@+}pW(b=5&hje;7&n(=kY7Ok zv;dwK)SoB@3i@2oJz215uN`Ku4e|%U@&!XYhgF95Oyl^3^mluV$nOSf=r)$-7)zR3 z-2eU=BsuGuhPB1{y@Ssg)Et$dUul?{;Aj0vCGD7{{`9L3!@{7xCUw$u5$k{Ul2q!C z&XMg%IUOx=LtzoDLcg@g9(t(zJ!F={7Yfqp zW;3YkD>m&ZJ|l+TjPm{MZbTBw$bX!8nS@7$gp;NKzppShjXe^tjWC8l&bVCh+4lPE}F{Sgg z1Rh1iKJfqNwA34mcGDyaztk9*RwjoU+WX1m7!mEsiN=>Ial!@WsG#o;^vxfD5n+jn zJX2T5lsn){78j!{j%i3`aHX22IzDl-qfq;yyY!HP$pHsYPzcjFJ3E9aiFus9s5FTg z5dxJG<4>;xQ}#-~G|&R%ou8~TrK31l&kQ7x+L1m`{!fe)0|FCOD^>-VN>AiMcOGMq zoIR4KIu>J5PBy4SnsvHQB#C{~lqN*J{4unw>rNcbWV^`E7zt%hh)H)sKBF7R)7FWH zY$+V&&-LVs#z@3}w3Q42(GvxeF_?2iPo3vMX2>TU?SjAa*T~6tY0B_H=$qg~rI_{= zV6xU7r>8Ndf==XQ1Kgj`O!}+?Q56$Hp8g0C>LIXD37mci4FByyLYb&BLdt{~_Zopk zRB8$XoF=N0_B+qC^Kl(c9{RJS6^Xp(br)b-PB3I}+?$G#S^^@HL$cY;NhOd-T4n@k zSA4CY1J98Drq#5iPHULFdf~JbC;F3k?q8#5o8Sfi3rU+1GMz-PVG4LNM^5@ky&#GS za5xwhQO;p$Q>Y>LMCK+1+N~$cZQJm1;Yd~WmLgW&CL3>~;FDb|LUQv9U<@?0kQ71-;M6R{2-Izw ze1vI|hjb6eGUxi=Y*R?4hHARW-W$R&vKRsj;E6iwrspCW+*d|p3-1v_Jn1mMijQy7qsEe9~_3InY5&_C#8IR-BGyS z#_(sK0YF+q;~Af{6(KWZz|72~rwy4#STEp9ldQ&5?IpsAXQI66CIwFG(G`_bV(BAU z8sq1nfEWa(mh?Fc)Wj|qbX>J6(YGQ(l~c!D(b39mK9B|^2F5sXlMvEmE&*#o3jdfD zGTDG9yY6xCi8VEeP&(a5Da6nRYEF}|9WkA0B8fo|e&clYZ*?OAYk@AL9DtKcRqXny z;F6-C9^+Ue9**$40};@arSRd^eR7WO%wqXRo_dkxj0M~70OUDTp3^rvvyfv;+fHDz zSB+;&a=Keuqv1fiMSS%dYPmo-Tf#4MgiO;BAp{D_0*hw9$k3e|EMIL9-`<>Vj>Vh@ z;=6lTw}$uv!;<6Q@{0$=!lL7C`<$CmMT< z2$ms5%os>3I09L&q56RGZHt&G408jYQTUqeIkgy86jteh$U*bboc6v}knIPk&SU$1 zi+l^1_d8C$a>E4^0`k{@q>PAgwnX#EB2m>mhNnp*wC#vOe6)sc9j^X}R)*0~c#O_t z{nIU?QV4~aHdHl`+A#9>-71Iph>L$+L+?AF>!G?d_S_zbG&U^{ykVfWK%ZPVSs1hw7{YP_a!RN6EC7;YpOgg=MWJe&B;<5j#pLI#g_|HB1>6;$s$d@k61Y>@2|RUtJ_rSWsdgI6}(ljnT0e1Y&W34oFQsK@vg(L%CP^)!gLBH0JHDd z*c1d!%+bRfJ#wL-6?v9|CL@ah;AE}aa_S}7l49M?abj|8;NHH27zvD z$Wp_TKMa$Ynlv_wJY zc5pL|`ghmUXDBW}I!}?fP0m(>NAcAL?sAUds$^s4=?GZd2iPxfxG$thD3n6>n(mg; zbO={#?0^3{x&8&12ilz1pDv-g0!5mB`k%h$lTaGw`O_06xb5H{9-uET7`SO^N}&K+ zb3eX->}rJDdpfe6t$^Em#Fk-&)K8W)NJxBeEMK79%i!9V&(|L7avk1^u!{@uTeCr_TBEKB^2zwtNli(mZW8$WY@e~&-- zgFnD>xx{+C#^3(ie;bFxe}n)|>k~H(I9ZYoJ)N(T4?61R8;kukElHMzF#vS~`_Q7e z=_%Tq&*)Y#I8HLMjQ<@QsJjiVQ0wOO*w&KwZ`3pqk@GXC%X7LGWkfhs<5DKIg|VTrYv|e}s5-j<}kCvte=`YM?8G-4BU(PEY?~rVtJJ+IrVc9k~n?S4H8N zbpG0-xCx) z)E?P=kNN8X%P+|zcQcFfmg&j;M`!4tESW^Rt`HU#Cn&i^I9oC~ednN?q{|4H#QxHG zWbY0zTiWb)mn9C*IR;gS7HV^VIy8{M!)#jQFCSnw4OE>9!Q`OC)bkUvsP7NZ?>4*_ zec*jGpCMkXiEaXP)JgBZR2AgeW2i@$P-km8IgQyC0MzyXwLe1bDOT0%HSg7?gT8(Q zeYT!#J;@`_cn>O}`NFY2g&wN^JbdrJQ2PYH4c!{3@(VZhd`@SQVsj431*?BxVM{ z1FI?tc9fRrLNfT!G1M-bSdGFy$L35TSw|zjq@yIrALh1k{tK5WCCZ|B% zagu=K+*7>|(;gt6lqx;YHKx1?n7tt?DxT&P{aJ?g*&Mp@DBg8&>jJ~0Idm70Z9QhM z19V4J73uG){zTdGnV>t<@TEc2nr?huKzm)mot02E4JM)h!^)z+nz1?1oVdD~#&F5~ zLk5rT+@OAxsC7fY{564}5wL(!P<0QT!sk>^?mPg*GN&2F-b3nk5`{x6gw>4qN!{>V zaDmUGEK*u=&b1mN#CvA8R2gKoB$a5rBEs3EK*KzPxjR7Z8mNmi7SDr&lqCxhoF;;? zA85RAI8e9>K#b*?n(p}z9r*rp=tKU(?G>9{GO-w@l<6rO;X?ppaFAo0w0#k(9iZxO z{)ZST>@7>~!F)lSj2n%(UZmPU(G2JE4C;K1s1>rC22cv&a+S1?4t}1|g)g&^qJWx_ zCMSbKSkK@WIm$OR$~QIau4hvVPQ;K|#MK;OQ6X3b-3C-IkC=VkV)mv>6iI_v6$rBu zewi_>_^n63GB|#A2D^7CZyij_bsMdQZ6fkJNxG;wSh1QRevMj0rV!iF6P{6$inbjy9EUuyI#lOhU0_b)5R z4rEU#7jX77kL8Pie#UTBAnjWNYou()iAwXx;^r?`IQ(FRxSA(j2axX= zk`lZBe2!t65va{H!OJq6@{zKwLw-LX-+7oL!vM#;pJ;WOe5C1H*RfXoAe#vQjRtO7 zMh&cI$$%weqWP@ieK|V7WtL&zK0ppNn}%VaQOm%PMGP*1Y_tfTru{K;g8IQdCwX?N ziN~l4pFq00K{y$k4OCe@Bcpj!9Vy1|JLvSy}$SO@b~}z-^V}vhyM`& z;$Qp=%w{wE&A<6K(Y7b9*dP4CAK<4y{VD#*Klvy4$N%^r;}8Gv5Ak>Y&fobDeJULP z4E@Q*H1WS<`@w%rOV^TZG-7 zQTF?k#GJ%v(Vl2q{$c@txdaxoso+${7W(1HL!%p@4lTq-^lOWdlTyJOd5P}v4DPI& zM)&|o(dZrYzJ=Z~yCh^9?YT;bfI!tfP^;28sLsO`93z&m_E`LCkF%d0vG~;<)mJ;@ z?~f?n)tJ5MnMd%5Bhb+ceB_PSkEjU&*l_5M4OF{Q=oh4B*@J_9w?+BOTg?9KHt|Fa zX0KXgJBR)A9LFaank$R`ykIJQNeerst{a#wn+F-bX+9ubkNENpWW$i3`pRJcak4nw z9}(_1!0rI)Jmlsc{ujT7+-)FrH;s}><4CEdiWI8w{ub`*SBQ1PrZ=;Q%Ne@sIbum< z!dEOV@c$?8PhxG`(z8(T8^x?vy{l8)D(;O4J6tJ~O!M$VNdq2kkSH5Sbet_(AR)Pd z03p$!frUh$7EO1ckmeQ8d-hp-t-0nL#b11dR#4Ll-P=nHR}1*noQX+U09g(w4S#nJe{%Kb5m8zL-ofvvzLR7-e*)vDX`cW<;fUDrcyum*E}*K4iQf5& zMsWbp_2b&!ALL$k4~!7u9N`*1a35OEm_YO*da>IxIRNKCn3QOq&fup7{N4Si^Iqlf zlUxXqT7rNA!!(2LJo0r9z1~A@4}j-dX)bc~vr&RKWQK>B^HgvO0onBt_Iiix<%V+E zn;v@2&O~#OqdhOsuS#s+E3x@{4!u3XT(1ek@_~u=s~Xjd215n37fOU49EzI;`E3Kc zZc@S>`5=J6D)$V6MlzoNbNLnd;TeWlQx8SLK4V44Bh zC)a2%a~vP#(5*vp+hFmX18n2b&eaG5Z9;-z4y8tOrs=biX_!L~Q#%}_Dn?Dfx#$< z+t%$sRlfZJ;c$>(RHGMMxIY|u-gpl`$%)0D&&EQQ2pPD-V3=C?vl+r_&R|xvD~CKI z%1PL z+;)r5ckqV;{BB1zy-6i7S&28AhI~*->eR7?-q#QQ#4bgcO}Ga~IH#DL4(AdZD24uV zg7)zY?tDRF^NU*=UOuK1wyt|Zj21Z)qe+PnO_=)u-C2QtkwJg&8T7|5VQ%-(wG?2j zhA%PSiDYgPgQrW}Apr2bBo=z?7 zfhMcj(IejlWLrY3bPrhZO6gV#lKYTHf5Q;;bbE>MKihSf{YfT7e z-@zY`@Vnh8zVJf~6~aj*_9G6Z6#mV>`8W6*f8%d(VTORW-g*oF;2-=0{KJ3v4*>w1 z%?6JjKgMtV=5ONHe(l%rhky8o_=R8i1^oMe|L^hV|NNf^0Q}Z({TBZEU;pd)?6c4C z)?07=iJ!aOZn0c0@mJ6O7L5XZ81bB1@xOv|LqCwnGn+z9r|?_epy>P<>Y5#oA|F*n zq@xilL@*~RJEDjajx~Sw=t9(X6oRHYimExW{A$VrvUAB;NOk?F>uogrYKD+oxQQjU z(FqQ0;*3>0(sK(n`1;o}Gxm>$2Z@ z&VN5&VmO>3fpfjx$&)g z9G?{Er@Vf>J#w*W#ZKDb7>v#)V?`7o@znbVpST8pl=0tcp8&?a;(wU_-;vGFMnw>S-MH%;N*0RzZmjC~u7}REFD7cv z@!z89;nf8@9_t;#;COGXWs;X?{dBkNv{qk zh_$m18z>>TXM2zGvmJVI|BcFY)pzd@CIvP>zohi#dZ72xK;8?iM*Wx~8~M6p^-omg z00t-kor=wIKz4UT`*e=x+@jdH1m_}DLdzdD%7+VvJ-@EuD~sl;NEJeF3F(T5wHgAt zrN!||qq?D&k*yuPRk;7z0@)#8_3b0t^8)pyL9r!CzPMrV*e}_k9wr*)ZI5i-;P}oA zL&adov>wH)BZB4r8}Z@g=X>(4tQq+m;Us|Y9{$BEKx^nnmyiVkceTVY&ry7Q$4=a0 z23P~1Tj-{P+Sj9>#cIy?AB1yOHw=cI;~G~Aet+QnygX-DUjpA?G_c-MZ7-gIqKM<$ zHtiL$(jNMrpXr=p|NKhr6{j(UX~ZD;q!Xm)b9#Lpk1Sq9K^(2={o)<( zXY3dm&5HJR57Z6R`HFnJHYNt5%$H}-_gg|<&R0BJ`hm~mehu}Fuc3K+j{L5H>IQ_| z(vRr*E2zl?emP6$O%%A%-~I%us^H$fM0;7GIWs8l2H3`tmm=zxx^wg_(i+}s-2Xh~ ze;@x(BxxVMbwvSjx-?O+Ha*O6sh39|KV)9a9_3aM*j0VW% zy+csI{w*t=1uyU?kNsOYh6GI|2B3sJrryN}0rXJ}RigEXFs zZJ@_lsZefY57_r&RY2vxc4d=~2RU2{%{jXkwx&69bFMM}%whJO4YohGLbIZayy>_< zyPW$(cJMHbLvxwIWhA`Q5};@NW;C*02h|PeF4>ie9U9#_nA<&Ya}PYa5aAF2gJ%cb zn&gnK9E;pO)6n&hIIF7e2>G2=oF~%dz;-VPiGK9RnpT{RR#3DcvQ(=_4tx! z*Ueq}S?t)WrsM06wV(sYQ#}>Z@O6V>Xz)J||Kp#ySNzBwksma^_r34o#fumC)nEP9 z^t0u1iC_7ZU%_wx_HP3Ke*3q78>`hSZ5ROXtH1iI&|2ene&=`I_`Yr1V!Pcw_yZt) zdH%&C>75%Rgi#@yiGwuqjGJ?oF{#jsI^oWZGKnIm8oCqr=~x8`fmq*YdX{JKb5<~e z6++mt9fMH$ug?uhOVWOe6%;6v!GlrIH6>=vzJ<9z(m^xA9ts0D&Csp#B&`Pk(3E%s zfa2L6+3k_Uc&*_l1(g^IEpl{JlLCODG=f+5qZC|2*amUcRGBHC?@>NKiW@nl=7MIW zQ4Im6?nh{d2YgOv<6x*y-K;d~D}`W;C`@n@DYoov=zRyZJ3?=dDDHb?`_Zq&XNrsJ zZcReEW8xH)LO*ARBNY4|k-Qrec`CuOC7UF3J#nY%*g{FGdYBlgns_D(O^aX*_U{^X!HRF;CSb zGb*E5wYa@!B0M+-9Re8%nV1;m84&2|8=6)s^aK26i?G|JLsVG{-?Z?1a-)>dshR-^ zI!LhoVOIE$XZ)o03E=zh6%@9h@hRKK4ZRYEft8$^6(SPw{3y|RIz+-3o`gOWR6Prs zkq&Ib-<7=v5YnRNzM{8Bc0!}$y3vWd#%`)4EkbHmC#1)qX`rVMEfbmBEzF)=6V>(T z78w=v0@Az-nTCsef~JQn*cs5hhc^oSl%HXGpj~C?R$21?fFuL`M5DOxP<^%o?$%Is zhjyXRPjpH$ln>CymJmhiP^2WpXA0e1qg_$Dl;0yzUF*~5Fb$Ifh|!=q_AtjG!Km~= z|BvIPeMtDsG`bnd_4&3(wi{p%F8$YtDjr?ZX}B7Ul0TIF>=!vrT!mb2>mf-tXS)uz zb|n2u5h&mFDDMU#)yr8S`zVb|H9}#MA|jjvvIrLH zI=NxHMNSVAYa~f-fb|Y)y-V*Kj`b+H+xJX}J%tZc+l}W}KTu@B+Og;+=NXD(oRZs2yiRD28t z{aS(*VS<+M+0gY+y94>CvKRTLkxpkw&qZ&JgycGU1Ho#FxfB`sBL`^*TAJkcGmUo1 zZiCBoB41NpU!yxK*-2UEJTC)y?i_2vDh2tF-5!vCL>^(Vgmu9KuASSCZWLg8QECJhJUT@3STdk@UPO~ueQ2R?w=`XzYq2XZ=oh(kJsnijGL8iJd?RUodjQru@`H?mDdBp~&FN9Bz`+O28WOPP?A5p3xLcstWiCea22bLzM8x03b|D_&Hw#OU21pSb1P$ z0g17-hMKbApNbqmWH+dI;spTU@#Du2e*XCJumo&zs4Rnh>j@s{cze$l zwo*(uBnS;vj$x7^`}_`JvjZ+xtQ>7?2C0(_s>p;iN}R8`k%TFy9HU=Np?3zVAJDzE z65Z(ld+1?a+{2&GF|0~>!)jFi>Od*qc>!GyDED200J&KKUl`Pv8S)(sirnKBj&BQQ z)bnuFwP)vJ*FwFxMYf#7FDmql0{y&1^Q{k%?>*+f`#E&o!!!jqmEK|V3o8sI<#$aN zknhL`Q3E9|hk3!|sqSH#9R1v)zA)&Q8PvDl#pK$d*eLA3F+;o1*u4+r8-?;3$TtS2 z$>54*>NJ>!cu6&|O3-}c5nS;kk=D9pPEGSo&yL98;WIjzdr3;FTaSK1o$`F^kl&Ki z5tM=|^27(p?>nf0YC>)~g=ssO^&XG^*NnkK>yX`YuJq>)I`NK(rkL2BnDG zjn#|H5)RSOs47+>vqq|6Cmj=YB*r+*C%m@%h9-FDEBNIU!>oXPwIyZ~gd?JE0i|Hy zev83$*TY<~df~S_lF-VMLGA0q7=*L0l{# zgu{W7-?J&n=3O^(caBGr&#Q{bf~b<=@(lXez~A1DSlZ2&t?5S>%pY3rA!u5fr&j+!+feI0@cfzwLy<#w1A>zv&=yJeUpWJNvlEA1R-5!{$-V034cz-rG0Y3X zCB-j9N$1b(8kkK$sB+<)c&I~tuUJxBw>1w{m-s2R2uo3y86d=xrgREPXUQy zhD>}gE`I+AyKSIu*Ze+thW^nUA=6w};$YsbN*u2YCf5#j<3vi6ZpyBlVNyQ=d_Z;G zqx$YG1F-WYhGmKRD#uVVAeg>z$TtHu_2(A#qdb|Gn#Lh}v4btCD5e6n_Up$b?7`vk zKQ`EXP~q^zpuFjk?>bCh7?>`gxIS{f>n!Ynz6iSR+12cNWIaVPln?Ng#qlu-uH`ME zC+*b)*}jLl-J{$KC+~I*r4)wuIk#2slIdafy?dz54*F-_=W}j4cE#pX*jHODUj|A+ zPp9bKI|n>PG-4H9O(&d_QN3-mV<-RVBP!t4b#g)XbpzEZ=&0Bg0-&1lcb!AH?OB*8 ziv-iqg-FP5w&U-~P}V|KC3NV3!}nc+Ki2W59aF$N-aBKcL==Z&XW3kwv(Q<$sYrPm zQv~mUwgs97*t2k^CvGK+4NqrB-c`-mPF!DvyFQ}8(<+xfane6vUY%S))H!|<(l5sZdu zJzPaO-(gw7Sawd-;E~_g=pIe6d(R>-6!J{Nv{R^>FrD(n5nulwfnibL_=M0?6##SS zVVeQxt;0|mwC5T9L^M#YJ@P#Z6$k;Qp<34NqM*0g5MY{sqV}RPsiI!@ zeiW)3k8Dp%g-~WFE(xiER_Io_@X44on0kD6*&Pc-#iIhje&ko#{v0u!{-2>n*e~i7+0D0y>_1 z$C~FBSey%oBhR449N}<;zrEvGmu0k#h$^v0Q@$7A+;1Ar`+`ML4M3lt!96`E?7ePb z&Q|bU4&45U%lyaN5&21tfBcXCF*ch``t#|hpYk7+Cb3R}%McR^sRo5XHt^XL&_*gn zCz)KVTxy*vp{etsDaRTziy&Q#BuN=f=fqG(MG0Upl6+c^20O2pnvG_Q)(2=OWX@p> zOoL)&%?W86{Q!OJNPcTZf_0L5lk14Y*jV+W`HplwVp~lqD0x51$SDkk!cgc@MmF9a z#e?2wkQSq0y`>EcjRYeJTEQH9LMsBqS(y&5*@4y9q)?HhI@Ks!8>nE#KcaozJIV`I zB0K8kcNAYAtf*Jn6B$e|Sj}3b09%(7I6_I;y-ohQf~RQ!i~@jS(U-NF_AM#D)aTQ-bG@vag}<6MP5JFz;ljSn2d$cu=B# zl37aXMXpn38CV#@pxRof%u1zGr)x{qI)HOI_%D3smvwyKz2bDp9ua&PE4~1OG^5!` z6%)7Aan&T9!y0bV87rs0>*3pWgv=G0JQsG`;5^^c^8G?)+0|5vLCNd)-6Kgp>mdk? z^5ivIixHkl0gwt*-P6s$Bt%h4HyDwVHsqf~(@!WxkCIIdeQekbZF$INd#d5lY?M%g zSo{c?28@F4Y3>@LL}i4!1*Cn6vY2Z8Ie>nu(NFmEU=;k6zAV}iHioKXS149(2a?Z~ z2coJLzcAm^wsKu%_CO#a8j!h)g!d#j?s#8qLtY9$3#oIGD$hoWPljq*y7MVG0*DdU z9U-n1r=YS;B6up{`)H9~)>0kTDs>?KPDVnr_Nvcz4+&34u09k_m3$kX&UcmROF1X?^G=w23DF+ zR1TvOU+8*1he^fGb$sSpvwM9?{`VO7Ac-MHIHw_uT)c`x+l_mdi5+-Z^U*Q@NWLV& zg2;yh;Y(xZAR7NV#sb10Rr@2tZkH}iIiJ=(jXO;;GgfWK^K}5A0H5>B52eL0Bd5S$w=TskG(nW^jC_O= zvryhkLaIzNBz{>`Bn(z3BSC;&8Oj;6!yAO_1M%rVE6SXm#Jxr{ra0DP>>=|yh*wZD z@|8Fj#xN$0=UtrRZO7t}T(^qrUS#J(KQP{izmuffW#2eShW@1SW9^7MdGZ7R@bcwL zJbn5!{ru(2m-usk?$4#yyn6NO!S4;jfV;c9^!u-mq9{-l#TR~VmUEcZ1!W2E?nfw; zxT7Nk=*0~FgSTLAw(vK1yg{#Tq{EP8$pAq{#0*kiYi@VY>kWdnKv57kXAH2IGYIHM zO@4p5q}KFVmG}(0W$QAM-p%iS7wCKFvlWBj<&4Dg*1?@;7z%~5%Ang0;eY>-mD|hn zbbY$CfDf3~#A#Cs(j(uX2iwvC z)w2Wi^%}#wm#hd)&IPVU#W8iiCI6!$fn4_<`KPzi{g|MAGDCf7vHbP{dVLVz0}TUE zdNV32fgLdz%|PRIY2LPDYdyR z%M?_oj6tzB2BB^!UA^5yACBz0T%4!ppza;;r(_TCliDYM@4r{5$dMTYQ*R7(WyTh= zW)PY1_5gzjYoLxb?@=S<^a&MkLYV`vZW(xN_w;yJOc4t3aJ$<8ZHM7!-hs~zJ!xJW zA#y}=OMY4F*p1tEN&XoSC`f4;+)r}oj7g?>xrTWWxL1`qhQ&kEG(NrnvocE1duDd+5y(-QyWt$!os-1q=HZ?xFtO86N%KkzL$b z4keiL`=6sBqiqAM6gk|yfX_8M&0B}+^Bv)w&S4rBBXWW3R|JX56@5R3-Smhf}ArpiE_ zO$fWL2l&cDy8v^&C-ixGevRRpu7R0Pr1hNYYUjxqk7pPd$of))UeM0WEO5UOLIr> zYpA+~erFC;fNsZP4tx+{LRvFZ^qb<*lrgJVUar{t+p3YbpE z>Quyg1EPu%7*Ir$ppKP!JV%H{ULlQ9~x%}Oi2hi4Z=DaCF~Km5d%aZbmd_CAq@R=j_w{vmZORb-jdv1ri5ObTxotKzjM1D|nS~c#m&ydIpJhp9Et%VCq&+QFNQJ|u zq$2_6X~1c8nuk8qLgwT=*RirLdjX^q>T?Z0DUk@MMFy1_=*j#1%vh0&#;r=h3)$Ue z+@nlfJAyrjIay=9PjCp`2WX>Etf^$92F}Y6yohOx9ZfAtdHo_|=b@zvp=oKPICz7+ z74eU@hpip*1FMRdmk44gmhBy?YmNKwF7fEv!|Yo+4ugA#5)6AZKa7M|$n{TN(ZnqJ z14YphbL`1A>q%x-Wr0xUsnbL^bd&CR+TVL80u}6PsFTiT2!UsnnZREzIj7bec26WLXP4+yyiJdp30ptu~+ zJ-HhFlpUUI=cqzgne={c8f^^NMb5W9?_<3G&Lsqe?uJx24KC+CnJf5+`ta;>c*Phg zyB!FhD>7j4DAt~m$43Wy=((4NfH3&vF_i>oEIUcM9XZCFU@9fcs&|YF^05=4<}>a? z!k2}|L(wEHKhJ4F@y3p4EIvfB7tL5CcKo9dj@s^7R0#p9Z4tr`w^#hgiO7Dx$A=$& znEw8~?|l#d;XnKboS&cLz4zY3-}`%i5C80+{WJW`&-@HN_}~NllYjD0@YY*zB^8XH z|M{QCU;Ar+4S)M@|84xsfB7%b_dS07*MA+q_G`cPLo4CL;SWc+<5~Fa~NhhhM9bK1q>4=2f->7*A2{P*Up6viso^J{GP=AAnwy|8o_ciwd)2(j2)F{ zOFEK4_2vL|FbHMAHuq+iTII?Ipy^=mw_}U5VB0yn-Xs5TmmI0hoxmzYDJhg0bU%=5 z;5~w|2=fZ+*dpAo(>3bVl5=srLli@ZpU>}RpnZT6DZJ29q8jrV{9?k6S=~GgruzLIBEJACExz@g^caP5Z>@2+k+RdH`^33uwW9i&; z$?ozxRh2-Nr{q$J*GPzFm39LE-A~eInzJ*gw}n4Ymhg|x5OPat-4kd90Cr>JJ|&Nq zs#(YM8N<657-kvDkJoYt>Xd|J_cdP|ufHl%*K?>0a5+JCbA)P+Xx}?WzcAQ8HOThB z{L>cp&_f-&bYQvj31wq5#U$agYv_v=#X3qJVl*rT?5^VhooVvZ1`q9~DN#{_hv^*L zG{aCCl28MX-!^d54EqlX>2wknI;jVA3o7qqTLtYsRMR25KEfO_4D%eFn7o?KBfmc2 z>XpXDe>5cZH#B#pD=}|Leh0V-Ki?cW=v@uf(PS_@e+7MUhW7nSbSsO#(m4B%cfjqM z&nC{1JcFB;Fkn%_&A1=immA*m*@Q`J)4?yN@TDEOZlB(d63?qS+_J*qZSIlFyVW=s zogbegKv!+=S@?>gDbtEPpl^Qyx888Ai*nltA@Zq;3S-!PiSt>czC&COR~JAC@GpoH zR{~Q)oCpk@m7e zey?D52T|X$$t0DAh#IDw!L$y#8PKmv_*|0{p%uET3c1xVdrC%|t--J=Fib2=amJz^ z0DbIX_In(^d4V>nXAVH~HjA0QP$*xuus3`3j~5sw29p~H(|8o0u9jwQhc@8zDd%E7%V-f)(AJo~3|G(bBKR$=6GGx#10q5Z_mt%}L2&`(ygyD4PooTfB*Y` z|L+3;{?_06Tlmf2{7w9$fAo)VI2`bI{?6aQdcDS9`b&Qazx7+cg|ZymH2>;f{VV+X zum3v!>R{IMfAKH=#gBR^47Ajk`RNIbR$z&tRmUb(kAkCoZY1hqy-7Im zI6~6`L0}sqd#kL4n$H+mG;P|9^|odvI!LyE5S~Spc9p{iN)h5v(k}o2vcmv#ytQ*MRqo`(8mswj|RAT0ar?(I-9^R7|82gJ${cPqXh}4+^0nY$|qVbmw7@JwjoD*#xHX$hE>S z&0qnT+chwspr2^CyoA0eknO3^F-#3i?NMxNxU&hmRRMb-=^h|nQ+Fip>&=ms>Br|( zGU^9P-f0U}A4Js28CZ)zoao?pRMTs_gsHt$IGCNjydIl(` zSXyN?l$go^7|r1BSriEUz~FAVfLhK)mOJ{o;GrBhz(553huZlMhE z?Zb5Jh7J=0`_2{T%phtlnMSeZ{p@A^WoycF`^pfDZuz^}A;26uNt$e`v;yod&OYy@ zV(Q_IMzEvrP_P=qqJ+Pgq)tXu&$GKu2yD#FSb`ZoD679EU+ zxxC=L?|LSJMZss#w$SSxLRFxDyg+uX5nkQUt432O1$hRw*>j&LawzXvUl<%^y{nwb z-*!i2MP`{8#|m^+0v9WKb6g+UB`fl=O8@{t|Gs*n#ug4W%1<|pL)sqsq2ZY~$pIIT zJwK*1Om#hU2nc6oLL0!do9Y%h+Q$=UF)MCY&S`HrxtM@#sD9&v72 zAs7vNci_1bi%}4mx5z#NV8_Ihr$%nFfvP*$x}&I4@X*n4P`WDs9xC^V;$|o*EgZf0 zqEV_}Z@Bg=(8zncCpsw45e^5SZJ~w=VHg;j0B_`^{h;w9CnA6OFaKryAnOsO6n^73 zegnVp8^7^=Uvqwbj(`2H|Midh(O>+m+&)M|)TA0Kh@y?2HdgNlLlF$8+ian127SIt zzaLt{T(rO?5;?8Np^k)VFksXqc1cw#e(x}wutGk#WNfDL3~I^F#4yhp3?B#hyEQ`7 z!icl7TTEf@kF3aF%mJfdu8$(gmec3r)eX$sPk{5O1iA*pydWRrBoV@lzmmF zL$5zC(N7gjBQlzw-$9?x(fwkHd~Z-?bY>1c7n9Eo@--D}4sVy3yy#%Bx9C?F7$%zf z+Xm=n8rfDc5ME69U0a7>H1?X9C%3mj=03D4c^UE$T~yiI@xW;j*==>K@qa5T0D1Kd+DW@e2 z<4-E6_V{B>M1Gp~2>@J20x6+GY(b*GkWGU?ZNe~&9w7Sz4Iwitp=sc5ZebRSgtLtWkObF~?-M1U!{G>( zS@ctl;(kDQ_7dv-cQDLyXd$^a=NS#czWW)>#Tjt5Ot22UIYJE%wrLR-GxSdvfFkTF zh=aQ;b*dB&l}7Vuf_&Y<99p;uizoSgOOKC>oP~hR0mIdTFjF4@2e_$$t(mmz!9g_^ zdXbS|76Q;Xl%F%fS0OOzC=K)=)kUi?R7U&}G>TghhZsQRm=Ht?lfii?qyVsy;7che z!}rMUjtC!r4)xw!30EI7gZfbcTYKbp4T~VX9QMYbKdYz!q!fmEj&@~`-&>ds;js_q zT+;%p1-liu#9pg?Nx01k=2{I7=mvz3Kj-}V`EQUrbQtBS%py=mw<-zoDsooAk4Gjd zV5cS;kHL9*QA{RK^9fB*4@ao4zXhLLWcSBH6-5_*%!$ZP z)m{78SDMm3G`mM*n;NZUd z33OS|52fv7U5r690t+Plq{QK=#p2@**``H5n~GhbpXdq-3`iw-#G@{y6BYN_yIr{SnvKtc7x~myr z6zr|yW^-(izdXP+C99DgKU4J%s}DP5+lOpr-JQr1TB>OE3kx+YP`o^#coDGw<`M|N z+3#=QCOP)M{2mEf;_ab)Kq)v#(-22GEF`!J!2H7EfSPLp~^5Thu{kAfA(!4pbw zY_a;IJs};XL4Cz3y!yi(6Ps^bAm4O2|D84btYQ#yGE~nbP+gtF6-G$@4tmE5ho4Vi z?`xdD*sz1Jif-*#-(p3kA@(}eep6)DvZFdG`9#l%zzheHjo9paI{0TBMs z_K92yO^!{tTPHQ1Q$-wr0fYt+p1$;fWqE&Or?& zpG$m}!2?YT-4Dp`w+M?VanO;I)OKSPNoknX66*YnGSIDXcy8BFWdVOS=V2KY0{elo z!&O1?hTijp3atb%iDAn6L zOa@OPd_hkTS1R<248AnT?&`!tQ9hsqU^evUv9C5T)+ByaeoNWX?%gve!H{bgpjyJ4 z{3OTzgBhxq9rBN^5zZ>~Q;U4d?x)Y06!kNOa!oOin1BqA7Jv_wJdV%AkV9gQl$>mT z?kxnRknL!`rr&=DzLey!cR)K}cIe1M=?C~lg(1t>F`1OuzgNO^0rOo0-8htY6yEel`eqOTa!J#Z0jup11UnKxqmny>~{3b@(%iwS1?Ay-LJXlOsa?HV`e$OM2a>h34Xf+)*JZO zARS++;T(KBa4(ol5**Vk7F5Z5c|DptO5C6Y9vz`v(+?{?&$r)VakH)www#Z8xgeCT z$i|VohPLH1cyfhMTI9E!=V3X+u&mHt6ew<6m_rLctDu~Neg$^c zr(*yeg>=I6Yw|YVe^->XMrmMs=z#!2rdx8rvg3g2mO?N7qD1w)0Tj@l7f=J&p1l!S zS^%NQ(4Jd%ZRG5oecq#dNxv{ZDFLHsaUlFvpHUS{Iq3+@3dR5chG~ZWG0_!JKzLG+ zi~6c1Cq=xB{AvojX<%;#go+edaAtmfYO z@qrNTB1iFJkHY)$p5__Ukp`Fg{0x{+V7mc9Yxr3XReRumLx@(9vs+RwC|J>nNnw^l zpRW-12e|t+%#%kfJnZP8ZmN>8$g`IK09_R1hiS$5+P)!G&>Hs1V|MWl$1nVwF8QqR zL!h(1+=&Rl16~QFrRzrgw>Hof0|u342%$shTrwjJ5wi6r3C$A;L%0*-bCm&mh-uW2 z6u43~GrCt6`FPL-@(j?ltaMB(V3JEldxF>ZJxPj|fv$3%MmBL6onRUXo}py%Mp;)w z<031tAR6r{n9M*q!xmoK!R+KcoX7wMx}wtL$c*>Hd#IiXgU+?c<|(+!!rtx)Lkdf_ zJU0jU!lGMfJ|xn4BIU|`3Ns#<=57zwl+cq5 z$44202F(2dq0Hgls-RvugcsM)?>vFG<#?YXK~yUycZ%3eC2qC>046zoA70)dR3#U8 zO$kk$k`a|6CSKFXQr~XJ#MJrGL01UI@m}yhqG*%Z6f}eoSlNiiSzQm61IlFZUB~LT zC_KRjgjnY?l#>lji-4X4RINriNFXISPUd>>V&ECSj}WWB@*@)bbd*W8hUwTLjFnpD9J;fTMxqhU5d}7)!D`oKwWP%hFpu9+y%C!^b zCC@QqQOH{bQ{kT_`+i;(B(Wj-ne3}QrhwqS9n;rCH_ z&VY0_fjZXk{c!U8K1tB4VSpbfshQ?_2>f2B=OQFAft-DLE--waAxb2{lN{%%u!9sd zzA94RZyYBcPtb~cfWV{x2%j!|@prUlF|+HS?ids%eooiJ*ENe57iS_^AOa6DX;fi! zv5&IBc}A1e7^{dJv4sZA;#uBm@8iB1(Z6 z-5U%Ok?Hl6rOoytcw-gpmQiJMB_2BiA@AXM@Bp+33;D@zV=a~^7-Jh^TL2KGe;z_Pe$G={SY zR3BhA!u824<(gX>Qzuv+0N=FG!!Q;+O&BH82RVm;WJ#g&T#6ckmJ!MK(6)@1i=4`B z$^k(W1yk3IA+i&gW)yKc9TDOkJ94ilBI)uxmX zdU6GKMxKf<44R7!U#K_J8GUE8@Q+E7^WHW`!7oK z#(*};ZTjVeo8s*~c}I)ssC06=DG!d&AK?h-c9H_(&~>Sr4-osUrRqwxtUh^-gswyA z2iUitvQl3+2t&^~?;JOs*^KkD+y6M1=1<+wlL~%cLsu2oY=m$grE?WwG@@+vfIBA8 zCSTVus}<+LdW*0>a36@T0byUk8j@LeQs@~r_WdL(-OY0uu+jO1O@~}4%M{q zO%1&}LiYo(-ZGJS?+J?)G08m1%a$vw<_i}HF9R2wO$0s?o1C$G}kItZvEhZnWx!0{qWY-7a`8C4Vp3*qB z9k@R}nbBZ%U5|+>0No6@`2W6Ob$nh@?)1fdN@%roJ-zeLS%!XDv7;n@L2;f00IIH2 zA;ItV@O1+#T!IM0P-jboNeMqKU?YH`|d{;vWh$sDh9S z4Inr-%FY5*Qi|{-=jf4>7Q$CJ0g({`U@k8SkG#HRcc`l1H(PckPwqkFnuU%Eh2~74 zj&%dS+ozvLICyXl;cg8zosgVf6;Kyv2vNTIJ(?@4kDieeSQR`!x*qEDm#~ux`~TBB zFpWd`A3j3ftpF@(dRcemd1wuPM%Ah2vP8b?VK;n+!5V~beZUyxZb#USz;r`h^K4QI zIRJC)pgw;EJDI@DCvXcEPSo87$TPTn1wC-?^-op^@0}yNIRb-2c{jits&r=ifkAf& zP*nw2W$`cWD&#kz~bYEDtz@A+gX6*^2-SoF>enTRui~YhEQb)ZHfBr8GNoV{qC0C z=&FD_pP{`f(NDM+=#Emm07S5&fL$M%m`DLY*F0lfWynYS<~z`vBlP{A9dYTz=*}VB z-SfzutP0qD1uGr*ke~2$8Y!5ZpN;Xx-I~`hp8=LKzrlHgyL-Zg0nRBY zLI*)bz!;dz%fy%bK|?R*^nKdym}u|!a<+a^68nc4U+P5U0clQ%deE{#he#GAX?!H5 zveM}zBqmlMfuu47OJlgPS|t_BzW?H8e42@RPq{zj4_}kzd_Um^MCF3S573HLGx?k- z+ZXzt?>nC|D=u=NKa7W&QZNlMf@)In{qqcJD5PV5+}u=3}{@tHSFLD%f$xVgw}9$l(vM6KRoLO7Z3C}C_GKa%ULp($cvs5It$ zl2G+k1~<*55*iKO{Md=gGT_ia^%>>j69~O6bY8g=nG|t7|exRi{TtQG73{>f^MM`c)kw#~hr48irK4jy^6)vKMhJ zOE)Q+J1K=IpB%eq%9yb;YQ}wsxNeA{)X9b(O~*P0)N1goa*FX}8cHQ;<#>o7KJtNG zO+XGTAuGmigE_Q>2vh~TID-@_j6x_fC>KT_gcCziZ#65VvgakURPok{0t$eq-hD3~ zHbKk)lgbMV5a!Uc(~->CbW+Yi%kOVu)gFMY1C$4BLsL^#x2zDB8HiVZcpsJX&^@3X zWDP48M~0Jq%X!#Zo@3xWNFpZjnZ_Y}GS!HLrab>(wU~-|F({)j0IY>7Y*H^%N{xzC zat;6(Wqc#=KzINMUJSub1XH~1|9<3yvAZ%rHS#m>5@d8Vat-5o0x)S62k!@vijz6a z_7CS7jG<_rm#*9?(KK}j40Mq(N!f3HtbDScs^P;Mel|iTaWZ8dm`G~raA|OV4}m{7 z0AP}QdT{LWM>*zTMLzjdUO5h>MsAphWSGX0JK6P6Z3nyWpbj)81pp<+#8JFKb$%?i z87(#fa>i;wWr#Ogu!K43c3^<(*ez8}2Q8h&SX9f79;S(Bv10dNSwi<7*}6^gzq;wU zM;QZDCLsiZK$pzEMnsc|jFJv*L7QBWrYM2YTG6Gs3n zd}$4TtSM0+UnfxTB;_m6DJC-O9hEDTVi(35_~nEN zQJM37UTqO31@u%Zv3Uk{XkbEse_BF$-WOLIxI(j%k!jrgA2OI0SbaF4xNA{-zGmCC z%$aPI7R{pq*>*s+J&JiwiRMv-Zeg(egEef|BfHO8-Dp~b^Chc<*BhW8;4Y?s2J~cf z$=-Z(f_|d#`2Y1CO6EO%3_Um$-9T@dx}n5so&ge^;6$OqTROWp?_a<)1F}yj!FX!a zqhH-aXBnEGeGCMk_~b4bO(C`CyR`8D0K~LR)h+z(J$#%)+CWz&^n316e zeUGf36GAa5Ff2;wfolxba*nkv4+tR`Dv|B=n=SO!1>D6P=4J~F4*h%QT%(^}lWhKE z4!drkcSrbg0iS8K7bUXXAiG_QcYtT$-Sr5Wrs9kkrN#hSg#i6>%{_BDBWG&6r()lG zkL9KYgxvuc2IQr9HNCunUM*AQFJy)im%WF%VQ`|_jshP=j`@GS;UQf&Jp9B=(ic`7 zo{^m0*s-?Z*A+h>2+jQ$SbWuRR^@Ks%11a#DNr=`! z-$C7P#kV12Mfq@q6`1nrj0%&IrgQfjpzBfn=g(O<2m#n1UW&H zcPKZe?rO>ZRKmqxS9lNd(3S2krw&WRx$14E9@q>D=4Z+u(88X$y$B>3aThz z7Bi?t1yyoS2w>sV9t`rWg{^r$=Gz{o)~NpI1wxtQ+5hz^rY|(I|FniWU%}5R==Gk7 z!}$bIU~#7IQGM@74~(WkzBwa*R6H_R!12g7Ju)Dv6k>4X9du3 zcRT1Xfh(pcZU?CEekMFq4P4&>N+WAmEWTD%O7g<0+fF*5dNSHHgsy|%j*C9*cAUp& zD3{m(F#dCc0&Lj z!ksv+#%g?&&5L-wY^*-1W5f4|heJOg6gl<4_eWv{ElN|;Di34$aJcGn_g2E#O?jNY!r^jQX1YN+W1D$n5; z(T63l!fOnljdRKHCuEi;frlfqGKU^YR*M0IDOF4o-Wz~l%@GQ5TOM936H2!u!Um)1 z86cGd;e;q_rLyig&)SaaSMqOaG2^{Ib=ZxSOflCB!f8-tF?t+0N4Zj|%suFO#7ez3 zRA>nS_$oI=;(Zo)1-WAusNe8f=~4u#JfEtJC}S8L0)Tfgj~@X5b=l)yYDWiFfGp2QuzbK#qv}=AiXF@l;Ab=w%k~cTI6yZ&+?3oXdp|-WkXeM) zJgIJ(eair=$O%Je2JU5IR2r?C_zpU6E&$Q&@-)|^NjOz za6CH%auvP6R0v6mKYQ|s^RJiA!chWGrC^0y5ptUflxc)Oncp@WyMlQJKd+$c9%VBi z82SVe0b)i2&zzlDvu}l0N&c5FGuX(P$;h`%U0EP?^g?DCEcXum`2@jg?ge6s=re`x zyn?9*YkjpV2M--hRUST^mLf# z@K!-zai18b8SJ5lx!w@U?r2UNJF9RW#a&Oe&ddU53;0O^_1R0#v9gdjRVPI(y_hrc zm%>)$^ihnafU7d7gM|t`^!#Qt_eH4fNFo!r26& zrZi`g2o@K307)%LAL#@iE>_gLpJmXk<3g@-l8jzllN@@!La1^KQ-ktl2lLr=I%riZ zEy>)#&2ltPCa6Bop!y#AJD)=584mybH=s*{$!EZDIm7KQR+xXDp|}<8^av-?n*JWZ z*xuA5i7&q%t7$BIF0K~i zq!Hq|-yg`$h)_Hr8HlN(;M|h{IrJU;QNc)prHUNG;}v{mkv%uuV4C*9_4EBY1f^l- z^Am`OBQd=wpiB;5*I$4ZDr2ORsJ_yPNN~Ili1*!E9++Cau4Kr6JL#638bPW&A27SBH*H+C@RNqbwVxJL@JvErL}1)n-pso_;{cGtTG1L&e}CUQ`UM0an|) z4!G;!-+e^*;%SRtv%7I>^r>8c-PCZi0-K+iV)ki^?2kXEV1YHzFYlo94BdN|UoZ&O zM=CurK%v50$SnGar6J<|7XI-$g4QrEZj(%MI37u2mHS{l_4vJ1Pyr;f!Qp($;)50l zLnLeWPC6=@-B7L2J()re6xc8a2Knui8HP$@c6VU#SJ1a=KcVf65Yxo+i*|tXEV6MK<|aa5kF&^anET^;5A*3uv*~o!3@P+ zkNjFgZ4Y9G*^FJzz5{j#2B#OLIHOYqO=(TYT_myYGj@^Aq@#K-=gdimHr%Zd`i>QR zf!w^Vw3l8h)lc=Nf9pE#4JY!wVSo5jbyfdwIYK1$o(^N+FBZvkFf=rZRF@YBRRL`+ zJFeH)FqanymrF4pmBLjBC+|5;g{bJv9{Q64SKT12H!xRM+~?zUiHHf7OSsh(-FXS! zO`ux```zb)^=C)X%?cPP$o7jI{mdZP3lR~!U ztF}9+8GTEJ6Y!f4O2>S zzb(LI`@JIgV<*&s9xyqHUCxle?mt+>ts=?1%mOc@p>hN*=) zP<3ti{25ecVa`?*HU zJ6$(&Lk=~J)-dY~VNzmPM%mpCs;W3q1_yO)k>BOeyM~8c^f{PTfXOh-aws2=-*+T~ zD~0g%5kf_WU)_12$YJk~xcGhIt$ktOjfQp}=6WE}?Sv#1jG?DT#p9nl zQrW2eyyAU4HmJULFEY!P2Y&3xr75Uj9$k(dI^i0rJO^A!n3Xla&6u3LKFr;o6?5Sj zL?gm4v|EEm*zHE5nKnYUELj1Tj(|TLpsZzuBP!}-U-;Os)Ckf1ONOr-sIE(X0el{A zG&C#=n9NF-a?DhM^Yk8(fYCg=mCE~a{IJs?CVIsHEHp?3Nlk><7csXnG3mLU)mAzz zRSBFe$!B=Qc777U7zUBx9g+$jvW#oy#gXLl%);ziV%I%jwk=kF&_ZvI^4w1zyfNrj z8M6I=;-g#m#RP6j=z(fF=$*)3&L&W8hslSxtn>q157sb9mX4i1Hi-lYrJ#-tlriv1 z(Kyg(_-O%5a;oqRj)!;TJY+UWZ32LwaBtUrfIarG&+iec0)9rLGrQ-S2xWoctb%C< z=gtG~5Tn!F5Y+&{o z|*$;U$0^OGxtDo1hOvs-$olQgc1-PfuRvs00A?Rs`^CHcVMXqYO+s?hhGFE6BP zUsYogF$@Wx4Q-$wU$J}iiV5-qF^oKChp(2dN=!&%#nd^%xC~)L-pJHfWvvpy$&uVM`qW+FDD3>AMp1)()#HxDg;rs)7=DGDd=4T zy{(ajkUTmluMNUd+Yau@83XdR1*R3+%L-unSt;aAuA?m&`fCci8ZeYs--Rc7Q-ot+4kY67tDj_cD>;gIzw>?bVLv;ft zpYBmvO>V4FsFoGXUZC=#NE(U^C^GnxhK2yoaKG6i|JWkCF1g-)fVtf#{|~dNSzr}W zk#IN?xiO!yNHQy+y8*d$hoDpvO@g8?ld4~N2@ytM1dai4GXhw> zi!Jg;m++6KFb8S7gN@U?)KO-uI?CLm-tAWeKlslKjNg7t{rrAN>R)zKBjl7L{=)MT`A|#?*lj~U4Z)m-iZaQr;B}iiK-C@G z-90-8(@BDPnB6{g4D@8e1R)*_l9>9YfnLnv&Sx-QMnHj%0LcjleTb zl~oL((uBF+vJrUJD>W7lU)qg-9BAy>ti*z;#kA`RcY#RaHQB0*{I?l(<-Y z;F;Xe3|3`1lSbi!oJ#wKu7}_59vC93EGL9C{HPn2La8|J^ ztq5uJ>kaVaOhj~uAQ)x_KGztWMZW1^4gt-hiUy`9fjj{Cl5q2&Da6yyGaQ~+OkWJB zHV639&_dwm4r(%i?#_|#dSuVUH_S6Wj6xR5IhZ}w{m>84!VL+B1C%kyYT?$!y8>32J>z4H}9Vc`qQ4)Tc#*y*~Ch45ri zA(FakIvI_Cy)M8FT^{j%v+0boPsz<>GV(X*S zZ&^SM105!-ia~kXA?y!OfAkSTp25ET7K56$MYtr~$bb3_x+tKEa|VhcISkpHMvoGQ z{H1tzbbShLQ4(*>w%i0dzFv!5rq(Dw+p%J|-U8DJ!fFolf`r+4AH#eyDg}M|0{O=Q z{_AgzN*P9~08x`4#GdNTLDvHfb@Cj>u_73Zg57sq(1Egos>orEJ*J;}8jc-nsCOU1 zTMhlScMyF}Qc(5ya>T59>AC={x=Qe64jpu@lcJ42Us3LIl0!EGY~8_bx%t2-lI?%- zTMXp-0YMS3s@{DI_SnGR-XTgbs>^fuSqXi&V;7?&In=&fBa{XFlMCnls9sXO0Dz_;k@&Rh_eK($bfKK5dwK{d zS&0F;Z(FF_yOY0vb*r3j8hSbkRD1re+T<1_aIjj4wAE9iyIMj;YkZL=w zqvf3Ng)`%NcNe4^Z0%9v*s{_#05cof%1_%cH<3dL=cRA|C% z0u@b3mBR67ui&jhzV4E@fnC>7H;0kuBA9Mfm56FF=@I6HqogiXKR_L7!t(Mw;ne}K zn^m_YepV%ukZ3}8eb4*4TJnrK9{Fsog?Z;GU$d7AeA}kITd$T(rk>vd!NZ)N$vhUg z*y|GGudj>Q6i}M$BED8>C=q3VDC>MxhkJ1i703yTL8G=7zG&ge+#PaIj@@zN-OxwGvweI zmKpTmk*@~~6N6!DaQxXT*rUVr+jnEZOul#b?gfHX$X^}csto-yL%#00#%2?kX@zb= z1c#|AgbdU2`vU(;V4x!2DC62;|*@5YE** zPXXspzN*Q+tr+LQC`>-000_J%?0r?h?i6&_qy737hKWJ-8Mzt5vLb(^9msb*)P%7a z4b@U=*UbnqGnW@*;R8}=6#4ilC$A<|Dn#nll035&W&X40YlJeVVWS9_;4~KK2a??L zoQ2}LVIlo|m6B7xn6Ufu*)@?wb@S$qh|&Tx&K?vuf0&^}CDyks5dP%X17G$;1b7I) zQkvQIFaYqWsusHpDPvRWp^VuH(U3oq#S{M?VKt{2pHcu!BB@7%u^^D2B&FtI2!X<4Q0d-QQj*E&qZ$tk??f`HJ`zk zIn3@j8YqPTxH3tJh64i_y>AmQB$4-(O469|pjMHT9lv)7RJrl~0sc58Fg*#H;aHOZ z>4mr&O}>mKK|FmPtHvR-N$M}bBLouS3o-GDzau^;suvx0Mfp-<)Uy=7>%j|#)B^5= zvlET()c7o-+#kAL2)EL{J)MI>5(U7Drt_l&Y)pFNJ&*Ir2dIe}t6e~n&`U}y01!C< z*&A?FN&~@-9gr*oT$`%!NjA})R4-DXp?>HMDg(l&TW>TyoDoYrq&S_A08Z@W1-;ewuxnLx@U>AVV!t%j2Dy^90 zYcN z734iUuitQ8x=g{uwG=2P9IBj^UoQbbX2c)r$V1v1${ok`tu^7Hz=**I#%s`u@QA`v zyyG|^$`Z#UAsCHl8kPheG!TsJRqo`DOP5CZkxY9U_yuceFc$SadMC2G(nSaXY8cq{ zmU*MSRagy^g@)Sr) zAH@pNX9kB5)Ppnft2#p4BIuKjcHGY;*$A;X5Z9`6Y2S!zTV)vn`Ujjl?#r49X%rP{ zS|;JA_f;vligVq>y+0@>A({dfDtOLMfrTq;ADpwvgmWMXnd@23q^<{w0{yChX&vl| z%3SQmQdQ2ZH!-V+uDlX0s2 zzssdKI(Y7bTEW9YA9X5Hr27>_+E*#)vgA1tyS-jIztNyn3k1>${8QpQzK0a4tl?e} z1!}AvyYwNjND%n{D(-JFR#N0chImFjumOm{T)b{MtF#)s?^^Mkl+Sph)O8$hDv;1hphgAgW{lfS*@ro=lKecGL@RJK*It)M^R$^c*J75OxQIk3VCO zuv!9(S(5hyfb6z~YI>48C#1pSQ^V<9GO7WU;DAh3=Q$p_A$-&!F4_ z+Uil+tE0&u?po;S6u2O1HWV4mvs>t-C{70W5EawkM#{eNQ z=1`~V7D{P}7dbFYVCFMIy4n`u(K$Oig4Z?|=Q4>D^m4(?rtPSDaynJS3}Ylg#)4KnDZ7!5sCgGGYr`83R>S2z3pAkODyr zDBBipyB+09#rQ44V*sQUwGt9=YF{6ZlW^BL#ddY1@-y6<7cEgN9Rf{x8A0FqBes8vO&$Z&nfAXp%yr{q`N zdmtbk(x&wyCt1SJD!4_CQ<)^w2rnkjsMr(n={3DIhO4;*_<*hln0-4|@A3>f&oC9U z(@6D+j+rhVOs_uujO?yRhR{tswZ63&$ zD&g0ux<(iR*M8#Hkr$%NlCI(>@Z8sjUvCJPshS@eW2yB|MN?zBf{_w@P zPg}zR+{-(5zASlb`a7R9nVC%OrV$QAm7{#VNBJzI1k2oP z5M~v{HZlWDN(_${l>e24DZAeDzQnjgI3}uhP%>&I7=0{{FuK{(y@k8KXA&)bNUx93cW>mn{-E)tPDE1ntkhURJk8SdnDMDM+0^^+ z;D!a~h!f6EU@Wma5rdUfanoYbm9yGdcO*?usucJp&PU&m4=h$q<^Mxrq52aXv>J`E z)N;Ya)`+$~P7KT-vW`Uor4;NzS*;4F0#mY_?1{yg5Bhgfzjf%!^ZyG)TR?#;I z3?L|-N{Lw|74#tUO99Z)J42F9rBouaC&^Xm;02izsj#65d3wDY7K48Deyqm1lkSJs zshX>n`Do7NY3La;!;WK5L(eFa3GipS9!|`>JY^`I15}Ps7$Ec)0% z9cn^Eje)t_lK<5d(ybx++cX;8GUptZ=L5r}UQH&W6uQh~)3{VIjgrNxs(^BQjUED% zro9}PsY^*Y;8Q}pn-tJ{IsBt(?LfsYy*nTjd6E}aazCLIgCMDRvH}gLOr`G0gCT1^ z1bQ`v*u8g-mE-6+B0hWs+Q292z9 z=lQHppqz0H1K?TYJfC^jGcnReYzW8)L*FNFF$BtHC*En@!me}jkm`o#O54$M<2WSw z;E+j2E+hO8At2jziNKDohw>&R_}ORK!|pC1hMSCqVh1|f8>Dp&u<|clD0Aou;VcZ? z#KQRi`;w-xG(PsJ3#)r42CaTXhDd@G%^0CoGF4TM>log{9C{RnQp3C<0HxJD#kg|AyNStE~Yd@6%*U|2hOw5l)7v39l@@J ziro?;@ZZD8H#*(VVpmxiL#URhv8Ha6%%jjr(cboB>~%8Iyq5W^x}KdP`TeNq2Y_c2 zSOiOJQz81zfICZK(#K zwtMJF1wCWSQ!VD>i$$A1d%1zVR*3Zpb#VsVZ(;5Nrk{eFR~XP&B@aby|XlQX!9ML#21)x_j21R&~Q7X{Gw(68>{-oAvJT_XG6z5~BMkdKsS z=&vTot^sv85<=kvFs;PAiPfLbw9tz=yIeQ-Ns<%bp%wg)adc!24 z?_jD5&?n@vBlvo`e@ZD}KBKwWt83z#S4&pzV%7Gw4I=4^cRjD+D{g40tR-CKwU)F$ zF(e&-=nz^5kB9J^FAS}ro?P+2&tHidS_^=kX^&^BMG^hCVh_fl-Qbv5`1kWEkcJhN*$i6lQ}1wtJ}OH)Hp9e}Fq4(fr^3 zI~*PxJpP|H2*(5Tq-4OnI{>>qeAB}I$}ho9wrpt29Z0K$^%RlGPL6b9Wp zXUNtK^yUD6xn!kr!|qFdeP9xFeG9diL#-Cj!2{N!pJlMMgWB%l-nqizy(#AZWkA>x z3s3Ib0JS|}`1G@6RO{Y-1fOZx|MDr%mBmzo7N3MD!g4+qnzW+2%C)1;Q|3 zc<~bU{rBK57cj5Z2*)M~B#!Bh;;c%Q986rFswurs} zFb2BR54)$b9#odo@UrglRW%dQm3aIN!|39h{?pN?E`!r*shC?u94V!ylc!Q($Dl);8R6$Hv6AZF^$O#I|kQ zwrwYqiEU$|iEVqLzt4F;-2E3{Uv%&8-n(kATBzDpwVua{*y9A$QNDt5YVq7)UM{b| z5;OFN9A^AJ!FP)l38|Z_>!dzMsk{x!<{9XlmJnpg2h>-@KIWz7K(k{$a5e3UTVKdO zfw&%T#qgr3X^XdHE8Y{klf1kHw37h{YW`KM57+b{>fxq%JyB5Zcr)Ca{nXq~+(Rm? zv(IzEidQK&2oNu3+^7RJs3-;e)_N<6fS~T?t^x-o|@{F z=Ygt2p(@DyPd&`_`kOJZin@cF+wsqZ*C<|*Vx$lJv<{y?V?f~u4JLN|A8PnZ7OLV& zrQ|IoqKiN-WpJ8?sUqfg7FPH-FVy?iRQf3X;ioZweFY5;0XLs*YQ9SLhvM%cIiF-z zS2Wn~XToysDT6L~QS9K+aB$?c;eg*+jo_X(Lnu@6R^-0ljKBaXX#6&ZoAxGv1>}U?F?{sdq zRWzHRGt`u%`s|;Ff^o?_WM|0Sk}fnN*`aCC^h#y3r`W(|a&uCZ*s_~cw&J7Y3N1&5 zxQ(peNDPO-$T`wr_$v$nPcWz8hYzT)R>!0Og=e@KY=L|+8i@rxpXs^yH)!FAlzU_@ z$AJ3_KeitUV(iI_#hE$ShfPyx(95j|wEW{G?3vyg#LCM~`cb)SS)@?A)D3x-!@&Zx zr@$>_;9EDo7KT&AdqPG6HDGmxl}IWsiB~05A~O00V!>J{BIPBdVX#V$AgjQFxq{Cq z{-Y=;3!|n>RjxnX0WRxz%&d<F-_Nw5wXp_jT{$tV%_&B8SN9^0ZACC zLd?^wq}enoFsND%&qxl46>b>O(WtlJnNJx^{ljm6Y@!;3<`TQBBqO$&V{|h-boJ-O zhgKN6gyM8919acNd+E314Ol04-JTQ3UQ0o&(;s)(YK1(8$>gc+eSCsY`MjhHuhG6> zX8I?!45TD@4@a|Pf^L{ZS4uxfE1h8#Ph2Wa@}b>)QE=EoSi|jLQn=0x6KXg@^;zlQ zatRABnZ1uf#3+2C^X@fWeb1sKhq*vuDih;69(71mtu0%=Vy7Jh`yb|Tmk_I8RHMd9yeUJe^7qFsvB9@Ib5Kw(P*mde z;|a}9Z{TWS5SH}I;Qgc1n;D@izKcJ`LkPZ7@1icoE+$CQ6V4bcbb3}f6(y`L z$w0!m1sILd`2#$JgV-lYJwAQE&%PA<+(O3Dj}#99>$7fac>&~nUt2#H(}eeRoPi?y zyV;PYhaiYDDTDwbcuS?Zqo=W{tTJ*SadP=oYlJsQRohYc6T9L=ZN!;@p#crzmUHl_ z9=h;GI@|vbR`Ghh`%tQp3QGVJy;}OMLwoyvNlc(vB1GK3f0q)0g?|F_`u`xgtqWgU zy>xmTO|8QjHXn*mX3JAMwQ0uvV-42*$;_9ymRy(E-ZgZy+}W^>WwuUi<4)tDnhd)^ z5u0~W-RKoyUJtbQJZIrzJ5H{W6Pnb}?OFrd8f0)X5|2j&C6R}3+ZCpW-oN+)`b_l8 zf7A*9DP=bl`iS&8g}qSbaopV_O2;(`42^%O)Uj#p==bb zlO6paKpn=25-iav4nEh!R489Gnn>EBGckaW2e;_RjTeSU?yv{Ogs~dOKwR!PWg#9V zhqVuG8oNzNuS@jcnaE;ybT%?+<(5tKg)K2+s2dzWCklE^^zcwgutW0D8!i zO~A$mL^afVQBeDqL$B6!`<5HbmUiHT5srh8d6;1l%SVmEroqy~7+0>rz*;}jpfCqs zK;%?OP<{$cfXcGd2flShRY?Br^Lt=_DJ^^jXvRBZv652<}VJ5uEMEOKRb@kvuj#~2PGjUhTid2@Or4WguUMgsnJC<0o z=cd{oU;m%@kf3MGoLkCuY5<)&kHqg+crluPo&n@dA$UUgk@snEP_SlJSqMA-J~cS<}BRUt6y%Or*;Dh8(_1eV1GZ$WF^!aSh;0GZ(co$bVg9s_kG29j^E zv_~{wWh;CY#~hTPo$ms1PCF8>^I3v8g;QY7MoL&zRx5*bm}L-{ZUaUmRbM*>Kj`rIDLpZTz17{9f^$HiM&+2M=T~=$4Jrg=X9n4Wz{ZD} znl@kJpO~ZIDtg2Glt?bLENBbj3C^?Frb0`re3YNY0eI7VGA8Q9p4;Ql=p9UUocg7x zVSx_PuUm~p``0Tz{jl+rH1UDY%ov&~1fEJFjG;MK5?4PA?5e8TW;*g<4d|0xd|6XP zYeMq$ik+2Q$%c;6X=X^NMkk_6PNoIW!-o-8uL66D!vp5~j=6xo$o@5J1Nsc3SK1?_ zVg9aSnKx^YhAi?%s6*MvWMAJqh{xCnTN;b$wjefHrCve6@qW>J-dr`rKO|KAVTm;t z?G6p54h8f!6L!2?4b&HS3{+SHUfb=PKqy;GGoVbsZ|K8&S(LF=R50IDq2%>{dtZ(3 z%>w|SoNKS`tA*!$zc-}96a#uuuB+v_-_IA&2M>?RGgP_0E&>BSQA#)y&QX82gT1o| zQ-XTBcJBEutrVz$liyk(AN)GYWA0~t2(0{vZtk)|+-M>k1l3Oykb}pZ%+e-8-oysR zt1~j9)`;Ov*fr&J_mWV46DKGFD!GfIf}DpI8TgzQgVfx`R(un$@5~J&AUo1I@bkJ4 zX1gICWJZ}~|I!LX6$vNJ46@|nRqm)_1xy;u%ur{{v&#q*yAY6Q)zgb^tD4dPIk$7k zrIO|(rQG}ge8x9%j_@~J%HNX`11N4q;n=p9s(h|~|27GVVf1${-- z8}3UpXt7BTeTD~908m{7U4SA!(C5W#y_P-hNRUT)N8(o)W|WhWJ_)KxblTu8oe z{<(*D$lC7=pR@LG8KZ)tB#Vc)sN!=l2K*!q1Y4~rL-AiNn|ZTm;&a4x<^p8b*z#hS zjYZM~Jq_!PcvLJ-7Jr#?)O&2lZDWVsk4M10!Aq= z1dCr4UcpYe6H{Lqh5al#*C*|t)QVtIq?5(DpHOFkio;>MzM zH!xgiMe2)#L#>q@A&h|W74a3S%b&&}N>m3MdUYan2&&O$rpz?X2IWa|4hch3m~dVR zv#5JsbEL`T^f621wyyxpzO(OmhgP})z-^@%4iyY2XBxZWUKV4 zUW}O_=W~|qDCRP#Z!?e*fs#r|PbYcIzoEsI`#CBH-UJPdkMC&zjR zE$ksoPPh+D$SRYO+a`qo z5t;W-Tu02Zj~EKe&|i8uhTA;lBDj&@3N((ARRFUJgv3Ea!1;9qc1z4U*Qk|NC)1Pt zTpV)^TS8|6^)rc@sDqFjKg7VV|2$5{Vb*}cGju2j2ymT}GO|d7$n0;RF67%SPUWEp zf+z?BbQ5*Tbct6@zYZos6~$DUh*URfuOVCJR;+uU;D}447PSU%UmNayQ!+t5{G0oI zORkFSnJ!U~AhvjinvVqweGvboO3i! z{>rveflcBp#3~wjq+%Y!toTG^H>XQSzv?Oz*O$4Ng%5S`S^7r1P_?#P@vpa`L>Yo9)^Iqmt0lzQx#%V8+>gH@ z4ymDBa3j=kuQvbK^#>cxSQut;jHS8qL~$5|oK?_dFCo;hskhHHTVnjkI|SQj0sG<9 zy`8BCJ0KFLxo4#w4AY)uUmfc!mP}M9ZV51EkAK4vNf_^t%y5E}ENak#i`1a;*6-$0 z2Qh5}o?+(k1Q|KZ-8!}Je|*etHF3Py5Sw!j9>c1P9EsuxFexIkQ1~4dD&d2JS`5_t4sC7*tMCKy>i$}^NNqSB$2U$ywu`)x$TagdLnnKj$=Fw4HmB80fkPqlj98UUk=p5F&{Rr8aY7sWk5kZxs0i~rlhMa?M;=H=ls-$Am`W@2zD4<+-Cy-?XTxvW{$7-K#t>>duIL+COv(H zGweJr(!6eC7T`nasWaU6k{$2*nPT|pil}@FcTE6E2bNnD=CyjU!>J7| zGon;>%kk4lAfJlg^1@A-)md#VGP_MbIo{!~Bt?4*#yxRnb-j#NkE0zn6m!0#;L_tW zMVp^#nDdR15sYxo(wmy{yWcYdH_YQ%*wRN;5-mB2^3{_ay{H_e4^}eliqGbpX8XB8 z9b;k3(LGz(F#0h~0&yrJ#a+eK5(i&mDRqSq!6nvM8?bFy9mYZ%u-&QLK72={! z5|dDQVIf-(wM2b|EQMzSL;!uV4zclDsHj2|!>a;<9+(dIY)w3A=ys3*5ccpv5~3;K zbK(^>D`5LRpF}M9okVH)+D%?>bWuttxrh<6cGr0lLhmXaH3G2^~wM; zsPGQIhagti5TRumxIB=&YX)fR^5X6& z&RbnmP>tFtPF-eFm{Fvs1n0JFK$KnXG5a!j!Z#)A*;PIxLgfMyK$9VDuD@+;(c8hh zT}2%*6YoQ~#^j=zhk+q6pv`=nfeyZZeKlU6$zLNJZn*Qg@yMJtJgBsyBmw5^IS$tn z0fDlm0`3d*dpo{MT?Y8LNToD*6OdEqgeCkjX$_YZ5|B}PG7hOhzw=u=1Qh%NP9Z@A z_YbYmdYhDX8bOBY;LmjvLz>?R8Bkh885ee~y7zf`mW@SfOyBpM5c6d=(Bb+Rs1fnU z7YXU(5a=PZf9DnWcLcR3zBMh+se|b=SY-HEXfjtijiA}Wbam}MKY(>)CRl6FHK=Xc zLQ2euc0WRPeob;IZMih8@SS8M=3fp+RV7KHF8KMEoSm*kiHZRbQ`eEs?tk_Tf7>`j z7?z(dsy@=|3nKIs`FBV#ArB^0+Js1FmdLm1Cj&IvEn;|z|7hh!1Ph4Cs~^5zLQrtv=Q8!HNQ9}4@9_)f~mM7$@&z1 zPhJ-+1W)ES%Qg0`-25gCz?k_uY>s*y`UB90r8=xt*;quKda9a%4M=Qv*+0&e_0Pkd zpwN`!`V>go=_k*)u15pS>ysdPeP>Aqpfq>m&vdHX$E6jA zA6=bltsF$}9`*&%jy27a^W5x=~jq3 z7#%x<=Fv7LIY!Q$@}fx!b_!r*@I^gvfDtUF_zwvvm{~oFTLcYhsfYbkill-S#H>Xk zRl66=)zn33LX+*}323FIs!jNYoHCMJdf0s3x5qLWq&<=|QS3h4r*Ks!tLX>kz6K6Y z5FHOU1y z5;ITPX4XP=74+NiMDzkGbaI)QGBDEDixzlgE~C?kz<%$r~BOCuw+xzH=eRAI;IHlF%ywPh#6q z#7?7M9&I^;_|)s=Q9(%4ER|@Xw7KYt^{w8bvLKqu43jME-;u&*SZu_TsCHKcW#}$K zZx~NKk{*tT0@(xf$H44OF%k&rAeGb_QW;F%ssm~k;^@2X@};(GzUSy5=aW;iiq>#{ z&yUcRoTLNab+oh>a~uA-2N*)(<{)Q%@=rP_wp@T<-=&*U(oJ;{F#@!(T1sR#2s>{n znx|Tm0W)4HRd~~&%{%Xj_V*@4e>uqK(ddoLDF+8Apg%!y$_dV&nPSLG z?3Lj5N6vor#?wdv!T^kbhKznDDvX{Jum1oK!;gLLkX`BP`^OWcPGfz}cY;uq-mE4| zjD8vXwEV3|VB}iSu23uuogin>D8N5N7aSO26_Sn4CrKh~9}o0|e)fQJ{#|}E;*|`C zJE3*b+>Ak9Wx?J_@x<@*LGXj;Ycjm}z*{qcPpM&1kl$ZM#aSexX3ZjGAGPq@Gya#C z0Xtqt-0{3qfBnrK1w6bu$4t2DsfUE;KW=mNG_jvNK8vK{r}OmX|Fnh@u95fOu}&2@ za!KjU`IB4MmD5z!JbQ>=VTGCK3_c*z*YYD1A%!@#DKC;7$Wtdtga2xr(0>O#qaGcV z(9snE7i3~{mVvOW>DZudW!UKe0Vl6FM3ZsH{}v)c7v8m#a;ko+AWvuh0j&Vz*=%Eb z&|49O72*+w$jP=IIi(g#QgE&jYYXz2_$&hTFCxxR2sjM^tp=MqyN85V$qZjDk(bB3HmAqv1KRT6aI>T^%lv)dmmV$Z z84Kaz*BJvlLO-9%7buFjm8e+}s$sjujxZlK?#wJ@o2$eAOrSqZALnD)ulLP#fWFpjwzA0bP zyL@QGCNPRvF?0)twA4&Gk=N&n+Jvk=g*s~KMQ)}9wtYEh^`pywJgf<#coVSrt!3y` z%18wFi%lbRQG4vbN`cF=WMJClqqYA`Jyz2K2I48zurBZQG0cor(T8TNQ>n6pSWJL4 z(Ha8}n!*FxR5mX=2609=)OUTSe!zTjnT96-8?HX~p;RqJmuQ}{65L;yejjL$(tbb%JRrLvKMD!Um=iL6z)WdquIisifsyj^s2}q14sp*VbFA zfzbs-1!>MzaljaQnQa=%9^{4|l}0dO(M;WmoCI&mrKc2bp639%qTnaZSOm0C_M?=>NJ zUUFD9hg-|Y`}{FQxPI@&*PZ|_g>s?@Xnet-gFZ|yLx|#D;_Iq55-)&J| zwPh^OjWGsYKMyTUI2b+~p>2-6=$Z;m6CN z?lxiV(O!!C*im^b6P-ymC#a+D0O3T{2P`i{Ve|2_dAce5iZ_$07al|Qbcm)N`oZ@Y zEGRmj80yMDXt$L`6a~5Z96n{uq5e`jCIa_mjSKW;PyWGRuEHFgtc*VI>-kAY$_)Vc zH{kV%s2U~yf@lU1$d}l0uT{7urJw}ADf>P5M|2G@UZwfyJ;*MOGFEC;;ZO}_6qVX1 z(0fjQ0K|IkT`ay%8hD0eAC9#E5sbI2~s+AP>1$L**dbCxe~KHWgxv#PlY#Utn!q3 zM~NY9uTanIKur{?GGoJn=pd|mZg^bvRS0>}AXnh87QCc-auf2?1Inq9k3@RI@If5J zhzlwt7}e2s&UZbTFqD6gM6_4lZ>&^Bg;kK+^u69S41W7(c(E{?XnFvZN6I|(&RYAZ zs&OnMcWdC6rDHUixSll?Xqx{+0!&@~fcGQes2l|SCVq@%p$N-=!CA2g*R+7_uzgyV z%UjiZI&JK7lA}iI3`+gB>K3se`s|ru`_Zl-2_&H@xbZa!_JB|%{!uPvil}fTov?^~ zY|Q#AXRwx%x!#WE`1MJ(?+`%+ehq+y{<6^*m4%UGPPKFCyqb>p@{`MHH%lkUFhJYh z01MuL<+zBSWz+Fmun7K65?DC`OjL6yV2l|@TOCpR5N5b(3b4|ecm*pyZ&RcBu!EsS zWXmrdsT zJu}7Qd^wkiq@;BtieZZ&yNEL%B1t~t5lylRa}CJ=t7jB}tn~;L9EpsJrjNjH(Ukxc zM>D1kMU$&kvIZ6)4wpe?o|@Jj_dM&JKl{Jbc0UQ`(tzfPG6lXKWwKh1FHUQ^pSF6t zm#^yQ%@&u+%rQ|cGu3gUh5MtU!r`xc36S^5Ay!pZ_S7>`Ge zK6bnkujJXof3|ahA^gs10vMr`<~lAmQ3-70!xwpL>~I_`koJ+?A`2y-rwZokflyJ# zJM^`30<3rQUhRhZRhiGEs&7e!UqqOxskt?8HPjCh4cp&ln`^kd?i|^a!R;r>y;EnW z14Zp*%kkuerN_qURy~-OY$wouY552tA{}KzGzX+FiTGL4Bx7MnS%Ue_C8{wA3RrU zs~b+AOPr+@AXr>&O#b_a9Z>KWptTZXaC3n6fLAVJzYeXAh~n0UE!O3V|EYp)bcAoQ z$eg6C$33P&!tIGAif&?pr7Xt5h7J2?gTLGz0kLUtL_7=7KwA_!B@B#+bX=b#A&ZVN zjq>?(DQZ0teGxfzeZzfL1cwMK5RWYp8jI40M3XyoL&?>wbHn=m;%^JBcJpX7;G2`$ zw&Xl?tQ4;L7;%W6M#FQD-7jHy`1h;vIx1y*vB7(8p^nZ(Vu=K(H7$DjIt#rFlJ~x4 zkF|WRB6>}$xQNx=f+LTaZaU62Nso?s$ffgk)k<^xEGXcQH58ScKE7syt9tHdJ3R9U zUiUb>X?evX>+DwvzfnXdWKy)CQoYy%y4SKaRk{i-$Tj)EZ>p0f2Oq9GB;Sl#B6muY z+u7LQJiASo#ale1I!k|o|ESfnyYDa|4$-mE2nXRYA&ucu4<;7`CJ->?i8~FWxSWWD zqkZD@`7T6SmZ%fyg=0_Z;RIDd%>CLhq&aS<03eEcHu{>7s_Bx6qBjf7qmy;XXxj<5 zb^v4Vv-roAv--jbYe~>?iq@Lvrm?yzVe`&^ewsoOLAUkaI3Q|vXKCrMDo?}py7TGA zePR_Q0q%ZTfe@i}ylW%9OfpK9;fK%J=(1qUp2>c#&uO-hf0wFN3z#qLT7d;DbhyhK z%s^aY5=w2hzkUD{9uIPD%EK8Ng5IJh?-?qnIJ1NkK07KxNAV5_4tX#A5ZPS1l5pmWlNy%A;T-Cy^tGw0JEjB)5IX`5 zh}#@DFGF0VRD$*+fpRnus%Nk3uGJ- zvOs0~pbnP&-qFz76Q?n)5U{R(c{dV^MG81QNGo>FnQ*JF6CIr(3wIBE8oCPD#c_h7 z8DSde_&1QiQgE?j@GlZ4?x!F0cf&za{Pn zpVoo7gy{PPW-v{r;)E)pH~QwUrfW8$7NYFfjcP1?Peadv{!qGtKN?$K!zDWOq z+m(5`lilB#;`Cbk#m=GSMi{H(rZ-w)E5h~cCUbd>lGiA4#5aSs^NHqEU}O#U0!W4f z%@+Tt&gHV5x#*Rln`vTRy+wKAUK6J}idCu|iGxxM0=#_X8E0dJdNO4yU>DJ$WKBWJ z$=@`uTpj(=Dw8P&5UZr^m(GR%RSW(-$BHDXm*Ld1UBM-}5s?hoBF>ODV{RThQ&wqW z0P;vo#e<(zS-PWy;=@|C+*@1ZIcJ!+RkWmYd>=u3_A-2R>Q`RpHVhS7gbArCi?l38 zoS)u?Z$b+cy*l61cP(|~z1`b!<@8qSkU zo4^FBkDGHst7afAlGw!6rX*&RJ0b=%RE1;1k$ zpc!f8hJRfsXaQ2#K$W;+@$jl!vUjbn6Cz)qR{ z9JlH&c*{z&zQfKv=Fe8fCVxdEt-B)ALCgBIO6WPoj&*jK2+eV{Ia-2^OX-qadD{3o z;SRF{%di-Eo@E*iVBldD2%bjDap%a{U80>Zgc0<3mkfzv9!;{fsx)z`{^#_@GY&bh z2%t4k;_7hhh5&sNJJOEx%_x5625=w>;bn%k)yF-gH2w6g0Jl0ULZQDiv#ci16bs2D z#mZ#)g5CgDw6g*Q|I-vREA8>=toiuG=hsBHc^(abvC0tG++LzHE*e0_uxtTqh-pL3 z0ms0J8Ba!=sq+1n{|5@>yK|=6f#lEWg(xnlP#~JY0yCTu;MhAeN~j)=gX8#kjCNl= zZNK<6ToNeC#NhnzV24=AP}jXt1LoIM(5Od&DMllKw7ki{A4ro&2z;7pxLwmcTvGUb z{krumt}FedzddYTjx_NINKU^UqE_i>I~p&Ab2zwDr#Yq24U0ljBj8txQM`x)s-SOh z(VC|5kW_f%{~$Qjr_l4lsWyu`BK&HxQSB7R`AcfABFVwb&a}=LPZW%KQV7?@sOZ6~ z6{vq5q>y*ymAOm1VowgcQfwLe5SzJCY@f&UHDP%Lk3!X@L5p?r9d`L6EvGf3G$Ejv zX&h5MuGPgj?wZN@;7tM{yx9|~wvEy}I@c@q_PR4Idj znFnfM;tHIalXCj1oK#bsLbaoj2Geo^DK9D!ab_f=^b)qQ<8pPZRkS+Kf*PQaDz7No z@|T_=+cOkhLF7vFyGfqW?793T{{|KQ9+$G85B3=JJRi|kn z6!VfQtjd4^R77K!g!2Np>}_T}WdllhCBoUmXKB~gysl$&vg4yEq`ERi}jj-^{7 z`6HPFkoZsff>+rQ<}I9S6|r_%_WP7l*~E^pJ)8Hvg_+0hGs`wq#V2%bq@^R^FT|*w z;f6NKV^#=zaut;;9iAkzM3<{xaaU`YsAFw53u<{-*KkO)uWcZ**Gw~FrTdzmed3`| zFq;Ks_VVO#y!q-?e!8*9c7s4zaGD(8nkERP1bQ2+^0IGy>727R)&3YNCf2Ck6^+@s zyF$d!gOk<}b~0`p3{;exw0CTc-Ap7{PyNE~$St>sw8I`a__zxL!59vgMZ3kAH79#w z%Fsxc5~q`r4gU@Fe`J49!u(VTR`s08VS`^qQGt8G?HfRQXrh6vRcmvuQR&L848dPx zw$fgcXK139N#n~cX>Apci@kyHcZXDBnX7an_lg2Af8p@^=VC#06@*QOo)A1rf3H*4A+5PW zHnahWl=W1`#p44x7l9Q!x35i!(hzpTb5It;j|L^&08UZ><(V0|ZZzJc4Va;7^8m48 zBG1>So%&k@$lZ&ne>PW^) zpfrUXsGoaiG+(s z7&=Az!V?NOcWQX|mgMmKA82Xx%y~`RAOgyfg z?{+fN&PhCQf&8hIoljAC^j7G#i8zh6h)q*K7Iu>+l9(c6ioNNnHJ*q>!=CzN3{jdF z(F~xO;RhS%gui8LAa`Jvet^wymIk%`$Dy?8z76p8RJ*A&b?}A3d2(M^1og$#9ENG+Z zMGCX4YLP82B9fX%Z3=C~;{CfOMN^eIz{a;mj^p4$M=u^d)bswQeBV1-#MD0-^o9nL zlm+r~1v6Wi5CAVh+A6`fBl<{gL%igrXh~Fe*=v`=V=QhwF<>i=Xwzon0Ja$$hJ?*e zZG2s9`0vYlIlYY2M|xQ!^%+^e=_g5(yVEi4`gArBqN#&IHrjl}SqF1e z5HR*I^3(zp=O(8yk=p_S62Nich@mo_KEmQUDfI8I7x#RW7#v)ts8O5 z+ddb;^L`$dv84pKfEVGAVgh_lS|C&`Kb?KNZU6&Z}1m~%ZGlKgpBe`MAi&_f*MoYB@0wo zPr$hAClpQ+RuOpvKMe>UTM1ASj)uPw2coH=M0 zs&vDD-g?-#$aa7!BP78^XtyfG=uh~}B;ZPS2oTQi2@rQh)MHW*+ty*iN*59vWbvzj z-?gZxCtw6i2U72P)4hF-LA>f9Csc{rgHPX0kna2eq`Lj^5N9hfValdte8ScRFJ*~P zDLI1HnI~^NFgY$Zfg|mn00T%1Ljw|_m5pqn06kZP0E-HEngAdejjyx3fZrC)k+oFH zdK7u!iN%;SxFxnYO^I3nd4l-@SBK`JeDfTt4-vRetq2PS1q!(w*e@P>9LNOGN~DmR zH3b~<;eZ=JVvsmo5*)Y>vdTsiLEfv&ba#m;a4As1S+V%fnxxy|h_sqqUK`AQ1$9Qj zb_M`|z$GItqK3aXeYHYM%>Lyk6L2Hk0Z;Iogo3H-*O_n$F6*U36xwh?6+~2jD}%hq zCDy?h^TI9AuN!_->nJqfW=%3NEbTQ|niR?s3XP@(<0j!~)}I5s0{jG0w4DDp%A7Pn zWTS-D62cPZwhj3b9^nO2mYte0LiYrxL}jr86MzOJpTiIv3%FF33RJ@;O*C`>X z3xJcp_f{C)Cr@}4$u={9vYTqpY|C8R{gWPH_o2$^AQ83vI<(wwk&5{39OvT_#H zHdw=v4^u$#>x+3nE?FKVBJGML?C_Mod(c3JFcI^ElLV?%>*%Kf4n%(N$Jt>Xsb?K; z&>~hsmVg5&*)XrvsK^9$^E^pb|OB$FTR9=p}Nh!HIiiEhMHBZbxwC`y1~ zlt{-CH}B&J?AMKGIcX>oO!i^nf_X$$VOpReD~kzcBu+>;hRP`MFrG8HZ9-DlNHSQ< zu^8#muPB&^IS?q>4UinoO_&@uByPIvHY_abJEd~~o;GPSO;SP?Qn~f-^m{eRaZR>X zVnIu=5)xVneC0@Epph~#)d4Y`3L31kfEo-I%7fS6zhu~xCC2*}9wuO?qyDYjk0uOm9Gx8Uc-Q)Fah*g_R1+}iW{6P#vTTVJuUW^@xaQ~`If z?Kc0d`H^+&Yv_j!f_vEDE{F~rDSU938q9(jfmRxU12fB zV^Zp2Ne5NKGpfTm!8!UrKXl&m&XmVE>$Lv&um8CN3Wgu<|5GNYxWlp*R8&y$|5LKE z-iGAR|E|&Df#5f)C^Y@&4~+^X{M)_1p=BX|P@ARHMbb*l0)h z|2WrQ@sdt^yXr)~_TGL2p_qnDXLIeN=f6P45%4WLPlXFUkN`=%J~v!fbgfypu0eF* zbR$k5k1Olfe7Q(ZSDVrD*_?$xs&^OjKiL)X1-mJYr&n8T*P~eANgCX*^#ImFy^2B~ zpp@IjctbBQTu~tZzmsBtZFJP0=k9C6$utHW9Gt$Z&CXkpDjx9JgoNS+yq^p_JaCGO zi(eMfdqO0O=YKn|QrG;{R_5dbOPT#q+yWOjSP61G8Z(C*PMK{<;?z1<%AwPf$F`zU!QNcpw__<`g)yp ze7P}Ht5)CeI|FWOrjb}&Ty)v?eXiZDV4TWiGY0|)_&w(Qp8Apf z60X{h^M2u}1^T`{&4YCM|AJ_iRwil-5a;-+)>##+4>rsz3R1rC~8sBqj+giA_9bZ=?+=|pt6S?CY55`b0 zwz}8-C`*Sx2H(zIC>8kbkeXJD2A!iiIN?y0~Cm`(ArrvUIv%hozu}BNJV{WlT!1 z*+_i5fK<}^ujPRv0TW0De$XcoXHf3ViWlGu@pvXTSOqRQIawfIQ9)rZ|Lgr2H}-76 zqW1Q&-k;z<-r_ij$hA5v^tLv;mt|eo|M0-B=dla5;eFlB?RJ6V_w}~@>>I=9el;Y9 zED-V=WVacanIN^@K=|xH5cNef^+c?#X@(d^%+Jr~#%}#tZ(V#=^$F zeVz5+@@vgIdiH7Z)V?H~>B-K`9X^`Q_U?K1CEDNLKR4T2;WKT*G;Kf^Znu?KyMWxW zk?8#&OOp6n1%i};m)O(@a@DSvy=Z~ ziaWVuB_Zm2{?WGDtOeoOccF@)JWM?|8jm`h{i$?i*+v$8A?CE-ii!7oD7N?7@XFf0 zT>ousWmRRake;6YpQylB-syHZ0CKN5d>*5C9)}%3%knaScPr=7j&8yZ)a|TBvHpea zTZ{4o#k|AOwW!I_um*H%9r`c*dr;I1E21t6C-jQY^LsVzxS!#(ba6>BGdExHvJe-4 zSgQ9+m6Vh`sVvVc%FO)sR=#9~iaLM0KYAK2^iCr1^?vWNHw5c-(Kvbn>XS>e?Rz}s zN8W1feWUZd&S-cY_aHwGnfwbkJKYzDh9Gl!oWmj_t~$;c|8}_25pX*M;0xO7|pBqDkplR6Q&_CzKS^vTHcJo@H!uDvbmzTqgf zJ!44LkoRA6R_3uC_G(2JpZQUP{l8+2<=Tl`kqaIwX;J>ig?WqX`470k1iOw?O0TCi zP?Jbw0jfVeZ~9?CA?#13s>}T}*W$|yHz=;zdrpG*^|n7b85kI9$35(OKivK{nZkz} zO8?aJq}cR(yL5SfaeVXb+$^j2y|iZM@^ne_Xj+IyohQl%;LgZaVBaH9b8~;JzX9ODi@kJp2@1 z{{?*M{IMr@P|~pbZ&cG7Y?0I7{~bXUL6&;@AIEK)zYHNJ?T7)x{y$@aT@8^+tN+{c okB;>H|BM6vABPYBkC%NSvu2MzwVGb606;Gp2?g;wQG=lW4~b*UGynhq diff --git a/sed/latest/_modules/index.html b/sed/latest/_modules/index.html index e77ce59..c614414 100644 --- a/sed/latest/_modules/index.html +++ b/sed/latest/_modules/index.html @@ -7,7 +7,7 @@ - Overview: module code — SED 0.1.10a6 documentation + Overview: module code — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/_modules/sed/binning/binning.html b/sed/latest/_modules/sed/binning/binning.html index 7e2cd42..e7024a0 100644 --- a/sed/latest/_modules/sed/binning/binning.html +++ b/sed/latest/_modules/sed/binning/binning.html @@ -7,7 +7,7 @@ - sed.binning.binning — SED 0.1.10a6 documentation + sed.binning.binning — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -447,14 +447,13 @@

Source code for sed.binning.binning

 """This module contains the binning functions of the sed.binning module
-
 """
+from __future__ import annotations
+
 import gc
+from collections.abc import Sequence
 from functools import reduce
 from typing import cast
-from typing import List
-from typing import Sequence
-from typing import Tuple
 from typing import Union
 
 import dask.dataframe
@@ -476,33 +475,27 @@ 

Source code for sed.binning.binning

 
[docs] def bin_partition( - part: Union[dask.dataframe.DataFrame, pd.DataFrame], - bins: Union[ - int, - dict, - Sequence[int], - Sequence[np.ndarray], - Sequence[tuple], - ] = 100, + part: dask.dataframe.DataFrame | pd.DataFrame, + bins: int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple] = 100, axes: Sequence[str] = None, - ranges: Sequence[Tuple[float, float]] = None, + ranges: Sequence[tuple[float, float]] = None, hist_mode: str = "numba", - jitter: Union[list, dict] = None, + jitter: list | dict = None, return_edges: bool = False, skip_test: bool = False, -) -> Union[np.ndarray, Tuple[np.ndarray, list]]: +) -> np.ndarray | tuple[np.ndarray, list]: """Compute the n-dimensional histogram of a single dataframe partition. Args: - part (Union[dask.dataframe.DataFrame, pd.DataFrame]): dataframe on which + part (dask.dataframe.DataFrame | pd.DataFrame): dataframe on which to perform the histogram. Usually a partition of a dask DataFrame. - bins (int, dict, Sequence[int], Sequence[np.ndarray], Sequence[tuple], optional): + bins (int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple], optional): Definition of the bins. Can be any of the following cases: - an integer describing the number of bins for all dimensions. This requires "ranges" to be defined as well. - A sequence containing one entry of the following types for each - dimension: + dimenstion: - an integer describing the number of bins. This requires "ranges" to be defined as well. @@ -520,7 +513,7 @@

Source code for sed.binning.binning

             the order of the dimensions in the resulting array. Only not required if
             bins are provided as dictionary containing the axis names.
             Defaults to None.
-        ranges (Sequence[Tuple[float, float]], optional): Sequence of tuples containing
+        ranges (Sequence[tuple[float, float]], optional): Sequence of tuples containing
             the start and end point of the binning range. Required if bins given as
             int or Sequence[int]. Defaults to None.
         hist_mode (str, optional): Histogram calculation method.
@@ -529,18 +522,18 @@ 

Source code for sed.binning.binning

                 - "numba" use a numba powered similar method.
 
             Defaults to "numba".
-        jitter (Union[list, dict], optional): a list of the axes on which to apply
+        jitter (list | dict, optional): a list of the axes on which to apply
             jittering. To specify the jitter amplitude or method (normal or uniform
             noise) a dictionary can be passed. This should look like
             jitter={'axis':{'amplitude':0.5,'mode':'uniform'}}.
-            This example also shows the default behavior, in case None is
+            This example also shows the default behaviour, in case None is
             passed in the dictionary, or jitter is a list of strings.
             Warning: this is not the most performing approach. Applying jitter
             on the dataframe before calling the binning is much faster.
             Defaults to None.
         return_edges (bool, optional): If True, returns a list of D arrays
             describing the bin edges for each dimension, similar to the
-            behavior of ``np.histogramdd``. Defaults to False.
+            behaviour of ``np.histogramdd``. Defaults to False.
         skip_test (bool, optional): Turns off input check and data transformation.
             Defaults to False as it is intended for internal use only.
             Warning: setting this True might make error tracking difficult.
@@ -552,8 +545,8 @@ 

Source code for sed.binning.binning

             present in the dataframe
 
     Returns:
-        Union[np.ndarray, Tuple[np.ndarray, list]]: 2-element tuple returned only when
-        returnEdges is True. Otherwise only hist is returned.
+        np.ndarray | tuple[np.ndarray: 2-element tuple returned only when
+        return_edges is True. Otherwise only hist is returned.
 
         - **hist**: The result of the n-dimensional binning
         - **edges**: A list of D arrays describing the bin edges for each dimension.
@@ -572,19 +565,19 @@ 

Source code for sed.binning.binning

             raise TypeError(
                 "axes needs to be of type 'List[str]' if tests are skipped!",
             )
-        bins = cast(Union[List[int], List[np.ndarray]], bins)
-        axes = cast(List[str], axes)
-        ranges = cast(List[Tuple[float, float]], ranges)
+        bins = cast(Union[list[int], list[np.ndarray]], bins)
+        axes = cast(list[str], axes)
+        ranges = cast(list[tuple[float, float]], ranges)
 
     # convert bin centers to bin edges:
     if all(isinstance(x, np.ndarray) for x in bins):
-        bins = cast(List[np.ndarray], bins)
+        bins = cast(list[np.ndarray], bins)
         for i, bin_centers in enumerate(bins):
             bins[i] = bin_centers_to_bin_edges(bin_centers)
     else:
-        bins = cast(List[int], bins)
+        bins = cast(list[int], bins)
         # shift ranges by half a bin size to align the bin centers to the given ranges,
-        # as the histogram functions interpret the ranges as limits for the edges.
+        # as the histogram functions interprete the ranges as limits for the edges.
         for i, nbins in enumerate(bins):
             halfbinsize = (ranges[i][1] - ranges[i][0]) / (nbins) / 2
             ranges[i] = (
@@ -656,18 +649,12 @@ 

Source code for sed.binning.binning

 [docs]
 def bin_dataframe(
     df: dask.dataframe.DataFrame,
-    bins: Union[
-        int,
-        dict,
-        Sequence[int],
-        Sequence[np.ndarray],
-        Sequence[tuple],
-    ] = 100,
+    bins: int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple] = 100,
     axes: Sequence[str] = None,
-    ranges: Sequence[Tuple[float, float]] = None,
+    ranges: Sequence[tuple[float, float]] = None,
     hist_mode: str = "numba",
     mode: str = "fast",
-    jitter: Union[list, dict] = None,
+    jitter: list | dict = None,
     pbar: bool = True,
     n_cores: int = N_CPU - 1,
     threads_per_worker: int = 4,
@@ -681,13 +668,13 @@ 

Source code for sed.binning.binning

     Args:
         df (dask.dataframe.DataFrame): a dask.DataFrame on which to perform the
             histogram.
-            bins (int, dict, Sequence[int], Sequence[np.ndarray], Sequence[tuple], optional):
+        bins (int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple], optional):
             Definition of the bins. Can be any of the following cases:
 
                 - an integer describing the number of bins for all dimensions. This
                   requires "ranges" to be defined as well.
                 - A sequence containing one entry of the following types for each
-                  dimension:
+                  dimenstion:
 
                     - an integer describing the number of bins. This requires "ranges"
                       to be defined as well.
@@ -705,7 +692,7 @@ 

Source code for sed.binning.binning

             the order of the dimensions in the resulting array. Only not required if
             bins are provided as dictionary containing the axis names.
             Defaults to None.
-        ranges (Sequence[Tuple[float, float]], optional): Sequence of tuples containing
+        ranges (Sequence[tuple[float, float]], optional): Sequence of tuples containing
             the start and end point of the binning range. Required if bins given as
             int or Sequence[int]. Defaults to None.
         hist_mode (str, optional): Histogram calculation method.
@@ -722,11 +709,11 @@ 

Source code for sed.binning.binning

                 - 'legacy': Single-core recombination of partition results.
 
             Defaults to "fast".
-        jitter (Union[list, dict], optional): a list of the axes on which to apply
+        jitter (list | dict, optional): a list of the axes on which to apply
             jittering. To specify the jitter amplitude or method (normal or uniform
             noise) a dictionary can be passed. This should look like
             jitter={'axis':{'amplitude':0.5,'mode':'uniform'}}.
-            This example also shows the default behavior, in case None is
+            This example also shows the default behaviour, in case None is
             passed in the dictionary, or jitter is a list of strings.
             Warning: this is not the most performing approach. applying jitter
             on the dataframe before calling the binning is much faster.
@@ -757,14 +744,14 @@ 

Source code for sed.binning.binning

     # create the coordinate axes for the xarray output
     # if provided as array, they are interpreted as bin centers
     if isinstance(bins[0], np.ndarray):
-        bins = cast(List[np.ndarray], bins)
+        bins = cast(list[np.ndarray], bins)
         coords = dict(zip(axes, bins))
     elif ranges is None:
         raise ValueError(
             "bins is not an array and range is none. this shouldn't happen.",
         )
     else:
-        bins = cast(List[int], bins)
+        bins = cast(list[int], bins)
         coords = {
             ax: np.linspace(r[0], r[1], n, endpoint=False) for ax, r, n in zip(axes, ranges, bins)
         }
@@ -933,7 +920,7 @@ 

Source code for sed.binning.binning

     bin_centers: np.ndarray,
     time_unit: float,
 ) -> xr.DataArray:
-    """Get a normalization histogram from a timed dataframe.
+    """Get a normalization histogram from a timed datafram.
 
     Args:
         df (dask.dataframe.DataFrame): a dask.DataFrame on which to perform the
@@ -963,7 +950,7 @@ 

Source code for sed.binning.binning

 
 
 def apply_jitter_on_column(
-    df: Union[dask.dataframe.core.DataFrame, pd.DataFrame],
+    df: dask.dataframe.core.DataFrame | pd.DataFrame,
     amp: float,
     col: str,
     mode: str = "uniform",
diff --git a/sed/latest/_modules/sed/binning/numba_bin.html b/sed/latest/_modules/sed/binning/numba_bin.html
index f78ddd2..9376529 100644
--- a/sed/latest/_modules/sed/binning/numba_bin.html
+++ b/sed/latest/_modules/sed/binning/numba_bin.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.binning.numba_bin — SED 0.1.10a6 documentation
+    sed.binning.numba_bin — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,14 +448,12 @@

Source code for sed.binning.numba_bin

 """This file contains code for binning using numba precompiled code for the
 sed.binning module
-
 """
+from __future__ import annotations
+
+from collections.abc import Sequence
 from typing import Any
 from typing import cast
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import numba
 import numpy as np
@@ -472,7 +470,7 @@ 

Source code for sed.binning.numba_bin

     bit integers.
 
     Args:
-        sample (np.ndarray): The data to be histogram'd with shape N,D.
+        sample (np.ndarray): The data to be histogrammed with shape N,D.
         bins (Sequence[int]): The number of bins for each dimension D.
         ranges (np.ndarray): A sequence of length D, each an optional (lower,
             upper) tuple giving the outer bin edges to be used if the edges are
@@ -497,7 +495,7 @@ 

Source code for sed.binning.numba_bin

 
     for i in range(ndims):
         delta[i] = 1 / ((ranges[i, 1] - ranges[i, 0]) / bins[i])
-        strides[i] = hist.strides[i] // hist.itemsize
+        strides[i] = hist.strides[i] // hist.itemsize  # pylint: disable=E1136
 
     for t in range(sample.shape[0]):
         is_inside = True
@@ -559,7 +557,7 @@ 

Source code for sed.binning.numba_bin

 def _hist_from_bins(
     sample: np.ndarray,
     bins: Sequence[np.ndarray],
-    shape: Tuple,
+    shape: tuple,
 ) -> np.ndarray:
     """Numba powered binning method, similar to np.histogramdd.
 
@@ -569,7 +567,7 @@ 

Source code for sed.binning.numba_bin

         sample (np.ndarray) : the array of shape (N,D) on which to compute the histogram
         bins (Sequence[np.ndarray]): array of shape (N,D) defining the D bins on which
             to compute the histogram, i.e. the desired output axes.
-        shape (Tuple): shape of the resulting array. Workaround for the fact numba
+        shape (tuple): shape of the resulting array. Workaround for the fact numba
             does not allow to create tuples.
     Returns:
         hist: the computed n-dimensional histogram
@@ -607,10 +605,10 @@ 

Source code for sed.binning.numba_bin

 [docs]
 def numba_histogramdd(
     sample: np.ndarray,
-    bins: Union[int, Sequence[int], Sequence[np.ndarray], np.ndarray],
+    bins: int | Sequence[int] | Sequence[np.ndarray] | np.ndarray,
     ranges: Sequence = None,
-) -> Tuple[np.ndarray, List[np.ndarray]]:
-    """Multidimensional histogram function, powered by Numba.
+) -> tuple[np.ndarray, list[np.ndarray]]:
+    """Multidimensional histogramming function, powered by Numba.
 
     Behaves in total much like numpy.histogramdd. Returns uint32 arrays.
     This was chosen because it has a significant performance improvement over
@@ -620,8 +618,8 @@ 

Source code for sed.binning.numba_bin

     sizes.
 
     Args:
-        sample (np.ndarray): The data to be histogram'd with shape N,D
-        bins (Union[int, Sequence[int], Sequence[np.ndarray], np.ndarray]): The number
+        sample (np.ndarray): The data to be histogrammed with shape N,D
+        bins (int | Sequence[int] | Sequence[np.ndarray] | np.ndarray): The number
             of bins for each dimension D, or a sequence of bin edges on which to calculate
             the histogram.
         ranges (Sequence, optional): The range(s) to use for binning when bins is a sequence
@@ -634,7 +632,7 @@ 

Source code for sed.binning.numba_bin

         RuntimeError: Internal shape error after binning
 
     Returns:
-        Tuple[np.ndarray, List[np.ndarray]]: 2-element tuple of The computed histogram
+        tuple[np.ndarray, list[np.ndarray]]: 2-element tuple of The computed histogram
         and s list of D arrays describing the bin edges for each dimension.
 
         - **hist**: The computed histogram
@@ -666,7 +664,7 @@ 

Source code for sed.binning.numba_bin

 
     # method == "array"
     if isinstance(bins[0], np.ndarray):
-        bins = cast(List[np.ndarray], list(bins))
+        bins = cast(list[np.ndarray], list(bins))
         hist = _hist_from_bins(
             sample,
             tuple(bins),
@@ -692,7 +690,7 @@ 

Source code for sed.binning.numba_bin

     bins = tuple(bins)
 
     # Create edge arrays
-    edges: List[Any] = []
+    edges: list[Any] = []
     nbin = np.empty(num_cols, int)
 
     for i in range(num_cols):
diff --git a/sed/latest/_modules/sed/binning/utils.html b/sed/latest/_modules/sed/binning/utils.html
index 222b725..de0841f 100644
--- a/sed/latest/_modules/sed/binning/utils.html
+++ b/sed/latest/_modules/sed/binning/utils.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.binning.utils — SED 0.1.10a6 documentation
+    sed.binning.utils — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -447,13 +447,11 @@

Source code for sed.binning.utils

 """This file contains helper functions for the sed.binning module
-
 """
+from __future__ import annotations
+
+from collections.abc import Sequence
 from typing import cast
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import numpy as np
 
@@ -466,16 +464,10 @@ 

Source code for sed.binning.utils

 
[docs] def simplify_binning_arguments( - bins: Union[ - int, - dict, - Sequence[int], - Sequence[np.ndarray], - Sequence[tuple], - ], + bins: int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple], axes: Sequence[str] = None, - ranges: Sequence[Tuple[float, float]] = None, -) -> Tuple[Union[List[int], List[np.ndarray]], List[str], List[Tuple[float, float]]]: + ranges: Sequence[tuple[float, float]] = None, +) -> tuple[list[int] | list[np.ndarray], list[str], list[tuple[float, float]]]: """Convert the flexible input for defining bins into a simple "axes" "bins" "ranges" tuple. @@ -483,13 +475,13 @@

Source code for sed.binning.utils

     binning functions defined here.
 
     Args:
-        bins (int, dict, Sequence[int], Sequence[np.ndarray], Sequence[tuple]):
+        bins (int | dict | Sequence[int] | Sequence[np.ndarray] | Sequence[tuple]):
             Definition of the bins. Can  be any of the following cases:
 
                 - an integer describing the number of bins for all dimensions. This
                   requires "ranges" to be defined as well.
                 - A sequence containing one entry of the following types for each
-                  dimension:
+                  dimenstion:
 
                     - an integer describing the number of bins. This requires "ranges"
                       to be defined as well.
@@ -506,7 +498,7 @@ 

Source code for sed.binning.utils

             the order of the dimensions in the resulting array. Only not required if
             bins are provided as dictionary containing the axis names.
             Defaults to None.
-        ranges (Sequence[Tuple[float, float]], optional): Sequence of tuples containing
+        ranges (Sequence[tuple[float, float]], optional): Sequence of tuples containing
             the start and end point of the binning range. Required if bins given as
             int or Sequence[int]. Defaults to None.
 
@@ -517,7 +509,7 @@ 

Source code for sed.binning.utils

         AttributeError: Shape mismatch
 
     Returns:
-        Tuple[Union[List[int], List[np.ndarray]], List[Tuple[float, float]]]: Tuple
+        tuple[list[int] | list[np.ndarray], list[str], list[tuple[float, float]]]: Tuple
         containing lists of bin centers, axes, and ranges.
     """
     # if bins is a dictionary: unravel to axes and bins
@@ -563,7 +555,7 @@ 

Source code for sed.binning.utils

 
     # if bins are provided as int, check that ranges are present
     if all(isinstance(x, (int, np.int64)) for x in bins):
-        bins = cast(List[int], list(bins))
+        bins = cast(list[int], list(bins))
         if ranges is None:
             raise AttributeError(
                 "Must provide a range if bins is an integer or list of integers",
@@ -573,9 +565,9 @@ 

Source code for sed.binning.utils

                 f"Ranges must be a sequence, not {type(ranges)}.",
             )
 
-    # otherwise, all bins should be of type np.ndarray here
+    # otherwise, all bins should by np.ndarrays here
     elif all(isinstance(x, np.ndarray) for x in bins):
-        bins = cast(List[np.ndarray], list(bins))
+        bins = cast(list[np.ndarray], list(bins))
     else:
         raise TypeError(f"Could not interpret bins of type {type(bins)}")
 
diff --git a/sed/latest/_modules/sed/calibrator/delay.html b/sed/latest/_modules/sed/calibrator/delay.html
index 781f036..c42dc4d 100644
--- a/sed/latest/_modules/sed/calibrator/delay.html
+++ b/sed/latest/_modules/sed/calibrator/delay.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.calibrator.delay — SED 0.1.10a6 documentation
+    sed.calibrator.delay — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,14 +448,12 @@

Source code for sed.calibrator.delay

 """sed.calibrator.delay module. Code for delay calibration.
 """
+from __future__ import annotations
+
+from collections.abc import Sequence
 from copy import deepcopy
 from datetime import datetime
 from typing import Any
-from typing import Dict
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import dask.dataframe
 import h5py
@@ -496,32 +494,32 @@ 

Source code for sed.calibrator.delay

             "corrected_delay_column",
             self.delay_column,
         )
-        self.calibration: Dict[str, Any] = self._config["delay"].get("calibration", {})
-        self.offsets: Dict[str, Any] = self._config["delay"].get("offsets", {})
+        self.calibration: dict[str, Any] = self._config["delay"].get("calibration", {})
+        self.offsets: dict[str, Any] = self._config["delay"].get("offsets", {})
 
 
[docs] def append_delay_axis( self, - df: Union[pd.DataFrame, dask.dataframe.DataFrame], + df: pd.DataFrame | dask.dataframe.DataFrame, adc_column: str = None, delay_column: str = None, - calibration: Dict[str, Any] = None, - adc_range: Union[Tuple, List, np.ndarray] = None, - delay_range: Union[Tuple, List, np.ndarray] = None, + calibration: dict[str, Any] = None, + adc_range: tuple | list | np.ndarray = None, + delay_range: tuple | list | np.ndarray = None, time0: float = None, - delay_range_mm: Union[Tuple, List, np.ndarray] = None, + delay_range_mm: tuple | list | np.ndarray = None, datafile: str = None, p1_key: str = None, p2_key: str = None, t0_key: str = None, verbose: bool = True, - ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]: + ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: """Calculate and append the delay axis to the events dataframe, by converting values from an analog-digital-converter (ADC). Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): The dataframe where + df (pd.DataFrame | dask.dataframe.DataFrame): The dataframe where to apply the delay calibration to. adc_column (str, optional): Source column for delay calibration. Defaults to config["dataframe"]["adc_column"]. @@ -529,14 +527,14 @@

Source code for sed.calibrator.delay

                 Defaults to config["dataframe"]["delay_column"].
             calibration (dict, optional): Calibration dictionary with parameters for
                 delay calibration.
-            adc_range (Union[Tuple, List, np.ndarray], optional): The range of used
+            adc_range (tuple | list | np.ndarray, optional): The range of used
                 ADC values. Defaults to config["delay"]["adc_range"].
-            delay_range (Union[Tuple, List, np.ndarray], optional): Range of scanned
+            delay_range (tuple | list | np.ndarray, optional): Range of scanned
                 delay values in ps. If omitted, the range is calculated from the
                 delay_range_mm and t0 values.
             time0 (float, optional): Pump-Probe overlap value of the delay coordinate.
                 If omitted, it is searched for in the data files.
-            delay_range_mm (Union[Tuple, List, np.ndarray], optional): Range of scanned
+            delay_range_mm (tuple | list | np.ndarray, optional): Range of scanned
                 delay stage in mm. If omitted, it is searched for in the data files.
             datafile (str, optional): Datafile in which delay parameters are searched
                 for. Defaults to None.
@@ -554,8 +552,8 @@ 

Source code for sed.calibrator.delay

             NotImplementedError: Raised if no sufficient information passed.
 
         Returns:
-            Union[pd.DataFrame, dask.dataframe.DataFrame]: dataframe with added column
-            and delay calibration metadata dictionary.
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: dataframe with added column
+            and delay calibration metdata dictionary.
         """
         # pylint: disable=duplicate-code
         if calibration is None:
@@ -662,39 +660,40 @@ 

Source code for sed.calibrator.delay

     def add_offsets(
         self,
         df: dask.dataframe.DataFrame,
-        offsets: Dict[str, Any] = None,
+        offsets: dict[str, Any] = None,
         constant: float = None,
         flip_delay_axis: bool = None,
-        columns: Union[str, Sequence[str]] = None,
-        weights: Union[float, Sequence[float]] = 1.0,
-        preserve_mean: Union[bool, Sequence[bool]] = False,
-        reductions: Union[str, Sequence[str]] = None,
+        columns: str | Sequence[str] = None,
+        weights: float | Sequence[float] = 1.0,
+        preserve_mean: bool | Sequence[bool] = False,
+        reductions: str | Sequence[str] = None,
         delay_column: str = None,
         verbose: bool = True,
-    ) -> Tuple[dask.dataframe.DataFrame, dict]:
+    ) -> tuple[dask.dataframe.DataFrame, dict]:
         """Apply an offset to the delay column based on a constant or other columns.
 
         Args:
             df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use.
-            offsets (Dict, optional): Dictionary of delay offset parameters.
+            offsets (dict, optional): Dictionary of delay offset parameters.
             constant (float, optional): The constant to shift the delay axis by.
             flip_delay_axis (bool, optional): Whether to flip the time axis. Defaults to False.
-            columns (Union[str, Sequence[str]]): Name of the column(s) to apply the shift from.
-            weights (Union[int, Sequence[int]]): weights to apply to the columns.
+            columns (str | Sequence[str]): Name of the column(s) to apply the shift from.
+            weights (float | Sequence[float]): weights to apply to the columns.
                 Can also be used to flip the sign (e.g. -1). Defaults to 1.
-            preserve_mean (bool): Whether to subtract the mean of the column before applying the
-                shift. Defaults to False.
-            reductions (str): The reduction to apply to the column. Should be an available method
-                of dask.dataframe.Series. For example "mean". In this case the function is applied
-                to the column to generate a single value for the whole dataset. If None, the shift
-                is applied per-dataframe-row. Defaults to None. Currently only "mean" is supported.
+            preserve_mean (bool | Sequence[bool]): Whether to subtract the mean of the column
+                before applying the shift. Defaults to False.
+            reductions (str | Sequence[str]): The reduction to apply to the column. Should be an
+                available method of dask.dataframe.Series. For example "mean". In this case the
+                function is applied to the column to generate a single value for the whole dataset.
+                If None, the shift is applied per-dataframe-row. Defaults to None. Currently only
+                "mean" is supported.
             delay_column (str, optional): Name of the column containing the delay values.
             verbose (bool, optional): Option to print out diagnostic information.
                 Defaults to True.
 
         Returns:
-            dask.dataframe.DataFrame: Dataframe with the shifted delay axis.
-            dict: Metadata dictionary.
+            tuple[dask.dataframe.DataFrame, dict]: Dataframe with the shifted delay axis and
+            Metadata dictionary.
         """
         if offsets is None:
             offsets = deepcopy(self.offsets)
@@ -702,7 +701,7 @@ 

Source code for sed.calibrator.delay

         if delay_column is None:
             delay_column = self.delay_column
 
-        metadata: Dict[str, Any] = {
+        metadata: dict[str, Any] = {
             "applied": True,
         }
 
@@ -838,7 +837,7 @@ 

Source code for sed.calibrator.delay

     p1_key: str,
     p2_key: str,
     t0_key: str,
-) -> Tuple:
+) -> tuple:
     """
     Read delay stage ranges from hdf5 file
 
@@ -866,18 +865,18 @@ 

Source code for sed.calibrator.delay

 
[docs] def mm_to_ps( - delay_mm: Union[float, np.ndarray], + delay_mm: float | np.ndarray, time0_mm: float, -) -> Union[float, np.ndarray]: - """Converts a delay stage position in mm into a relative delay in picoseconds +) -> float | np.ndarray: + """Converts a delaystage position in mm into a relative delay in picoseconds (double pass). Args: - delay_mm (Union[float, Sequence[float]]): Delay stage position in mm + delay_mm (float | np.ndarray): Delay stage position in mm time0_mm (float): Delay stage position of pump-probe overlap in mm Returns: - Union[float, Sequence[float]]: Relative delay in picoseconds + float | np.ndarray: Relative delay in picoseconds """ delay_ps = (delay_mm - time0_mm) / 0.15 return delay_ps
diff --git a/sed/latest/_modules/sed/calibrator/energy.html b/sed/latest/_modules/sed/calibrator/energy.html index 1ea72b2..0f0e3a9 100644 --- a/sed/latest/_modules/sed/calibrator/energy.html +++ b/sed/latest/_modules/sed/calibrator/energy.html @@ -7,7 +7,7 @@ - sed.calibrator.energy — SED 0.1.10a6 documentation + sed.calibrator.energy — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,19 +449,17 @@

Source code for sed.calibrator.energy

 """sed.calibrator.energy module. Code for energy calibration and
 correction. Mostly ported from https://github.com/mpes-kit/mpes.
 """
+from __future__ import annotations
+
 import itertools as it
 import warnings as wn
+from collections.abc import Sequence
 from copy import deepcopy
 from datetime import datetime
 from functools import partial
 from typing import Any
 from typing import cast
-from typing import Dict
-from typing import List
 from typing import Literal
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import bokeh.plotting as pbk
 import dask.dataframe
@@ -543,9 +541,9 @@ 

Source code for sed.calibrator.energy

 
         self._config = config
 
-        self.featranges: List[Tuple] = []  # Value ranges for feature detection
+        self.featranges: list[tuple] = []  # Value ranges for feature detection
         self.peaks: np.ndarray = np.asarray([])
-        self.calibration: Dict[str, Any] = self._config["energy"].get("calibration", {})
+        self.calibration: dict[str, Any] = self._config["energy"].get("calibration", {})
 
         self.tof_column = self._config["dataframe"]["tof_column"]
         self.tof_ns_column = self._config["dataframe"].get("tof_ns_column", None)
@@ -564,8 +562,8 @@ 

Source code for sed.calibrator.energy

         self.color_clip = self._config["energy"]["color_clip"]
         self.sector_delays = self._config["dataframe"].get("sector_delays", None)
         self.sector_id_column = self._config["dataframe"].get("sector_id_column", None)
-        self.offsets: Dict[str, Any] = self._config["energy"].get("offsets", {})
-        self.correction: Dict[str, Any] = self._config["energy"].get("correction", {})
+        self.offsets: dict[str, Any] = self._config["energy"].get("offsets", {})
+        self.correction: dict[str, Any] = self._config["energy"].get("correction", {})
 
     @property
     def ntraces(self) -> int:
@@ -632,10 +630,10 @@ 

Source code for sed.calibrator.energy

 [docs]
     def bin_data(
         self,
-        data_files: List[str],
-        axes: List[str] = None,
-        bins: List[int] = None,
-        ranges: Sequence[Tuple[float, float]] = None,
+        data_files: list[str],
+        axes: list[str] = None,
+        bins: list[int] = None,
+        ranges: Sequence[tuple[float, float]] = None,
         biases: np.ndarray = None,
         bias_key: str = None,
         **kwds,
@@ -643,12 +641,12 @@ 

Source code for sed.calibrator.energy

         """Bin data from single-event files, and load into class.
 
         Args:
-            data_files (List[str]): list of file names to bin
-            axes (List[str], optional): bin axes. Defaults to
+            data_files (list[str]): list of file names to bin
+            axes (list[str], optional): bin axes. Defaults to
                 config["dataframe"]["tof_column"].
-            bins (List[int], optional): number of bins.
+            bins (list[int], optional): number of bins.
                 Defaults to config["energy"]["bins"].
-            ranges (Sequence[Tuple[float, float]], optional): bin ranges.
+            ranges (Sequence[tuple[float, float]], optional): bin ranges.
                 Defaults to config["energy"]["ranges"].
             biases (np.ndarray, optional): Bias voltages used.
                 If not provided, biases are extracted from the file meta data.
@@ -664,7 +662,7 @@ 

Source code for sed.calibrator.energy

             ranges_ = [
                 np.array(self._config["energy"]["ranges"]) / 2 ** (self.binning - 1),
             ]
-            ranges = [cast(Tuple[float, float], tuple(v)) for v in ranges_]
+            ranges = [cast(tuple[float, float], tuple(v)) for v in ranges_]
         # pylint: disable=duplicate-code
         hist_mode = kwds.pop("hist_mode", self._config["binning"]["hist_mode"])
         mode = kwds.pop("mode", self._config["binning"]["mode"])
@@ -750,7 +748,7 @@ 

Source code for sed.calibrator.energy

 [docs]
     def adjust_ranges(
         self,
-        ranges: Tuple,
+        ranges: tuple,
         ref_id: int = 0,
         traces: np.ndarray = None,
         peak_window: int = 7,
@@ -761,7 +759,7 @@ 

Source code for sed.calibrator.energy

         (containing the peaks) among all traces.
 
         Args:
-            ranges (Tuple):
+            ranges (tuple):
                 Collection of feature detection ranges, within which an algorithm
                 (i.e. 1D peak detector) with look for the feature.
             ref_id (int, optional): Index of the reference trace. Defaults to 0.
@@ -842,8 +840,8 @@ 

Source code for sed.calibrator.energy

                 plot_segs[itr].set_ydata(traceseg)
                 plot_segs[itr].set_xdata(tofseg)
 
-                plot_peaks[itr].set_xdata(self.peaks[itr, 0])
-                plot_peaks[itr].set_ydata(self.peaks[itr, 1])
+                plot_peaks[itr].set_xdata([self.peaks[itr, 0]])
+                plot_peaks[itr].set_ydata([self.peaks[itr, 1]])
 
             fig.canvas.draw_idle()
 
@@ -893,7 +891,7 @@ 

Source code for sed.calibrator.energy

 [docs]
     def add_ranges(
         self,
-        ranges: Union[List[Tuple], Tuple],
+        ranges: list[tuple] | tuple,
         ref_id: int = 0,
         traces: np.ndarray = None,
         infer_others: bool = True,
@@ -903,14 +901,14 @@ 

Source code for sed.calibrator.energy

         """Select or extract the equivalent feature ranges (containing the peaks) among all traces.
 
         Args:
-            ranges (Union[List[Tuple], Tuple]):
+            ranges (list[tuple] | tuple):
                 Collection of feature detection ranges, within which an algorithm
                 (i.e. 1D peak detector) with look for the feature.
             ref_id (int, optional): Index of the reference trace. Defaults to 0.
             traces (np.ndarray, optional): Collection of energy dispersion curves.
                 Defaults to self.traces_normed.
             infer_others (bool, optional): Option to infer the feature detection range
-                in other traces from a given one using a time warp algorithm.
+                in other traces from a given one using a time warp algorthm.
                 Defaults to True.
             mode (str, optional): Specification on how to change the feature ranges
                 ('append' or 'replace'). Defaults to "replace".
@@ -923,7 +921,7 @@ 

Source code for sed.calibrator.energy

         # Infer the corresponding feature detection range of other traces by alignment
         if infer_others:
             assert isinstance(ranges, tuple)
-            newranges: List[Tuple] = []
+            newranges: list[tuple] = []
 
             for i in range(self.ntraces):
                 pathcorr = find_correspondence(
@@ -949,14 +947,14 @@ 

Source code for sed.calibrator.energy

 [docs]
     def feature_extract(
         self,
-        ranges: List[Tuple] = None,
+        ranges: list[tuple] = None,
         traces: np.ndarray = None,
         peak_window: int = 7,
     ):
         """Select or extract the equivalent landmarks (e.g. peaks) among all traces.
 
         Args:
-            ranges (List[Tuple], optional):  List of ranges in each trace to look for
+            ranges (list[tuple], optional):  List of ranges in each trace to look for
                 the peak feature, [start, end]. Defaults to self.featranges.
             traces (np.ndarray, optional): Collection of 1D spectra to use for
                 calibration. Defaults to self.traces_normed.
@@ -1082,7 +1080,7 @@ 

Source code for sed.calibrator.energy

     def view(  # pylint: disable=dangerous-default-value
         self,
         traces: np.ndarray,
-        segs: List[Tuple] = None,
+        segs: list[tuple] = None,
         peaks: np.ndarray = None,
         show_legend: bool = True,
         backend: str = "matplotlib",
@@ -1096,7 +1094,7 @@ 

Source code for sed.calibrator.energy

 
         Args:
             traces (np.ndarray): Matrix of traces to visualize.
-            segs (List[Tuple], optional): Segments to be highlighted in the
+            segs (list[tuple], optional): Segments to be highlighted in the
                 visualization. Defaults to None.
             peaks (np.ndarray, optional): Peak positions for labelling the traces.
                 Defaults to None.
@@ -1130,7 +1128,7 @@ 

Source code for sed.calibrator.energy

 
         if backend == "matplotlib":
             figsize = kwds.pop("figsize", (12, 4))
-            fig, ax = plt.subplots(figsize=figsize)
+            fig_plt, ax = plt.subplots(figsize=figsize)
             for itr, trace in enumerate(traces):
                 if align:
                     ax.plot(
@@ -1255,17 +1253,17 @@ 

Source code for sed.calibrator.energy

 [docs]
     def append_energy_axis(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame],
+        df: pd.DataFrame | dask.dataframe.DataFrame,
         tof_column: str = None,
         energy_column: str = None,
         calibration: dict = None,
         verbose: bool = True,
         **kwds,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Calculate and append the energy axis to the events dataframe.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]):
+            df (pd.DataFrame | dask.dataframe.DataFrame):
                 Dataframe to apply the energy axis calibration to.
             tof_column (str, optional): Label of the source column.
                 Defaults to config["dataframe"]["tof_column"].
@@ -1284,7 +1282,7 @@ 

Source code for sed.calibrator.energy

             NotImplementedError: Raised if an invalid calib_type is found.
 
         Returns:
-            Union[pd.DataFrame, dask.dataframe.DataFrame]: dataframe with added column
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: dataframe with added column
             and energy calibration metadata dictionary.
         """
         if tof_column is None:
@@ -1371,15 +1369,15 @@ 

Source code for sed.calibrator.energy

 [docs]
     def append_tof_ns_axis(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame],
+        df: pd.DataFrame | dask.dataframe.DataFrame,
         tof_column: str = None,
         tof_ns_column: str = None,
         **kwds,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Converts the time-of-flight time from steps to time in ns.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to convert.
+            df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to convert.
             tof_column (str, optional): Name of the column containing the
                 time-of-flight steps. Defaults to config["dataframe"]["tof_column"].
             tof_ns_column (str, optional): Name of the column to store the
@@ -1390,8 +1388,8 @@ 

Source code for sed.calibrator.energy

                 Defaults to config["energy"]["tof_binning"].
 
         Returns:
-            dask.dataframe.DataFrame: Dataframe with the new columns.
-            dict: Metadata dictionary.
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: Dataframe with the new columns
+            and Metadata dictionary.
         """
         binwidth = kwds.pop("binwidth", self.binwidth)
         binning = kwds.pop("binning", self.binning)
@@ -1409,7 +1407,7 @@ 

Source code for sed.calibrator.energy

             binning,
             df[tof_column].astype("float64"),
         )
-        metadata: Dict[str, Any] = {
+        metadata: dict[str, Any] = {
             "applied": True,
             "binwidth": binwidth,
             "binning": binning,
@@ -1431,7 +1429,7 @@ 

Source code for sed.calibrator.energy

         """
         if calibration is None:
             calibration = self.calibration
-        metadata: Dict[Any, Any] = {}
+        metadata: dict[Any, Any] = {}
         metadata["applied"] = True
         metadata["calibration"] = deepcopy(calibration)
         metadata["tof"] = deepcopy(self.tof)
@@ -1449,7 +1447,7 @@ 

Source code for sed.calibrator.energy

         image: xr.DataArray,
         correction_type: str = None,
         amplitude: float = None,
-        center: Tuple[float, float] = None,
+        center: tuple[float, float] = None,
         correction: dict = None,
         apply: bool = False,
         **kwds,
@@ -1469,7 +1467,7 @@ 

Source code for sed.calibrator.energy

                 Defaults to config["energy"]["correction_type"].
             amplitude (float, optional): Amplitude of the time-of-flight correction
                 term. Defaults to config["energy"]["correction"]["correction_type"].
-            center (Tuple[float, float], optional): Center (x/y) coordinates for the
+            center (tuple[float, float], optional): Center (x/y) coordinates for the
                 correction. Defaults to config["energy"]["correction"]["center"].
             correction (dict, optional): Correction dict. Defaults to the config values
                 and is updated from provided and adjusted parameters.
@@ -1620,9 +1618,9 @@ 

Source code for sed.calibrator.energy

             )
 
             trace1.set_ydata(correction_x)
-            line1.set_xdata(x=x_center)
+            line1.set_xdata([x_center])
             trace2.set_ydata(correction_y)
-            line2.set_xdata(x=y_center)
+            line2.set_xdata([y_center])
 
             fig.canvas.draw_idle()
 
@@ -1642,7 +1640,7 @@ 

Source code for sed.calibrator.energy

                 update(correction["amplitude"], x_center, y_center, diameter=correction["diameter"])
             except KeyError as exc:
                 raise ValueError(
-                    "Parameter 'diameter' required for correction type 'spherical', ",
+                    "Parameter 'diameter' required for correction type 'sperical', ",
                     "but not present!",
                 ) from exc
 
@@ -1798,7 +1796,7 @@ 

Source code for sed.calibrator.energy

 [docs]
     def apply_energy_correction(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame],
+        df: pd.DataFrame | dask.dataframe.DataFrame,
         tof_column: str = None,
         new_tof_column: str = None,
         correction_type: str = None,
@@ -1806,11 +1804,11 @@ 

Source code for sed.calibrator.energy

         correction: dict = None,
         verbose: bool = True,
         **kwds,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Apply correction to the time-of-flight (TOF) axis of single-event data.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): The dataframe where
+            df (pd.DataFrame | dask.dataframe.DataFrame): The dataframe where
                 to apply the energy correction to.
             tof_column (str, optional): Name of the source column to convert.
                 Defaults to config["dataframe"]["tof_column"].
@@ -1827,7 +1825,7 @@ 

Source code for sed.calibrator.energy

                 Defaults to config["energy"]["correction_type"].
             amplitude (float, optional): Amplitude of the time-of-flight correction
                 term. Defaults to config["energy"]["correction"]["correction_type"].
-            correction (dict, optional): Correction dictionary containing parameters
+            correction (dict, optional): Correction dictionary containing paramters
                 for the correction. Defaults to self.correction or
                 config["energy"]["correction"].
             verbose (bool, optional): Option to print out diagnostic information.
@@ -1847,7 +1845,7 @@ 

Source code for sed.calibrator.energy

                   asymmetric 2D Lorentz profile, X-direction.
 
         Returns:
-            Union[pd.DataFrame, dask.dataframe.DataFrame]: dataframe with added column
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: dataframe with added column
             and Energy correction metadata dictionary.
         """
         if correction is None:
@@ -1908,7 +1906,7 @@ 

Source code for sed.calibrator.energy

         """
         if correction is None:
             correction = self.correction
-        metadata: Dict[Any, Any] = {}
+        metadata: dict[Any, Any] = {}
         metadata["applied"] = True
         metadata["correction"] = deepcopy(correction)
 
@@ -1923,11 +1921,11 @@ 

Source code for sed.calibrator.energy

         tof_column: str = None,
         sector_id_column: str = None,
         sector_delays: np.ndarray = None,
-    ) -> Tuple[dask.dataframe.DataFrame, dict]:
+    ) -> tuple[dask.dataframe.DataFrame, dict]:
         """Aligns the time-of-flight axis of the different sections of a detector.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use.
+            df (dask.dataframe.DataFrame): Dataframe to use.
             tof_column (str, optional): Name of the column containing the time-of-flight values.
                 Defaults to config["dataframe"]["tof_column"].
             sector_id_column (str, optional): Name of the column containing the sector id values.
@@ -1936,8 +1934,8 @@ 

Source code for sed.calibrator.energy

                 config["dataframe"]["sector_delays"].
 
         Returns:
-            dask.dataframe.DataFrame: Dataframe with the new columns.
-            dict: Metadata dictionary.
+            tuple[dask.dataframe.DataFrame, dict]: Dataframe with the new columns and Metadata
+            dictionary.
         """
         if sector_delays is None:
             sector_delays = self.sector_delays
@@ -1959,7 +1957,7 @@ 

Source code for sed.calibrator.energy

             return val.astype(np.float32)
 
         df[tof_column] = df.map_partitions(align_sector, meta=(tof_column, np.float32))
-        metadata: Dict[str, Any] = {
+        metadata: dict[str, Any] = {
             "applied": True,
             "sector_delays": sector_delays,
         }
@@ -1970,16 +1968,16 @@ 

Source code for sed.calibrator.energy

 [docs]
     def add_offsets(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame] = None,
-        offsets: Dict[str, Any] = None,
+        df: pd.DataFrame | dask.dataframe.DataFrame = None,
+        offsets: dict[str, Any] = None,
         constant: float = None,
-        columns: Union[str, Sequence[str]] = None,
-        weights: Union[float, Sequence[float]] = None,
-        preserve_mean: Union[bool, Sequence[bool]] = False,
-        reductions: Union[str, Sequence[str]] = None,
+        columns: str | Sequence[str] = None,
+        weights: float | Sequence[float] = None,
+        preserve_mean: bool | Sequence[bool] = False,
+        reductions: str | Sequence[str] = None,
         energy_column: str = None,
         verbose: bool = True,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Apply an offset to the energy column by the values of the provided columns.
 
         If no parameter is passed to this function, the offset is applied as defined in the
@@ -1987,25 +1985,26 @@ 

Source code for sed.calibrator.energy

         and the offset is applied using the ``dfops.apply_offset_from_columns()`` function.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use.
+            df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to use.
             offsets (Dict, optional): Dictionary of energy offset parameters.
             constant (float, optional): The constant to shift the energy axis by.
-            columns (Union[str, Sequence[str]]): Name of the column(s) to apply the shift from.
-            weights (Union[float, Sequence[float]]): weights to apply to the columns.
+            columns (str | Sequence[str]): Name of the column(s) to apply the shift from.
+            weights (float | Sequence[float]): weights to apply to the columns.
                 Can also be used to flip the sign (e.g. -1). Defaults to 1.
-            preserve_mean (bool): Whether to subtract the mean of the column before applying the
-                shift. Defaults to False.
-            reductions (str): The reduction to apply to the column. Should be an available method
-                of dask.dataframe.Series. For example "mean". In this case the function is applied
-                to the column to generate a single value for the whole dataset. If None, the shift
-                is applied per-dataframe-row. Defaults to None. Currently only "mean" is supported.
+            preserve_mean (bool | Sequence[bool]): Whether to subtract the mean of the column
+                before applying the shift. Defaults to False.
+            reductions (str | Sequence[str]): The reduction to apply to the column. Should be an
+                available method of dask.dataframe.Series. For example "mean". In this case the
+                function is applied to the column to generate a single value for the whole dataset.
+                If None, the shift is applied per-dataframe-row. Defaults to None. Currently only
+                "mean" is supported.
             energy_column (str, optional): Name of the column containing the energy values.
             verbose (bool, optional): Option to print out diagnostic information.
                 Defaults to True.
 
         Returns:
-            dask.dataframe.DataFrame: Dataframe with the new columns.
-            dict: Metadata dictionary.
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: Dataframe with the new columns
+            and Metadata dictionary.
         """
         if offsets is None:
             offsets = deepcopy(self.offsets)
@@ -2013,7 +2012,7 @@ 

Source code for sed.calibrator.energy

         if energy_column is None:
             energy_column = self.energy_column
 
-        metadata: Dict[str, Any] = {
+        metadata: dict[str, Any] = {
             "applied": True,
         }
 
@@ -2145,17 +2144,17 @@ 

Source code for sed.calibrator.energy

 
 
[docs] -def extract_bias(files: List[str], bias_key: str) -> np.ndarray: +def extract_bias(files: list[str], bias_key: str) -> np.ndarray: """Read bias values from hdf5 files Args: - files (List[str]): List of filenames + files (list[str]): List of filenames bias_key (str): hdf5 path to the bias value Returns: np.ndarray: Array of bias values. """ - bias_list: List[float] = [] + bias_list: list[float] = [] for file in files: with h5py.File(file, "r") as file_handle: if bias_key[0] == "@": @@ -2170,21 +2169,21 @@

Source code for sed.calibrator.energy

 
[docs] def correction_function( - x: Union[float, np.ndarray], - y: Union[float, np.ndarray], + x: float | np.ndarray, + y: float | np.ndarray, correction_type: str, - center: Tuple[float, float], + center: tuple[float, float], amplitude: float, **kwds, -) -> Union[float, np.ndarray]: +) -> float | np.ndarray: """Calculate the TOF correction based on the given X/Y coordinates and a model. Args: - x (float): x coordinate - y (float): y coordinate + x (float | np.ndarray): x coordinate + y (float | np.ndarray): y coordinate correction_type (str): type of correction. One of "spherical", "Lorentzian", "Gaussian", or "Lorentzian_asymmetric" - center (Tuple[int, int]): center position of the distribution (x,y) + center (tuple[int, int]): center position of the distribution (x,y) amplitude (float): Amplitude of the correction **kwds: Keyword arguments: @@ -2199,7 +2198,7 @@

Source code for sed.calibrator.energy

               asymmetric 2D Lorentz profile, X-direction.
 
     Returns:
-        float: calculated correction value
+        float | np.ndarray: calculated correction value
     """
     if correction_type == "spherical":
         try:
@@ -2359,21 +2358,21 @@ 

Source code for sed.calibrator.energy

 [docs]
 def range_convert(
     x: np.ndarray,
-    xrng: Tuple,
+    xrng: tuple,
     pathcorr: np.ndarray,
-) -> Tuple:
+) -> tuple:
     """Convert value range using a pairwise path correspondence (e.g. obtained
     from time warping algorithm).
 
     Args:
         x (np.ndarray): Values of the x axis (e.g. time-of-flight values).
-        xrng (Tuple): Boundary value range on the x axis.
+        xrng (tuple): Boundary value range on the x axis.
         pathcorr (np.ndarray): Path correspondence between two 1D arrays in the
             following form,
             [(id_1_trace_1, id_1_trace_2), (id_2_trace_1, id_2_trace_2), ...]
 
     Returns:
-        Tuple: Transformed range according to the path correspondence.
+        tuple: Transformed range according to the path correspondence.
     """
     pathcorr = np.asarray(pathcorr)
     xrange_trans = []
@@ -2409,7 +2408,7 @@ 

Source code for sed.calibrator.energy

 def peaksearch(
     traces: np.ndarray,
     tof: np.ndarray,
-    ranges: List[Tuple] = None,
+    ranges: list[tuple] = None,
     pkwindow: int = 3,
     plot: bool = False,
 ) -> np.ndarray:
@@ -2418,7 +2417,7 @@ 

Source code for sed.calibrator.energy

     Args:
         traces (np.ndarray): Collection of 1D spectra.
         tof (np.ndarray): Time-of-flight values.
-        ranges (List[Tuple], optional): List of ranges for peak detection in the format
+        ranges (list[tuple], optional): List of ranges for peak detection in the format
         [(LowerBound1, UpperBound1), (LowerBound2, UpperBound2), ....].
             Defaults to None.
         pkwindow (int, optional): Window width of a peak (amounts to lookahead in
@@ -2458,8 +2457,8 @@ 

Source code for sed.calibrator.energy

 def _datacheck_peakdetect(
     x_axis: np.ndarray,
     y_axis: np.ndarray,
-) -> Tuple[np.ndarray, np.ndarray]:
-    """Input format checking for 1D peakdetect algorithm
+) -> tuple[np.ndarray, np.ndarray]:
+    """Input format checking for 1D peakdtect algorithm
 
     Args:
         x_axis (np.ndarray): x-axis array
@@ -2469,7 +2468,7 @@ 

Source code for sed.calibrator.energy

         ValueError: Raised if x and y values don't have the same length.
 
     Returns:
-        Tuple[np.ndarray, np.ndarray]: Tuple of checked (x/y) arrays.
+        tuple[np.ndarray, np.ndarray]: Tuple of checked (x/y) arrays.
     """
 
     if x_axis is None:
@@ -2494,7 +2493,7 @@ 

Source code for sed.calibrator.energy

     x_axis: np.ndarray = None,
     lookahead: int = 200,
     delta: int = 0,
-) -> Tuple[np.ndarray, np.ndarray]:
+) -> tuple[np.ndarray, np.ndarray]:
     """Function for detecting local maxima and minima in a signal.
     Discovers peaks by searching for values which are surrounded by lower
     or larger values for maxima and minima respectively
@@ -2521,7 +2520,7 @@ 

Source code for sed.calibrator.energy

         ValueError: Raised if lookahead and delta are out of range.
 
     Returns:
-        Tuple[np.ndarray, np.ndarray]: Tuple of positions of the positive peaks,
+        tuple[np.ndarray, np.ndarray]: Tuple of positions of the positive peaks,
         positions of the negative peaks
     """
     max_peaks = []
@@ -2542,7 +2541,7 @@ 

Source code for sed.calibrator.energy

 
     # maxima and minima candidates are temporarily stored in
     # mx and mn respectively
-    _min, _max = np.Inf, -np.Inf
+    _min, _max = np.inf, -np.inf
 
     # Only detect peak if there is 'lookahead' amount of points after it
     for index, (x, y) in enumerate(
@@ -2557,15 +2556,15 @@ 

Source code for sed.calibrator.energy

             _min_pos = x
 
         # Find local maxima
-        if y < _max - delta and _max != np.Inf:
+        if y < _max - delta and _max != np.inf:
             # Maxima peak candidate found
             # look ahead in signal to ensure that this is a peak and not jitter
             if y_axis[index : index + lookahead].max() < _max:
                 max_peaks.append([_max_pos, _max])
                 dump.append(True)
                 # Set algorithm to only find minima now
-                _max = np.Inf
-                _min = np.Inf
+                _max = np.inf
+                _min = np.inf
 
                 if index + lookahead >= length:
                     # The end is within lookahead no more peaks can be found
@@ -2576,15 +2575,15 @@ 

Source code for sed.calibrator.energy

             #    mxpos = x_axis[np.where(y_axis[index:index+lookahead]==mx)]
 
         # Find local minima
-        if y > _min + delta and _min != -np.Inf:
+        if y > _min + delta and _min != -np.inf:
             # Minima peak candidate found
             # look ahead in signal to ensure that this is a peak and not jitter
             if y_axis[index : index + lookahead].min() > _min:
                 min_peaks.append([_min_pos, _min])
                 dump.append(False)
                 # Set algorithm to only find maxima now
-                _min = -np.Inf
-                _max = -np.Inf
+                _min = -np.inf
+                _max = -np.inf
 
                 if index + lookahead >= length:
                     # The end is within lookahead no more peaks can be found
@@ -2611,13 +2610,13 @@ 

Source code for sed.calibrator.energy

 
[docs] def fit_energy_calibration( - pos: Union[List[float], np.ndarray], - vals: Union[List[float], np.ndarray], + pos: list[float] | np.ndarray, + vals: list[float] | np.ndarray, binwidth: float, binning: int, ref_id: int = 0, ref_energy: float = None, - t: Union[List[float], np.ndarray] = None, + t: list[float] | np.ndarray = None, energy_scale: str = "kinetic", verbose: bool = True, **kwds, @@ -2627,16 +2626,16 @@

Source code for sed.calibrator.energy

     function d/(t-t0)**2.
 
     Args:
-        pos (Union[List[float], np.ndarray]): Positions of the spectral landmarks
+        pos (list[float] | np.ndarray): Positions of the spectral landmarks
             (e.g. peaks) in the EDCs.
-        vals (Union[List[float], np.ndarray]): Bias voltage value associated with
+        vals (list[float] | np.ndarray): Bias voltage value associated with
             each EDC.
         binwidth (float): Time width of each original TOF bin in ns.
         binning (int): Binning factor of the TOF values.
         ref_id (int, optional): Reference dataset index. Defaults to 0.
-        ref_energy (float, optional): Energy value of the feature in the reference
+        ref_energy (float, optional): Energy value of the feature in the refence
             trace (eV). required to output the calibration. Defaults to None.
-        t (Union[List[float], np.ndarray], optional): Array of TOF values. Required
+        t (list[float] | np.ndarray, optional): Array of TOF values. Required
             to calculate calibration trace. Defaults to None.
         energy_scale (str, optional): Direction of increasing energy scale.
 
@@ -2656,7 +2655,7 @@ 

Source code for sed.calibrator.energy

     Returns:
         dict: A dictionary of fitting parameters including the following,
 
-        - "coeffs": Fitted function coefficients.
+        - "coeffs": Fitted function coefficents.
         - "axis": Fitted energy axis.
     """
     vals = np.asarray(vals)
@@ -2750,12 +2749,12 @@ 

Source code for sed.calibrator.energy

 
[docs] def poly_energy_calibration( - pos: Union[List[float], np.ndarray], - vals: Union[List[float], np.ndarray], + pos: list[float] | np.ndarray, + vals: list[float] | np.ndarray, order: int = 3, ref_id: int = 0, ref_energy: float = None, - t: Union[List[float], np.ndarray] = None, + t: list[float] | np.ndarray = None, aug: int = 1, method: str = "lstsq", energy_scale: str = "kinetic", @@ -2770,15 +2769,15 @@

Source code for sed.calibrator.energy

 
 
     Args:
-        pos (Union[List[float], np.ndarray]): Positions of the spectral landmarks
+        pos (list[float] | np.ndarray): Positions of the spectral landmarks
             (e.g. peaks) in the EDCs.
-        vals (Union[List[float], np.ndarray]): Bias voltage value associated with
+        vals (list[float] | np.ndarray): Bias voltage value associated with
             each EDC.
         order (int, optional): Polynomial order of the fitting function. Defaults to 3.
         ref_id (int, optional): Reference dataset index. Defaults to 0.
-        ref_energy (float, optional): Energy value of the feature in the reference
+        ref_energy (float, optional): Energy value of the feature in the refence
             trace (eV). required to output the calibration. Defaults to None.
-        t (Union[List[float], np.ndarray], optional): Array of TOF values. Required
+        t (list[float] | np.ndarray, optional): Array of TOF values. Required
             to calculate calibration trace. Defaults to None.
         aug (int, optional): Fitting dimension augmentation
             (1=no change, 2=double, etc). Defaults to 1.
@@ -2907,7 +2906,7 @@ 

Source code for sed.calibrator.energy

 
[docs] def tof2evpoly( - poly_a: Union[List[float], np.ndarray], + poly_a: list[float] | np.ndarray, energy_offset: float, t: float, ) -> float: @@ -2915,7 +2914,7 @@

Source code for sed.calibrator.energy

     conversion formula.
 
     Args:
-        poly_a (Union[List[float], np.ndarray]): Polynomial coefficients.
+        poly_a (list[float] | np.ndarray): Polynomial coefficients.
         energy_offset (float): Energy offset in eV.
         t (float): TOF value in bin number.
 
diff --git a/sed/latest/_modules/sed/calibrator/momentum.html b/sed/latest/_modules/sed/calibrator/momentum.html
index 4a15598..d6eb762 100644
--- a/sed/latest/_modules/sed/calibrator/momentum.html
+++ b/sed/latest/_modules/sed/calibrator/momentum.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.calibrator.momentum — SED 0.1.10a6 documentation
+    sed.calibrator.momentum — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,14 +449,12 @@

Source code for sed.calibrator.momentum

 """sed.calibrator.momentum module. Code for momentum calibration and distortion
 correction. Mostly ported from https://github.com/mpes-kit/mpes.
 """
+from __future__ import annotations
+
 import itertools as it
 from copy import deepcopy
 from datetime import datetime
 from typing import Any
-from typing import Dict
-from typing import List
-from typing import Tuple
-from typing import Union
 
 import bokeh.palettes as bp
 import bokeh.plotting as pbk
@@ -490,9 +488,9 @@ 

Source code for sed.calibrator.momentum

     Momentum distortion correction and momentum calibration workflow functions.
 
     Args:
-        data (Union[xr.DataArray, np.ndarray], optional): Multidimensional hypervolume
+        data (xr.DataArray | np.ndarray, optional): Multidimensional hypervolume
             containing the data. Defaults to None.
-        bin_ranges (List[Tuple], optional): Binning ranges of the data volume, if
+        bin_ranges (list[tuple], optional): Binning ranges of the data volume, if
             provided as np.ndarray. Defaults to None.
         rotsym (int, optional): Rotational symmetry of the data. Defaults to 6.
         config (dict, optional): Config dictionary. Defaults to None.
@@ -500,17 +498,17 @@ 

Source code for sed.calibrator.momentum

 
     def __init__(
         self,
-        data: Union[xr.DataArray, np.ndarray] = None,
-        bin_ranges: List[Tuple] = None,
+        data: xr.DataArray | np.ndarray = None,
+        bin_ranges: list[tuple] = None,
         rotsym: int = 6,
         config: dict = None,
     ):
         """Constructor of the MomentumCorrector class.
 
         Args:
-            data (Union[xr.DataArray, np.ndarray], optional): Multidimensional
+            data (xr.DataArray | np.ndarray, optional): Multidimensional
                 hypervolume containing the data. Defaults to None.
-            bin_ranges (List[Tuple], optional): Binning ranges of the data volume,
+            bin_ranges (list[tuple], optional): Binning ranges of the data volume,
                 if provided as np.ndarray. Defaults to None.
             rotsym (int, optional): Rotational symmetry of the data. Defaults to 6.
             config (dict, optional): Config dictionary. Defaults to None.
@@ -525,7 +523,7 @@ 

Source code for sed.calibrator.momentum

         self.slice: np.ndarray = None
         self.slice_corrected: np.ndarray = None
         self.slice_transformed: np.ndarray = None
-        self.bin_ranges: List[Tuple] = self._config["momentum"].get("bin_ranges", [])
+        self.bin_ranges: list[tuple] = self._config["momentum"].get("bin_ranges", [])
 
         if data is not None:
             self.load_data(data=data, bin_ranges=bin_ranges)
@@ -540,7 +538,7 @@ 

Source code for sed.calibrator.momentum

         self.include_center: bool = False
         self.use_center: bool = False
         self.pouter: np.ndarray = None
-        self.pcent: Tuple[float, ...] = None
+        self.pcent: tuple[float, ...] = None
         self.pouter_ord: np.ndarray = None
         self.prefs: np.ndarray = None
         self.ptargs: np.ndarray = None
@@ -556,10 +554,10 @@ 

Source code for sed.calibrator.momentum

         self.cdeform_field_bkp: np.ndarray = None
         self.inverse_dfield: np.ndarray = None
         self.dfield_updated: bool = False
-        self.transformations: Dict[str, Any] = self._config["momentum"].get("transformations", {})
-        self.correction: Dict[str, Any] = self._config["momentum"].get("correction", {})
-        self.adjust_params: Dict[str, Any] = {}
-        self.calibration: Dict[str, Any] = self._config["momentum"].get("calibration", {})
+        self.transformations: dict[str, Any] = self._config["momentum"].get("transformations", {})
+        self.correction: dict[str, Any] = self._config["momentum"].get("correction", {})
+        self.adjust_params: dict[str, Any] = {}
+        self.calibration: dict[str, Any] = self._config["momentum"].get("calibration", {})
 
         self.x_column = self._config["dataframe"]["x_column"]
         self.y_column = self._config["dataframe"]["y_column"]
@@ -605,15 +603,15 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def load_data(
         self,
-        data: Union[xr.DataArray, np.ndarray],
-        bin_ranges: List[Tuple] = None,
+        data: xr.DataArray | np.ndarray,
+        bin_ranges: list[tuple] = None,
     ):
         """Load binned data into the momentum calibrator class
 
         Args:
-            data (Union[xr.DataArray, np.ndarray]):
+            data (xr.DataArray | np.ndarray):
                 2D or 3D data array, either as np.ndarray or xr.DataArray.
-            bin_ranges (List[Tuple], optional):
+            bin_ranges (list[tuple], optional):
                 Binning ranges. Needs to be provided in case the data are given
                 as np.ndarray. Otherwise, they are determined from the coords of
                 the xr.DataArray. Defaults to None.
@@ -722,9 +720,7 @@ 

Source code for sed.calibrator.momentum

             axmax = np.max(self.slice, axis=(0, 1))
             if axmin < axmax:
                 img.set_clim(axmin, axmax)
-            ax.set_title(
-                f"Plane[{start}:{stop}]",
-            )
+            ax.set_title(f"Plane[{start}:{stop}]")
             fig.canvas.draw_idle()
 
             plane_slider.close()
@@ -745,13 +741,13 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def select_slice(
         self,
-        selector: Union[slice, List[int], int],
+        selector: slice | list[int] | int,
         axis: int = 2,
     ):
         """Select (hyper)slice from a (hyper)volume.
 
         Args:
-            selector (Union[slice, List[int], int]):
+            selector (slice | list[int] | int):
                 Selector along the specified axis to extract the slice (image). Use
                 the construct slice(start, stop, step) to select a range of images
                 and sum them. Use an integer to specify only a particular slice.
@@ -798,7 +794,7 @@ 

Source code for sed.calibrator.momentum

                 Option to calculate symmetry scores. Defaults to False.
             **kwds: Keyword arguments.
 
-                - **symtype** (str): Type of symmetry scores to calculate
+                - **symtype** (str): Type of symmetry scores to calculte
                   if symscores is True. Defaults to "rotation".
 
         Raises:
@@ -1070,7 +1066,7 @@ 

Source code for sed.calibrator.momentum

         use_center: bool = None,
         fixed_center: bool = True,
         interp_order: int = 1,
-        ascale: Union[float, list, tuple, np.ndarray] = None,
+        ascale: float | list | tuple | np.ndarray = None,
         verbose: bool = True,
         **kwds,
     ) -> np.ndarray:
@@ -1088,13 +1084,13 @@ 

Source code for sed.calibrator.momentum

             interp_order (int, optional):
                 Order of interpolation (see ``scipy.ndimage.map_coordinates()``).
                 Defaults to 1.
-            ascale: (Union[float, np.ndarray], optional): Scale parameter determining a relative
-                scale for each symmetry feature. If provided as single float, rotsym has to be 4.
-                This parameter describes the relative scaling between the two orthogonal symmetry
-                directions (for an orthorhombic system). This requires the correction points to be
-                located along the principal axes (X/Y points of the Brillouin zone). Otherwise, an
-                array with ``rotsym`` elements is expected, containing relative scales for each
-                feature. Defaults to an array of equal scales.
+            ascale: (float | list | tuple | np.ndarray, optional): Scale parameter determining a
+                relative scale for each symmetry feature. If provided as single float, rotsym has
+                to be 4. This parameter describes the relative scaling between the two orthogonal
+                symmetry directions (for an orthorhombic system). This requires the correction
+                points to be located along the principal axes (X/Y points of the Brillouin zone).
+                Otherwise, an array with ``rotsym`` elements is expected, containing relative
+                scales for each feature. Defaults to an array of equal scales.
             verbose (bool, optional): Option to report the used landmarks for correction.
                 Defaults to True.
             **kwds: keyword arguments:
@@ -1261,7 +1257,7 @@ 

Source code for sed.calibrator.momentum

             self.slice_corrected = corrected_image
 
         if verbose:
-            print("Calculated thin spline correction based on the following landmarks:")
+            print("Calulated thin spline correction based on the following landmarks:")
             print(f"pouter: {self.pouter}")
             if use_center:
                 print(f"pcent: {self.pcent}")
@@ -1375,7 +1371,7 @@ 

Source code for sed.calibrator.momentum

                 - rotation_auto.
                 - scaling.
                 - scaling_auto.
-                - homography.
+                - homomorphy.
 
             keep (bool, optional): Option to keep the specified coordinate transform in
                 the class. Defaults to False.
@@ -1495,7 +1491,7 @@ 

Source code for sed.calibrator.momentum

             )
             self.slice_transformed = slice_transformed
         else:
-            # if external image is provided, apply only the new additional transformation
+            # if external image is provided, apply only the new addional tranformation
             slice_transformed = ndi.map_coordinates(
                 image,
                 [rdeform, cdeform],
@@ -1519,7 +1515,7 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def pose_adjustment(
         self,
-        transformations: Dict[str, Any] = None,
+        transformations: dict[str, Any] = None,
         apply: bool = False,
         reset: bool = True,
         verbose: bool = True,
@@ -1531,7 +1527,7 @@ 

Source code for sed.calibrator.momentum

 
         Args:
             transformations (dict, optional): Dictionary with transformations.
-                Defaults to self.transformations or config["momentum"]["transformations"].
+                Defaults to self.transformations or config["momentum"]["transformtions"].
             apply (bool, optional):
                 Option to directly apply the provided transformations.
                 Defaults to False.
@@ -1759,7 +1755,7 @@ 

Source code for sed.calibrator.momentum

         image: np.ndarray = None,
         origin: str = "lower",
         cmap: str = "terrain_r",
-        figsize: Tuple[int, int] = (4, 4),
+        figsize: tuple[int, int] = (4, 4),
         points: dict = None,
         annotated: bool = False,
         backend: str = "matplotlib",
@@ -1767,7 +1763,7 @@ 

Source code for sed.calibrator.momentum

         scatterkwds: dict = {},
         cross: bool = False,
         crosshair: bool = False,
-        crosshair_radii: List[int] = [50, 100, 150],
+        crosshair_radii: list[int] = [50, 100, 150],
         crosshair_thickness: int = 1,
         **kwds,
     ):
@@ -1778,7 +1774,7 @@ 

Source code for sed.calibrator.momentum

             origin (str, optional): Figure origin specification ('lower' or 'upper').
                 Defaults to "lower".
             cmap (str, optional):  Colormap specification. Defaults to "terrain_r".
-            figsize (Tuple[int, int], optional): Figure size. Defaults to (4, 4).
+            figsize (tuple[int, int], optional): Figure size. Defaults to (4, 4).
             points (dict, optional): Points for annotation. Defaults to None.
             annotated (bool, optional): Option to add annotation. Defaults to False.
             backend (str, optional): Visualization backend specification. Defaults to
@@ -1795,7 +1791,7 @@ 

Source code for sed.calibrator.momentum

                 self.pcent. Defaults to False.
             crosshair (bool, optional): Display option to plot circles around center
                 self.pcent. Works only in bokeh backend. Defaults to False.
-            crosshair_radii (List[int], optional): Pixel radii of circles to plot when
+            crosshair_radii (list[int], optional): Pixel radii of circles to plot when
                 crosshair option is activated. Defaults to [50, 100, 150].
             crosshair_thickness (int, optional): Thickness of crosshair circles.
                 Defaults to 1.
@@ -1814,7 +1810,7 @@ 

Source code for sed.calibrator.momentum

             txtsize = kwds.pop("textsize", 12)
 
         if backend == "matplotlib":
-            fig, ax = plt.subplots(figsize=figsize)
+            fig_plt, ax = plt.subplots(figsize=figsize)
             ax.imshow(image.T, origin=origin, cmap=cmap, **imkwds)
 
             if cross:
@@ -1909,30 +1905,31 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def select_k_range(
         self,
-        point_a: Union[np.ndarray, List[int]] = None,
-        point_b: Union[np.ndarray, List[int]] = None,
+        point_a: np.ndarray | list[int] = None,
+        point_b: np.ndarray | list[int] = None,
         k_distance: float = None,
-        k_coord_a: Union[np.ndarray, List[float]] = None,
-        k_coord_b: Union[np.ndarray, List[float]] = np.array([0.0, 0.0]),
+        k_coord_a: np.ndarray | list[float] = None,
+        k_coord_b: np.ndarray | list[float] = np.array([0.0, 0.0]),
         equiscale: bool = True,
         apply: bool = False,
     ):
-        """Interactive selection function for features for the Momentum axes calibration. It allows
-        the user to select the pixel positions of two symmetry points (a and b) and the k-space
-        distance of the two. Alternatively, the coordinates of both points can be provided. See the
-        equiscale option for details on the specifications of point coordinates.
+        """Interactive selection function for features for the Momentum axes calibra-
+        tion. It allows the user to select the pixel positions of two symmetry points
+        (a and b) and the k-space distance of the two. Alternatively, the corrdinates
+        of both points can be provided. See the equiscale option for details on the
+        specifications of point coordinates.
 
         Args:
-            point_a (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
+            point_a (np.ndarray | list[int], optional): Pixel coordinates of the
                 symmetry point a.
-            point_b (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
+            point_b (np.ndarray | list[int], optional): Pixel coordinates of the
                 symmetry point b. Defaults to the center pixel of the image, defined by
                 config["momentum"]["center_pixel"].
             k_distance (float, optional): The known momentum space distance between the
                 two symmetry points.
-            k_coord_a (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_a (np.ndarray | list[float], optional): Momentum coordinate
                 of the symmetry points a. Only valid if equiscale=False.
-            k_coord_b (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_b (np.ndarray | list[float], optional): Momentum coordinate
                 of the symmetry points b. Only valid if equiscale=False. Defaults to
                 the k-space center np.array([0.0, 0.0]).
             equiscale (bool, optional): Option to adopt equal scale along both the x
@@ -2062,11 +2059,11 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def calibrate(
         self,
-        point_a: Union[np.ndarray, List[int]],
-        point_b: Union[np.ndarray, List[int]],
+        point_a: np.ndarray | list[int],
+        point_b: np.ndarray | list[int],
         k_distance: float = None,
-        k_coord_a: Union[np.ndarray, List[float]] = None,
-        k_coord_b: Union[np.ndarray, List[float]] = np.array([0.0, 0.0]),
+        k_coord_a: np.ndarray | list[float] = None,
+        k_coord_b: np.ndarray | list[float] = np.array([0.0, 0.0]),
         equiscale: bool = True,
         image: np.ndarray = None,
     ) -> dict:
@@ -2077,16 +2074,16 @@ 

Source code for sed.calibrator.momentum

         of point coordinates.
 
         Args:
-            point_a (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
+            point_a (np.ndarray | list[int], optional): Pixel coordinates of the
                 symmetry point a.
-            point_b (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
+            point_b (np.ndarray | list[int], optional): Pixel coordinates of the
                 symmetry point b. Defaults to the center pixel of the image, defined by
                 config["momentum"]["center_pixel"].
             k_distance (float, optional): The known momentum space distance between the
                 two symmetry points.
-            k_coord_a (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_a (np.ndarray | list[float], optional): Momentum coordinate
                 of the symmetry points a. Only valid if equiscale=False.
-            k_coord_b (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_b (np.ndarray | list[float], optional): Momentum coordinate
                 of the symmetry points b. Only valid if equiscale=False. Defaults to
                 the k-space center np.array([0.0, 0.0]).
             equiscale (bool, optional): Option to adopt equal scale along both the x
@@ -2182,20 +2179,20 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def apply_corrections(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame],
+        df: pd.DataFrame | dask.dataframe.DataFrame,
         x_column: str = None,
         y_column: str = None,
         new_x_column: str = None,
         new_y_column: str = None,
         verbose: bool = True,
         **kwds,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Calculate and replace the X and Y values with their distortion-corrected
         version.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to apply
-                the distortion correction to.
+            df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to apply
+                the distotion correction to.
             x_column (str, optional): Label of the 'X' column before momentum
                 distortion correction. Defaults to config["momentum"]["x_column"].
             y_column (str, optional): Label of the 'Y' column before momentum
@@ -2217,7 +2214,7 @@ 

Source code for sed.calibrator.momentum

                 Additional keyword arguments are passed to ``apply_dfield``.
 
         Returns:
-            Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]: Dataframe with
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: Dataframe with
             added columns and momentum correction metadata dictionary.
         """
         if x_column is None:
@@ -2274,7 +2271,7 @@ 

Source code for sed.calibrator.momentum

         Returns:
             dict: generated correction metadata dictionary.
         """
-        metadata: Dict[Any, Any] = {}
+        metadata: dict[Any, Any] = {}
         if len(self.correction) > 0:
             metadata["correction"] = self.correction
             metadata["correction"]["applied"] = True
@@ -2289,11 +2286,11 @@ 

Source code for sed.calibrator.momentum

             metadata["registration"]["creation_date"] = datetime.now().timestamp()
             metadata["registration"]["applied"] = True
             metadata["registration"]["depends_on"] = (
-                "/entry/process/registration/transformations/rot_z"
+                "/entry/process/registration/tranformations/rot_z"
                 if "angle" in metadata["registration"] and metadata["registration"]["angle"]
-                else "/entry/process/registration/transformations/trans_y"
+                else "/entry/process/registration/tranformations/trans_y"
                 if "xtrans" in metadata["registration"] and metadata["registration"]["xtrans"]
-                else "/entry/process/registration/transformations/trans_x"
+                else "/entry/process/registration/tranformations/trans_x"
                 if "ytrans" in metadata["registration"] and metadata["registration"]["ytrans"]
                 else "."
             )
@@ -2317,7 +2314,7 @@ 

Source code for sed.calibrator.momentum

                     [0.0, 1.0, 0.0],
                 )
                 metadata["registration"]["trans_y"]["depends_on"] = (
-                    "/entry/process/registration/transformations/trans_x"
+                    "/entry/process/registration/tranformations/trans_x"
                     if "ytrans" in metadata["registration"] and metadata["registration"]["ytrans"]
                     else "."
                 )
@@ -2333,9 +2330,9 @@ 

Source code for sed.calibrator.momentum

                     (metadata["registration"]["center"], [0.0]),
                 )
                 metadata["registration"]["rot_z"]["depends_on"] = (
-                    "/entry/process/registration/transformations/trans_y"
+                    "/entry/process/registration/tranformations/trans_y"
                     if "xtrans" in metadata["registration"] and metadata["registration"]["xtrans"]
-                    else "/entry/process/registration/transformations/trans_x"
+                    else "/entry/process/registration/tranformations/trans_x"
                     if "ytrans" in metadata["registration"] and metadata["registration"]["ytrans"]
                     else "."
                 )
@@ -2347,19 +2344,19 @@ 

Source code for sed.calibrator.momentum

 [docs]
     def append_k_axis(
         self,
-        df: Union[pd.DataFrame, dask.dataframe.DataFrame],
+        df: pd.DataFrame | dask.dataframe.DataFrame,
         x_column: str = None,
         y_column: str = None,
         new_x_column: str = None,
         new_y_column: str = None,
         calibration: dict = None,
         **kwds,
-    ) -> Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]:
+    ) -> tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]:
         """Calculate and append the k axis coordinates (kx, ky) to the events dataframe.
 
         Args:
-            df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to apply the
-                distortion correction to.
+            df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to apply the
+                distotion correction to.
             x_column (str, optional): Label of the source 'X' column.
                 Defaults to config["momentum"]["corrected_x_column"] or
                 config["momentum"]["x_column"] (whichever is present).
@@ -2376,7 +2373,7 @@ 

Source code for sed.calibrator.momentum

                 to the calibration dictionary.
 
         Returns:
-            Tuple[Union[pd.DataFrame, dask.dataframe.DataFrame], dict]: Dataframe with
+            tuple[pd.DataFrame | dask.dataframe.DataFrame, dict]: Dataframe with
             added columns and momentum calibration metadata dictionary.
         """
         if x_column is None:
@@ -2406,7 +2403,7 @@ 

Source code for sed.calibrator.momentum

             calibration["creation_date"] = datetime.now().timestamp()
 
         try:
-            (df[new_x_column], df[new_y_column]) = detector_coordinates_2_k_coordinates(
+            (df[new_x_column], df[new_y_column]) = detector_coordiantes_2_k_koordinates(
                 r_det=df[x_column],
                 c_det=df[y_column],
                 r_start=calibration["rstart"],
@@ -2442,7 +2439,7 @@ 

Source code for sed.calibrator.momentum

         """
         if calibration is None:
             calibration = self.calibration
-        metadata: Dict[Any, Any] = {}
+        metadata: dict[Any, Any] = {}
         try:
             metadata["creation_date"] = calibration["creation_date"]
         except KeyError:
@@ -2469,7 +2466,7 @@ 

Source code for sed.calibrator.momentum

         cmap_name (str): Name of the colormap/palette.
 
     Returns:
-        list: List of colors in hex representation (a bokeh palette).
+        list: List of colors in hex representation (a bokoeh palette).
     """
     if cmap_name in bp.all_palettes.keys():
         palette_func = getattr(bp, cmap_name)
@@ -2488,38 +2485,33 @@ 

Source code for sed.calibrator.momentum

 [docs]
 def dictmerge(
     main_dict: dict,
-    other_entries: Union[List[dict], Tuple[dict], dict],
+    other_entries: list[dict] | tuple[dict] | dict,
 ) -> dict:
     """Merge a dictionary with other dictionaries.
 
     Args:
         main_dict (dict): Main dictionary.
-        other_entries (Union[List[dict], Tuple[dict], dict]):
+        other_entries (list[dict] | tuple[dict] | dict):
             Other dictionary or composite dictionarized elements.
 
     Returns:
         dict: Merged dictionary.
     """
-    if isinstance(
-        other_entries,
-        (
-            list,
-            tuple,
-        ),
-    ):  # Merge main_dict with a list or tuple of dictionaries
+    # Merge main_dict with a list or tuple of dictionaries
+    if isinstance(other_entries, (list, tuple)):
         for oth in other_entries:
             main_dict = {**main_dict, **oth}
-
-    elif isinstance(other_entries, dict):  # Merge D with a single dictionary
+    # Merge D with a single dictionary
+    elif isinstance(other_entries, dict):
         main_dict = {**main_dict, **other_entries}
 
     return main_dict
-
-[docs] -def detector_coordinates_2_k_coordinates( +
+[docs] +def detector_coordiantes_2_k_koordinates( r_det: float, c_det: float, r_start: float, @@ -2530,8 +2522,8 @@

Source code for sed.calibrator.momentum

     c_conversion: float,
     r_step: float,
     c_step: float,
-) -> Tuple[float, float]:
-    """Conversion from detector coordinates (r_det, c_det) to momentum coordinates
+) -> tuple[float, float]:
+    """Conversion from detector coordinates (rdet, cdet) to momentum coordinates
     (kr, kc).
 
     Args:
@@ -2547,7 +2539,7 @@ 

Source code for sed.calibrator.momentum

         c_step (float): Column stepping factor.
 
     Returns:
-        Tuple[float, float]: Converted momentum space row/column coordinates.
+        tuple[float, float]: Converted momentum space row/column coordinates.
     """
     r_det0 = r_start + r_step * r_center
     c_det0 = c_start + c_step * c_center
@@ -2561,30 +2553,30 @@ 

Source code for sed.calibrator.momentum

 
[docs] def apply_dfield( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], + df: pd.DataFrame | dask.dataframe.DataFrame, dfield: np.ndarray, x_column: str, y_column: str, new_x_column: str, new_y_column: str, - detector_ranges: List[Tuple], -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: + detector_ranges: list[tuple], +) -> pd.DataFrame | dask.dataframe.DataFrame: """Application of the inverse displacement-field to the dataframe coordinates. Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to apply the - distortion correction to. + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to apply the + distotion correction to. dfield (np.ndarray): The distortion correction field. 3D matrix, with column and row distortion fields stacked along the first dimension. x_column (str): Label of the 'X' source column. y_column (str): Label of the 'Y' source column. new_x_column (str): Label of the 'X' destination column. new_y_column (str): Label of the 'Y' destination column. - detector_ranges (List[Tuple]): tuple of pixel ranges of the detector x/y + detector_ranges (list[tuple]): tuple of pixel ranges of the detector x/y coordinates Returns: - Union[pd.DataFrame, dask.dataframe.DataFrame]: dataframe with added columns + pd.DataFrame | dask.dataframe.DataFrame: dataframe with added columns """ x = df[x_column] y = df[y_column] @@ -2605,18 +2597,18 @@

Source code for sed.calibrator.momentum

 def generate_inverse_dfield(
     rdeform_field: np.ndarray,
     cdeform_field: np.ndarray,
-    bin_ranges: List[Tuple],
-    detector_ranges: List[Tuple],
+    bin_ranges: list[tuple],
+    detector_ranges: list[tuple],
 ) -> np.ndarray:
-    """Generate inverse deformation field using interpolation with griddata.
+    """Generate inverse deformation field using inperpolation with griddata.
     Assuming the binning range of the input ``rdeform_field`` and ``cdeform_field``
     covers the whole detector.
 
     Args:
         rdeform_field (np.ndarray): Row-wise deformation field.
         cdeform_field (np.ndarray): Column-wise deformation field.
-        bin_ranges (List[Tuple]): Detector ranges of the binned coordinates.
-        detector_ranges (List[Tuple]): Ranges of detector coordinates to interpolate to.
+        bin_ranges (list[tuple]): Detector ranges of the binned coordinates.
+        detector_ranges (list[tuple]): Ranges of detector coordinates to interpolate to.
 
     Returns:
         np.ndarray: The calculated inverse deformation field (row/column)
@@ -2680,14 +2672,14 @@ 

Source code for sed.calibrator.momentum

 
 
[docs] -def load_dfield(file: str) -> Tuple[np.ndarray, np.ndarray]: +def load_dfield(file: str) -> tuple[np.ndarray, np.ndarray]: """Load inverse dfield from file Args: file (str): Path to file containing the inverse dfield Returns: - np.ndarray: the loaded inverse deformation field + tuple[np.ndarray, np.ndarray]: the loaded inverse row and column deformation fields """ rdeform_field: np.ndarray = None cdeform_field: np.ndarray = None diff --git a/sed/latest/_modules/sed/core/config.html b/sed/latest/_modules/sed/core/config.html index 26a585d..90151e0 100644 --- a/sed/latest/_modules/sed/core/config.html +++ b/sed/latest/_modules/sed/core/config.html @@ -7,7 +7,7 @@ - sed.core.config — SED 0.1.10a6 documentation + sed.core.config — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,13 +448,14 @@

Source code for sed.core.config

 """This module contains a config library for loading yaml/json files into dicts
 """
+from __future__ import annotations
+
 import copy
 import json
 import os
 import platform
 from importlib.util import find_spec
 from pathlib import Path
-from typing import Union
 
 import yaml
 from platformdirs import user_config_path
@@ -467,14 +468,11 @@ 

Source code for sed.core.config

 
[docs] def parse_config( - config: Union[dict, str] = None, - folder_config: Union[dict, str] = None, - user_config: Union[dict, str] = None, - system_config: Union[dict, str] = None, - default_config: Union[ - dict, - str, - ] = f"{package_dir}/config/default.yaml", + config: dict | str = None, + folder_config: dict | str = None, + user_config: dict | str = None, + system_config: dict | str = None, + default_config: (dict | str) = f"{package_dir}/config/default.yaml", verbose: bool = True, ) -> dict: """Load the config dictionary from a file, or pass the provided config dictionary. @@ -484,21 +482,21 @@

Source code for sed.core.config

     can be also passed as optional arguments (file path strings or dictionaries).
 
     Args:
-        config (Union[dict, str], optional): config dictionary or file path.
+        config (dict | str, optional): config dictionary or file path.
                 Files can be *json* or *yaml*. Defaults to None.
-        folder_config (Union[ dict, str, ], optional): working-folder-based config dictionary
+        folder_config (dict | str, optional): working-folder-based config dictionary
             or file path. The loaded dictionary is completed with the folder-based values,
             taking preference over user, system and default values. Defaults to the file
             "sed_config.yaml" in the current working directory.
-        user_config (Union[ dict, str, ], optional): user-based config dictionary
+        user_config (dict | str, optional): user-based config dictionary
             or file path. The loaded dictionary is completed with the user-based values,
             taking preference over system and default values.
             Defaults to the file ".sed/config.yaml" in the current user's home directory.
-        system_config (Union[ dict, str, ], optional): system-wide config dictionary
+        system_config (dict | str, optional): system-wide config dictionary
             or file path. The loaded dictionary is completed with the system-wide values,
             taking preference over default values. Defaults to the file "/etc/sed/config.yaml"
             on linux, and "%ALLUSERSPROFILE%/sed/config.yaml" on windows.
-        default_config (Union[ dict, str, ], optional): default config dictionary
+        default_config (dict | str, optional): default config dictionary
             or file path. The loaded dictionary is completed with the default values.
             Defaults to *package_dir*/config/default.yaml".
         verbose (bool, optional): Option to report loaded config files. Defaults to True.
@@ -631,10 +629,10 @@ 

Source code for sed.core.config

 def save_config(config_dict: dict, config_path: str, overwrite: bool = False):
     """Function to save a given config dictionary to a json or yaml file. Normally, it loads any
     existing file of the given name, and keeps any existing dictionary keys not present in the
-    provided dictionary. The overwrite option creates a fully empty dictionary first.
+    provided dictionary. The overwrite option creates a fully empty dictionry first.
 
     Args:
-        config_dict (dict): The dictionary to save.
+        config_dict (dict): The dictionry to save.
         config_path (str): A string containing the path to the file where to save the dictionary
             to.
         overwrite (bool, optional): Option to overwrite an existing file with the given dictionary.
diff --git a/sed/latest/_modules/sed/core/dfops.html b/sed/latest/_modules/sed/core/dfops.html
index 6637f74..c75fb61 100644
--- a/sed/latest/_modules/sed/core/dfops.html
+++ b/sed/latest/_modules/sed/core/dfops.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.core.dfops — SED 0.1.10a6 documentation
+    sed.core.dfops — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -451,9 +451,10 @@

Source code for sed.core.dfops

 """
 # Note: some of the functions presented here were
 # inspired by https://github.com/mpes-kit/mpes
+from __future__ import annotations
+
+from collections.abc import Sequence
 from typing import Callable
-from typing import Sequence
-from typing import Union
 
 import dask.dataframe
 import numpy as np
@@ -464,30 +465,30 @@ 

Source code for sed.core.dfops

 
[docs] def apply_jitter( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], - cols: Union[str, Sequence[str]], - cols_jittered: Union[str, Sequence[str]] = None, - amps: Union[float, Sequence[float]] = 0.5, + df: pd.DataFrame | dask.dataframe.DataFrame, + cols: str | Sequence[str], + cols_jittered: str | Sequence[str] = None, + amps: float | Sequence[float] = 0.5, jitter_type: str = "uniform", -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: +) -> pd.DataFrame | dask.dataframe.DataFrame: """Add jittering to one or more dataframe columns. Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to add + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to add noise/jittering to. - cols (Union[str, Sequence[str]]): Names of the columns to add jittering to. - cols_jittered (Union[str, Sequence[str]], optional): Names of the columns + cols (str | Sequence[str]): Names of the columns to add jittering to. + cols_jittered (str | Sequence[str], optional): Names of the columns with added jitter. Defaults to None. - amps (Union[float, Sequence[float]], optional): Amplitude scalings for the + amps (float | Sequence[float], optional): Amplitude scalings for the jittering noise. If one number is given, the same is used for all axes. - For normal noise, the added noise will have stdev [-amp, +amp], for + For normal noise, the added noise will have sdev [-amp, +amp], for uniform noise it will cover the interval [-amp, +amp]. Defaults to 0.5. jitter_type (str, optional): the type of jitter to add. 'uniform' or 'normal' distributed noise. Defaults to "uniform". Returns: - Union[pd.DataFrame, dask.dataframe.DataFrame]: dataframe with added columns. + pd.DataFrame | dask.dataframe.DataFrame: dataframe with added columns. """ assert cols is not None, "cols needs to be provided!" assert jitter_type in ( @@ -524,17 +525,17 @@

Source code for sed.core.dfops

 
[docs] def drop_column( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], - column_name: Union[str, Sequence[str]], -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: + df: pd.DataFrame | dask.dataframe.DataFrame, + column_name: str | Sequence[str], +) -> pd.DataFrame | dask.dataframe.DataFrame: """Delete columns. Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use. - column_name (Union[str, Sequence[str]])): List of column names to be dropped. + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to use. + column_name (str | Sequence[str]): List of column names to be dropped. Returns: - Union[pd.DataFrame, dask.dataframe.DataFrame]: Dataframe with dropped columns. + pd.DataFrame | dask.dataframe.DataFrame: Dataframe with dropped columns. """ out_df = df.drop(column_name, axis=1) @@ -545,15 +546,15 @@

Source code for sed.core.dfops

 
[docs] def apply_filter( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], + df: pd.DataFrame | dask.dataframe.DataFrame, col: str, lower_bound: float = -np.inf, upper_bound: float = np.inf, -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: +) -> pd.DataFrame | dask.dataframe.DataFrame: """Application of bound filters to a specified column (can be used consecutively). Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use. + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to use. col (str): Name of the column to filter. Passing "index" for col will filter on the index in each dataframe partition. lower_bound (float, optional): The lower bound used in the filtering. @@ -562,7 +563,7 @@

Source code for sed.core.dfops

             Defaults to np.inf.
 
     Returns:
-        Union[pd.DataFrame, dask.dataframe.DataFrame]: The filtered dataframe.
+        pd.DataFrame | dask.dataframe.DataFrame: The filtered dataframe.
     """
     df = df.copy()
     if col == "index":
@@ -591,14 +592,14 @@ 

Source code for sed.core.dfops

     timestamps in the dataframe.
 
     Args:
-        df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use.
+        df (dask.dataframe.DataFrame): Dataframe to use.
         time_stamps (np.ndarray): Time stamps of the values to add
         data (np.ndarray): Values corresponding at the time stamps in time_stamps
         dest_column (str): destination column name
         time_stamp_column (str): Time stamp column name
 
     Returns:
-        Union[pd.DataFrame, dask.dataframe.DataFrame]: Dataframe with added column
+        dask.dataframe.DataFrame: Dataframe with added column
     """
     if time_stamp_column not in df.columns:
         raise ValueError(f"{time_stamp_column} not found in dataframe!")
@@ -625,23 +626,23 @@ 

Source code for sed.core.dfops

 
[docs] def map_columns_2d( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], + df: pd.DataFrame | dask.dataframe.DataFrame, map_2d: Callable, x_column: str, y_column: str, **kwds, -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: +) -> pd.DataFrame | dask.dataframe.DataFrame: """Apply a 2-dimensional mapping simultaneously to two dimensions. Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use. + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to use. map_2d (Callable): 2D mapping function. x_column (str): The X column of the dataframe to apply mapping to. y_column (str): The Y column of the dataframe to apply mapping to. **kwds: Additional arguments for the 2D mapping function. Returns: - Union[pd.DataFrame, dask.dataframe.DataFrame]: Dataframe with mapped columns. + pd.DataFrame | dask.dataframe.DataFrame: Dataframe with mapped columns. """ new_x_column = kwds.pop("new_x_column", x_column) new_y_column = kwds.pop("new_y_column", y_column) @@ -661,7 +662,7 @@

Source code for sed.core.dfops

 def forward_fill_lazy(
     df: dask.dataframe.DataFrame,
     columns: Sequence[str] = None,
-    before: Union[str, int] = "max",
+    before: str | int = "max",
     compute_lengths: bool = False,
     iterations: int = 2,
 ) -> dask.dataframe.DataFrame:
@@ -669,14 +670,14 @@ 

Source code for sed.core.dfops

 
     Allows forward filling between partitions. This is useful for dataframes
     that have sparse data, such as those with many NaNs.
-    Running the forward filling multiple times can fix the issue of having
+    Runnin the forward filling multiple times can fix the issue of having
     entire partitions consisting of NaNs. By default we run this twice, which
     is enough to fix the issue for dataframes with no consecutive partitions of NaNs.
 
     Args:
         df (dask.dataframe.DataFrame): The dataframe to forward fill.
-        columns (list): The columns to forward fill. If None, fills all columns
-        before (int, str, optional): The number of rows to include before the current partition.
+        columns (list, optional): The columns to forward fill. If None, fills all columns
+        before (str | int, optional): The number of rows to include before the current partition.
             if 'max' it takes as much as possible from the previous partition, which is
             the size of the smallest partition in the dataframe. Defaults to 'max'.
         compute_lengths (bool, optional): Whether to compute the length of each partition
@@ -726,7 +727,7 @@ 

Source code for sed.core.dfops

 def backward_fill_lazy(
     df: dask.dataframe.DataFrame,
     columns: Sequence[str] = None,
-    after: Union[str, int] = "max",
+    after: str | int = "max",
     compute_lengths: bool = False,
     iterations: int = 1,
 ) -> dask.dataframe.DataFrame:
@@ -738,8 +739,8 @@ 

Source code for sed.core.dfops

 
     Args:
         df (dask.dataframe.DataFrame): The dataframe to forward fill.
-        columns (list): The columns to forward fill. If None, fills all columns
-        after (int, str, optional): The number of rows to include after the current partition.
+        columns (list, optional): The columns to forward fill. If None, fills all columns
+        after (str | int, optional): The number of rows to include after the current partition.
             if 'max' it takes as much as possible from the previous partition, which is
             the size of the smallest partition in the dataframe. Defaults to 'max'.
         compute_lengths (bool, optional): Whether to compute the length of each partition
@@ -789,10 +790,10 @@ 

Source code for sed.core.dfops

 def offset_by_other_columns(
     df: dask.dataframe.DataFrame,
     target_column: str,
-    offset_columns: Union[str, Sequence[str]],
-    weights: Union[float, Sequence[float]],
-    reductions: Union[str, Sequence[str]] = None,
-    preserve_mean: Union[bool, Sequence[bool]] = False,
+    offset_columns: str | Sequence[str],
+    weights: float | Sequence[float],
+    reductions: str | Sequence[str] = None,
+    preserve_mean: bool | Sequence[bool] = False,
     inplace: bool = True,
     rename: str = None,
 ) -> dask.dataframe.DataFrame:
@@ -801,13 +802,13 @@ 

Source code for sed.core.dfops

     Args:
         df (dask.dataframe.DataFrame): Dataframe to use. Currently supports only dask dataframes.
         target_column (str): Name of the column to apply the offset to.
-        offset_columns (str): Name of the column(s) to use for the offset.
-        weights (Union[float, Sequence[float]]): weights to apply on each column before adding.
-            Used also for changing sign.
-        reductions (Union[str, Sequence[str]], optional): Reduction function to use for the offset.
+        offset_columns (str | Sequence[str]): Name of the column(s) to use for the offset.
+        weights (float | Sequence[float]): weights to apply on each column before adding. Used also
+            for changing sign.
+        reductions (str | Sequence[str], optional): Reduction function to use for the offset.
             Defaults to "mean". Currently, only mean is supported.
-        preserve_mean (Union[bool, Sequence[bool]], optional): Whether to subtract the mean of the
-            offset column. Defaults to False. If a list is given, it must have the same length as
+        preserve_mean (bool | Sequence[bool], optional): Whether to subtract the mean of the offset
+            column. Defaults to False. If a list is given, it must have the same length as
             offset_columns. Otherwise the value passed is used for all columns.
         inplace (bool, optional): Whether to apply the offset inplace.
             If false, the new column will have the name provided by rename, or has the same name as
diff --git a/sed/latest/_modules/sed/core/metadata.html b/sed/latest/_modules/sed/core/metadata.html
index b852175..605e57c 100644
--- a/sed/latest/_modules/sed/core/metadata.html
+++ b/sed/latest/_modules/sed/core/metadata.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.core.metadata — SED 0.1.10a6 documentation
+    sed.core.metadata — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,10 +448,11 @@

Source code for sed.core.metadata

 """This is a metadata handler class from the sed package
 """
+from __future__ import annotations
+
 import json
 from copy import deepcopy
 from typing import Any
-from typing import Dict
 
 from sed.core.config import complete_dictionary
 
@@ -460,18 +461,49 @@ 

Source code for sed.core.metadata

 [docs]
 class MetaHandler:
     """This class provides methods to manipulate metadata dictionaries,
-    and give a nice representation of them."""
+    and give a nice representation of them.
+
+    Args:
+        meta (dict, optional): Pre-existing metadata dict. Defaults to None.
+    """
 
-    def __init__(self, meta: Dict = None) -> None:
+    def __init__(self, meta: dict = None) -> None:
+        """Constructor.
+
+        Args:
+            meta (dict, optional): Pre-existing metadata dict. Defaults to None.
+        """
         self._m = deepcopy(meta) if meta is not None else {}
 
-    def __getitem__(self, val: Any) -> None:
+    def __getitem__(self, val: Any) -> Any:
+        """Function for getting a value
+
+        Args:
+            val (Any): Metadata category key
+
+        Returns:
+            Any: The metadata category entry.
+        """
         return self._m[val]
 
     def __repr__(self) -> str:
+        """String representation function as json
+
+        Returns:
+            str: Summary string.
+        """
         return json.dumps(self._m, default=str, indent=4)
 
-    def _format_attributes(self, attributes, indent=0):
+    def _format_attributes(self, attributes: dict, indent: int = 0) -> str:
+        """Function to summarize a dictionary as html
+
+        Args:
+            attributes (dict): dictionary to summarize
+            indent (int, optional): Indentation value. Defaults to 0.
+
+        Returns:
+            str: Generated html summary.
+        """
         INDENT_FACTOR = 20
         html = ""
         for key, value in attributes.items():
@@ -492,11 +524,16 @@ 

Source code for sed.core.metadata

         return html
 
     def _repr_html_(self) -> str:
+        """Summary function as html
+
+        Returns:
+            str: Generated html summary
+        """
         html = self._format_attributes(self._m)
         return html
 
     @property
-    def metadata(self) -> Dict:
+    def metadata(self) -> dict:
         """Property returning the metadata dict.
         Returns:
             dict: Dictionary of metadata.
@@ -516,7 +553,7 @@ 

Source code for sed.core.metadata

         Args:
             entry: dictionary containing the metadata to add.
             name: name of the dictionary key under which to add entry.
-            duplicate_policy: Control behavior in case the 'name' key
+            duplicate_policy: Control behaviour in case the 'name' key
                 is already present in the metadata dictionary. Can be any of:
 
                     - "raise": raises a DuplicateEntryError.
diff --git a/sed/latest/_modules/sed/core/processor.html b/sed/latest/_modules/sed/core/processor.html
index d1eadb6..51f9d29 100644
--- a/sed/latest/_modules/sed/core/processor.html
+++ b/sed/latest/_modules/sed/core/processor.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.core.processor — SED 0.1.10a6 documentation
+    sed.core.processor — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,15 +449,13 @@

Source code for sed.core.processor

 """This module contains the core class for the sed package
 
 """
+from __future__ import annotations
+
 import pathlib
+from collections.abc import Sequence
 from datetime import datetime
 from typing import Any
 from typing import cast
-from typing import Dict
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import dask.dataframe as ddf
 import matplotlib.pyplot as plt
@@ -498,11 +496,11 @@ 

Source code for sed.core.processor

 
     Args:
         metadata (dict, optional): Dict of external Metadata. Defaults to None.
-        config (Union[dict, str], optional): Config dictionary or config file name.
+        config (dict | str, optional): Config dictionary or config file name.
             Defaults to None.
-        dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): dataframe to load
+        dataframe (pd.DataFrame | ddf.DataFrame, optional): dataframe to load
             into the class. Defaults to None.
-        files (List[str], optional): List of files to pass to the loader defined in
+        files (list[str], optional): List of files to pass to the loader defined in
             the config. Defaults to None.
         folder (str, optional): Folder containing files to pass to the loader
             defined in the config. Defaults to None.
@@ -518,9 +516,9 @@ 

Source code for sed.core.processor

     def __init__(
         self,
         metadata: dict = None,
-        config: Union[dict, str] = None,
-        dataframe: Union[pd.DataFrame, ddf.DataFrame] = None,
-        files: List[str] = None,
+        config: dict | str = None,
+        dataframe: pd.DataFrame | ddf.DataFrame = None,
+        files: list[str] = None,
         folder: str = None,
         runs: Sequence[str] = None,
         collect_metadata: bool = False,
@@ -532,11 +530,11 @@ 

Source code for sed.core.processor

 
         Args:
             metadata (dict, optional): Dict of external Metadata. Defaults to None.
-            config (Union[dict, str], optional): Config dictionary or config file name.
+            config (dict | str, optional): Config dictionary or config file name.
                 Defaults to None.
-            dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): dataframe to load
+            dataframe (pd.DataFrame | ddf.DataFrame, optional): dataframe to load
                 into the class. Defaults to None.
-            files (List[str], optional): List of files to pass to the loader defined in
+            files (list[str], optional): List of files to pass to the loader defined in
                 the config. Defaults to None.
             folder (str, optional): Folder containing files to pass to the loader
                 defined in the config. Defaults to None.
@@ -564,9 +562,9 @@ 

Source code for sed.core.processor

         else:
             self.verbose = verbose
 
-        self._dataframe: Union[pd.DataFrame, ddf.DataFrame] = None
-        self._timed_dataframe: Union[pd.DataFrame, ddf.DataFrame] = None
-        self._files: List[str] = []
+        self._dataframe: pd.DataFrame | ddf.DataFrame = None
+        self._timed_dataframe: pd.DataFrame | ddf.DataFrame = None
+        self._files: list[str] = []
 
         self._binned: xr.DataArray = None
         self._pre_binned: xr.DataArray = None
@@ -658,20 +656,20 @@ 

Source code for sed.core.processor

     #     self.view_event_histogram(dfpid=2, backend="matplotlib")
 
     @property
-    def dataframe(self) -> Union[pd.DataFrame, ddf.DataFrame]:
+    def dataframe(self) -> pd.DataFrame | ddf.DataFrame:
         """Accessor to the underlying dataframe.
 
         Returns:
-            Union[pd.DataFrame, ddf.DataFrame]: Dataframe object.
+            pd.DataFrame | ddf.DataFrame: Dataframe object.
         """
         return self._dataframe
 
     @dataframe.setter
-    def dataframe(self, dataframe: Union[pd.DataFrame, ddf.DataFrame]):
+    def dataframe(self, dataframe: pd.DataFrame | ddf.DataFrame):
         """Setter for the underlying dataframe.
 
         Args:
-            dataframe (Union[pd.DataFrame, ddf.DataFrame]): The dataframe object to set.
+            dataframe (pd.DataFrame | ddf.DataFrame): The dataframe object to set.
         """
         if not isinstance(dataframe, (pd.DataFrame, ddf.DataFrame)) or not isinstance(
             dataframe,
@@ -685,20 +683,20 @@ 

Source code for sed.core.processor

         self._dataframe = dataframe
 
     @property
-    def timed_dataframe(self) -> Union[pd.DataFrame, ddf.DataFrame]:
+    def timed_dataframe(self) -> pd.DataFrame | ddf.DataFrame:
         """Accessor to the underlying timed_dataframe.
 
         Returns:
-            Union[pd.DataFrame, ddf.DataFrame]: Timed Dataframe object.
+            pd.DataFrame | ddf.DataFrame: Timed Dataframe object.
         """
         return self._timed_dataframe
 
     @timed_dataframe.setter
-    def timed_dataframe(self, timed_dataframe: Union[pd.DataFrame, ddf.DataFrame]):
+    def timed_dataframe(self, timed_dataframe: pd.DataFrame | ddf.DataFrame):
         """Setter for the underlying timed dataframe.
 
         Args:
-            timed_dataframe (Union[pd.DataFrame, ddf.DataFrame]): The timed dataframe object to set
+            timed_dataframe (pd.DataFrame | ddf.DataFrame): The timed dataframe object to set
         """
         if not isinstance(timed_dataframe, (pd.DataFrame, ddf.DataFrame)) or not isinstance(
             timed_dataframe,
@@ -738,20 +736,20 @@ 

Source code for sed.core.processor

 
 
     @property
-    def config(self) -> Dict[Any, Any]:
+    def config(self) -> dict[Any, Any]:
         """Getter attribute for the config dictionary
 
         Returns:
-            Dict: The config dictionary.
+            dict: The config dictionary.
         """
         return self._config
 
     @property
-    def files(self) -> List[str]:
+    def files(self) -> list[str]:
         """Getter attribute for the list of files
 
         Returns:
-            List[str]: The list of loaded files
+            list[str]: The list of loaded files
         """
         return self._files
 
@@ -784,7 +782,7 @@ 

Source code for sed.core.processor

         """Getter attribute for the normalization histogram
 
         Returns:
-            xr.DataArray: The normalization histogram
+            xr.DataArray: The normalizazion histogram
         """
         if self._normalization_histogram is None:
             raise ValueError("No normalization histogram available, generate histogram first!")
@@ -792,17 +790,17 @@ 

Source code for sed.core.processor

 
 
[docs] - def cpy(self, path: Union[str, List[str]]) -> Union[str, List[str]]: + def cpy(self, path: str | list[str]) -> str | list[str]: """Function to mirror a list of files or a folder from a network drive to a local storage. Returns either the original or the copied path to the given path. The option to use this functionality is set by config["core"]["use_copy_tool"]. Args: - path (Union[str, List[str]]): Source path or path list. + path (str | list[str]): Source path or path list. Returns: - Union[str, List[str]]: Source or destination path or path list. + str | list[str]: Source or destination path or path list. """ if self.use_copy_tool: if isinstance(path, list): @@ -823,9 +821,9 @@

Source code for sed.core.processor

 [docs]
     def load(
         self,
-        dataframe: Union[pd.DataFrame, ddf.DataFrame] = None,
+        dataframe: pd.DataFrame | ddf.DataFrame = None,
         metadata: dict = None,
-        files: List[str] = None,
+        files: list[str] = None,
         folder: str = None,
         runs: Sequence[str] = None,
         collect_metadata: bool = False,
@@ -834,11 +832,11 @@ 

Source code for sed.core.processor

         """Load tabular data of single events into the dataframe object in the class.
 
         Args:
-            dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): data in tabular
+            dataframe (pd.DataFrame | ddf.DataFrame, optional): data in tabular
                 format. Accepts anything which can be interpreted by pd.DataFrame as
                 an input. Defaults to None.
             metadata (dict, optional): Dict of external Metadata. Defaults to None.
-            files (List[str], optional): List of file paths to pass to the loader.
+            files (list[str], optional): List of file paths to pass to the loader.
                 Defaults to None.
             runs (Sequence[str], optional): List of run identifiers to pass to the
                 loader. Defaults to None.
@@ -883,7 +881,7 @@ 

Source code for sed.core.processor

             )
         elif files is not None:
             dataframe, timed_dataframe, metadata = self.loader.read_dataframe(
-                files=cast(List[str], self.cpy(files)),
+                files=cast(list[str], self.cpy(files)),
                 metadata=metadata,
                 collect_metadata=collect_metadata,
                 **kwds,
@@ -954,10 +952,10 @@ 

Source code for sed.core.processor

 [docs]
     def bin_and_load_momentum_calibration(
         self,
-        df_partitions: Union[int, Sequence[int]] = 100,
-        axes: List[str] = None,
-        bins: List[int] = None,
-        ranges: Sequence[Tuple[float, float]] = None,
+        df_partitions: int | Sequence[int] = 100,
+        axes: list[str] = None,
+        bins: list[int] = None,
+        ranges: Sequence[tuple[float, float]] = None,
         plane: int = 0,
         width: int = 5,
         apply: bool = False,
@@ -968,13 +966,13 @@ 

Source code for sed.core.processor

         interactive view, and load it into the momentum corrector class.
 
         Args:
-            df_partitions (Union[int, Sequence[int]], optional): Number of dataframe partitions
+            df_partitions (int | Sequence[int], optional): Number of dataframe partitions
                 to use for the initial binning. Defaults to 100.
-            axes (List[str], optional): Axes to bin.
+            axes (list[str], optional): Axes to bin.
                 Defaults to config["momentum"]["axes"].
-            bins (List[int], optional): Bin numbers to use for binning.
+            bins (list[int], optional): Bin numbers to use for binning.
                 Defaults to config["momentum"]["bins"].
-            ranges (List[Tuple], optional): Ranges to use for binning.
+            ranges (Sequence[tuple[float, float]], optional): Ranges to use for binning.
                 Defaults to config["momentum"]["ranges"].
             plane (int, optional): Initial value for the plane slider. Defaults to 0.
             width (int, optional): Initial value for the width slider. Defaults to 5.
@@ -1009,7 +1007,7 @@ 

Source code for sed.core.processor

     ):
         """2. Step of the distortion correction workflow: Define feature points in
         momentum space. They can be either manually selected using a GUI tool, be
-        provided as list of feature points, or auto-generated using a
+        ptovided as list of feature points, or auto-generated using a
         feature-detection algorithm.
 
         Args:
@@ -1061,7 +1059,7 @@ 

Source code for sed.core.processor

         **kwds,
     ):
         """3. Step of the distortion correction workflow: Generate the correction
-        function restoring the symmetry in the image using a splinewarp algorithm.
+        function restoring the symmetry in the image using a splinewarp algortihm.
 
         Args:
             use_center (bool, optional): Option to use the position of the
@@ -1150,7 +1148,7 @@ 

Source code for sed.core.processor

 [docs]
     def pose_adjustment(
         self,
-        transformations: Dict[str, Any] = None,
+        transformations: dict[str, Any] = None,
         apply: bool = False,
         use_correction: bool = True,
         reset: bool = True,
@@ -1163,8 +1161,8 @@ 

Source code for sed.core.processor

         the image.
 
         Args:
-            transformations (dict, optional): Dictionary with transformations.
-                Defaults to self.transformations or config["momentum"]["transformations"].
+            transformations (dict[str, Any], optional): Dictionary with transformations.
+                Defaults to self.transformations or config["momentum"]["transformtions"].
             apply (bool, optional): Option to directly apply the provided
                 transformations. Defaults to False.
             use_correction (bool, option): Whether to use the spline warp correction
@@ -1183,7 +1181,7 @@ 

Source code for sed.core.processor

         if verbose is None:
             verbose = self.verbose
 
-        # Generate homography as default if no distortion correction has been applied
+        # Generate homomorphy as default if no distortion correction has been applied
         if self.mc.slice_corrected is None:
             if self.mc.slice is None:
                 self.mc.slice = np.zeros(self._config["momentum"]["bins"][0:2])
@@ -1318,11 +1316,11 @@ 

Source code for sed.core.processor

 [docs]
     def calibrate_momentum_axes(
         self,
-        point_a: Union[np.ndarray, List[int]] = None,
-        point_b: Union[np.ndarray, List[int]] = None,
+        point_a: np.ndarray | list[int] = None,
+        point_b: np.ndarray | list[int] = None,
         k_distance: float = None,
-        k_coord_a: Union[np.ndarray, List[float]] = None,
-        k_coord_b: Union[np.ndarray, List[float]] = np.array([0.0, 0.0]),
+        k_coord_a: np.ndarray | list[float] = None,
+        k_coord_b: np.ndarray | list[float] = np.array([0.0, 0.0]),
         equiscale: bool = True,
         apply=False,
     ):
@@ -1333,18 +1331,18 @@ 

Source code for sed.core.processor

         the points.
 
         Args:
-            point_a (Union[np.ndarray, List[int]]): Pixel coordinates of the first
+            point_a (np.ndarray | list[int], optional): Pixel coordinates of the first
                 point used for momentum calibration.
-            point_b (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
+            point_b (np.ndarray | list[int], optional): Pixel coordinates of the
                 second point used for momentum calibration.
                 Defaults to config["momentum"]["center_pixel"].
             k_distance (float, optional): Momentum distance between point a and b.
-                Needs to be provided if no specific k-coordinates for the two points
+                Needs to be provided if no specific k-koordinates for the two points
                 are given. Defaults to None.
-            k_coord_a (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_a (np.ndarray | list[float], optional): Momentum coordinate
                 of the first point used for calibration. Used if equiscale is False.
                 Defaults to None.
-            k_coord_b (Union[np.ndarray, List[float]], optional): Momentum coordinate
+            k_coord_b (np.ndarray | list[float], optional): Momentum coordinate
                 of the second point used for calibration. Defaults to [0.0, 0.0].
             equiscale (bool, optional): Option to apply different scales to kx and ky.
                 If True, the distance between points a and b, and the absolute
@@ -1481,11 +1479,11 @@ 

Source code for sed.core.processor

         self,
         correction_type: str = None,
         amplitude: float = None,
-        center: Tuple[float, float] = None,
+        center: tuple[float, float] = None,
         apply=False,
         **kwds,
     ):
-        """1. step of the energy correction workflow: Opens an interactive plot to
+        """1. step of the energy crrection workflow: Opens an interactive plot to
         adjust the parameters for the TOF/energy correction. Also pre-bins the data if
         they are not present yet.
 
@@ -1501,7 +1499,7 @@ 

Source code for sed.core.processor

                 Defaults to config["energy"]["correction_type"].
             amplitude (float, optional): Amplitude of the correction.
                 Defaults to config["energy"]["correction"]["amplitude"].
-            center (Tuple[float, float], optional): Center X/Y coordinates for the
+            center (tuple[float, float], optional): Center X/Y coordinates for the
                 correction. Defaults to config["energy"]["correction"]["center"].
             apply (bool, optional): Option to directly apply the provided or default
                 correction parameters. Defaults to False.
@@ -1570,7 +1568,7 @@ 

Source code for sed.core.processor

         verbose: bool = None,
         **kwds,
     ):
-        """2. step of the energy correction workflow: Apply the energy correction
+        """2. step of the energy correction workflow: Apply the enery correction
         parameters stored in the class to the dataframe.
 
         Args:
@@ -1628,11 +1626,11 @@ 

Source code for sed.core.processor

 [docs]
     def load_bias_series(
         self,
-        binned_data: Union[xr.DataArray, Tuple[np.ndarray, np.ndarray, np.ndarray]] = None,
-        data_files: List[str] = None,
-        axes: List[str] = None,
-        bins: List = None,
-        ranges: Sequence[Tuple[float, float]] = None,
+        binned_data: xr.DataArray | tuple[np.ndarray, np.ndarray, np.ndarray] = None,
+        data_files: list[str] = None,
+        axes: list[str] = None,
+        bins: list = None,
+        ranges: Sequence[tuple[float, float]] = None,
         biases: np.ndarray = None,
         bias_key: str = None,
         normalize: bool = None,
@@ -1643,16 +1641,16 @@ 

Source code for sed.core.processor

         single-event files, or load binned bias/TOF traces.
 
         Args:
-            binned_data (Union[xr.DataArray, Tuple[np.ndarray, np.ndarray, np.ndarray]], optional):
+            binned_data (xr.DataArray | tuple[np.ndarray, np.ndarray, np.ndarray], optional):
                 Binned data If provided as DataArray, Needs to contain dimensions
                 config["dataframe"]["tof_column"] and config["dataframe"]["bias_column"]. If
                 provided as tuple, needs to contain elements tof, biases, traces.
-            data_files (List[str], optional): list of file paths to bin
-            axes (List[str], optional): bin axes.
+            data_files (list[str], optional): list of file paths to bin
+            axes (list[str], optional): bin axes.
                 Defaults to config["dataframe"]["tof_column"].
-            bins (List, optional): number of bins.
+            bins (list, optional): number of bins.
                 Defaults to config["energy"]["bins"].
-            ranges (Sequence[Tuple[float, float]], optional): bin ranges.
+            ranges (Sequence[tuple[float, float]], optional): bin ranges.
                 Defaults to config["energy"]["ranges"].
             biases (np.ndarray, optional): Bias voltages used. If missing, bias
                 voltages are extracted from the data files.
@@ -1693,7 +1691,7 @@ 

Source code for sed.core.processor

 
         elif data_files is not None:
             self.ec.bin_data(
-                data_files=cast(List[str], self.cpy(data_files)),
+                data_files=cast(list[str], self.cpy(data_files)),
                 axes=axes,
                 bins=bins,
                 ranges=ranges,
@@ -1724,7 +1722,7 @@ 

Source code for sed.core.processor

 [docs]
     def find_bias_peaks(
         self,
-        ranges: Union[List[Tuple], Tuple],
+        ranges: list[tuple] | tuple,
         ref_id: int = 0,
         infer_others: bool = True,
         mode: str = "replace",
@@ -1740,7 +1738,7 @@ 

Source code for sed.core.processor

         Alternatively, a list of ranges for all traces can be provided.
 
         Args:
-            ranges (Union[List[Tuple], Tuple]): Tuple of TOF values indicating a range.
+            ranges (list[tuple] | tuple): Tuple of TOF values indicating a range.
                 Alternatively, a list of ranges for all traces can be given.
             ref_id (int, optional): The id of the trace the range refers to.
                 Defaults to 0.
@@ -1751,7 +1749,7 @@ 

Source code for sed.core.processor

             radius (int, optional): Radius parameter for fast_dtw.
                 Defaults to config["energy"]["fastdtw_radius"].
             peak_window (int, optional): Peak_window parameter for the peak detection
-                algorithm. amount of points that have to have to behave monotonously
+                algorthm. amount of points that have to have to behave monotoneously
                 around a peak. Defaults to config["energy"]["peak_window"].
             apply (bool, optional): Option to directly apply the provided parameters.
                 Defaults to False.
@@ -2000,10 +1998,10 @@ 

Source code for sed.core.processor

     def add_energy_offset(
         self,
         constant: float = None,
-        columns: Union[str, Sequence[str]] = None,
-        weights: Union[float, Sequence[float]] = None,
-        reductions: Union[str, Sequence[str]] = None,
-        preserve_mean: Union[bool, Sequence[bool]] = None,
+        columns: str | Sequence[str] = None,
+        weights: float | Sequence[float] = None,
+        reductions: str | Sequence[str] = None,
+        preserve_mean: bool | Sequence[bool] = None,
         preview: bool = False,
         verbose: bool = None,
     ) -> None:
@@ -2011,15 +2009,16 @@ 

Source code for sed.core.processor

 
         Args:
             constant (float, optional): The constant to shift the energy axis by.
-            columns (Union[str, Sequence[str]]): Name of the column(s) to apply the shift from.
-            weights (Union[float, Sequence[float]]): weights to apply to the columns.
+            columns (str | Sequence[str], optional): Name of the column(s) to apply the shift from.
+            weights (float | Sequence[float], optional): weights to apply to the columns.
                 Can also be used to flip the sign (e.g. -1). Defaults to 1.
-            preserve_mean (bool): Whether to subtract the mean of the column before applying the
-                shift. Defaults to False.
-            reductions (str): The reduction to apply to the column. Should be an available method
-                of dask.dataframe.Series. For example "mean". In this case the function is applied
-                to the column to generate a single value for the whole dataset. If None, the shift
-                is applied per-dataframe-row. Defaults to None. Currently only "mean" is supported.
+            reductions (str | Sequence[str], optional): The reduction to apply to the column.
+                Should be an available method of dask.dataframe.Series. For example "mean". In this
+                case the function is applied to the column to generate a single value for the whole
+                dataset. If None, the shift is applied per-dataframe-row. Defaults to None.
+                Currently only "mean" is supported.
+            preserve_mean (bool | Sequence[bool], optional): Whether to subtract the mean of the
+                column before applying the shift. Defaults to False.
             preview (bool, optional): Option to preview the first elements of the data frame.
                 Defaults to False.
             verbose (bool, optional): Option to print out diagnostic information.
@@ -2229,7 +2228,7 @@ 

Source code for sed.core.processor

 [docs]
     def calibrate_delay_axis(
         self,
-        delay_range: Tuple[float, float] = None,
+        delay_range: tuple[float, float] = None,
         datafile: str = None,
         preview: bool = False,
         verbose: bool = None,
@@ -2239,7 +2238,7 @@ 

Source code for sed.core.processor

         them from a file.
 
         Args:
-            delay_range (Tuple[float, float], optional): The scanned delay range in
+            delay_range (tuple[float, float], optional): The scanned delay range in
                 picoseconds. Defaults to None.
             datafile (str, optional): The file from which to read the delay ranges.
                 Defaults to None.
@@ -2351,10 +2350,10 @@ 

Source code for sed.core.processor

         self,
         constant: float = None,
         flip_delay_axis: bool = None,
-        columns: Union[str, Sequence[str]] = None,
-        weights: Union[float, Sequence[float]] = 1.0,
-        reductions: Union[str, Sequence[str]] = None,
-        preserve_mean: Union[bool, Sequence[bool]] = False,
+        columns: str | Sequence[str] = None,
+        weights: float | Sequence[float] = 1.0,
+        reductions: str | Sequence[str] = None,
+        preserve_mean: bool | Sequence[bool] = False,
         preview: bool = False,
         verbose: bool = None,
     ) -> None:
@@ -2363,15 +2362,16 @@ 

Source code for sed.core.processor

         Args:
             constant (float, optional): The constant to shift the delay axis by.
             flip_delay_axis (bool, optional): Option to reverse the direction of the delay axis.
-            columns (Union[str, Sequence[str]]): Name of the column(s) to apply the shift from.
-            weights (Union[float, Sequence[float]]): weights to apply to the columns.
+            columns (str | Sequence[str], optional): Name of the column(s) to apply the shift from.
+            weights (float | Sequence[float], optional): weights to apply to the columns.
                 Can also be used to flip the sign (e.g. -1). Defaults to 1.
-            preserve_mean (bool): Whether to subtract the mean of the column before applying the
-                shift. Defaults to False.
-            reductions (str): The reduction to apply to the column. Should be an available method
-                of dask.dataframe.Series. For example "mean". In this case the function is applied
-                to the column to generate a single value for the whole dataset. If None, the shift
-                is applied per-dataframe-row. Defaults to None. Currently only "mean" is supported.
+            reductions (str | Sequence[str], optional): The reduction to apply to the column.
+                Should be an available method of dask.dataframe.Series. For example "mean". In this
+                case the function is applied to the column to generate a single value for the whole
+                dataset. If None, the shift is applied per-dataframe-row. Defaults to None.
+                Currently only "mean" is supported.
+            preserve_mean (bool | Sequence[bool], optional): Whether to subtract the mean of the
+                column before applying the shift. Defaults to False.
             preview (bool, optional): Option to preview the first elements of the data frame.
                 Defaults to False.
             verbose (bool, optional): Option to print out diagnostic information.
@@ -2498,16 +2498,16 @@ 

Source code for sed.core.processor

 [docs]
     def add_jitter(
         self,
-        cols: List[str] = None,
-        amps: Union[float, Sequence[float]] = None,
+        cols: list[str] = None,
+        amps: float | Sequence[float] = None,
         **kwds,
     ):
         """Add jitter to the selected dataframe columns.
 
         Args:
-            cols (List[str], optional): The columns onto which to apply jitter.
+            cols (list[str], optional): The colums onto which to apply jitter.
                 Defaults to config["dataframe"]["jitter_cols"].
-            amps (Union[float, Sequence[float]], optional): Amplitude scalings for the
+            amps (float | Sequence[float], optional): Amplitude scalings for the
                 jittering noise. If one number is given, the same is used for all axes.
                 For uniform noise (default) it will cover the interval [-amp, +amp].
                 Defaults to config["dataframe"]["jitter_amps"].
@@ -2613,7 +2613,7 @@ 

Source code for sed.core.processor

                     time_stamp_column=time_stamp_column,
                     **kwds,
                 )
-        metadata: List[Any] = []
+        metadata: list[Any] = []
         metadata.append(dest_column)
         metadata.append(time_stamps)
         metadata.append(data)
@@ -2624,22 +2624,22 @@ 

Source code for sed.core.processor

 [docs]
     def pre_binning(
         self,
-        df_partitions: Union[int, Sequence[int]] = 100,
-        axes: List[str] = None,
-        bins: List[int] = None,
-        ranges: Sequence[Tuple[float, float]] = None,
+        df_partitions: int | Sequence[int] = 100,
+        axes: list[str] = None,
+        bins: list[int] = None,
+        ranges: Sequence[tuple[float, float]] = None,
         **kwds,
     ) -> xr.DataArray:
         """Function to do an initial binning of the dataframe loaded to the class.
 
         Args:
-            df_partitions (Union[int, Sequence[int]], optional): Number of dataframe partitions to
+            df_partitions (int | Sequence[int], optional): Number of dataframe partitions to
                 use for the initial binning. Defaults to 100.
-            axes (List[str], optional): Axes to bin.
+            axes (list[str], optional): Axes to bin.
                 Defaults to config["momentum"]["axes"].
-            bins (List[int], optional): Bin numbers to use for binning.
+            bins (list[int], optional): Bin numbers to use for binning.
                 Defaults to config["momentum"]["bins"].
-            ranges (List[Tuple], optional): Ranges to use for binning.
+            ranges (Sequence[tuple[float, float]], optional): Ranges to use for binning.
                 Defaults to config["momentum"]["ranges"].
             **kwds: Keyword argument passed to ``compute``.
 
@@ -2659,7 +2659,7 @@ 

Source code for sed.core.processor

             ranges_[2] = np.asarray(ranges_[2]) / 2 ** (
                 self._config["dataframe"]["tof_binning"] - 1
             )
-            ranges = [cast(Tuple[float, float], tuple(v)) for v in ranges_]
+            ranges = [cast(tuple[float, float], tuple(v)) for v in ranges_]
 
         assert self._dataframe is not None, "dataframe needs to be loaded first!"
 
@@ -2676,23 +2676,16 @@ 

Source code for sed.core.processor

 [docs]
     def compute(
         self,
-        bins: Union[
-            int,
-            dict,
-            tuple,
-            List[int],
-            List[np.ndarray],
-            List[tuple],
-        ] = 100,
-        axes: Union[str, Sequence[str]] = None,
-        ranges: Sequence[Tuple[float, float]] = None,
-        normalize_to_acquisition_time: Union[bool, str] = False,
+        bins: int | dict | tuple | list[int] | list[np.ndarray] | list[tuple] = 100,
+        axes: str | Sequence[str] = None,
+        ranges: Sequence[tuple[float, float]] = None,
+        normalize_to_acquisition_time: bool | str = False,
         **kwds,
     ) -> xr.DataArray:
         """Compute the histogram along the given dimensions.
 
         Args:
-            bins (int, dict, tuple, List[int], List[np.ndarray], List[tuple], optional):
+            bins (int | dict | tuple | list[int] | list[np.ndarray] | list[tuple], optional):
                 Definition of the bins. Can be any of the following cases:
 
                 - an integer describing the number of bins in on all dimensions
@@ -2703,13 +2696,13 @@ 

Source code for sed.core.processor

                 - a dictionary made of the axes as keys and any of the above as values.
 
                 This takes priority over the axes and range arguments. Defaults to 100.
-            axes (Union[str, Sequence[str]], optional): The names of the axes (columns)
+            axes (str | Sequence[str], optional): The names of the axes (columns)
                 on which to calculate the histogram. The order will be the order of the
                 dimensions in the resulting array. Defaults to None.
-            ranges (Sequence[Tuple[float, float]], optional): list of tuples containing
+            ranges (Sequence[tuple[float, float]], optional): list of tuples containing
                 the start and end point of the binning range. Defaults to None.
-            normalize_to_acquisition_time (Union[bool, str]): Option to normalize the
-                result to the acquisition time. If a "slow" axis was scanned, providing
+            normalize_to_acquisition_time (bool | str): Option to normalize the
+                result to the acquistion time. If a "slow" axis was scanned, providing
                 the name of the scanned axis will compute and apply the corresponding
                 normalization histogram. Defaults to False.
             **kwds: Keyword arguments:
@@ -2759,7 +2752,7 @@ 

Source code for sed.core.processor

             "threadpool_API",
             self._config["binning"]["threadpool_API"],
         )
-        df_partitions: Union[int, Sequence[int]] = kwds.pop("df_partitions", None)
+        df_partitions: int | Sequence[int] = kwds.pop("df_partitions", None)
         if isinstance(df_partitions, int):
             df_partitions = list(range(0, min(df_partitions, self._dataframe.npartitions)))
         if df_partitions is not None:
@@ -2884,7 +2877,7 @@ 

Source code for sed.core.processor

         if axis not in self._binned.coords:
             raise ValueError(f"Axis '{axis}' not found in binned data!")
 
-        df_partitions: Union[int, Sequence[int]] = kwds.pop("df_partitions", None)
+        df_partitions: int | Sequence[int] = kwds.pop("df_partitions", None)
         if isinstance(df_partitions, int):
             df_partitions = list(range(0, min(df_partitions, self._dataframe.npartitions)))
         if use_time_stamps or self._timed_dataframe is None:
@@ -2929,7 +2922,7 @@ 

Source code for sed.core.processor

         ncol: int = 2,
         bins: Sequence[int] = None,
         axes: Sequence[str] = None,
-        ranges: Sequence[Tuple[float, float]] = None,
+        ranges: Sequence[tuple[float, float]] = None,
         backend: str = "bokeh",
         legend: bool = True,
         histkwds: dict = None,
@@ -2942,12 +2935,12 @@ 

Source code for sed.core.processor

         Args:
             dfpid (int): Number of the data frame partition to look at.
             ncol (int, optional): Number of columns in the plot grid. Defaults to 2.
-            bins (Sequence[int], optional): Number of bins to use for the specified
+            bins (Sequence[int], optional): Number of bins to use for the speicified
                 axes. Defaults to config["histogram"]["bins"].
             axes (Sequence[str], optional): Names of the axes to display.
                 Defaults to config["histogram"]["axes"].
-            ranges (Sequence[Tuple[float, float]], optional): Value ranges of all
-                specified axes. Defaults to config["histogram"]["ranges"].
+            ranges (Sequence[tuple[float, float]], optional): Value ranges of all
+                specified axes. Defaults toconfig["histogram"]["ranges"].
             backend (str, optional): Backend of the plotting library
                 ('matplotlib' or 'bokeh'). Defaults to "bokeh".
             legend (bool, optional): Option to include a legend in the histogram plots.
@@ -3032,7 +3025,7 @@ 

Source code for sed.core.processor

                 - "*.h5", "*.hdf5": Saves an HDF5 file.
                 - "*.nxs", "*.nexus": Saves a NeXus file.
 
-            **kwds: Keyword arguments, which are passed to the writer functions:
+            **kwds: Keyword argumens, which are passed to the writer functions:
                 For TIFF writing:
 
                 - **alias_dict**: Dictionary of dimension aliases to use.
@@ -3043,9 +3036,9 @@ 

Source code for sed.core.processor

 
                 For NeXus:
 
-                - **reader**: Name of the pynxtools reader to use.
+                - **reader**: Name of the nexustools reader to use.
                   Defaults to config["nexus"]["reader"]
-                - **definition**: NeXus application definition to use for saving.
+                - **definiton**: NeXus application definition to use for saving.
                   Must be supported by the used ``reader``. Defaults to
                   config["nexus"]["definition"]
                 - **input_files**: A list of input files to pass to the reader.
diff --git a/sed/latest/_modules/sed/dataset/dataset.html b/sed/latest/_modules/sed/dataset/dataset.html
index 5f4d38d..b3c4d33 100644
--- a/sed/latest/_modules/sed/dataset/dataset.html
+++ b/sed/latest/_modules/sed/dataset/dataset.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.dataset.dataset — SED 0.1.10a6 documentation
+    sed.dataset.dataset — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/_modules/sed/diagnostics.html b/sed/latest/_modules/sed/diagnostics.html index f9dbbaa..5f7dfa5 100644 --- a/sed/latest/_modules/sed/diagnostics.html +++ b/sed/latest/_modules/sed/diagnostics.html @@ -7,7 +7,7 @@ - sed.diagnostics — SED 0.1.10a6 documentation + sed.diagnostics — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,8 +449,9 @@

Source code for sed.diagnostics

 """This module contains diagnostic output functions for the sed module
 
 """
-from typing import Sequence
-from typing import Tuple
+from __future__ import annotations
+
+from collections.abc import Sequence
 
 import bokeh.plotting as pbk
 import matplotlib.pyplot as plt
@@ -507,7 +508,7 @@ 

Source code for sed.diagnostics

     ncol: int,
     rvs: Sequence,
     rvbins: Sequence,
-    rvranges: Sequence[Tuple[float, float]],
+    rvranges: Sequence[tuple[float, float]],
     backend: str = "bokeh",
     legend: bool = True,
     histkwds: dict = None,
@@ -521,7 +522,7 @@ 

Source code for sed.diagnostics

         ncol (int): Number of columns in the plot grid.
         rvs (Sequence): List of names for the random variables (rvs).
         rvbins (Sequence): Bin values for all random variables.
-        rvranges (Sequence[Tuple[float, float]]): Value ranges of all random variables.
+        rvranges (Sequence[tuple[float, float]]): Value ranges of all random variables.
         backend (str, optional): Backend for making the plot ('matplotlib' or 'bokeh').
             Defaults to "bokeh".
         legend (bool, optional): Option to include a legend in each histogram plot.
diff --git a/sed/latest/_modules/sed/io/hdf5.html b/sed/latest/_modules/sed/io/hdf5.html
index 2ea1d2a..29c0429 100644
--- a/sed/latest/_modules/sed/io/hdf5.html
+++ b/sed/latest/_modules/sed/io/hdf5.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.io.hdf5 — SED 0.1.10a6 documentation
+    sed.io.hdf5 — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,7 +449,7 @@

Source code for sed.io.hdf5

 """This module contains hdf5 file input/output functions for the sed.io module
 
 """
-from typing import Union
+from __future__ import annotations
 
 import h5py
 import numpy as np
@@ -496,17 +496,17 @@ 

Source code for sed.io.hdf5

                 print(f"Saved {key} as string.")
             except BaseException as exc:
                 raise ValueError(
-                    f"Unknown error occurred, cannot save {item} of type {type(item)}.",
+                    f"Unknown error occured, cannot save {item} of type {type(item)}.",
                 ) from exc
 
 
 def recursive_parse_metadata(
-    node: Union[h5py.Group, h5py.Dataset],
+    node: h5py.Group | h5py.Dataset,
 ) -> dict:
     """Recurses through an hdf5 file, and parse it into a dictionary.
 
     Args:
-        node (Union[h5py.Group, h5py.Dataset]): hdf5 group or dataset to parse into
+        node (h5py.Group | h5py.Dataset): hdf5 group or dataset to parse into
             dictionary.
 
     Returns:
@@ -594,7 +594,7 @@ 

Source code for sed.io.hdf5

         ValueError: Raised if data or axes are not found in the file.
 
     Returns:
-        xr.DataArray: output xarray data
+        xr.DataArray: output xarra data
     """
     with h5py.File(faddr, mode) as h5_file:
         # Reading data array
diff --git a/sed/latest/_modules/sed/io/nexus.html b/sed/latest/_modules/sed/io/nexus.html
index 04c486f..748cd67 100644
--- a/sed/latest/_modules/sed/io/nexus.html
+++ b/sed/latest/_modules/sed/io/nexus.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.io.nexus — SED 0.1.10a6 documentation
+    sed.io.nexus — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -447,12 +447,13 @@

Source code for sed.io.nexus

 """This module contains NuXus file input/output functions for the sed.io module.
-The conversion is based on the pynxtools from the FAIRmat NFDI consortium.
+The conversion is based on the nexusutils from the FAIRmat NFDI consortium.
 For details, see https://github.com/nomad-coe/nomad-parser-nexus
 
 """
-from typing import Sequence
-from typing import Union
+from __future__ import annotations
+
+from collections.abc import Sequence
 
 import xarray as xr
 from pynxtools.dataconverter.convert import convert
@@ -465,7 +466,7 @@ 

Source code for sed.io.nexus

     faddr: str,
     reader: str,
     definition: str,
-    input_files: Union[str, Sequence[str]],
+    input_files: str | Sequence[str],
     **kwds,
 ):
     """Saves the x-array provided to a NeXus file at faddr, using the provided reader,
@@ -476,10 +477,9 @@ 

Source code for sed.io.nexus

             data._attrs["metadata"].
         faddr (str): The file path to save to.
         reader (str): The name of the NeXus reader to use.
-        definition (str): The NeXus definition to use.
-        input_files (Union[str, Sequence[str]]): The file path or paths to the additional files to
-            use.
-        **kwds: Keyword arguments for ``pynxtools.dataconverter.convert.convert()``.
+        definition (str): The NeXus definiton to use.
+        input_files (str | Sequence[str]): The file path or paths to the additional files to use.
+        **kwds: Keyword arguments for ``nexusutils.dataconverter.convert``.
     """
 
     if isinstance(input_files, str):
diff --git a/sed/latest/_modules/sed/io/tiff.html b/sed/latest/_modules/sed/io/tiff.html
index cdd8d44..b0f7d32 100644
--- a/sed/latest/_modules/sed/io/tiff.html
+++ b/sed/latest/_modules/sed/io/tiff.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.io.tiff — SED 0.1.10a6 documentation
+    sed.io.tiff — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,9 +449,10 @@

Source code for sed.io.tiff

 """This module contains tiff file input/output functions for the sed.io module
 
 """
+from __future__ import annotations
+
+from collections.abc import Sequence
 from pathlib import Path
-from typing import Sequence
-from typing import Union
 
 import numpy as np
 import tifffile
@@ -487,20 +488,20 @@ 

Source code for sed.io.tiff

 
[docs] def to_tiff( - data: Union[xr.DataArray, np.ndarray], - faddr: Union[Path, str], + data: xr.DataArray | np.ndarray, + faddr: Path | str, alias_dict: dict = None, ): """Save an array as a .tiff stack compatible with ImageJ Args: - data (Union[xr.DataArray, np.ndarray]): data to be saved. If a np.ndarray, + data (xr.DataArray | np.ndarray): data to be saved. If a np.ndarray, the order is retained. If it is an xarray.DataArray, the order is inferred from axis_dict instead. ImageJ likes tiff files with axis order as TZCYXS. Therefore, best axis order in input should be: Time, Energy, posY, posX. The channels 'C' and 'S' are automatically added and can be ignored. - faddr (Union[Path, str]): full path and name of file to save. + faddr Path | str): full path and name of file to save. alias_dict (dict, optional): name pairs for correct axis ordering. Keys should be any of T,Z,C,Y,X,S. The Corresponding value should be a dimension of the xarray or the dimension number if a numpy array. This is used to sort the @@ -513,7 +514,7 @@

Source code for sed.io.tiff

         NotImplementedError: if data is not 2,3 or 4 dimensional
         TypeError: if data is not a np.ndarray or an xarray.DataArray
     """
-    out: Union[np.ndarray, xr.DataArray] = None
+    out: np.ndarray | xr.DataArray = None
     if isinstance(data, np.ndarray):
         # TODO: add sorting by dictionary keys
         dim_expansions = {2: [0, 1, 2, 5], 3: [0, 2, 5], 4: [2, 5]}
@@ -625,7 +626,7 @@ 

Source code for sed.io.tiff

 
[docs] def load_tiff( - faddr: Union[str, Path], + faddr: str | Path, coords: dict = None, dims: Sequence = None, attrs: dict = None, @@ -637,7 +638,7 @@

Source code for sed.io.tiff

     only as np.ndarray.
 
     Args:
-        faddr (Union[str, Path]): Path to file to load.
+        faddr (str | Path): Path to file to load.
         coords (dict, optional): The axes describing the data, following the tiff
             stack order. Defaults to None.
         dims (Sequence, optional): the order of the coordinates provided, considering
diff --git a/sed/latest/_modules/sed/loader/base/loader.html b/sed/latest/_modules/sed/loader/base/loader.html
index 0ad4d30..06e2d9c 100644
--- a/sed/latest/_modules/sed/loader/base/loader.html
+++ b/sed/latest/_modules/sed/loader/base/loader.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.base.loader — SED 0.1.10a6 documentation
+    sed.loader.base.loader — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -446,17 +446,16 @@

Source code for sed.loader.base.loader

-"""The abstract class off of which to implement loaders."""
+"""The abstract class off of which to implement loaders.
+"""
+from __future__ import annotations
+
 import os
 from abc import ABC
 from abc import abstractmethod
+from collections.abc import Sequence
 from copy import deepcopy
 from typing import Any
-from typing import Dict
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import dask.dataframe as ddf
 import numpy as np
@@ -482,7 +481,7 @@ 

Source code for sed.loader.base.loader

 
     __name__ = "BaseLoader"
 
-    supported_file_types: List[str] = []
+    supported_file_types: list[str] = []
 
     def __init__(
         self,
@@ -490,35 +489,35 @@ 

Source code for sed.loader.base.loader

     ):
         self._config = config if config is not None else {}
 
-        self.files: List[str] = []
-        self.runs: List[str] = []
-        self.metadata: Dict[Any, Any] = {}
+        self.files: list[str] = []
+        self.runs: list[str] = []
+        self.metadata: dict[Any, Any] = {}
 
 
[docs] @abstractmethod def read_dataframe( self, - files: Union[str, Sequence[str]] = None, - folders: Union[str, Sequence[str]] = None, - runs: Union[str, Sequence[str]] = None, + files: str | Sequence[str] = None, + folders: str | Sequence[str] = None, + runs: str | Sequence[str] = None, ftype: str = None, metadata: dict = None, collect_metadata: bool = False, **kwds, - ) -> Tuple[ddf.DataFrame, ddf.DataFrame, dict]: + ) -> tuple[ddf.DataFrame, ddf.DataFrame, dict]: """Reads data from given files, folder, or runs and returns a dask dataframe and corresponding metadata. Args: - files (Union[str, Sequence[str]], optional): File path(s) to process. + files (str | Sequence[str], optional): File path(s) to process. Defaults to None. - folders (Union[str, Sequence[str]], optional): Path to folder(s) where files + folders (str | Sequence[str], optional): Path to folder(s) where files are stored. Path has priority such that if it's specified, the specified files will be ignored. Defaults to None. - runs (Union[str, Sequence[str]], optional): Run identifier(s). Corresponding + runs (str | Sequence[str], optional): Run identifier(s). Corresponding files will be located in the location provided by ``folders``. Takes - precedence over ``files`` and ``folders``. Defaults to None. + precendence over ``files`` and ``folders``. Defaults to None. ftype (str, optional): File type to read ('parquet', 'json', 'csv', etc). If a folder path is given, all files with the specified extension are read into the dataframe in the reading order. Defaults to None. @@ -529,7 +528,7 @@

Source code for sed.loader.base.loader

             **kwds: keyword arguments. See description in respective loader.
 
         Returns:
-            Tuple[ddf.DataFrame, dict]: Dask dataframe, timed dataframe and metadata
+            tuple[ddf.DataFrame, ddf.DataFrame, dict]: Dask dataframe, timed dataframe and metadata
             read from specified files.
         """
 
@@ -584,21 +583,21 @@ 

Source code for sed.loader.base.loader

     def get_files_from_run_id(
         self,
         run_id: str,
-        folders: Union[str, Sequence[str]] = None,
+        folders: str | Sequence[str] = None,
         extension: str = None,
         **kwds,
-    ) -> List[str]:
+    ) -> list[str]:
         """Locate the files for a given run identifier.
 
         Args:
             run_id (str): The run identifier to locate.
-            folders (Union[str, Sequence[str]], optional): The directory(ies) where the raw
+            folders (str | Sequence[str], optional): The directory(ies) where the raw
                 data is located. Defaults to None.
             extension (str, optional): The file extension. Defaults to None.
             kwds: Keyword arguments
 
         Return:
-            List[str]: List of files for the given run.
+            list[str]: List of files for the given run.
         """
         raise NotImplementedError
@@ -610,7 +609,7 @@

Source code for sed.loader.base.loader

         self,
         fids: Sequence[int] = None,
         **kwds,
-    ) -> Tuple[np.ndarray, np.ndarray]:
+    ) -> tuple[np.ndarray, np.ndarray]:
         """Create count rate data for the files specified in ``fids``.
 
         Args:
@@ -619,7 +618,7 @@ 

Source code for sed.loader.base.loader

             kwds: Keyword arguments
 
         Return:
-            Tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
+            tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
             into the scan.
         """
         return None, None
diff --git a/sed/latest/_modules/sed/loader/flash/loader.html b/sed/latest/_modules/sed/loader/flash/loader.html index e3c9b21..191fd5d 100644 --- a/sed/latest/_modules/sed/loader/flash/loader.html +++ b/sed/latest/_modules/sed/loader/flash/loader.html @@ -7,7 +7,7 @@ - sed.loader.flash.loader — SED 0.1.10a6 documentation + sed.loader.flash.loader — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -453,15 +453,14 @@

Source code for sed.loader.flash.loader

 The dataframe is a amalgamation of all h5 files for a combination of runs, where the NaNs are
 automatically forward filled across different files.
 This can then be saved as a parquet for out-of-sed processing and reread back to access other
-sed functionality.
+sed funtionality.
 """
+from __future__ import annotations
+
 import time
+from collections.abc import Sequence
 from functools import reduce
 from pathlib import Path
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import dask.dataframe as dd
 import h5py
@@ -499,16 +498,16 @@ 

Source code for sed.loader.flash.loader

         self.multi_index = ["trainId", "pulseId", "electronId"]
         self.index_per_electron: MultiIndex = None
         self.index_per_pulse: MultiIndex = None
-        self.failed_files_error: List[str] = []
+        self.failed_files_error: list[str] = []
 
 
[docs] - def initialize_paths(self) -> Tuple[List[Path], Path]: + def initialize_paths(self) -> tuple[list[Path], Path]: """ Initializes the paths based on the configuration. Returns: - Tuple[List[Path], Path]: A tuple containing a list of raw data directories + tuple[list[Path], Path]: A tuple containing a list of raw data directories paths and the parquet data directory path. Raises: @@ -569,23 +568,23 @@

Source code for sed.loader.flash.loader

     def get_files_from_run_id(
         self,
         run_id: str,
-        folders: Union[str, Sequence[str]] = None,
+        folders: str | Sequence[str] = None,
         extension: str = "h5",
         **kwds,
-    ) -> List[str]:
+    ) -> list[str]:
         """Returns a list of filenames for a given run located in the specified directory
         for the specified data acquisition (daq).
 
         Args:
             run_id (str): The run identifier to locate.
-            folders (Union[str, Sequence[str]], optional): The directory(ies) where the raw
+            folders (str | Sequence[str], optional): The directory(ies) where the raw
                 data is located. Defaults to config["core"]["base_folder"].
             extension (str, optional): The file extension. Defaults to "h5".
             kwds: Keyword arguments:
                 - daq (str): The data acquisition identifier.
 
         Returns:
-            List[str]: A list of path strings representing the collected file names.
+            list[str]: A list of path strings representing the collected file names.
 
         Raises:
             FileNotFoundError: If no files are found for the given run in the directory.
@@ -604,7 +603,7 @@ 

Source code for sed.loader.flash.loader

         # Generate the file patterns to search for in the directory
         file_pattern = f"{stream_name_prefixes[daq]}_run{run_id}_*." + extension
 
-        files: List[Path] = []
+        files: list[Path] = []
         # Use pathlib to search for matching files in each directory
         for folder in folders:
             files.extend(
@@ -625,7 +624,7 @@ 

Source code for sed.loader.flash.loader

 
 
     @property
-    def available_channels(self) -> List:
+    def available_channels(self) -> list:
         """Returns the channel names that are available for use,
         excluding pulseId, defined by the json file"""
         available_channels = list(self._config["dataframe"]["channels"].keys())
@@ -634,17 +633,17 @@ 

Source code for sed.loader.flash.loader

 
 
[docs] - def get_channels(self, formats: Union[str, List[str]] = "", index: bool = False) -> List[str]: + def get_channels(self, formats: str | list[str] = "", index: bool = False) -> list[str]: """ Returns a list of channels associated with the specified format(s). Args: - formats (Union[str, List[str]]): The desired format(s) - ('per_pulse', 'per_electron', 'per_train', 'all'). + formats (str | list[str]): The desired format(s) + ('per_pulse', 'per_electron', 'per_train', 'all'). index (bool): If True, includes channels from the multi_index. Returns: - List[str]: A list of channels with the specified format(s). + list[str]: A list of channels with the specified format(s). """ # If 'formats' is a single string, convert it to a list for uniform processing. if isinstance(formats, str): @@ -781,7 +780,7 @@

Source code for sed.loader.flash.loader

         self,
         h5_file: h5py.File,
         channel: str,
-    ) -> Tuple[Series, np.ndarray]:
+    ) -> tuple[Series, np.ndarray]:
         """
         Returns a numpy array for a given channel name for a given file.
 
@@ -790,7 +789,7 @@ 

Source code for sed.loader.flash.loader

             channel (str): The name of the channel.
 
         Returns:
-            Tuple[Series, np.ndarray]: A tuple containing the train ID Series and the numpy array
+            tuple[Series, np.ndarray]: A tuple containing the train ID Series and the numpy array
             for the channel's data.
 
         """
@@ -878,15 +877,15 @@ 

Source code for sed.loader.flash.loader

             DataFrame: The pandas DataFrame for the channel's data.
 
         Notes:
-            - For auxiliary channels, the macrobunch resolved data is repeated 499 times to be
-              compared to electron resolved data for each auxiliary channel. The data is then
+            - For auxillary channels, the macrobunch resolved data is repeated 499 times to be
+              compared to electron resolved data for each auxillary channel. The data is then
               converted to a multicolumn DataFrame.
             - For all other pulse resolved channels, the macrobunch resolved data is exploded
               to a DataFrame and the MultiIndex is set.
 
         """
 
-        # Special case for auxiliary channels
+        # Special case for auxillary channels
         if channel == "dldAux":
             # Checks the channel dictionary for correct slices and creates a multicolumn DataFrame
             data_frames = (
@@ -949,7 +948,7 @@ 

Source code for sed.loader.flash.loader

         self,
         h5_file: h5py.File,
         channel: str,
-    ) -> Union[Series, DataFrame]:
+    ) -> Series | DataFrame:
         """
         Returns a pandas DataFrame for a given channel name from a given file.
 
@@ -962,7 +961,7 @@ 

Source code for sed.loader.flash.loader

             channel (str): The name of the channel.
 
         Returns:
-            Union[Series, DataFrame]: A pandas Series or DataFrame representing the channel's data.
+            Series | DataFrame: A pandas Series or DataFrame representing the channel's data.
 
         Raises:
             ValueError: If the channel has an undefined format.
@@ -1105,7 +1104,7 @@ 

Source code for sed.loader.flash.loader

 
 
[docs] - def create_buffer_file(self, h5_path: Path, parquet_path: Path) -> Union[bool, Exception]: + def create_buffer_file(self, h5_path: Path, parquet_path: Path) -> bool | Exception: """ Converts an HDF5 file to Parquet format to create a buffer file. @@ -1116,6 +1115,9 @@

Source code for sed.loader.flash.loader

             h5_path (Path): Path to the input HDF5 file.
             parquet_path (Path): Path to the output Parquet file.
 
+        Returns:
+            bool | Exception: Collected exceptions, if any.
+
         Raises:
             ValueError: If an error occurs during the conversion process.
 
@@ -1139,7 +1141,7 @@ 

Source code for sed.loader.flash.loader

         data_parquet_dir: Path,
         detector: str,
         force_recreate: bool,
-    ) -> Tuple[List[Path], List, List]:
+    ) -> tuple[list[Path], list, list]:
         """
         Handles the conversion of buffer files (h5 to parquet) and returns the filenames.
 
@@ -1149,7 +1151,7 @@ 

Source code for sed.loader.flash.loader

             force_recreate (bool): Forces recreation of buffer files
 
         Returns:
-            Tuple[List[Path], List, List]: Three lists, one for
+            tuple[list[Path], list, list]: Three lists, one for
             parquet file paths, one for metadata and one for schema.
 
         Raises:
@@ -1247,7 +1249,7 @@ 

Source code for sed.loader.flash.loader

         load_parquet: bool = False,
         save_parquet: bool = False,
         force_recreate: bool = False,
-    ) -> Tuple[dd.DataFrame, dd.DataFrame]:
+    ) -> tuple[dd.DataFrame, dd.DataFrame]:
         """
         Handles loading and saving of parquet files based on the provided parameters.
 
@@ -1262,7 +1264,7 @@ 

Source code for sed.loader.flash.loader

             save_parquet (bool, optional): Saves the entire dataframe into a parquet.
             force_recreate (bool, optional): Forces recreation of buffer file.
         Returns:
-            tuple: A tuple containing two dataframes:
+            tuple[dd.DataFrame, dd.DataFrame]: A tuple containing two dataframes:
             - dataframe_electron: Dataframe containing the loaded/augmented electron data.
             - dataframe_pulse: Dataframe containing the loaded/augmented timed data.
 
@@ -1304,7 +1306,7 @@ 

Source code for sed.loader.flash.loader

             dataframe = dd.read_parquet(filenames, calculate_divisions=True)
 
             # Channels to fill NaN values
-            channels: List[str] = self.get_channels(["per_pulse", "per_train"])
+            channels: list[str] = self.get_channels(["per_pulse", "per_train"])
 
             overlap = min(file.num_rows for file in metadata)
 
@@ -1373,31 +1375,32 @@ 

Source code for sed.loader.flash.loader

 [docs]
     def read_dataframe(
         self,
-        files: Union[str, Sequence[str]] = None,
-        folders: Union[str, Sequence[str]] = None,
-        runs: Union[str, Sequence[str]] = None,
+        files: str | Sequence[str] = None,
+        folders: str | Sequence[str] = None,
+        runs: str | Sequence[str] = None,
         ftype: str = "h5",
         metadata: dict = None,
         collect_metadata: bool = False,
         **kwds,
-    ) -> Tuple[dd.DataFrame, dd.DataFrame, dict]:
+    ) -> tuple[dd.DataFrame, dd.DataFrame, dict]:
         """
         Read express data from the DAQ, generating a parquet in between.
 
         Args:
-            files (Union[str, Sequence[str]], optional): File path(s) to process. Defaults to None.
-            folders (Union[str, Sequence[str]], optional): Path to folder(s) where files are stored
+            files (str | Sequence[str], optional): File path(s) to process. Defaults to None.
+            folders (str | Sequence[str], optional): Path to folder(s) where files are stored
                 Path has priority such that if it's specified, the specified files will be ignored.
                 Defaults to None.
-            runs (Union[str, Sequence[str]], optional): Run identifier(s). Corresponding files will
-                be located in the location provided by ``folders``. Takes precedence over
+            runs (str | Sequence[str], optional): Run identifier(s). Corresponding files will
+                be located in the location provided by ``folders``. Takes precendence over
                 ``files`` and ``folders``. Defaults to None.
             ftype (str, optional): The file extension type. Defaults to "h5".
             metadata (dict, optional): Additional metadata. Defaults to None.
             collect_metadata (bool, optional): Whether to collect metadata. Defaults to False.
 
         Returns:
-            Tuple[dd.DataFrame, dict]: A tuple containing the concatenated DataFrame and metadata.
+            tuple[dd.DataFrame, dd.DataFrame, dict]: A tuple containing the concatenated DataFrame
+            and metadata.
 
         Raises:
             ValueError: If neither 'runs' nor 'files'/'data_raw_dir' is provided.
diff --git a/sed/latest/_modules/sed/loader/flash/metadata.html b/sed/latest/_modules/sed/loader/flash/metadata.html
index 90b2854..1de53e3 100644
--- a/sed/latest/_modules/sed/loader/flash/metadata.html
+++ b/sed/latest/_modules/sed/loader/flash/metadata.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.flash.metadata — SED 0.1.10a6 documentation
+    sed.loader.flash.metadata — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -450,10 +450,9 @@

Source code for sed.loader.flash.metadata

 The module provides a MetadataRetriever class for retrieving metadata
 from a Scicat Instance based on beamtime and run IDs.
 """
+from __future__ import annotations
 
 import warnings
-from typing import Dict
-from typing import Optional
 
 import requests
 
@@ -466,7 +465,7 @@ 

Source code for sed.loader.flash.metadata

     on beamtime and run IDs.
     """
 
-    def __init__(self, metadata_config: Dict, scicat_token: str = None) -> None:
+    def __init__(self, metadata_config: dict, scicat_token: str = None) -> None:
         """
         Initializes the MetadataRetriever class.
 
@@ -495,15 +494,15 @@ 

Source code for sed.loader.flash.metadata

         self,
         beamtime_id: str,
         runs: list,
-        metadata: Optional[Dict] = None,
-    ) -> Dict:
+        metadata: dict = None,
+    ) -> dict:
         """
         Retrieves metadata for a given beamtime ID and list of runs.
 
         Args:
             beamtime_id (str): The ID of the beamtime.
             runs (list): A list of run IDs.
-            metadata (Dict, optional): The existing metadata dictionary.
+            metadata (dict, optional): The existing metadata dictionary.
             Defaults to None.
 
         Returns:
@@ -528,7 +527,7 @@ 

Source code for sed.loader.flash.metadata

         return metadata
- def _get_metadata_per_run(self, pid: str) -> Dict: + def _get_metadata_per_run(self, pid: str) -> dict: """ Retrieves metadata for a specific run based on the PID. @@ -536,13 +535,13 @@

Source code for sed.loader.flash.metadata

             pid (str): The PID of the run.
 
         Returns:
-            Dict: The retrieved metadata.
+            dict: The retrieved metadata.
 
         Raises:
             Exception: If the request to retrieve metadata fails.
         """
         headers2 = dict(self.headers)
-        headers2["Authorization"] = "Bearer {}".format(self.token)
+        headers2["Authorization"] = f"Bearer {self.token}"
 
         try:
             dataset_response = requests.get(
@@ -554,7 +553,9 @@ 

Source code for sed.loader.flash.metadata

             # Check if response is an empty object because wrong url for older implementation
             if not dataset_response.content:
                 dataset_response = requests.get(
-                    self._create_old_dataset_url(pid), headers=headers2, timeout=10
+                    self._create_old_dataset_url(pid),
+                    headers=headers2,
+                    timeout=10,
                 )
             # If the dataset request is successful, return the retrieved metadata
             # as a JSON object
@@ -566,12 +567,16 @@ 

Source code for sed.loader.flash.metadata

 
     def _create_old_dataset_url(self, pid: str) -> str:
         return "{burl}/{url}/%2F{npid}".format(
-            burl=self.url, url="Datasets", npid=self._reformat_pid(pid)
+            burl=self.url,
+            url="Datasets",
+            npid=self._reformat_pid(pid),
         )
 
     def _create_new_dataset_url(self, pid: str) -> str:
         return "{burl}/{url}/{npid}".format(
-            burl=self.url, url="Datasets", npid=self._reformat_pid(pid)
+            burl=self.url,
+            url="Datasets",
+            npid=self._reformat_pid(pid),
         )
 
     def _reformat_pid(self, pid: str) -> str:
diff --git a/sed/latest/_modules/sed/loader/generic/loader.html b/sed/latest/_modules/sed/loader/generic/loader.html
index 3e65594..e3bf9f1 100644
--- a/sed/latest/_modules/sed/loader/generic/loader.html
+++ b/sed/latest/_modules/sed/loader/generic/loader.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.generic.loader — SED 0.1.10a6 documentation
+    sed.loader.generic.loader — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -451,10 +451,9 @@

Source code for sed.loader.generic.loader

 Mostly ported from https://github.com/mpes-kit/mpes.
 @author: L. Rettig
 """
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
+from __future__ import annotations
+
+from collections.abc import Sequence
 
 import dask.dataframe as ddf
 import numpy as np
@@ -481,25 +480,25 @@ 

Source code for sed.loader.generic.loader

 [docs]
     def read_dataframe(
         self,
-        files: Union[str, Sequence[str]] = None,
-        folders: Union[str, Sequence[str]] = None,
-        runs: Union[str, Sequence[str]] = None,
+        files: str | Sequence[str] = None,
+        folders: str | Sequence[str] = None,
+        runs: str | Sequence[str] = None,
         ftype: str = "parquet",
         metadata: dict = None,
         collect_metadata: bool = False,
         **kwds,
-    ) -> Tuple[ddf.DataFrame, ddf.DataFrame, dict]:
+    ) -> tuple[ddf.DataFrame, ddf.DataFrame, dict]:
         """Read stored files from a folder into a dataframe.
 
         Args:
-            files (Union[str, Sequence[str]], optional): File path(s) to process.
+            files (str | Sequence[str], optional): File path(s) to process.
                 Defaults to None.
-            folders (Union[str, Sequence[str]], optional): Path to folder(s) where files
+            folders (str | Sequence[str], optional): Path to folder(s) where files
                 are stored. Path has priority such that if it's specified, the specified
                 files will be ignored. Defaults to None.
-            runs (Union[str, Sequence[str]], optional): Run identifier(s). Corresponding
+            runs (str | Sequence[str], optional): Run identifier(s). Corresponding
                 files will be located in the location provided by ``folders``. Takes
-                precedence over ``files`` and ``folders``. Defaults to None.
+                precendence over ``files`` and ``folders``. Defaults to None.
             ftype (str, optional): File type to read ('parquet', 'json', 'csv', etc).
                 If a folder path is given, all files with the specified extension are
                 read into the dataframe in the reading order. Defaults to "parquet".
@@ -512,11 +511,11 @@ 

Source code for sed.loader.generic.loader

 
         Raises:
             ValueError: Raised if neither files nor folder provided.
-            FileNotFoundError: Raised if the files or folder cannot be found.
+            FileNotFoundError: Raised if the fileds or folder cannot be found.
             ValueError: Raised if the file type is not supported.
 
         Returns:
-            Tuple[ddf.DataFrame, dict]: Dask dataframe, timed dataframe and metadata
+            tuple[ddf.DataFrame, ddf.DataFrame, dict]: Dask dataframe, timed dataframe and metadata
             read from specified files.
         """
         # pylint: disable=duplicate-code
@@ -557,21 +556,21 @@ 

Source code for sed.loader.generic.loader

     def get_files_from_run_id(
         self,
         run_id: str,  # noqa: ARG002
-        folders: Union[str, Sequence[str]] = None,  # noqa: ARG002
+        folders: str | Sequence[str] = None,  # noqa: ARG002
         extension: str = None,  # noqa: ARG002
         **kwds,  # noqa: ARG002
-    ) -> List[str]:
+    ) -> list[str]:
         """Locate the files for a given run identifier.
 
         Args:
             run_id (str): The run identifier to locate.
-            folders (Union[str, Sequence[str]], optional): The directory(ies) where the raw
+            folders (str | Sequence[str], optional): The directory(ies) where the raw
                 data is located. Defaults to None.
             extension (str, optional): The file extension. Defaults to "h5".
             kwds: Keyword arguments
 
         Return:
-            str: Path to the location of run data.
+            list[str]: Path to the location of run data.
         """
         raise NotImplementedError
@@ -582,7 +581,7 @@

Source code for sed.loader.generic.loader

         self,
         fids: Sequence[int] = None,  # noqa: ARG002
         **kwds,  # noqa: ARG002
-    ) -> Tuple[np.ndarray, np.ndarray]:
+    ) -> tuple[np.ndarray, np.ndarray]:
         """Create count rate data for the files specified in ``fids``.
 
         Args:
@@ -591,7 +590,7 @@ 

Source code for sed.loader.generic.loader

             kwds: Keyword arguments
 
         Return:
-            Tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
+            tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
             into the scan.
         """
         # TODO
diff --git a/sed/latest/_modules/sed/loader/loader_interface.html b/sed/latest/_modules/sed/loader/loader_interface.html
index d768938..da3d4b4 100644
--- a/sed/latest/_modules/sed/loader/loader_interface.html
+++ b/sed/latest/_modules/sed/loader/loader_interface.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.loader_interface — SED 0.1.10a6 documentation
+    sed.loader.loader_interface — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,10 +448,11 @@

Source code for sed.loader.loader_interface

 """Interface to select a specified loader
 """
+from __future__ import annotations
+
 import glob
 import importlib.util
 import os
-from typing import List
 
 from sed.loader.base.loader import BaseLoader
 
@@ -496,11 +497,11 @@ 

Source code for sed.loader.loader_interface

 
 
[docs] -def get_names_of_all_loaders() -> List[str]: +def get_names_of_all_loaders() -> list[str]: """Helper function to populate a list of all available loaders. Returns: - List[str]: List of all detected loader names. + list[str]: List of all detected loader names. """ path_prefix = f"{os.path.dirname(__file__)}{os.sep}" if os.path.dirname(__file__) else "" files = glob.glob(os.path.join(path_prefix, "*", "loader.py")) diff --git a/sed/latest/_modules/sed/loader/mirrorutil.html b/sed/latest/_modules/sed/loader/mirrorutil.html index f6f5d50..026edf1 100644 --- a/sed/latest/_modules/sed/loader/mirrorutil.html +++ b/sed/latest/_modules/sed/loader/mirrorutil.html @@ -7,7 +7,7 @@ - sed.loader.mirrorutil — SED 0.1.10a6 documentation + sed.loader.mirrorutil — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -121,7 +121,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -449,15 +449,16 @@

Source code for sed.loader.mirrorutil

 """
 module sed.loader.mirrorutil, code for transparently mirroring file system trees to a
 second (local) location. This is speeds up binning of data stored on network drives
-tremendously.
+tremendiously.
 Mostly ported from https://github.com/mpes-kit/mpes.
 @author: L. Rettig
 """
+from __future__ import annotations
+
 import errno
 import os
 import shutil
 from datetime import datetime
-from typing import List
 
 import dask as d
 from dask.diagnostics import ProgressBar
@@ -469,7 +470,7 @@ 

Source code for sed.loader.mirrorutil

     """File collecting and sorting class.
 
     Args:
-        source (str): Source path for the copy tool.
+        source (str): Dource path for the copy tool.
         dest (str): Destination path for the copy tool.
     """
 
@@ -720,7 +721,7 @@ 

Source code for sed.loader.mirrorutil

             proceed = input()
         if proceed == "y":
             shutil.rmtree(oldest_scan)
-            print("Removed successfully!")
+            print("Removed sucessfully!")
         else:
             print("Aborted.")
@@ -753,7 +754,7 @@

Source code for sed.loader.mirrorutil

         ValueError: Raised if sdir not inside of source
 
     Returns:
-        str: The mapped target directory inside dest
+        str: The mapped targed directory inside dest
     """
 
     if not os.path.isdir(sdir):
@@ -782,7 +783,7 @@ 

Source code for sed.loader.mirrorutil

 # replacement for os.makedirs, which is independent of umask
 
[docs] -def mymakedirs(path: str, mode: int, gid: int) -> List[str]: +def mymakedirs(path: str, mode: int, gid: int) -> list[str]: """Creates a directory path iteratively from its root Args: @@ -791,7 +792,7 @@

Source code for sed.loader.mirrorutil

         gid (int): Group id of created directories
 
     Returns:
-        str: Path of created directories
+        list[str]: Path of created directories
     """
 
     if not path or os.path.exists(path):
diff --git a/sed/latest/_modules/sed/loader/mpes/loader.html b/sed/latest/_modules/sed/loader/mpes/loader.html
index 2a13436..9e8f846 100644
--- a/sed/latest/_modules/sed/loader/mpes/loader.html
+++ b/sed/latest/_modules/sed/loader/mpes/loader.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.mpes.loader — SED 0.1.10a6 documentation
+    sed.loader.mpes.loader — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -451,15 +451,13 @@

Source code for sed.loader.mpes.loader

 Mostly ported from https://github.com/mpes-kit/mpes.
 @author: L. Rettig
 """
+from __future__ import annotations
+
 import datetime
 import glob
 import json
 import os
-from typing import Dict
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
+from collections.abc import Sequence
 from urllib.error import HTTPError
 from urllib.error import URLError
 from urllib.request import urlopen
@@ -480,7 +478,7 @@ 

Source code for sed.loader.mpes.loader

 def hdf5_to_dataframe(
     files: Sequence[str],
     group_names: Sequence[str] = None,
-    alias_dict: Dict[str, str] = None,
+    alias_dict: dict[str, str] = None,
     time_stamps: bool = False,
     time_stamp_alias: str = "timeStamps",
     ms_markers_group: str = "msMarkers",
@@ -494,7 +492,7 @@ 

Source code for sed.loader.mpes.loader

         files (List[str]): A list of the file paths to load.
         group_names (List[str], optional): hdf5 group names to load. Defaults to load
             all groups containing "Stream"
-        alias_dict (Dict[str, str], optional): Dictionary of aliases for the dataframe
+        alias_dict (dict[str, str], optional): Dictionary of aliases for the dataframe
             columns. Keys are the hdf5 groupnames, and values the aliases. If an alias
             is not found, its group name is used. Defaults to read the attribute
             "Name" from each group.
@@ -521,7 +519,7 @@ 

Source code for sed.loader.mpes.loader

     if group_names == []:
         group_names, alias_dict = get_groups_and_aliases(
             h5file=test_proc,
-            search_pattern="Stream",
+            seach_pattern="Stream",
         )
 
     column_names = [alias_dict.get(group, group) for group in group_names]
@@ -563,7 +561,7 @@ 

Source code for sed.loader.mpes.loader

 def hdf5_to_timed_dataframe(
     files: Sequence[str],
     group_names: Sequence[str] = None,
-    alias_dict: Dict[str, str] = None,
+    alias_dict: dict[str, str] = None,
     time_stamps: bool = False,
     time_stamp_alias: str = "timeStamps",
     ms_markers_group: str = "msMarkers",
@@ -578,7 +576,7 @@ 

Source code for sed.loader.mpes.loader

         files (List[str]): A list of the file paths to load.
         group_names (List[str], optional): hdf5 group names to load. Defaults to load
             all groups containing "Stream"
-        alias_dict (Dict[str, str], optional): Dictionary of aliases for the dataframe
+        alias_dict (dict[str, str], optional): Dictionary of aliases for the dataframe
             columns. Keys are the hdf5 groupnames, and values the aliases. If an alias
             is not found, its group name is used. Defaults to read the attribute
             "Name" from each group.
@@ -605,7 +603,7 @@ 

Source code for sed.loader.mpes.loader

     if group_names == []:
         group_names, alias_dict = get_groups_and_aliases(
             h5file=test_proc,
-            search_pattern="Stream",
+            seach_pattern="Stream",
         )
 
     column_names = [alias_dict.get(group, group) for group in group_names]
@@ -646,31 +644,31 @@ 

Source code for sed.loader.mpes.loader

 [docs]
 def get_groups_and_aliases(
     h5file: h5py.File,
-    search_pattern: str = None,
+    seach_pattern: str = None,
     alias_key: str = "Name",
-) -> Tuple[List[str], Dict[str, str]]:
+) -> tuple[list[str], dict[str, str]]:
     """Read groups and aliases from a provided hdf5 file handle
 
     Args:
         h5file (h5py.File):
             The hdf5 file handle
-        search_pattern (str, optional):
+        seach_pattern (str, optional):
             Search pattern to select groups. Defaults to include all groups.
         alias_key (str, optional):
             Attribute key where aliases are stored. Defaults to "Name".
 
     Returns:
-        Tuple[List[str], Dict[str, str]]:
+        tuple[list[str], dict[str, str]]:
             The list of groupnames and the alias dictionary parsed from the file
     """
     # get group names:
     group_names = list(h5file)
 
     # Filter the group names
-    if search_pattern is None:
+    if seach_pattern is None:
         filtered_group_names = group_names
     else:
-        filtered_group_names = [name for name in group_names if search_pattern in name]
+        filtered_group_names = [name for name in group_names if seach_pattern in name]
 
     alias_dict = {}
     for name in filtered_group_names:
@@ -794,7 +792,7 @@ 

Source code for sed.loader.mpes.loader

             timestamp of a file. Defaults to "FirstEventTimeStamp".
 
     Returns:
-        np.ndarray: the array of the values at evenly spaced timing obtained from
+        np.ndarray: the array of the values at evently spaced timing obtained from
         the ms_markers.
     """
 
@@ -842,7 +840,7 @@ 

Source code for sed.loader.mpes.loader

 
[docs] def get_attribute(h5group: h5py.Group, attribute: str) -> str: - """Reads, decodes and returns an attribute from an hdf5 group + """Reads, decodes and returns an attrubute from an hdf5 group Args: h5group (h5py.Group): @@ -869,7 +867,7 @@

Source code for sed.loader.mpes.loader

 def get_count_rate(
     h5file: h5py.File,
     ms_markers_group: str = "msMarkers",
-) -> Tuple[np.ndarray, np.ndarray]:
+) -> tuple[np.ndarray, np.ndarray]:
     """Create count rate in the file from the msMarker column.
 
     Args:
@@ -878,7 +876,7 @@ 

Source code for sed.loader.mpes.loader

             are stored. Defaults to "msMarkers".
 
     Returns:
-        Tuple[np.ndarray, np.ndarray]: The count rate in Hz and the seconds into the
+        tuple[np.ndarray, np.ndarray]: The count rate in Hz and the seconds into the
         scan.
     """
     ms_markers = np.asarray(h5file[ms_markers_group])
@@ -905,7 +903,7 @@ 

Source code for sed.loader.mpes.loader

             are stored. Defaults to "msMarkers".
 
     Return:
-        float: The acquisition time of the file in seconds.
+        float: The acquision time of the file in seconds.
     """
     secs = h5file[ms_markers_group].len() / 1000
 
@@ -920,7 +918,7 @@ 

Source code for sed.loader.mpes.loader

     archiver_channel: str,
     ts_from: float,
     ts_to: float,
-) -> Tuple[np.ndarray, np.ndarray]:
+) -> tuple[np.ndarray, np.ndarray]:
     """Extract time stamps and corresponding data from and EPICS archiver instance
 
     Args:
@@ -930,7 +928,7 @@ 

Source code for sed.loader.mpes.loader

         ts_to (float): ending time stamp of the range of interest
 
     Returns:
-        Tuple[List, List]: The extracted time stamps and corresponding data
+        tuple[np.ndarray, np.ndarray]: The extracted time stamps and corresponding data
     """
     iso_from = datetime.datetime.utcfromtimestamp(ts_from).isoformat()
     iso_to = datetime.datetime.utcfromtimestamp(ts_to).isoformat()
@@ -974,27 +972,27 @@ 

Source code for sed.loader.mpes.loader

 [docs]
     def read_dataframe(
         self,
-        files: Union[str, Sequence[str]] = None,
-        folders: Union[str, Sequence[str]] = None,
-        runs: Union[str, Sequence[str]] = None,
+        files: str | Sequence[str] = None,
+        folders: str | Sequence[str] = None,
+        runs: str | Sequence[str] = None,
         ftype: str = "h5",
         metadata: dict = None,
         collect_metadata: bool = False,
         time_stamps: bool = False,
         **kwds,
-    ) -> Tuple[ddf.DataFrame, ddf.DataFrame, dict]:
+    ) -> tuple[ddf.DataFrame, ddf.DataFrame, dict]:
         """Read stored hdf5 files from a list or from folder and returns a dask
         dataframe and corresponding metadata.
 
         Args:
-            files (Union[str, Sequence[str]], optional): File path(s) to process.
+            files (str | Sequence[str], optional): File path(s) to process.
                 Defaults to None.
-            folders (Union[str, Sequence[str]], optional): Path to folder(s) where files
+            folders (str | Sequence[str], optional): Path to folder(s) where files
                 are stored. Path has priority such that if it's specified, the specified
                 files will be ignored. Defaults to None.
-            runs (Union[str, Sequence[str]], optional): Run identifier(s). Corresponding
+            runs (str | Sequence[str], optional): Run identifier(s). Corresponding
                 files will be located in the location provided by ``folders``. Takes
-                precedence over ``files`` and ``folders``. Defaults to None.
+                precendence over ``files`` and ``folders``. Defaults to None.
             ftype (str, optional): File extension to use. If a folder path is given,
                 all files with the specified extension are read into the dataframe
                 in the reading order. Defaults to "h5".
@@ -1020,7 +1018,7 @@ 

Source code for sed.loader.mpes.loader

             FileNotFoundError: Raised if a file or folder is not found.
 
         Returns:
-            Tuple[ddf.DataFrame, ddf.DataFrame, dict]: Dask dataframe, timed Dask
+            tuple[ddf.DataFrame, ddf.DataFrame, dict]: Dask dataframe, timed Dask
             dataframe and metadata read from specified files.
         """
         # if runs is provided, try to locate the respective files relative to the provided folder.
@@ -1114,21 +1112,21 @@ 

Source code for sed.loader.mpes.loader

     def get_files_from_run_id(
         self,
         run_id: str,
-        folders: Union[str, Sequence[str]] = None,
+        folders: str | Sequence[str] = None,
         extension: str = "h5",
         **kwds,  # noqa: ARG002
-    ) -> List[str]:
+    ) -> list[str]:
         """Locate the files for a given run identifier.
 
         Args:
             run_id (str): The run identifier to locate.
-            folders (Union[str, Sequence[str]], optional): The directory(ies) where the raw
+            folders (str | Sequence[str], optional): The directory(ies) where the raw
                 data is located. Defaults to config["core"]["base_folder"]
             extension (str, optional): The file extension. Defaults to "h5".
             kwds: Keyword arguments
 
         Return:
-            List[str]: List of file path strings to the location of run data.
+            list[str]: List of file path strings to the location of run data.
         """
         if folders is None:
             folders = self._config["core"]["paths"]["data_raw_dir"]
@@ -1136,7 +1134,7 @@ 

Source code for sed.loader.mpes.loader

         if isinstance(folders, str):
             folders = [folders]
 
-        files: List[str] = []
+        files: list[str] = []
         for folder in folders:
             run_files = natsorted(
                 glob.glob(
@@ -1158,11 +1156,11 @@ 

Source code for sed.loader.mpes.loader

 
 
[docs] - def get_start_and_end_time(self) -> Tuple[float, float]: + def get_start_and_end_time(self) -> tuple[float, float]: """Extract the start and end time stamps from the loaded files Returns: - Tuple[float, float]: A tuple containing the start and end time stamps + tuple[float, float]: A tuple containing the start and end time stamps """ h5file = h5py.File(self.files[0]) timestamps = hdf5_to_array( @@ -1322,13 +1320,13 @@

Source code for sed.loader.mpes.loader

                 print("Contrast aperture size not found.")
 
         # Storing the lens modes corresponding to lens voltages.
-        # Use lens voltages present in first lens_mode entry.
+        # Use lens volages present in first lens_mode entry.
         lens_list = self._config["metadata"]["lens_mode_config"][
             next(iter(self._config["metadata"]["lens_mode_config"]))
         ].keys()
 
         lens_volts = np.array(
-            [metadata["file"].get(f"KTOF:Lens:{lens}:V", np.NaN) for lens in lens_list],
+            [metadata["file"].get(f"KTOF:Lens:{lens}:V", np.nan) for lens in lens_list],
         )
         for mode, value in self._config["metadata"]["lens_mode_config"].items():
             lens_volts_config = np.array([value[k] for k in lens_list])
@@ -1375,7 +1373,7 @@ 

Source code for sed.loader.mpes.loader

         self,
         fids: Sequence[int] = None,
         **kwds,
-    ) -> Tuple[np.ndarray, np.ndarray]:
+    ) -> tuple[np.ndarray, np.ndarray]:
         """Create count rate from the msMarker column for the files specified in
         ``fids``.
 
@@ -1387,7 +1385,7 @@ 

Source code for sed.loader.mpes.loader

                 - **ms_markers_group**: Name of the hdf5 group containing the ms-markers
 
         Returns:
-            Tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
+            tuple[np.ndarray, np.ndarray]: Arrays containing countrate and seconds
             into the scan.
         """
         if fids is None:
diff --git a/sed/latest/_modules/sed/loader/sxp/loader.html b/sed/latest/_modules/sed/loader/sxp/loader.html
index f6be18c..b83e7ba 100644
--- a/sed/latest/_modules/sed/loader/sxp/loader.html
+++ b/sed/latest/_modules/sed/loader/sxp/loader.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.sxp.loader — SED 0.1.10a6 documentation
+    sed.loader.sxp.loader — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -454,16 +454,15 @@

Source code for sed.loader.sxp.loader

 The dataframe is a amalgamation of all h5 files for a combination of runs, where the NaNs are
 automatically forward filled across different files.
 This can then be saved as a parquet for out-of-sed processing and reread back to access other
-sed functionality.
+sed funtionality.
 Most of the structure is identical to the FLASH loader.
 """
+from __future__ import annotations
+
 import time
+from collections.abc import Sequence
 from functools import reduce
 from pathlib import Path
-from typing import List
-from typing import Sequence
-from typing import Tuple
-from typing import Union
 
 import dask.dataframe as dd
 import h5py
@@ -500,17 +499,17 @@ 

Source code for sed.loader.sxp.loader

         self.multi_index = ["trainId", "pulseId", "electronId"]
         self.index_per_electron: MultiIndex = None
         self.index_per_pulse: MultiIndex = None
-        self.failed_files_error: List[str] = []
-        self.array_indices: List[List[slice]] = None
+        self.failed_files_error: list[str] = []
+        self.array_indices: list[list[slice]] = None
 
 
[docs] - def initialize_paths(self) -> Tuple[List[Path], Path]: + def initialize_paths(self) -> tuple[list[Path], Path]: """ Initializes the paths based on the configuration. Returns: - Tuple[List[Path], Path]: A tuple containing a list of raw data directories + tuple[List[Path], Path]: A tuple containing a list of raw data directories paths and the parquet data directory path. Raises: @@ -562,23 +561,23 @@

Source code for sed.loader.sxp.loader

     def get_files_from_run_id(
         self,
         run_id: str,
-        folders: Union[str, Sequence[str]] = None,
+        folders: str | Sequence[str] = None,
         extension: str = "h5",
         **kwds,
-    ) -> List[str]:
+    ) -> list[str]:
         """Returns a list of filenames for a given run located in the specified directory
         for the specified data acquisition (daq).
 
         Args:
             run_id (str): The run identifier to locate.
-            folders (Union[str, Sequence[str]], optional): The directory(ies) where the raw
+            folders (str | Sequence[str], optional): The directory(ies) where the raw
                 data is located. Defaults to config["core"]["base_folder"].
             extension (str, optional): The file extension. Defaults to "h5".
             kwds: Keyword arguments:
                 - daq (str): The data acquisition identifier.
 
         Returns:
-            List[str]: A list of path strings representing the collected file names.
+            list[str]: A list of path strings representing the collected file names.
 
         Raises:
             FileNotFoundError: If no files are found for the given run in the directory.
@@ -602,7 +601,7 @@ 

Source code for sed.loader.sxp.loader

         # Generate the file patterns to search for in the directory
         file_pattern = f"**/{stream_name_prefixes[daq]}{run_id}{stream_name_postfix}*." + extension
 
-        files: List[Path] = []
+        files: list[Path] = []
         # Use pathlib to search for matching files in each directory
         for folder in folders:
             files.extend(
@@ -623,7 +622,7 @@ 

Source code for sed.loader.sxp.loader

 
 
     @property
-    def available_channels(self) -> List:
+    def available_channels(self) -> list:
         """Returns the channel names that are available for use,
         excluding pulseId, defined by the json file"""
         available_channels = list(self._config["dataframe"]["channels"].keys())
@@ -633,13 +632,13 @@ 

Source code for sed.loader.sxp.loader

 
 
[docs] - def get_channels(self, formats: Union[str, List[str]] = "", index: bool = False) -> List[str]: + def get_channels(self, formats: str | list[str] = "", index: bool = False) -> list[str]: """ Returns a list of channels associated with the specified format(s). Args: - formats (Union[str, List[str]]): The desired format(s) - ('per_pulse', 'per_electron', 'per_train', 'all'). + formats (str | list[str]): The desired format(s) + ('per_pulse', 'per_electron', 'per_train', 'all'). index (bool): If True, includes channels from the multi_index. Returns: @@ -812,7 +811,7 @@

Source code for sed.loader.sxp.loader

         self,
         h5_file: h5py.File,
         channel: str,
-    ) -> Tuple[Series, np.ndarray]:
+    ) -> tuple[Series, np.ndarray]:
         """
         Returns a numpy array for a given channel name for a given file.
 
@@ -821,7 +820,7 @@ 

Source code for sed.loader.sxp.loader

             channel (str): The name of the channel.
 
         Returns:
-            Tuple[Series, np.ndarray]: A tuple containing the train ID Series and the numpy array
+            tuple[Series, np.ndarray]: A tuple containing the train ID Series and the numpy array
             for the channel's data.
 
         """
@@ -880,7 +879,7 @@ 

Source code for sed.loader.sxp.loader

         """
         if self.array_indices is None or len(self.array_indices) != np_array.shape[0]:
             raise RuntimeError(
-                "macrobunch_indices not set correctly, internal inconsistency detected.",
+                "macrobunch_indices not set correctly, internal inconstency detected.",
             )
         train_data = []
         for i, _ in enumerate(self.array_indices):
@@ -922,15 +921,15 @@ 

Source code for sed.loader.sxp.loader

             DataFrame: The pandas DataFrame for the channel's data.
 
         Notes:
-            - For auxiliary channels, the macrobunch resolved data is repeated 499 times to be
-              compared to electron resolved data for each auxiliary channel. The data is then
+            - For auxillary channels, the macrobunch resolved data is repeated 499 times to be
+              compared to electron resolved data for each auxillary channel. The data is then
               converted to a multicolumn DataFrame.
             - For all other pulse resolved channels, the macrobunch resolved data is exploded
               to a DataFrame and the MultiIndex is set.
 
         """
 
-        # Special case for auxiliary channels
+        # Special case for auxillary channels
         if channel == "dldAux":
             # Checks the channel dictionary for correct slices and creates a multicolumn DataFrame
             data_frames = (
@@ -993,7 +992,7 @@ 

Source code for sed.loader.sxp.loader

         self,
         h5_file: h5py.File,
         channel: str,
-    ) -> Union[Series, DataFrame]:
+    ) -> Series | DataFrame:
         """
         Returns a pandas DataFrame for a given channel name from a given file.
 
@@ -1006,7 +1005,7 @@ 

Source code for sed.loader.sxp.loader

             channel (str): The name of the channel.
 
         Returns:
-            Union[Series, DataFrame]: A pandas Series or DataFrame representing the channel's data.
+            Series | DataFrame: A pandas Series or DataFrame representing the channel's data.
 
         Raises:
             ValueError: If the channel has an undefined format.
@@ -1149,7 +1148,7 @@ 

Source code for sed.loader.sxp.loader

 
 
[docs] - def create_buffer_file(self, h5_path: Path, parquet_path: Path) -> Union[bool, Exception]: + def create_buffer_file(self, h5_path: Path, parquet_path: Path) -> bool | Exception: """ Converts an HDF5 file to Parquet format to create a buffer file. @@ -1160,6 +1159,9 @@

Source code for sed.loader.sxp.loader

             h5_path (Path): Path to the input HDF5 file.
             parquet_path (Path): Path to the output Parquet file.
 
+        Returns:
+            bool | Exception: Collected exceptions if any.
+
         Raises:
             ValueError: If an error occurs during the conversion process.
 
@@ -1183,7 +1185,7 @@ 

Source code for sed.loader.sxp.loader

         data_parquet_dir: Path,
         detector: str,
         force_recreate: bool,
-    ) -> Tuple[List[Path], List, List]:
+    ) -> tuple[list[Path], list, list]:
         """
         Handles the conversion of buffer files (h5 to parquet) and returns the filenames.
 
@@ -1193,7 +1195,7 @@ 

Source code for sed.loader.sxp.loader

             force_recreate (bool): Forces recreation of buffer files
 
         Returns:
-            Tuple[List[Path], List, List]: Three lists, one for
+            tuple[list[Path], list, list]: Three lists, one for
             parquet file paths, one for metadata and one for schema.
 
         Raises:
@@ -1293,7 +1295,7 @@ 

Source code for sed.loader.sxp.loader

         load_parquet: bool = False,
         save_parquet: bool = False,
         force_recreate: bool = False,
-    ) -> Tuple[dd.DataFrame, dd.DataFrame]:
+    ) -> tuple[dd.DataFrame, dd.DataFrame]:
         """
         Handles loading and saving of parquet files based on the provided parameters.
 
@@ -1308,7 +1310,7 @@ 

Source code for sed.loader.sxp.loader

             save_parquet (bool, optional): Saves the entire dataframe into a parquet.
             force_recreate (bool, optional): Forces recreation of buffer file.
         Returns:
-            tuple: A tuple containing two dataframes:
+            tuple[dd.DataFrame, dd.DataFrame]: A tuple containing two dataframes:
             - dataframe_electron: Dataframe containing the loaded/augmented electron data.
             - dataframe_pulse: Dataframe containing the loaded/augmented timed data.
 
@@ -1349,7 +1351,7 @@ 

Source code for sed.loader.sxp.loader

             dataframe = dd.read_parquet(filenames, calculate_divisions=True)
 
             # Channels to fill NaN values
-            channels: List[str] = self.get_channels(["per_pulse", "per_train"])
+            channels: list[str] = self.get_channels(["per_pulse", "per_train"])
 
             overlap = min(file.num_rows for file in metadata)
 
@@ -1417,31 +1419,32 @@ 

Source code for sed.loader.sxp.loader

 [docs]
     def read_dataframe(
         self,
-        files: Union[str, Sequence[str]] = None,
-        folders: Union[str, Sequence[str]] = None,
-        runs: Union[str, Sequence[str]] = None,
+        files: str | Sequence[str] = None,
+        folders: str | Sequence[str] = None,
+        runs: str | Sequence[str] = None,
         ftype: str = "h5",
         metadata: dict = None,
         collect_metadata: bool = False,
         **kwds,
-    ) -> Tuple[dd.DataFrame, dd.DataFrame, dict]:
+    ) -> tuple[dd.DataFrame, dd.DataFrame, dict]:
         """
         Read express data from the DAQ, generating a parquet in between.
 
         Args:
-            files (Union[str, Sequence[str]], optional): File path(s) to process. Defaults to None.
-            folders (Union[str, Sequence[str]], optional): Path to folder(s) where files are stored
+            files (str | Sequence[str], optional): File path(s) to process. Defaults to None.
+            folders (str | Sequence[str], optional): Path to folder(s) where files are stored
                 Path has priority such that if it's specified, the specified files will be ignored.
                 Defaults to None.
-            runs (Union[str, Sequence[str]], optional): Run identifier(s). Corresponding files will
-                be located in the location provided by ``folders``. Takes precedence over
+            runs (str | Sequence[str], optional): Run identifier(s). Corresponding files will
+                be located in the location provided by ``folders``. Takes precendence over
                 ``files`` and ``folders``. Defaults to None.
             ftype (str, optional): The file extension type. Defaults to "h5".
             metadata (dict, optional): Additional metadata. Defaults to None.
             collect_metadata (bool, optional): Whether to collect metadata. Defaults to False.
 
         Returns:
-            Tuple[dd.DataFrame, dict]: A tuple containing the concatenated DataFrame and metadata.
+            tuple[dd.DataFrame, dd.DataFrame, dict]: A tuple containing the concatenated DataFrame,
+            timed DataFrame, and metadata.
 
         Raises:
             ValueError: If neither 'runs' nor 'files'/'data_raw_dir' is provided.
diff --git a/sed/latest/_modules/sed/loader/utils.html b/sed/latest/_modules/sed/loader/utils.html
index 785f8bf..768cb0a 100644
--- a/sed/latest/_modules/sed/loader/utils.html
+++ b/sed/latest/_modules/sed/loader/utils.html
@@ -7,7 +7,7 @@
   
     
     
-    sed.loader.utils — SED 0.1.10a6 documentation
+    sed.loader.utils — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -448,11 +448,11 @@

Source code for sed.loader.utils

 """Utilities for loaders
 """
+from __future__ import annotations
+
+from collections.abc import Sequence
 from glob import glob
 from typing import cast
-from typing import List
-from typing import Sequence
-from typing import Union
 
 import dask.dataframe
 import numpy as np
@@ -471,7 +471,7 @@ 

Source code for sed.loader.utils

     f_end: int = None,
     f_step: int = 1,
     file_sorting: bool = True,
-) -> List[str]:
+) -> list[str]:
     """Collects and sorts files with specified extension from a given folder.
 
     Args:
@@ -487,13 +487,13 @@ 

Source code for sed.loader.utils

             Defaults to True.
 
     Returns:
-        List[str]: List of collected file names.
+        list[str]: List of collected file names.
     """
     try:
         files = glob(folder + "/*." + extension)
 
         if file_sorting:
-            files = cast(List[str], natsorted(files))
+            files = cast(list[str], natsorted(files))
 
         if f_start is not None and f_end is not None:
             files = files[slice(f_start, f_end, f_step)]
@@ -508,7 +508,7 @@ 

Source code for sed.loader.utils

 
 
[docs] -def parse_h5_keys(h5_file: File, prefix: str = "") -> List[str]: +def parse_h5_keys(h5_file: File, prefix: str = "") -> list[str]: """Helper method which parses the channels present in the h5 file Args: h5_file (h5py.File): The H5 file object. @@ -516,7 +516,7 @@

Source code for sed.loader.utils

         Defaults to an empty string.
 
     Returns:
-        List[str]: A list of channel names in the H5 file.
+        list[str]: A list of channel names in the H5 file.
 
     Raises:
         Exception: If an error occurs while parsing the keys.
@@ -603,19 +603,19 @@ 

Source code for sed.loader.utils

 
[docs] def split_dld_time_from_sector_id( - df: Union[pd.DataFrame, dask.dataframe.DataFrame], + df: pd.DataFrame | dask.dataframe.DataFrame, tof_column: str = None, sector_id_column: str = None, sector_id_reserved_bits: int = None, config: dict = None, -) -> Union[pd.DataFrame, dask.dataframe.DataFrame]: +) -> pd.DataFrame | dask.dataframe.DataFrame: """Converts the 8s time in steps to time in steps and sectorID. The 8s detector encodes the dldSectorID in the 3 least significant bits of the dldTimeSteps channel. Args: - df (Union[pd.DataFrame, dask.dataframe.DataFrame]): Dataframe to use. + df (pd.DataFrame | dask.dataframe.DataFrame): Dataframe to use. tof_column (str, optional): Name of the column containing the time-of-flight steps. Defaults to config["dataframe"]["tof_column"]. sector_id_column (str, optional): Name of the column containing the @@ -624,7 +624,7 @@

Source code for sed.loader.utils

         config (dict, optional): Configuration dictionary. Defaults to None.
 
     Returns:
-        Union[pd.DataFrame, dask.dataframe.DataFrame]: Dataframe with the new columns.
+        pd.DataFrame | dask.dataframe.DataFrame: Dataframe with the new columns.
     """
     if tof_column is None:
         if config is None:
diff --git a/sed/latest/_static/documentation_options.js b/sed/latest/_static/documentation_options.js
index df85b7e..073578e 100644
--- a/sed/latest/_static/documentation_options.js
+++ b/sed/latest/_static/documentation_options.js
@@ -1,5 +1,5 @@
 const DOCUMENTATION_OPTIONS = {
-    VERSION: '0.1.10a6',
+    VERSION: '0.1.10a5',
     LANGUAGE: 'en',
     COLLAPSE_INDEX: false,
     BUILDER: 'html',
diff --git a/sed/latest/genindex.html b/sed/latest/genindex.html
index 0189b47..2d5ea03 100644
--- a/sed/latest/genindex.html
+++ b/sed/latest/genindex.html
@@ -7,7 +7,7 @@
   
     
     
-    Index — SED 0.1.10a6 documentation
+    Index — SED 0.1.10a5 documentation
   
   
   
@@ -34,7 +34,7 @@
 
   
 
-    
+    
     
     
     
@@ -43,7 +43,7 @@
     
     
@@ -121,7 +121,7 @@
   
   
   
-    

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -697,7 +697,7 @@

D

diff --git a/sed/latest/misc/contributing.html b/sed/latest/misc/contributing.html index 8fe7d67..6c62640 100644 --- a/sed/latest/misc/contributing.html +++ b/sed/latest/misc/contributing.html @@ -8,7 +8,7 @@ - Contributing to sed — SED 0.1.10a6 documentation + Contributing to sed — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/misc/contribution.html b/sed/latest/misc/contribution.html index 9fa6c6c..d35970d 100644 --- a/sed/latest/misc/contribution.html +++ b/sed/latest/misc/contribution.html @@ -8,7 +8,7 @@ - Development — SED 0.1.10a6 documentation + Development — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/misc/maintain.html b/sed/latest/misc/maintain.html index 07b4630..2374b9b 100644 --- a/sed/latest/misc/maintain.html +++ b/sed/latest/misc/maintain.html @@ -8,7 +8,7 @@ - How to Maintain — SED 0.1.10a6 documentation + How to Maintain — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/objects.inv b/sed/latest/objects.inv index af0df1f0af2b28e8575089c3ea5ee3c203288db8..07cdf5ab70b93b815442e9907cce047423ffec09 100644 GIT binary patch delta 3904 zcmV-G55MrmKgvIlJ^?k6KUECd4R;&kH$jzRX3C|JpeF&8k;p^=kdqAoPyr9KUI7OI z0f&=j0xN%5Fkfun|4;-287DO!FpV#s@CfSs{RZ@}_hmusqEpnjOGdF*P%|2O)-NFdGuW7?=nyx5o2Ar|6 zv8D&s+egkKf&&Ubr=%jc0!Mm97U0O9Ga#op&a)+>AphBd+cvD($~ietij2-4F5$~Y zyx!+G=tE_-WZl2;4sHWZt8#x!=q@&PTa`7*p7XBFn8RD1<9BPUGoHKQs4e%>7QC~( zU5$Ui&Y31iIc(1Z9o}=>?ax29c}4o31OiFlzv2B5A8+!yCp7z!HH*h-{Gp*)lzY}e zbjMJtNACLaN4#|z0#Ie|=#9jx@Ya21H}#G)PxwlTFI~gDD5`OiCrzV@aE0@pIb;tP zU8@8l$aQ$Rtc(U3=4XK@f0nHJc4&3hJrRHYLgCyJ)9?mDg05Rbz})M|5EQ_IF&xIa zG7N)(EdhhE#-_KP-v`45k{jEWc4z_s@RjVGmAL3pq8Z6wPm%&jX_}l^-{pA$g;vWM zX)2=pg&?t-bBpZ^_f35$kJxf;uc%BH+ZGV{GUtXnXyz3W0LG!L&{dr2_F~RbUCw_s zGI!QO_%d%M77S4slOrJgRqn1Lar$h04FNCl zw(D`u4j~vF$<&=fzWOwOB51{-%M9(m6)5A&d?<{5T|5jcY|vDp0^C6X6K%*8Xn}o$ zz?c@^a>FVs6zI9>9uHOXEVsVkfVh9ZTV$al2%p4e<3wkbw*sa^ z5stDPyphWDWX((YA>Ti;Hdye?tE|fZx_Uzttdc7phnFsEyMei%^D%Rp{aAl^tIIwy zdtkleu-Yr2Ja86^!fO2)6Uru(|@uJ>IhS0KpCp0o;uC88ecGrRb} zW;qqvEMj=7^SZt1d3-U{(pmL}7N~aW4)u#N>AD-#FXBi}~Be*s*xFb5m~0c(>@2sjc*7y;kv z!5SXEKUTDH4NwL6%#)W0egxM)zIc-v34ebc$rS~_w+>GYF?%Tc=aLdU5dR)b?BNvk zTz(lgRCNd7_u`4}&P77|;_u8uVSQHmLn7~TspRYZT~aiAak!z_q&(}q&fC(YC(_=0 z`KU1Ogb5_7Kq3Sb667W4n}n$`vq^v8 zez;JSSqY|#vM{1-B{k)EF6sXJnQeXCb+lhXZbigHd8^z>`i4JR1Kex%M%p(i6NO}< z)$_=>WSce&sbNU-6k8iTf7!WTiF=rK6bBS=Q?-B+!6$}Ss z&40d27#N%XCL`ERR}kgk#4}%g>AABxPF`Ob6GFA`?N-J@alSFhWRP5X`QP#R5ED%X zQ3KoO=28{o+sU;pPRYzL7YSsq_9CK4VENaiTxuMkNA^eN^>1FxQl&v zkC*E5$U+mdR`Y+$;4uKUYw)h5-PCT+GClV7cqai_k*PoCeC?^i_!~`}G$k+cZb^5BdJ_Ig_Rp zJONyj;}x_E56tu2L9(!`zImXNq834a&+Hm(H+^Z5St^=e|M&vVPz2-l%}Xl%&i*a? zXZXVn6!6xzs$WV^0DZZqPgxko-xNw@gw@hhkW;#Pe1` zS|Pqn$@t_r>n?Rx7BNiGfa3HJMs*~&?p5=%W{u{lfZ$IrZQFD`5z`ow_1Bhv&`>M% zm?$-hUaPQ~2^$6?ni7QV+58e5v}9O`8kya+~&Q&LA8krr~j`vjII2AjIDKa&E6#-gWu) zCIgWXKNtdKwU}K;bB~s2o(g#W{)-cKLfYjCpbFXw)Dnf2lxdLytc13I1;0>XLfz!DT~#2#Y}l+2@!Utx%DQHoKN@AIG1bbz=pxc!ik&<*+2N4xf#S z#p&}<3$h61{5i>)96&F{AiMC6pp&E38T8jin~5B`tqjehw}%?qqM%{VO3*d*c`JL^ z7}m*chd`}>jn8`Pg{X&~tgILyF>i+avjmzohb-qCHH8EXiVIEwCDru$9kT9ZAQ?DiGO>r0z8RY7QNW_7ln*_W+ieGd z$@!2xcFm=w;!OFxDs$@Lj6tA$q@lD=#o?!{Z{#})6x$U7K**Pyzsv4G0Sfx^lqao) zm*fHmEQ(_rr)+g6(ZR)`%soADRdqWl*rq~h@aq67^JeOQ#3|uVX^bE2z2c=Ou!Zy0 zz?cv|9I1RjBa=}9$v=3!S`mT_T^1Fj75GIV3oq+(kdGeHDDio-7%N50rAQA*hl*50 z*o9o$GSD(FYJn6G{DT&<45VC3SRQINi{`IZdqZZ`c)cljF97}(FOby-^#Qe8G*$vu>qMeMva#?BcLz@-tgli{? zf96#noXW^7ubSb6`{tApU4Fw{0|4h!56sac>)CX!`|)F0YRWYwk=)GGRem zBmfzX6*{D;y&o~&aSU;iMP#v`)y65#@(<2SsI0 z8J^el`_)`;H%c2f=+zk4dn-D``euTiG*FH8sYq&La!-*KHqwqrFv}DCH$~c(@Cou5 z_qB#{JpbHq)aq>iBwRcRkB)9Ke5IWgv5r~AIVb$2ySLDOpRR-@kAQN3&0xY=9mYwNV`GDsp3^t9(`3i4LLDX#_}KKB)IK{B zcE9h+eO8og-d69)O|mI@tE40=4kf9ITjW5mXKsH8n|-npyM+;WU(<%$G+j~F3^-$B zV@(gNw~w4f1P2s=PDw>>1&;KJEWnXHXFyJIoM%f$LH@G^w{2Lnm2+~Q6d9d8T*8-) zc)ibW(1*%u$+~~x9oz<-R^|Sd&|Pfowkm6qJ?CAUF^9K2$M4oyXFPYqQCse%EqG^n zyBdFkoik04a@d{+I=tt$+n;}I^NRF62?Ub9f5ZEsalE0~kE~fJzeBSq_pF2Hj-gbK z-1X&;cK$jE@P!ngyM}pDRO2L1nno4j3g+o_}84WVb&jL~YELrvK(CVyvBK(EIxg~$5;SGcYUAKmSxz~{)D1ZfHIE-~=7zP7d z0tRD^O>aHF4~7dQH?}S9&;$VBE7>_KanYkhGm^iaBn6VvG&!-p%ku&Xt(G&=R7Cj; zL1H!M7TX!_oBB{5vE|xcQJF5bEgq8;{I-tg^qt9d=i_HCsxq@o!vZSuBJWwwt3<+r1Qa=%~)Au zC`EnCJM9|~1x$w`y2_b|r#35oO7QC9S^8@iho;?bwG(&Er6!Y&6P;Dw3YZQ>ILdPH zMk>#fH817IeE*HL!GdRAWmW#y)f=K-MJS@x@R}XVn{8pxUWB)Gx}U>uylLh$9hs9_$&9f4A*?NY_24mG16t#!yRk z0pZZy0IQH9UNO ztZ3sJpbGH7lbi^C1eZTPdy^gse}BG_D++*b9iAFu_E`4MB_((u{ymu3!zt>y{4#8) z>JGr~#S`6~i-h*Y-q`mq4QIXy^ z=ktX%o@>e~ddeIP`Lr2idc2ecF+w>N-;M$a6G&8nL~PQJ+BrmUFfQl%YXgFgoCWeeaRB2ZA4Cf(2Me)5~VpS+*$ZzweNrnA^eh&rki zo*qRla|q%>ev5u)zG%<>H#DLtS&;j{o-V7v53|||HwOWalM)hx0r8WT5;Or`lgkq1 ze?E)|ZW$CczJV*8os8;Hyn&cQ#RQcWWzA9bY+9<31tt?q>Jr8@WC=UBRb1 zhrFVb52a3hxDp3r9u%7fHT>(#v}*QZf5~ZbyGx<7zy>&O|9`x`3{zF^-ZJ-(31p)H zcLIm}`2_79&wum^)d?F{6<8&YNF?%4#{75F5<)4I7{1F}TZvkI)aL^#%W2?Lu7hJ&$Yf8Qkx zjLm=q1yL$D`TNJUzubwNG`qn@A!O(i6(=nf$ej1 zsfuxO+SJvR{Uerjc4zwY&0$I^`xS^Vrsh+{7Zy zkeiH8%$Ec5o==A7Wt)Yjb`57J_(RiD!@8|VnpSP)^7XGR>C}b(Nq_Tgmq@Xp8Z;nz zEmfeOD=1mR002TRW@1aQ+;!wdXrX6L17&aes>GH3`iqinnj`zieE;n^ldBax0bY~n z6|@VF%=6qqvaqYZd8Cu47D0apb`7?hzO=|J70oYyd|CarXHX7<8Z5S!o2XZurL*QBDsT(y`eHIzkPRDH>&%>{Y6O?x$G5RMVk@VM34fF1}CVsCvpx7RH1y8L>Rfyjs- z41uy*%&w!kM@uwM1w4QM#R)qh?eYXr1#JatiNZ?Cv`7I~Lfe0WU#PHhvo2NmX`)Ok z>#{G!C-bI#%f41^5fMr#TiU$)=Y^F_v`xXX9dV`aINv zEJ8VdPI4v(&`UAMF1#b?Y*nqD+Wl+n<4)!fo9Di%lSr4Awk3V>JfhtN;X^0W!E(w-;lA}H|@1= z8u%KHqWhNVeigdbWKSl$eMR#6(q>In5ZY&yf8Y_oPLJoU;%!BvI~di6b~7B3>X7jz zM%mmrh?oR$%K(Y-3e3Dm{)d0ggJ8Bs00;rOov+x(IBHrF!5q%{H^Mkm9FJMsAzI2tkG}iwe>T{GyPBmvuSFM-OR~_`F$+l_KU+qz9x!MJgifLN09? zXqgwaKne){K?_+1Qm!Q|4>g-b^H(dr1C*k<9iKLdKo0B@PhGuTO8&Os_gU*nS@&22Rj^is?X9+vbMCA5 zR*qw%_x?;cPuu^kW$tuc|utLwhS@Z4BK9Z6kjQ*aMAF_qG(fsG;R%S<-;W`;*6P+}1NO zY}$4T<2d^-!I+6?7hnM5DCVfe7b6+d(hEod#UH=yV&r69bb)Jmn}gnnt>t9fgbh;g z=8xTctz~1`cny*FCXZYd(sD7c2?4|r%(2^(4Qwo1lVKX(CIl^MX*szTw7^O>Tf`^9 zDC3xCh}mi&ty8t7x@pMm`lp|=Z{+IBW2I|Nb~EAevZnDgdn}U$94ddX@U&FT&AFat zk8lBL*0bcb5#ALSW+-2qZZ`c)cljK97})wmKwY*i1}}WvKzD$MLQXT<+9S?hc+wP3D-^(|IDjE zIF*rEUNyrB_bsdEIgL>QK>X2UZrf<85Ff1N;@&pO(Dn-oU0xp%*4&wpWWs{BNB}Y% zD|ARxdp}~l;~3&3$?;agZ;8VtfqbSYog#ceU?ccy0h`i9oC0$N-Zy{sp*-%+g)#d< zLUfyN#r0*3)2hRHy;o%*s4ERf9%D#{g=RX0kf5MU9S~#8hLtr#vVqnZ#Bqr!;?D74 znBsf4^h93z=8%q&Z_{(R?;5&qTEgSlNtuGsE69qtIgTMFmqv@%COl%NkWBve;r@@W zzrIUGxMYUo(emDXdh;yh!*{Iw==DEw#l-g-q|5;*sgd%jOdm;Cm353l^2*OqL>w#m z+r$0Wk6(Qi7QG52dc8I@CU2`x7%~p-l<@ z?qgl{{NC`~WcufvIdc4&NjK^lFUjy%il|eKWyM8mPwlR3x=Axu-}A8)-)*nB@un8%1qP_yl>3`&vUe zo_}sQYa!FI?drn7TF0=2W%qeikef~MHy(r`SF=;R9%2mu`oY{V&=@hSqwQ)$P(d8y K&i?|Nyn5ben5psr diff --git a/sed/latest/py-modindex.html b/sed/latest/py-modindex.html index c02bad5..08ebd84 100644 --- a/sed/latest/py-modindex.html +++ b/sed/latest/py-modindex.html @@ -7,7 +7,7 @@ - Python Module Index — SED 0.1.10a6 documentation + Python Module Index — SED 0.1.10a5 documentation @@ -34,7 +34,7 @@ - + @@ -43,7 +43,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/search.html b/sed/latest/search.html index 2d82818..1a5158c 100644 --- a/sed/latest/search.html +++ b/sed/latest/search.html @@ -6,7 +6,7 @@ - Search - SED 0.1.10a6 documentation + Search - SED 0.1.10a5 documentation @@ -33,7 +33,7 @@ - + @@ -42,7 +42,7 @@ @@ -123,7 +123,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/searchindex.js b/sed/latest/searchindex.js index fdb470b..2f3f6a7 100644 --- a/sed/latest/searchindex.js +++ b/sed/latest/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API": [[0, "api"], [4, "api"], [9, "module-sed.dataset.dataset"]], "Abstract BaseLoader": [[13, "module-sed.loader.base.loader"]], "Advance": [[17, null]], "Attributes useful for user": [[9, "attributes-useful-for-user"]], "Basic concepts": [[17, null]], "Binning": [[5, "binning"]], "Binning demonstration on locally generated fake data": [[15, "Binning-demonstration-on-locally-generated-fake-data"]], "Calibrator": [[6, "calibrator"]], "Community and contribution guide": [[0, "community-and-contribution-guide"]], "Compute distributed binning on the partitioned dask dataframe": [[15, "Compute-distributed-binning-on-the-partitioned-dask-dataframe"]], "Compute the binning along the pandas dataframe": [[15, "Compute-the-binning-along-the-pandas-dataframe"]], "Config": [[7, "module-sed.core.config"]], "Configuration": [[16, "configuration"]], "Contributing to sed": [[1, "contributing-to-sed"]], "Core": [[8, "module-sed.core"]], "Data loader": [[13, "data-loader"]], "Dataframe Operations": [[10, "module-sed.core.dfops"]], "Dataset": [[9, "dataset"]], "Default configuration settings": [[16, "default-configuration-settings"]], "Default datasets.json": [[9, "default-datasets-json"]], "Define the binning range": [[15, "Define-the-binning-range"]], "Delay calibration and correction": [[6, "module-sed.calibrator.delay"]], "Developing a Loader": [[1, "developing-a-loader"]], "Development": [[2, "development"]], "Development Workflow": [[1, "development-workflow"]], "Development version": [[18, "development-version"]], "Diagnostics": [[11, "module-sed.diagnostics"]], "Documentation": [[3, "documentation"]], "Energy calibration and correction": [[6, "module-sed.calibrator.energy"]], "Example configuration file for flash (HEXTOF momentum microscope at FLASH, Desy)": [[16, "example-configuration-file-for-flash-hextof-momentum-microscope-at-flash-desy"]], "Example configuration file for mpes (METIS momentum microscope at FHI-Berlin)": [[16, "example-configuration-file-for-mpes-metis-momentum-microscope-at-fhi-berlin"]], "Example of adding custom datasets": [[9, "example-of-adding-custom-datasets"]], "Examples": [[0, "examples"]], "FlashLoader": [[13, "module-sed.loader.flash.loader"]], "Generate Fake Data": [[15, "Generate-Fake-Data"]], "GenericLoader": [[13, "module-sed.loader.generic.loader"]], "Get": [[9, "get"]], "Getting Started": [[1, "getting-started"]], "Getting datasets": [[9, "getting-datasets"]], "How to Maintain": [[3, "how-to-maintain"]], "IO": [[12, "module-sed.io"]], "Installation": [[18, "installation"]], "Installing SED": [[17, null]], "Interrupting extraction has similar behavior to download and just continues from where it stopped.": [[9, "interrupting-extraction-has-similar-behavior-to-download-and-just-continues-from-where-it-stopped"]], "Loader Interface": [[13, "module-sed.loader.loader_interface"]], "Main functions": [[5, "module-sed.binning"]], "Metadata": [[14, "module-sed.core.metadata"]], "Momentum calibration and correction": [[6, "module-sed.calibrator.momentum"]], "MpesLoader": [[13, "module-sed.loader.mpes.loader"]], "Not providing \u201cremove_zip\u201d at all will by default delete the zip file after extraction": [[9, "not-providing-remove-zip-at-all-will-by-default-delete-the-zip-file-after-extraction"]], "Or if user deletes the extracted documents, it reextracts from zip file": [[9, "or-if-user-deletes-the-extracted-documents-it-reextracts-from-zip-file"]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "Release": [[3, "release"]], "SED documentation": [[0, "sed-documentation"]], "SXPLoader": [[13, "module-sed.loader.sxp.loader"]], "Setting the \u201cuse_existing\u201d keyword to False allows to download the data in another location. Default is to use existing data": [[9, "setting-the-use-existing-keyword-to-false-allows-to-download-the-data-in-another-location-default-is-to-use-existing-data"]], "The \u201cget\u201d just needs the data name, but another root_dir can be provided.": [[9, "the-get-just-needs-the-data-name-but-another-root-dir-can-be-provided"]], "This removes all instances, if any present": [[9, "this-removes-all-instances-if-any-present"]], "This would remove only one of the two existing paths": [[9, "this-would-remove-only-one-of-the-two-existing-paths"]], "Transform to dask dataframe": [[15, "Transform-to-dask-dataframe"]], "Try to interrupt the download process and restart to see that it continues the download from where it stopped": [[9, "try-to-interrupt-the-download-process-and-restart-to-see-that-it-continues-the-download-from-where-it-stopped"]], "Used helper functions": [[5, "module-sed.binning.numba_bin"]], "User Guide": [[17, "user-guide"]], "Utilities": [[13, "module-sed.loader.utils"]], "Workflows": [[19, "workflows"]], "\u201cremove\u201d allows removal of some or all instances of existing data": [[9, "remove-allows-removal-of-some-or-all-instances-of-existing-data"]]}, "docnames": ["index", "misc/contributing", "misc/contribution", "misc/maintain", "sed/api", "sed/binning", "sed/calibrator", "sed/config", "sed/core", "sed/dataset", "sed/dfops", "sed/diagnostic", "sed/io", "sed/loader", "sed/metadata", "user_guide/1_binning_fake_data", "user_guide/config", "user_guide/index", "user_guide/installation", "workflows/index"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.md", "misc/contributing.rst", "misc/contribution.md", "misc/maintain.rst", "sed/api.rst", "sed/binning.rst", "sed/calibrator.rst", "sed/config.rst", "sed/core.rst", "sed/dataset.rst", "sed/dfops.rst", "sed/diagnostic.rst", "sed/io.rst", "sed/loader.rst", "sed/metadata.rst", "user_guide/1_binning_fake_data.ipynb", "user_guide/config.md", "user_guide/index.md", "user_guide/installation.md", "workflows/index.rst"], "indexentries": {"add() (sed.core.metadata.metahandler method)": [[14, "sed.core.metadata.MetaHandler.add", false]], "add() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.add", false]], "add_attribute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_attribute", false]], "add_delay_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_delay_offset", false]], "add_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_energy_offset", false]], "add_features() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.add_features", false]], "add_jitter() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_jitter", false]], "add_offsets() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.add_offsets", false]], "add_offsets() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_offsets", false]], "add_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_ranges", false]], "add_time_stamped_data() (in module sed.core.dfops)": [[10, "sed.core.dfops.add_time_stamped_data", false]], "add_time_stamped_data() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_time_stamped_data", false]], "adjust_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_energy_correction", false]], "adjust_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.adjust_energy_correction", false]], "adjust_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_ranges", false]], "align_dld_sectors() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.align_dld_sectors", false]], "align_dld_sectors() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.align_dld_sectors", false]], "append_delay_axis() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.append_delay_axis", false]], "append_energy_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_energy_axis", false]], "append_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_energy_axis", false]], "append_k_axis() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.append_k_axis", false]], "append_tof_ns_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_tof_ns_axis", false]], "append_tof_ns_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_tof_ns_axis", false]], "apply_correction() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_correction", false]], "apply_corrections() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_corrections", false]], "apply_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.apply_dfield", false]], "apply_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.apply_energy_correction", false]], "apply_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_energy_correction", false]], "apply_filter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_filter", false]], "apply_jitter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_jitter", false]], "apply_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_calibration", false]], "apply_momentum_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_correction", false]], "attributes (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.attributes", false]], "available (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.available", false]], "available_channels (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.available_channels", false]], "available_channels (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.available_channels", false]], "backward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.backward_fill_lazy", false]], "baseloader (class in sed.loader.base.loader)": [[13, "sed.loader.base.loader.BaseLoader", false]], "bin_and_load_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.bin_and_load_momentum_calibration", false]], "bin_centers_to_bin_edges() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_centers_to_bin_edges", false]], "bin_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.bin_data", false]], "bin_dataframe() (in module sed.binning)": [[5, "sed.binning.bin_dataframe", false]], "bin_edges_to_bin_centers() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_edges_to_bin_centers", false]], "bin_partition() (in module sed.binning)": [[5, "sed.binning.bin_partition", false]], "binned (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.binned", false]], "binsearch() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.binsearch", false]], "buffer_file_handler() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.buffer_file_handler", false]], "buffer_file_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.buffer_file_handler", false]], "calc_geometric_distances() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_geometric_distances", false]], "calc_inverse_dfield() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_inverse_dfield", false]], "calc_symmetry_scores() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_symmetry_scores", false]], "calibrate() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.calibrate", false]], "calibrate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calibrate", false]], "calibrate_delay_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_delay_axis", false]], "calibrate_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_energy_axis", false]], "calibrate_momentum_axes() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_momentum_axes", false]], "cleanup_oldest_scan() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.cleanup_oldest_scan", false]], "cm2palette() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.cm2palette", false]], "complete_dictionary() (in module sed.core.config)": [[7, "sed.core.config.complete_dictionary", false]], "compute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.compute", false]], "concatenate_channels() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.concatenate_channels", false]], "concatenate_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.concatenate_channels", false]], "config (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.config", false]], "coordinate_transform() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.coordinate_transform", false]], "copy() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.copy", false]], "copytool (class in sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.CopyTool", false]], "correction_function() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.correction_function", false]], "cpy() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.cpy", false]], "create_buffer_file() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_buffer_file", false]], "create_buffer_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_buffer_file", false]], "create_dataframe_per_channel() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_channel", false]], "create_dataframe_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_channel", false]], "create_dataframe_per_electron() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_electron", false]], "create_dataframe_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_electron", false]], "create_dataframe_per_file() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_file", false]], "create_dataframe_per_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_file", false]], "create_dataframe_per_pulse() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_train() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_train", false]], "create_dataframe_per_train() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_train", false]], "create_multi_index_per_electron() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_multi_index_per_electron", false]], "create_multi_index_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_electron", false]], "create_multi_index_per_pulse() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_multi_index_per_pulse", false]], "create_multi_index_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_pulse", false]], "create_numpy_array_per_channel() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_numpy_array_per_channel", false]], "create_numpy_array_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_numpy_array_per_channel", false]], "data_name (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.data_name", false]], "dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.dataframe", false]], "dataset (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.Dataset", false]], "datasetsmanager (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.DatasetsManager", false]], "define_features() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.define_features", false]], "delaycalibrator (class in sed.calibrator.delay)": [[6, "sed.calibrator.delay.DelayCalibrator", false]], "detector_coordinates_2_k_coordinates() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.detector_coordinates_2_k_coordinates", false]], "dictmerge() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.dictmerge", false]], "drop_column() (in module sed.core.dfops)": [[10, "sed.core.dfops.drop_column", false]], "dup (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.dup", false]], "duplicateentryerror": [[14, "sed.core.metadata.DuplicateEntryError", false]], "energycalibrator (class in sed.calibrator.energy)": [[6, "sed.calibrator.energy.EnergyCalibrator", false]], "existing_data_paths (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.existing_data_paths", false]], "extract_bias() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.extract_bias", false]], "extract_delay_stage_parameters() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.extract_delay_stage_parameters", false]], "feature_extract() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.feature_extract", false]], "feature_extract() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_extract", false]], "feature_select() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_select", false]], "features (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.features", false]], "filename (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.FILENAME", false]], "files (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.files", false]], "filter_column() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.filter_column", false]], "find_bias_peaks() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.find_bias_peaks", false]], "find_correspondence() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_correspondence", false]], "find_nearest() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_nearest", false]], "fit_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.fit_energy_calibration", false]], "flashloader (class in sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.FlashLoader", false]], "forward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.forward_fill_lazy", false]], "gather_calibration_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_calibration_metadata", false]], "gather_calibration_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_calibration_metadata", false]], "gather_correction_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_correction_metadata", false]], "gather_correction_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_correction_metadata", false]], "gather_files() (in module sed.loader.utils)": [[13, "sed.loader.utils.gather_files", false]], "gather_metadata() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.gather_metadata", false]], "gather_metadata() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.gather_metadata", false]], "generate_inverse_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.generate_inverse_dfield", false]], "generate_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.generate_splinewarp", false]], "genericloader (class in sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.GenericLoader", false]], "get() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.get", false]], "get_archiver_data() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_archiver_data", false]], "get_attribute() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_attribute", false]], "get_channels() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_channels", false]], "get_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_channels", false]], "get_count_rate() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_count_rate", false]], "get_count_rate() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_count_rate", false]], "get_count_rate() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_count_rate", false]], "get_count_rate() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_count_rate", false]], "get_count_rate() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_count_rate", false]], "get_count_rate() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_count_rate", false]], "get_elapsed_time() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_elapsed_time", false]], "get_files_from_run_id() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_files_from_run_id", false]], "get_groups_and_aliases() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_groups_and_aliases", false]], "get_loader() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_loader", false]], "get_metadata() (sed.loader.flash.metadata.metadataretriever method)": [[13, "sed.loader.flash.metadata.MetadataRetriever.get_metadata", false]], "get_names_of_all_loaders() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_names_of_all_loaders", false]], "get_normalization_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.get_normalization_histogram", false]], "get_start_and_end_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_start_and_end_time", false]], "get_target_dir() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.get_target_dir", false]], "grid_histogram() (in module sed.diagnostics)": [[11, "sed.diagnostics.grid_histogram", false]], "hdf5_to_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_array", false]], "hdf5_to_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_dataframe", false]], "hdf5_to_timed_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_array", false]], "hdf5_to_timed_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_dataframe", false]], "initialize_paths() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.initialize_paths", false]], "initialize_paths() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.initialize_paths", false]], "json_path (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.json_path", false]], "load() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load", false]], "load_bias_series() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load_bias_series", false]], "load_config() (in module sed.core.config)": [[7, "sed.core.config.load_config", false]], "load_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.load_data", false]], "load_data() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.load_data", false]], "load_datasets_dict() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.load_datasets_dict", false]], "load_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.load_dfield", false]], "load_h5() (in module sed.io)": [[12, "sed.io.load_h5", false]], "load_tiff() (in module sed.io)": [[12, "sed.io.load_tiff", false]], "loader (in module sed.loader.base.loader)": [[13, "sed.loader.base.loader.LOADER", false]], "loader (in module sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.LOADER", false]], "loader (in module sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.LOADER", false]], "loader (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.LOADER", false]], "loader (in module sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.LOADER", false]], "map_columns_2d() (in module sed.core.dfops)": [[10, "sed.core.dfops.map_columns_2d", false]], "metadata (sed.core.metadata.metahandler property)": [[14, "sed.core.metadata.MetaHandler.metadata", false]], "metadataretriever (class in sed.loader.flash.metadata)": [[13, "sed.loader.flash.metadata.MetadataRetriever", false]], "metahandler (class in sed.core.metadata)": [[14, "sed.core.metadata.MetaHandler", false]], "mm_to_ps() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.mm_to_ps", false]], "module": [[5, "module-sed.binning", false], [5, "module-sed.binning.numba_bin", false], [5, "module-sed.binning.utils", false], [6, "module-sed.calibrator.delay", false], [6, "module-sed.calibrator.energy", false], [6, "module-sed.calibrator.momentum", false], [7, "module-sed.core.config", false], [8, "module-sed.core", false], [9, "module-sed.dataset.dataset", false], [10, "module-sed.core.dfops", false], [11, "module-sed.diagnostics", false], [12, "module-sed.io", false], [13, "module-sed.loader.base.loader", false], [13, "module-sed.loader.flash.loader", false], [13, "module-sed.loader.flash.metadata", false], [13, "module-sed.loader.generic.loader", false], [13, "module-sed.loader.loader_interface", false], [13, "module-sed.loader.mirrorutil", false], [13, "module-sed.loader.mpes.loader", false], [13, "module-sed.loader.sxp.loader", false], [13, "module-sed.loader.utils", false], [14, "module-sed.core.metadata", false]], "momentumcorrector (class in sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.MomentumCorrector", false]], "mpesloader (class in sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.MpesLoader", false]], "mycopy() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mycopy", false]], "mymakedirs() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mymakedirs", false]], "name (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.NAME", false]], "normalization_histogram (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalization_histogram", false]], "normalize() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.normalize", false]], "normalized (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalized", false]], "normspec() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.normspec", false]], "nranges (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.nranges", false]], "ntraces (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.ntraces", false]], "numba_histogramdd() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.numba_histogramdd", false]], "offset_by_other_columns() (in module sed.core.dfops)": [[10, "sed.core.dfops.offset_by_other_columns", false]], "parquet_handler() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parquet_handler", false]], "parquet_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.parquet_handler", false]], "parse_config() (in module sed.core.config)": [[7, "sed.core.config.parse_config", false]], "parse_h5_keys() (in module sed.loader.utils)": [[13, "sed.loader.utils.parse_h5_keys", false]], "parse_metadata() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parse_metadata", false]], "peakdetect1d() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peakdetect1d", false]], "peaksearch() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peaksearch", false]], "plot_single_hist() (in module sed.diagnostics)": [[11, "sed.diagnostics.plot_single_hist", false]], "poly_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.poly_energy_calibration", false]], "pose_adjustment() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.pose_adjustment", false]], "pose_adjustment() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pose_adjustment", false]], "pre_binning() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pre_binning", false]], "range_convert() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.range_convert", false]], "read_dataframe() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.read_dataframe", false]], "read_dataframe() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.read_dataframe", false]], "read_dataframe() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.read_dataframe", false]], "read_dataframe() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.read_dataframe", false]], "read_dataframe() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.read_dataframe", false]], "remove() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.remove", false]], "remove() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.remove", false]], "reset_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.reset_deformation", false]], "reset_multi_index() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.reset_multi_index", false]], "reset_multi_index() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.reset_multi_index", false]], "save() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save", false]], "save_config() (in module sed.core.config)": [[7, "sed.core.config.save_config", false]], "save_delay_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_calibration", false]], "save_delay_offsets() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_offsets", false]], "save_energy_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_calibration", false]], "save_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_correction", false]], "save_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_offset", false]], "save_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_momentum_calibration", false]], "save_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_splinewarp", false]], "save_transformations() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_transformations", false]], "save_workflow_params() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_workflow_params", false]], "sed.binning": [[5, "module-sed.binning", false]], "sed.binning.numba_bin": [[5, "module-sed.binning.numba_bin", false]], "sed.binning.utils": [[5, "module-sed.binning.utils", false]], "sed.calibrator.delay": [[6, "module-sed.calibrator.delay", false]], "sed.calibrator.energy": [[6, "module-sed.calibrator.energy", false]], "sed.calibrator.momentum": [[6, "module-sed.calibrator.momentum", false]], "sed.core": [[8, "module-sed.core", false]], "sed.core.config": [[7, "module-sed.core.config", false]], "sed.core.dfops": [[10, "module-sed.core.dfops", false]], "sed.core.metadata": [[14, "module-sed.core.metadata", false]], "sed.dataset.dataset": [[9, "module-sed.dataset.dataset", false]], "sed.diagnostics": [[11, "module-sed.diagnostics", false]], "sed.io": [[12, "module-sed.io", false]], "sed.loader.base.loader": [[13, "module-sed.loader.base.loader", false]], "sed.loader.flash.loader": [[13, "module-sed.loader.flash.loader", false]], "sed.loader.flash.metadata": [[13, "module-sed.loader.flash.metadata", false]], "sed.loader.generic.loader": [[13, "module-sed.loader.generic.loader", false]], "sed.loader.loader_interface": [[13, "module-sed.loader.loader_interface", false]], "sed.loader.mirrorutil": [[13, "module-sed.loader.mirrorutil", false]], "sed.loader.mpes.loader": [[13, "module-sed.loader.mpes.loader", false]], "sed.loader.sxp.loader": [[13, "module-sed.loader.sxp.loader", false]], "sed.loader.utils": [[13, "module-sed.loader.utils", false]], "sedprocessor (class in sed.core)": [[8, "sed.core.SedProcessor", false]], "select_k_range() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_k_range", false]], "select_slice() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slice", false]], "select_slicer() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slicer", false]], "simplify_binning_arguments() (in module sed.binning.utils)": [[5, "sed.binning.utils.simplify_binning_arguments", false]], "size() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.size", false]], "spline_warp_estimate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.spline_warp_estimate", false]], "split_channel_bitwise() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_channel_bitwise", false]], "split_dld_time_from_sector_id() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_dld_time_from_sector_id", false]], "supported_file_types (sed.loader.base.loader.baseloader attribute)": [[13, "sed.loader.base.loader.BaseLoader.supported_file_types", false]], "supported_file_types (sed.loader.flash.loader.flashloader attribute)": [[13, "sed.loader.flash.loader.FlashLoader.supported_file_types", false]], "supported_file_types (sed.loader.generic.loader.genericloader attribute)": [[13, "sed.loader.generic.loader.GenericLoader.supported_file_types", false]], "supported_file_types (sed.loader.mpes.loader.mpesloader attribute)": [[13, "sed.loader.mpes.loader.MpesLoader.supported_file_types", false]], "supported_file_types (sed.loader.sxp.loader.sxploader attribute)": [[13, "sed.loader.sxp.loader.SXPLoader.supported_file_types", false]], "sxploader (class in sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.SXPLoader", false]], "symscores (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.symscores", false]], "timed_dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.timed_dataframe", false]], "to_h5() (in module sed.io)": [[12, "sed.io.to_h5", false]], "to_nexus() (in module sed.io)": [[12, "sed.io.to_nexus", false]], "to_tiff() (in module sed.io)": [[12, "sed.io.to_tiff", false]], "tof2ev() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ev", false]], "tof2evpoly() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2evpoly", false]], "tof2ns() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ns", false]], "update_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.update_deformation", false]], "view() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.view", false]], "view() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.view", false]], "view_event_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.view_event_histogram", false]]}, "objects": {"sed": [[5, 0, 0, "-", "binning"], [8, 0, 0, "-", "core"], [11, 0, 0, "-", "diagnostics"], [12, 0, 0, "-", "io"]], "sed.binning": [[5, 1, 1, "", "bin_dataframe"], [5, 1, 1, "", "bin_partition"], [5, 0, 0, "-", "numba_bin"], [5, 0, 0, "-", "utils"]], "sed.binning.numba_bin": [[5, 1, 1, "", "binsearch"], [5, 1, 1, "", "numba_histogramdd"]], "sed.binning.utils": [[5, 1, 1, "", "bin_centers_to_bin_edges"], [5, 1, 1, "", "bin_edges_to_bin_centers"], [5, 1, 1, "", "simplify_binning_arguments"]], "sed.calibrator": [[6, 0, 0, "-", "delay"], [6, 0, 0, "-", "energy"], [6, 0, 0, "-", "momentum"]], "sed.calibrator.delay": [[6, 2, 1, "", "DelayCalibrator"], [6, 1, 1, "", "extract_delay_stage_parameters"], [6, 1, 1, "", "mm_to_ps"]], "sed.calibrator.delay.DelayCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "append_delay_axis"]], "sed.calibrator.energy": [[6, 2, 1, "", "EnergyCalibrator"], [6, 1, 1, "", "correction_function"], [6, 1, 1, "", "extract_bias"], [6, 1, 1, "", "find_correspondence"], [6, 1, 1, "", "find_nearest"], [6, 1, 1, "", "fit_energy_calibration"], [6, 1, 1, "", "normspec"], [6, 1, 1, "", "peakdetect1d"], [6, 1, 1, "", "peaksearch"], [6, 1, 1, "", "poly_energy_calibration"], [6, 1, 1, "", "range_convert"], [6, 1, 1, "", "tof2ev"], [6, 1, 1, "", "tof2evpoly"], [6, 1, 1, "", "tof2ns"]], "sed.calibrator.energy.EnergyCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "add_ranges"], [6, 3, 1, "", "adjust_energy_correction"], [6, 3, 1, "", "adjust_ranges"], [6, 3, 1, "", "align_dld_sectors"], [6, 3, 1, "", "append_energy_axis"], [6, 3, 1, "", "append_tof_ns_axis"], [6, 3, 1, "", "apply_energy_correction"], [6, 3, 1, "", "bin_data"], [6, 3, 1, "", "calibrate"], [6, 4, 1, "", "dup"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "normalize"], [6, 4, 1, "", "nranges"], [6, 4, 1, "", "ntraces"], [6, 3, 1, "", "view"]], "sed.calibrator.momentum": [[6, 2, 1, "", "MomentumCorrector"], [6, 1, 1, "", "apply_dfield"], [6, 1, 1, "", "cm2palette"], [6, 1, 1, "", "detector_coordinates_2_k_coordinates"], [6, 1, 1, "", "dictmerge"], [6, 1, 1, "", "generate_inverse_dfield"], [6, 1, 1, "", "load_dfield"]], "sed.calibrator.momentum.MomentumCorrector": [[6, 3, 1, "", "add_features"], [6, 3, 1, "", "append_k_axis"], [6, 3, 1, "", "apply_correction"], [6, 3, 1, "", "apply_corrections"], [6, 3, 1, "", "calc_geometric_distances"], [6, 3, 1, "", "calc_inverse_dfield"], [6, 3, 1, "", "calc_symmetry_scores"], [6, 3, 1, "", "calibrate"], [6, 3, 1, "", "coordinate_transform"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "feature_select"], [6, 4, 1, "", "features"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "pose_adjustment"], [6, 3, 1, "", "reset_deformation"], [6, 3, 1, "", "select_k_range"], [6, 3, 1, "", "select_slice"], [6, 3, 1, "", "select_slicer"], [6, 3, 1, "", "spline_warp_estimate"], [6, 4, 1, "", "symscores"], [6, 3, 1, "", "update_deformation"], [6, 3, 1, "", "view"]], "sed.core": [[8, 2, 1, "", "SedProcessor"], [7, 0, 0, "-", "config"], [10, 0, 0, "-", "dfops"], [14, 0, 0, "-", "metadata"]], "sed.core.SedProcessor": [[8, 3, 1, "", "add_attribute"], [8, 3, 1, "", "add_delay_offset"], [8, 3, 1, "", "add_energy_offset"], [8, 3, 1, "", "add_jitter"], [8, 3, 1, "", "add_time_stamped_data"], [8, 3, 1, "", "adjust_energy_correction"], [8, 3, 1, "", "align_dld_sectors"], [8, 3, 1, "", "append_energy_axis"], [8, 3, 1, "", "append_tof_ns_axis"], [8, 3, 1, "", "apply_energy_correction"], [8, 3, 1, "", "apply_momentum_calibration"], [8, 3, 1, "", "apply_momentum_correction"], [8, 4, 1, "", "attributes"], [8, 3, 1, "", "bin_and_load_momentum_calibration"], [8, 4, 1, "", "binned"], [8, 3, 1, "", "calibrate_delay_axis"], [8, 3, 1, "", "calibrate_energy_axis"], [8, 3, 1, "", "calibrate_momentum_axes"], [8, 3, 1, "", "compute"], [8, 4, 1, "", "config"], [8, 3, 1, "", "cpy"], [8, 4, 1, "", "dataframe"], [8, 3, 1, "", "define_features"], [8, 4, 1, "", "files"], [8, 3, 1, "", "filter_column"], [8, 3, 1, "", "find_bias_peaks"], [8, 3, 1, "", "generate_splinewarp"], [8, 3, 1, "", "get_normalization_histogram"], [8, 3, 1, "", "load"], [8, 3, 1, "", "load_bias_series"], [8, 4, 1, "", "normalization_histogram"], [8, 4, 1, "", "normalized"], [8, 3, 1, "", "pose_adjustment"], [8, 3, 1, "", "pre_binning"], [8, 3, 1, "", "save"], [8, 3, 1, "", "save_delay_calibration"], [8, 3, 1, "", "save_delay_offsets"], [8, 3, 1, "", "save_energy_calibration"], [8, 3, 1, "", "save_energy_correction"], [8, 3, 1, "", "save_energy_offset"], [8, 3, 1, "", "save_momentum_calibration"], [8, 3, 1, "", "save_splinewarp"], [8, 3, 1, "", "save_transformations"], [8, 3, 1, "", "save_workflow_params"], [8, 4, 1, "", "timed_dataframe"], [8, 3, 1, "", "view_event_histogram"]], "sed.core.config": [[7, 1, 1, "", "complete_dictionary"], [7, 1, 1, "", "load_config"], [7, 1, 1, "", "parse_config"], [7, 1, 1, "", "save_config"]], "sed.core.dfops": [[10, 1, 1, "", "add_time_stamped_data"], [10, 1, 1, "", "apply_filter"], [10, 1, 1, "", "apply_jitter"], [10, 1, 1, "", "backward_fill_lazy"], [10, 1, 1, "", "drop_column"], [10, 1, 1, "", "forward_fill_lazy"], [10, 1, 1, "", "map_columns_2d"], [10, 1, 1, "", "offset_by_other_columns"]], "sed.core.metadata": [[14, 5, 1, "", "DuplicateEntryError"], [14, 2, 1, "", "MetaHandler"]], "sed.core.metadata.MetaHandler": [[14, 3, 1, "", "add"], [14, 4, 1, "", "metadata"]], "sed.dataset": [[9, 0, 0, "-", "dataset"]], "sed.dataset.dataset": [[9, 2, 1, "", "Dataset"], [9, 2, 1, "", "DatasetsManager"]], "sed.dataset.dataset.Dataset": [[9, 4, 1, "", "available"], [9, 4, 1, "", "data_name"], [9, 4, 1, "", "existing_data_paths"], [9, 3, 1, "", "get"], [9, 3, 1, "", "remove"]], "sed.dataset.dataset.DatasetsManager": [[9, 6, 1, "", "FILENAME"], [9, 6, 1, "", "NAME"], [9, 3, 1, "", "add"], [9, 6, 1, "", "json_path"], [9, 3, 1, "", "load_datasets_dict"], [9, 3, 1, "", "remove"]], "sed.diagnostics": [[11, 1, 1, "", "grid_histogram"], [11, 1, 1, "", "plot_single_hist"]], "sed.io": [[12, 1, 1, "", "load_h5"], [12, 1, 1, "", "load_tiff"], [12, 1, 1, "", "to_h5"], [12, 1, 1, "", "to_nexus"], [12, 1, 1, "", "to_tiff"]], "sed.loader": [[13, 0, 0, "-", "loader_interface"], [13, 0, 0, "-", "mirrorutil"], [13, 0, 0, "-", "utils"]], "sed.loader.base": [[13, 0, 0, "-", "loader"]], "sed.loader.base.loader": [[13, 2, 1, "", "BaseLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.base.loader.BaseLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.flash": [[13, 0, 0, "-", "loader"], [13, 0, 0, "-", "metadata"]], "sed.loader.flash.loader": [[13, 2, 1, "", "FlashLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.flash.loader.FlashLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "initialize_paths"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "parse_metadata"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.flash.metadata": [[13, 2, 1, "", "MetadataRetriever"]], "sed.loader.flash.metadata.MetadataRetriever": [[13, 3, 1, "", "get_metadata"]], "sed.loader.generic": [[13, 0, 0, "-", "loader"]], "sed.loader.generic.loader": [[13, 2, 1, "", "GenericLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.generic.loader.GenericLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.loader_interface": [[13, 1, 1, "", "get_loader"], [13, 1, 1, "", "get_names_of_all_loaders"]], "sed.loader.mirrorutil": [[13, 2, 1, "", "CopyTool"], [13, 1, 1, "", "get_target_dir"], [13, 1, 1, "", "mycopy"], [13, 1, 1, "", "mymakedirs"]], "sed.loader.mirrorutil.CopyTool": [[13, 3, 1, "", "cleanup_oldest_scan"], [13, 3, 1, "", "copy"], [13, 3, 1, "", "size"]], "sed.loader.mpes": [[13, 0, 0, "-", "loader"]], "sed.loader.mpes.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "MpesLoader"], [13, 1, 1, "", "get_archiver_data"], [13, 1, 1, "", "get_attribute"], [13, 1, 1, "", "get_count_rate"], [13, 1, 1, "", "get_elapsed_time"], [13, 1, 1, "", "get_groups_and_aliases"], [13, 1, 1, "", "hdf5_to_array"], [13, 1, 1, "", "hdf5_to_dataframe"], [13, 1, 1, "", "hdf5_to_timed_array"], [13, 1, 1, "", "hdf5_to_timed_dataframe"]], "sed.loader.mpes.loader.MpesLoader": [[13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "get_start_and_end_time"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.sxp": [[13, 0, 0, "-", "loader"]], "sed.loader.sxp.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "SXPLoader"]], "sed.loader.sxp.loader.SXPLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "initialize_paths"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.utils": [[13, 1, 1, "", "gather_files"], [13, 1, 1, "", "parse_h5_keys"], [13, 1, 1, "", "split_channel_bitwise"], [13, 1, 1, "", "split_dld_time_from_sector_id"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute"}, "terms": {"": [3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "0": [3, 5, 6, 8, 9, 10, 13, 15, 16], "00": 9, "001": 16, "008053": 15, "01": [9, 16], "010729535670610963": 16, "02": 9, "034903": 15, "037927": 15, "039608": 15, "05": [15, 16], "0576131995767355e": 16, "058206295066418": 16, "06": 15, "07": 16, "09": 9, "092987": 15, "099223": 15, "0_20vtof_v3": 16, "0_30vtof_453ns_focu": 16, "1": [3, 5, 6, 8, 9, 10, 13, 15, 16], "10": [1, 3, 16], "100": [5, 6, 8, 9, 16], "1000": [13, 16], "100000": [15, 16], "1001": 16, "100mhz": 16, "10160182": 9, "104226": 15, "10658470": 9, "10file": 9, "11": [1, 16], "11013410": 16, "113": [9, 16], "11file": 9, "12": [9, 16], "120": 15, "1200": 16, "125e": 16, "128000": 16, "132000": 16, "132250": 16, "134934": 15, "136000": 16, "138000": 16, "1489": 16, "149": 16, "15": 16, "150": 6, "1500": 16, "150000": 16, "150481": 15, "152": 16, "152m": 9, "154": 16, "16": 16, "17668": 16, "1792": 16, "18": 15, "1800": 16, "188316": 15, "1900": 16, "199": 16, "1d": [5, 6, 11], "1e": 6, "1st": 8, "2": [5, 6, 8, 10, 12, 13, 15, 16], "20": [3, 16], "200": [6, 16], "2000": 15, "2018": 16, "2020": 16, "2023": 16, "203": 16, "2048": 16, "208": 16, "209274": 15, "225348": 15, "228": 16, "232": 16, "23t19": 16, "24": 9, "242": 16, "243": 16, "243452": 15, "2452": 16, "248": 16, "2494": 16, "25": [6, 16], "2500": 16, "256": [6, 16], "25600": 16, "269306": 15, "27": 16, "273596": 15, "28": [9, 15, 16], "289571": 15, "29": 16, "294573": 15, "299": 16, "2d": [6, 10], "3": [1, 5, 6, 8, 9, 12, 13, 15, 16, 18], "30": 16, "300": 16, "3000": 16, "304": 16, "305578": 15, "32": 16, "32000": 16, "33000": 16, "330315": 15, "341": 16, "345": 16, "35": 16, "350": 16, "35000": 16, "358426": 15, "36": 16, "38": 16, "380265": 15, "3d": 6, "3e9": 5, "3mb": 9, "3rd": 8, "4": [5, 6, 8, 9, 12, 15, 16], "403": 16, "41": 9, "420": 16, "421557": 15, "422": 16, "425674": 15, "43": 9, "44": 16, "440035779171833": 16, "466612": 15, "48": 16, "489": 16, "49": [15, 16], "499": 13, "5": [3, 5, 6, 8, 9, 10, 15, 16], "50": [6, 15, 16], "500": 16, "512": 16, "52": 16, "528361": 15, "54": [9, 16], "6": [6, 8, 15, 16], "600": 16, "6000": 16, "62": 16, "6369728": 9, "674443": 15, "68": 16, "681": 15, "684410678887588e": 16, "696": 9, "6a0": 3, "6a1": 3, "6kv_kmodem4": 16, "6mb": 9, "7": [6, 15, 16], "70": 16, "700": 16, "709568": 15, "71": 9, "715874": 15, "730": 16, "735": 16, "73g": 9, "73gb": 9, "75": 16, "750": 16, "78": 15, "8": [1, 8, 13, 15, 16], "80": 16, "82": 16, "832904": 15, "874502": 15, "88": 16, "9": [1, 5, 15, 16, 18], "920": 16, "96": 16, "98000": 15, "99995": 15, "99996": 15, "99997": 15, "99998": 15, "99999": 15, "A": [1, 3, 5, 6, 7, 8, 13, 15, 16], "At": [1, 3], "Be": 5, "By": [9, 10], "For": [6, 8, 10, 13, 16], "If": [1, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18], "In": [5, 6, 8, 15, 16], "It": [0, 3, 6, 13, 16], "Its": [6, 8], "NOT": 8, "Not": [6, 16], "On": [3, 18], "One": 6, "The": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16], "These": [7, 9, 16], "To": [1, 3, 5, 6], "__name__": 1, "_attr": 12, "_build": 3, "_hl": 13, "_offset": 10, "a_n": 6, "aa0": 16, "abc": 13, "abil": 9, "about": [0, 9], "abov": [5, 8, 16], "absolut": [6, 8, 16], "abstract": 1, "acceler": 0, "accept": 8, "access": [3, 5, 8, 12, 13], "accessor": 8, "accord": 6, "acquisit": [8, 13], "across": 13, "action": 3, "activ": [6, 18], "actual": 6, "ad": [6, 7, 10, 12, 13], "adc": [6, 16], "adc_bin": 16, "adc_column": [6, 16], "adc_rang": [6, 16], "add": [1, 6, 8, 9, 10, 12, 13, 14], "add_attribut": 8, "add_delay_offset": 8, "add_energy_offset": 8, "add_featur": 6, "add_jitt": 8, "add_offset": 6, "add_rang": 6, "add_time_stamped_data": [8, 10], "addit": [6, 7, 8, 10, 11, 12, 13, 16], "addition": 3, "adjust": [6, 8], "adjust_energy_correct": [6, 8], "adjust_rang": 6, "administr": 16, "adopt": 6, "affin": 8, "after": [5, 6, 10], "ag": 13, "against": 1, "ahead": 6, "algorithm": [6, 8, 16], "alia": 13, "alias": [8, 13, 16], "alias_dict": [8, 12, 13], "alias_kei": 13, "align": [6, 8], "align_dld_sector": [6, 8], "all": [1, 5, 6, 8, 10, 11, 13, 16, 18], "allow": [3, 5, 6, 10, 16], "alluserprofil": 16, "allusersprofil": 7, "along": [5, 6, 8, 17], "alongsid": 13, "alreadi": [6, 9, 14], "also": [1, 3, 5, 6, 7, 8, 10, 16], "altern": [6, 7, 8, 16], "amalgam": 13, "among": 6, "amount": [6, 8], "amp": [8, 10], "amplitud": [5, 6, 8, 10, 16], "amplitude2": 6, "an": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "analog": [6, 16], "analysi": 0, "analysis_data": 9, "angl": [0, 6, 8], "ani": [5, 7, 8, 12, 13, 14, 16], "annot": 6, "anyth": 8, "apertur": 16, "aperture_config": 16, "api": [5, 8, 12, 16], "append": [6, 8, 14, 15], "append_delay_axi": [6, 8], "append_energy_axi": [6, 8], "append_k_axi": 6, "append_tof_ns_axi": [6, 8], "appli": [5, 6, 8, 10, 16], "applic": [6, 8, 9, 10, 16], "apply_correct": [6, 8], "apply_dfield": 6, "apply_energy_correct": [6, 8], "apply_filt": 10, "apply_jitt": [8, 10], "apply_momentum_calibr": 8, "apply_momentum_correct": 8, "apply_offset_from_column": 6, "approach": 5, "appropri": 3, "approv": 1, "approx": 16, "approxim": [6, 8, 16], "ar": [1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 16], "archiv": [8, 13, 16], "archiver_channel": [8, 13], "archiver_url": [13, 16], "area": 6, "arg": 8, "argument": [5, 6, 7, 8, 10, 11, 12, 13], "around": [6, 8, 16], "arrai": [5, 6, 8, 12, 13], "arriv": 16, "arrival_tim": 16, "asap3": 16, "ascal": 6, "assembl": 6, "assert": 9, "asserterror": 8, "assign": 16, "associ": [6, 13], "assum": [1, 6, 12], "assumpt": 10, "asymmetr": 6, "attempt": 14, "attr": 12, "attribut": [1, 6, 8, 12, 13, 16], "attributeerror": [5, 12], "aug": 6, "augment": [6, 13], "author": 13, "auto": [3, 8, 13], "auto_detect": 8, "automat": [3, 12, 13], "auxiliari": [13, 16], "avail": [5, 6, 8, 9, 13], "available_channel": 13, "averag": 16, "awar": 5, "ax": [5, 6, 8, 10, 12, 15, 16], "axi": [5, 6, 8, 11, 12, 16], "axis_dict": 12, "b": [1, 3, 6, 8, 16], "back": 13, "backend": [6, 8, 11], "background": 16, "backward": 10, "backward_fill_lazi": 10, "bam": 16, "bar": [5, 8, 16], "base": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16], "base_dictionari": 7, "base_fold": 13, "baseload": [1, 6], "bda": 16, "beam": 16, "beamlin": [1, 16], "beamtim": [13, 16], "beamtime_dir": 16, "beamtime_id": [13, 16], "beamtimeid": 16, "becaus": 5, "becom": 13, "been": [3, 8, 12], "befor": [1, 5, 6, 8, 10, 16], "behav": [5, 8], "behavior": [5, 14], "behind": 0, "being": 10, "below": [1, 5, 7, 16, 18], "berlin": [13, 17], "best": 12, "better": 16, "between": [3, 5, 6, 8, 10, 13, 16], "bia": [6, 8, 16], "bias": [6, 8], "bias_column": [8, 16], "bias_kei": [6, 8, 16], "billauer": 6, "bin": [0, 4, 6, 8, 11, 13, 16, 17, 18], "bin_and_load_momentum_calibr": 8, "bin_cent": 5, "bin_centers_to_bin_edg": 5, "bin_data": 6, "bin_datafram": [5, 6, 8, 15], "bin_edg": 5, "bin_edges_to_bin_cent": 5, "bin_partit": [5, 15], "bin_rang": 6, "binax": 15, "bind": [6, 8], "binned_data": 8, "binrang": 15, "binsearch": 5, "binwidth": 6, "bisect": 5, "bit": [13, 16], "bit_mask": 13, "bitwis": 13, "bla": [5, 8, 16], "bokeh": [6, 8, 11], "bool": [5, 6, 7, 8, 9, 10, 11, 13], "both": [6, 8, 13, 14, 16], "bound": 10, "boundari": 6, "branch": [1, 3], "brief": 1, "brillouin": 6, "broken": [1, 16], "buffer": 13, "buffer_file_handl": 13, "bug": 1, "build": 3, "built": 3, "bunch_first_index": 16, "bvec": 6, "bz": [8, 16], "c": [12, 16], "c_center": 6, "c_convers": 6, "c_det": 6, "c_start": 6, "c_step": 6, "ca_in_channel": 16, "ca_siz": 16, "calc_geometric_dist": 6, "calc_inverse_dfield": 6, "calc_symmetry_scor": 6, "calcul": [5, 6, 8, 13, 16], "calib_typ": 6, "calibr": [0, 4, 8, 16], "calibrate_delay_axi": 8, "calibrate_energy_axi": 8, "calibrate_momentum_ax": 8, "calibration_data": 9, "calibration_method": [8, 16], "call": [5, 15], "callabl": 10, "can": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18], "cancel": 3, "candid": 6, "cannot": [7, 13], "care": 10, "cartesian": 6, "carv": 16, "case": [5, 6, 8, 14], "caus": 5, "ccw": 6, "cd": [3, 18], "cdeform": 6, "cdeform_field": [6, 8], "cdeformfield": 6, "center": [5, 6, 8, 16], "center_pixel": [6, 8, 16], "centroid": 6, "certain": 6, "ch6": 16, "chang": [1, 6, 8, 10, 16, 18], "channel": [8, 12, 13, 16], "channel_dict": 13, "channelalia": 16, "check": [1, 3, 5, 6], "checkout": 1, "choos": [3, 6, 8, 16], "chosen": 5, "circl": 6, "circular": 6, "class": [1, 6, 8, 9, 13, 14], "cleanup_oldest_scan": 13, "clear": 1, "click": 3, "clone": [1, 3, 18], "close": 6, "closest": 6, "cm": 6, "cm2palett": 6, "cmap": 6, "cmap_nam": 6, "co": 6, "code": [1, 5, 6, 13], "coeff": 6, "coeffici": 6, "col": [6, 8, 10, 15], "collabor": 1, "collect": [0, 6, 8, 13, 16], "collect_metadata": [8, 13], "color": 6, "color_clip": [6, 16], "colormap": 6, "cols_jitt": 10, "column": [5, 6, 8, 10, 11, 13, 15, 16], "column_index": 6, "column_nam": 10, "com": [1, 3, 9, 18], "combin": [5, 8, 13, 16], "come": 9, "command": 9, "commit": 1, "commun": 1, "comp": 16, "compar": [13, 16], "compat": 12, "compens": 16, "complet": [7, 9, 12, 13], "complete_dictionari": 7, "composit": 6, "comput": [5, 8, 10, 16, 17], "compute_kwd": 13, "compute_length": 10, "concaten": 13, "concatenate_channel": 13, "concis": 1, "concurr": 3, "conda": 18, "config": [0, 1, 3, 4, 6, 8, 13, 16], "config_dict": 7, "config_path": 7, "configur": [0, 3, 7, 9, 12, 13, 17], "confirm": [3, 13], "conflict": 3, "congruent": 5, "consecut": 10, "consid": [6, 12], "consist": [10, 16], "constant": [6, 8], "constrain": 6, "constrained_layout": 15, "construct": [6, 13], "contain": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "content": [3, 7, 13], "contrast": 16, "contribut": 2, "control": 14, "convers": [6, 13], "convert": [5, 6, 8, 12, 13, 16], "coord": [6, 12, 15], "coordin": [6, 8, 12, 16], "coordinate_transform": 6, "coordtyp": 6, "copi": [3, 8, 9, 13, 16], "copy_tool_dest": 16, "copy_tool_kwd": 16, "copy_tool_sourc": 16, "copytool": 13, "core": [0, 4, 5, 7, 10, 13, 14, 16], "correct": [0, 8, 12, 16], "corrected_delay_column": 16, "corrected_tof_column": [6, 16], "corrected_x_column": [6, 16], "corrected_y_column": [6, 16], "correction_funct": 6, "correction_typ": [6, 8, 16], "correctli": 1, "corrector": 8, "correspond": [5, 6, 8, 10, 12, 13, 16], "count": [5, 11, 13], "countrat": 13, "cover": [1, 6, 8, 10], "cp": 3, "cpu": [5, 8, 15], "cpy": 8, "creat": [1, 3, 7, 9, 13, 18], "create_buffer_fil": 13, "create_dataframe_per_channel": 13, "create_dataframe_per_electron": 13, "create_dataframe_per_fil": 13, "create_dataframe_per_puls": 13, "create_dataframe_per_train": 13, "create_multi_index_per_electron": 13, "create_multi_index_per_puls": 13, "create_numpy_array_per_channel": 13, "creation": 3, "cross": 6, "crosshair": 6, "crosshair_radii": 6, "crosshair_thick": 6, "cryo_temperatur": 16, "cryotemperatur": 16, "cstart": [6, 16], "cstep": [6, 16], "csv": 13, "ctime": 13, "cube": 6, "current": [6, 7, 8, 9, 10, 13, 16], "curv": [6, 8, 16], "custom": 6, "cutoff": 16, "cw": 6, "d": [5, 6, 8, 16], "dak": 15, "daq": [13, 16], "dask": [0, 5, 6, 8, 10, 13, 16, 17], "data": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 17], "data_fil": [6, 8], "data_nam": 9, "data_parquet_dir": [13, 16], "data_raw_dir": [13, 16], "data_typ": 13, "dataarrai": [5, 6, 8, 12], "dataconvert": 12, "datafil": [6, 8], "dataformat": 13, "datafram": [0, 4, 5, 6, 8, 13, 16, 17], "dataframe_electron": 13, "dataframe_puls": 13, "dataset": [0, 3, 4, 6, 8, 13, 15, 16], "datasetsmanag": 9, "datastream": 0, "date": 1, "dbc2": 16, "dct": 11, "dd": 13, "ddf": [8, 13, 15], "de": 16, "decod": 13, "decreas": [6, 8], "default": [5, 6, 7, 8, 10, 11, 12, 13, 14, 17], "default_config": [7, 16], "defin": [0, 5, 6, 8, 9, 13, 16, 17], "define_featur": 8, "definit": [5, 8, 12, 16], "deform": [6, 8], "delai": [8, 13, 16], "delay_column": [6, 16], "delay_mm": 6, "delay_rang": [6, 8], "delay_range_mm": 6, "delaycalibr": [6, 8], "delaystag": 16, "delet": [10, 13], "delta": 6, "demonstr": [0, 17], "depend": [1, 3, 8, 13, 18], "deploi": 3, "deploy": 3, "deriv": 6, "describ": [5, 6, 8, 12], "descript": [1, 13], "desi": 17, "design": [3, 6], "desir": 13, "dest": 13, "dest_column": [8, 10], "destin": [6, 8, 10, 13], "detail": [6, 7, 8], "detect": [6, 8, 13], "detector": [6, 13, 16], "detector_coordinates_2_k_coordin": 6, "detector_rang": [6, 16], "determin": [6, 8, 13], "dev": [1, 18], "develop": [0, 17], "deviat": 6, "df": [5, 6, 10, 13, 15], "df_partit": 8, "dfield": 6, "dfop": [6, 10], "dfpid": 8, "dgroup": 16, "diag": 16, "diagnost": [0, 4, 6, 8, 16], "diamet": [6, 16], "dict": [5, 6, 7, 8, 9, 11, 12, 13, 14], "dictionar": 6, "dictionari": [5, 6, 7, 8, 9, 11, 12, 13, 14, 16], "dictmerg": 6, "differ": [3, 6, 7, 8, 13, 16], "differenti": 6, "difficult": 5, "digit": [6, 16], "dim": [12, 15], "dimens": [5, 6, 8, 10, 12], "dimension": [0, 5, 8, 10, 12, 13], "dir": 9, "direct": [6, 8, 16], "directli": [6, 8, 15, 16], "directori": [1, 3, 7, 9, 13, 16], "disabl": 16, "discov": 6, "disk": 13, "dispers": 6, "displac": 6, "displai": [6, 8, 16], "dispos": 16, "distanc": [6, 8, 16], "distinguish": 13, "distort": [6, 8, 16], "distribut": [6, 10, 17, 18], "divid": 3, "dld1": 16, "dld_time": 16, "dldaux": 16, "dldauxchannel": 16, "dldposi": 16, "dldposx": 16, "dldsectorid": [13, 16], "dldtime": 16, "dldtimebins": 16, "dldtimestep": [13, 16], "do": [3, 6, 8, 18], "doc": [1, 3], "document": [1, 2, 7], "doe": [6, 9, 12, 13, 15], "don": [3, 8], "done": [6, 18], "doubl": 6, "down": 3, "download": 3, "draft": 3, "drift": 6, "drive": [8, 13], "drop": [10, 13], "drop_column": 10, "dummi": 13, "dup": 6, "duplic": [6, 14], "duplicate_polici": 14, "duplicateentryerror": 14, "dure": [6, 13], "e": [3, 5, 6, 8, 11, 16, 18], "e0": [6, 16], "each": [5, 6, 8, 10, 11, 13, 15, 16], "easi": [5, 8, 9, 12], "edc": 6, "edg": [5, 8, 11], "edit": [3, 18], "either": [6, 8, 18], "elaps": 13, "electron": [6, 8, 13], "electronid": 13, "element": [5, 6, 8, 12], "eln_data": 8, "empti": [6, 7, 13], "encod": [13, 16], "encoder_posit": 16, "end": [0, 1, 5, 6, 8, 13, 16], "endstat": 8, "energi": [8, 12, 15, 16], "energy_column": [6, 16], "energy_offset": 6, "energy_scal": [6, 8, 16], "energycal_2019_01_08": 9, "energycal_2020_07_20": 9, "energycalibr": [6, 8], "engin": 16, "enough": 10, "ensur": [0, 1], "entir": [10, 13], "entri": [3, 5, 6, 8, 14, 16], "environ": [1, 3, 18], "epic": [8, 13, 16], "epics_pv": 16, "equal": [6, 16], "equat": 6, "equiscal": [6, 8], "equival": 6, "error": [3, 5, 9, 13, 14], "estim": 6, "etc": [6, 7, 13, 16, 18], "ev": [6, 16], "evalu": 0, "even": 16, "evenli": 13, "event": [0, 3, 6, 8, 15, 16], "eventid": 16, "everi": [3, 16], "exampl": [1, 5, 6, 8, 15, 17, 18], "example_config": 16, "example_dset_info": 9, "example_dset_nam": 9, "example_subdir": 9, "exceed": 5, "except": [13, 14], "exclud": 13, "execut": 3, "exist": [6, 7, 8, 13, 14], "existing_data_path": 9, "exp": 16, "expect": 6, "experi": [5, 16], "explan": 14, "explod": 13, "express": [6, 13], "extend": 9, "extens": [8, 13], "extent": 6, "extern": [8, 13], "extr": 16, "extra": [6, 8], "extract": [6, 8, 13, 16], "extract_bia": 6, "extract_delay_stage_paramet": 6, "extractor_curr": 16, "extractor_voltag": 16, "extractorcurr": 16, "extractorvoltag": 16, "f": [6, 16], "f1": 16, "f_end": 13, "f_start": 13, "f_step": 13, "fa_hor_channel": 16, "fa_in_channel": 16, "fa_siz": 16, "factor": [6, 16], "faddr": [8, 12], "fail": 13, "fair": 0, "fake": [0, 17], "fals": [3, 5, 6, 7, 8, 10, 13, 16], "fast": [5, 8, 16], "fast_dtw": 8, "fastdtw": [6, 16], "fastdtw_radiu": [8, 16], "faster": [5, 15], "featrang": 6, "featur": [0, 1, 5, 6, 8, 9, 16], "feature_extract": [6, 8], "feature_point": 16, "feature_select": [6, 8], "feature_typ": 6, "feedback": 1, "feel": 18, "fermi": 6, "fetch": [8, 9, 13], "few": 1, "fhi": [13, 17], "fid": 13, "field": [6, 8, 16], "fig": 15, "figsiz": [6, 15], "figur": [6, 11], "file": [1, 3, 5, 6, 7, 8, 12, 13, 17], "file_path": 13, "file_sort": 13, "filenam": [6, 8, 9, 13, 16], "filenotfounderror": [7, 13], "fill": [6, 10, 13, 16], "filter": [8, 10], "filter_column": 8, "final": 16, "find": [5, 6, 8, 16], "find_bias_peak": 8, "find_correspond": 6, "find_nearest": 6, "fir": 13, "first": [6, 7, 8, 13, 15, 16], "first_event_time_stamp_kei": [13, 16], "firsteventtimestamp": [13, 16], "fit": 6, "fit_energy_calibr": 6, "fix": [1, 6, 10], "fixed_cent": 6, "fl0": 16, "fl1": 16, "fl1user1": 16, "fl1user2": 16, "fl1user3": 16, "fl2photdiag_pbd2_gmd_data": 16, "fl2user1": 16, "fl2user2": 16, "flash": [13, 17], "flash1_user1_stream_2": 16, "flash1_user2_stream_2": 16, "flash1_user3_stream_2": 16, "flash2_user1_stream_2": 16, "flash2_user2_stream_2": 16, "flexibl": 5, "flight": [6, 8, 13, 16], "flip": [6, 8, 16], "flip_delay_axi": [6, 8], "flip_time_axi": 16, "float": [5, 6, 8, 10, 11, 13], "float32": 13, "float64": 15, "flow": 8, "fluctuat": 16, "fmc0": 16, "folder": [7, 8, 9, 13, 16], "folder_config": [7, 16], "follow": [1, 3, 5, 6, 8, 12, 16], "forc": 13, "force_copi": 13, "force_recr": 13, "fork": 1, "form": [6, 8, 10], "format": [0, 1, 6, 7, 8, 12, 13, 16], "formula": 6, "forward": [6, 10, 13, 16], "forward_fill_iter": 16, "forward_fill_lazi": 10, "found": [6, 7, 8, 12, 13], "frame": [0, 8], "free": [3, 6, 18], "from": [1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16], "from_panda": 15, "ftype": 13, "full": [12, 13], "fulli": [7, 9], "function": [0, 6, 7, 8, 10, 11, 13, 15, 16], "funtion": 1, "further": 16, "futur": 3, "fwhm": 16, "g": [3, 6, 8, 11, 16], "gamma": [6, 16], "gamma2": 6, "gather_calibration_metadata": 6, "gather_correction_metadata": 6, "gather_fil": 13, "gather_metadata": 13, "gaussian": [6, 8, 16], "gb": 3, "gd_w110": 9, "ge": 6, "gener": [0, 1, 3, 6, 8, 13, 16, 17], "generate_inverse_dfield": 6, "generate_splinewarp": 8, "geometr": 6, "get": [2, 13], "get_archiver_data": 13, "get_attribut": 13, "get_channel": 13, "get_count_r": 13, "get_elapsed_tim": 13, "get_files_from_run_id": 13, "get_groups_and_alias": 13, "get_load": 13, "get_metadata": 13, "get_names_of_all_load": 13, "get_normalization_histogram": 8, "get_start_and_end_tim": 13, "get_target_dir": 13, "getdata": 16, "getter": 8, "gid": [13, 16], "git": [1, 3, 18], "github": [1, 3, 18], "github_token": 3, "give": [1, 9, 14, 15, 16], "given": [5, 6, 7, 8, 9, 10, 13, 16], "glob": 13, "gmd": 16, "gmd_data_gmd_data": 16, "gmdbda": 16, "go": 3, "good": [6, 8], "gpf": 16, "graph": [6, 15, 16], "grid": [6, 8, 11, 16], "grid_histogram": [8, 11], "griddata": 6, "group": [3, 13, 16], "group_nam": [13, 16], "groupnam": 13, "guess": 12, "gui": 8, "guid": 1, "guidelin": 2, "h": 16, "h5": [8, 13, 16], "h5_file": 13, "h5_path": 13, "h5file": 13, "h5group": 13, "h5py": 13, "ha": [3, 5, 6, 8, 10, 13, 16], "half": 16, "hand": 16, "handl": [0, 11, 13], "handler": 14, "happen": 5, "have": [1, 3, 6, 8, 10, 12, 16, 18], "hdf5": [6, 8, 12, 13, 16], "hdf5_alias": [13, 16], "hdf5_groupnam": [13, 16], "hdf5_to_arrai": 13, "hdf5_to_datafram": 13, "hdf5_to_timed_arrai": 13, "hdf5_to_timed_datafram": 13, "help": [10, 18], "helper": 13, "here": [3, 5, 6, 16], "hex": 6, "hextof": [8, 13, 17], "hierach": 16, "hierarch": 7, "high": [8, 16], "highest": [5, 6], "highlight": 6, "hinder": 6, "hist": [5, 8], "hist_mod": [5, 8, 15, 16], "histkwd": [8, 11], "histogram": [5, 8, 11, 16], "histogramdd": 5, "histval": 11, "home": [7, 16], "homographi": 6, "hook": 1, "hope": 1, "hor": 16, "horizont": [6, 11], "how": [0, 2, 5, 6, 8], "html": [3, 6], "http": [1, 3, 6, 9, 16, 18], "hyper": 6, "hypercub": 5, "hypervolum": 6, "hz": 13, "i": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18], "id": [3, 6, 8, 13, 16], "id_1_trace_1": 6, "id_1_trace_2": 6, "id_2_trace_1": 6, "id_2_trace_2": 6, "idea": 3, "ideal": 8, "ident": 13, "identifi": [8, 13], "ignor": [9, 12, 13], "ignore_zip": 9, "il": 6, "imag": [6, 8], "imagej": 12, "imkwd": 6, "implement": [1, 6, 8, 9, 13, 15, 16], "import": [9, 15], "improv": [5, 15], "imshow": [6, 15], "includ": [1, 3, 6, 8, 10, 11, 12, 13, 16], "include_cent": [6, 8, 16], "increas": [6, 8], "increment": [3, 13], "index": [5, 6, 10, 13], "indic": 8, "individu": [8, 13, 16], "inf": [8, 10], "infer": [6, 12], "infer_oth": [6, 8], "info": 9, "inform": [0, 1, 6, 8, 9, 12, 13, 16], "inherit": 13, "initi": [6, 8, 10, 13, 16], "initialize_path": 13, "inplac": 10, "input": [5, 6, 8, 12, 13, 16], "input_column": 13, "input_fil": [8, 12, 16], "insid": 13, "instal": [0, 1, 3], "instanc": [6, 8, 11, 13, 16], "instead": [8, 12], "instrument": [13, 16], "int": [5, 6, 8, 10, 11, 13], "integ": [5, 6, 8], "integr": [6, 16], "intend": [5, 16, 18], "intens": 16, "interact": [6, 8], "interest": [6, 13], "interfac": 1, "intermedi": 16, "intern": 5, "interp_ord": 6, "interpol": [6, 8, 10], "interpret": 8, "interv": [8, 10, 13], "introduc": 1, "inv_dfield": 8, "invalid": 6, "invers": [6, 8], "involv": 6, "io": [0, 4], "ipykernel": 18, "issu": [1, 3, 10], "item": 7, "iter": [7, 10, 13, 16], "its": [8, 13], "jitter": [5, 8, 10, 16], "jitter_amp": [8, 16], "jitter_col": [8, 16], "jitter_column": 16, "jitter_typ": 10, "job": [3, 16], "json": [7, 13, 16], "json_path": 9, "jupyt": 18, "k": [6, 8, 16], "k_coord_a": [6, 8], "k_coord_b": [6, 8], "k_distanc": [6, 8], "kc": 6, "keep": [6, 7, 8, 14], "kei": [5, 6, 7, 8, 12, 13, 14, 16], "kernel": 18, "keyerror": 5, "keyword": [5, 6, 8, 11, 12, 13, 16], "kinet": [6, 8, 16], "kit": [6, 13], "known": 6, "kr": 6, "ktof": 16, "kwarg": 9, "kwd": [5, 6, 8, 10, 11, 12, 13], "kx": [6, 8, 16], "kx_column": [6, 16], "kx_scale": 16, "ky": [6, 8, 16], "ky_column": [6, 16], "ky_scal": 16, "l": 13, "lab": [8, 18], "label": 6, "landmark": 6, "larg": 5, "larger": 6, "laser": 16, "last": [5, 6, 8], "latest": [1, 3], "layer": 15, "lazi": 0, "lean": [5, 8], "least": [6, 13, 15], "left": 5, "legaci": [5, 8], "legend": [6, 8, 11], "legend_loc": 6, "legkwd": [6, 8, 11], "len": [15, 16], "length": [10, 16], "lens_mode_config": 16, "level": [6, 9, 13], "librari": [7, 8, 9], "like": [1, 5, 12], "limit": [5, 8], "line": 6, "linekwd": 6, "linesegkwd": 6, "linewidth": 6, "linspac": 15, "lint": 1, "linux": [7, 16, 18], "list": [5, 6, 8, 9, 10, 11, 13, 16], "lmfit": [6, 8, 16], "lmkcenter": 6, "load": [6, 7, 8, 9, 12, 13, 16], "load_bias_seri": 8, "load_config": 7, "load_data": 6, "load_datasets_dict": 9, "load_dfield": 6, "load_h5": 12, "load_parquet": 13, "load_tiff": 12, "loader": [0, 2, 4, 6, 8, 16], "loader_interfac": 13, "loader_nam": 13, "local": [0, 1, 3, 6, 8, 13, 16, 17, 18], "localdatastor": 16, "locat": [6, 13, 16], "lock": 16, "loess": [6, 8], "look": [5, 6, 8, 13, 16], "lookahead": 6, "lorentz": 6, "lorentzian": [6, 8, 16], "lorentzian_asymmetr": [6, 8], "lot": 16, "lower": [6, 10], "lower_bound": [8, 10], "lowerbound1": 6, "lowerbound2": 6, "lsqr": [6, 8], "lstsq": [6, 8], "m": [1, 13, 15, 16, 18], "m1": 16, "m2": 16, "m3": 16, "machin": 1, "maco": 18, "macro": 13, "macrobunch": 13, "made": [1, 5, 8], "mai": 6, "main": [1, 3, 6], "main_dict": 6, "maintain": [0, 1, 2], "make": [1, 3, 5, 11, 16, 18], "manag": 9, "mani": 10, "manipul": 14, "manner": 16, "manual": [3, 8, 12, 13], "map": [6, 10, 13], "map_2d": 10, "map_columns_2d": 10, "map_coordin": 6, "map_partit": 6, "mapkwd": 6, "marker": 13, "mask": 13, "match": 6, "matlab": 6, "matplotlib": [6, 8, 11, 15], "matrix": 6, "max": 10, "max_valu": 8, "maxima": 6, "maximum": [6, 8], "maxwel": 16, "mcpfront": 16, "md22": 16, "mean": [6, 8, 10, 16], "meaningless": 13, "mechan": 16, "mechani": 16, "mehthod": 15, "member": 1, "merg": [1, 6, 7, 14], "mesh": 6, "messag": [1, 14], "meta": [6, 13, 14], "meta_handl": 13, "metadata": [0, 4, 6, 8, 12, 13, 16], "metadata_config": 13, "metadataretriev": 13, "metahandl": [8, 13, 14], "meter": 6, "method": [1, 5, 6, 8, 13, 14, 15, 16], "meti": [13, 17], "microbunch": 13, "microscop": [13, 17], "middl": 8, "might": [5, 6, 8], "millisecond": [13, 16], "mimic": 5, "min": 6, "min_valu": 8, "minima": 6, "minimum": [6, 8], "mirror": [8, 13, 16], "mirrorutil": 13, "mismatch": 5, "miss": [6, 7, 8, 13], "mm": 6, "mm_to_p": 6, "mode": [5, 6, 8, 12, 13, 16, 18], "model": 6, "modif": 16, "modul": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "momentum": [8, 13, 17], "momentumcorrector": [6, 8], "monitor": [3, 16], "monochrom": 16, "monochromat": 16, "monochromatorphotonenergi": 16, "monoton": 8, "more": [1, 10, 12], "most": [5, 13, 16], "mostli": [6, 13, 16], "motor": 16, "movement": 9, "mpe": [6, 13, 17], "mpg": 16, "ms_marker": 13, "ms_markers_group": [13, 16], "msmarker": [13, 16], "much": [5, 10], "multi": 0, "multi_index": 13, "multicolumn": 13, "multidetector": 13, "multidimension": [1, 5, 6, 13, 16], "multiindex": 13, "multipl": [6, 10, 11, 15], "multiprocess": [5, 8], "multithread": 16, "must": [1, 8, 10], "mycopi": 13, "mymakedir": 13, "n": [5, 6, 8, 13, 15, 16], "n_core": [5, 8], "n_cpu": [5, 8], "n_pt": 15, "name": [3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18], "nan": [10, 13], "nanosecond": [6, 8, 16], "narrai": 6, "narrow": 8, "navig": [1, 3], "nbin": 15, "ncol": [8, 11], "ndarrai": [5, 6, 8, 10, 11, 12, 13], "ndimag": 6, "nearest": 6, "necessari": [1, 3, 16], "need": [6, 8, 12, 16], "neg": 6, "neighbor": 6, "neither": [7, 13], "network": [8, 13], "never": [5, 15], "new": [1, 3, 6, 9, 10, 13, 14, 18], "new_cent": 6, "new_dataset": 9, "new_tof_column": 6, "new_x_column": 6, "new_y_column": 6, "next": [6, 8], "nexu": [0, 8, 12, 16], "nice": 14, "nois": [5, 8, 10], "none": [5, 6, 7, 8, 10, 11, 12, 13, 14], "nonlinear": 6, "nor": [7, 13], "normal": [5, 6, 7, 8, 10, 16], "normalization_histogram": 8, "normalize_ord": [8, 16], "normalize_span": [8, 16], "normalize_to_acquisition_tim": 8, "normspec": 6, "notadirectoryerror": 13, "note": [3, 13], "notebook": [0, 3, 8, 16, 18], "notimplementederror": [6, 12], "now": [13, 18], "np": [5, 6, 8, 10, 11, 12, 13, 15], "np_arrai": 13, "npartit": 15, "nrang": 6, "ntask": 16, "ntrace": 6, "num_cor": [8, 16], "numba": [0, 5, 8, 15, 16], "numba_bin": 5, "numba_histogramdd": 5, "number": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16], "numpi": [5, 6, 8, 12, 13, 15, 16], "nx": 8, "nxmpe": 16, "nxmpes_config": 16, "nxmpes_config_hextof_light": 16, "o": 9, "object": [5, 6, 8, 9, 13, 14], "obtain": [6, 13, 16], "occur": [3, 13, 16], "off": [5, 13], "offset": [6, 10, 16], "offset_by_other_column": 10, "offset_column": 10, "often": 10, "old": 13, "oldest": 13, "omg": 16, "omit": [6, 8], "onc": [1, 18], "one": [3, 5, 6, 8, 10, 12, 13, 14, 16], "ones": [1, 6], "onli": [3, 5, 6, 8, 10, 12, 13], "onto": 8, "open": [1, 3, 8, 16], "opencomp": [1, 3, 18], "openmp": 8, "oper": [0, 4], "opposit": 13, "optim": 6, "option": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "order": [5, 6, 7, 8, 12, 13, 16], "org": [3, 9], "origin": [1, 6, 8], "orthogon": 6, "orthorhomb": 6, "osc": 16, "oserror": 13, "other": [6, 8, 10, 13, 16], "other_entri": 6, "otherwis": [5, 6, 10, 12, 14], "our": 16, "out": [3, 6, 8, 13], "output": [6, 11, 12, 13], "output_column": 13, "outsid": [5, 8], "over": [5, 6, 7, 8, 13, 15], "overflow": 5, "overlap": [6, 16], "overrid": [6, 8], "overwrit": [7, 8, 13, 14, 16], "overwritten": [6, 16], "ownership": 13, "p": [6, 16], "p1": 16, "p1_kei": [6, 16], "p1_valu": 6, "p2": 16, "p2_kei": [6, 16], "p2_valu": 6, "p_rd": 16, "packag": [0, 3, 10, 14, 16], "package_dir": 7, "page": 3, "pair": [8, 10, 12], "pairwis": 6, "palett": 6, "panda": [13, 17], "pandoc": 3, "panel": [6, 8], "parallel": [5, 6, 8, 16], "param": 13, "paramet": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "parquet": [13, 16], "parquet_handl": 13, "parquet_path": 13, "pars": [13, 16], "parse_config": 7, "parse_h5_kei": 13, "parse_metadata": 13, "parser": 13, "part": [5, 15], "particular": 6, "partit": [5, 8, 10, 17], "pass": [1, 5, 6, 7, 8, 10, 13, 16], "past": 10, "path": [3, 6, 7, 8, 12, 13, 15, 16], "path_to_remov": 9, "pathcorr": 6, "pattern": 13, "pbar": [5, 8, 16], "pbd": 16, "pbd2": 16, "pbk": 11, "pcent": 6, "pcolormesh": 6, "pd": [5, 6, 8, 10, 13, 15], "peak": [6, 8, 16], "peak_window": [6, 8, 16], "peakdet": 6, "peakdetect1d": 6, "peakdetect2d": 6, "peaksearch": 6, "per": [6, 8, 13, 16], "per_electron": [13, 16], "per_puls": [13, 16], "per_train": [13, 16], "perform": [5, 6, 13], "period": 6, "permiss": 3, "pg": 16, "pg2": 16, "phi": 16, "photoelectron": 0, "photoemiss": [0, 1, 5], "photon": 16, "pick": 6, "picosecond": [6, 8], "pip": [1, 3, 18], "pipx": [1, 3], "pixel": [6, 8, 16], "pkwindow": 6, "place": [7, 16], "plane": [6, 8], "plate": 6, "pleas": 1, "plot": [6, 8, 11, 15], "plot_single_hist": 11, "plt": 15, "po": 6, "poetri": [1, 3], "point": [5, 6, 8, 16], "point_a": [6, 8], "point_b": [6, 8], "pointop": 6, "poly_a": 6, "poly_energy_calibr": 6, "polynomi": [6, 8], "popul": 13, "port": [6, 13], "pose": 8, "pose_adjust": [6, 8], "posi": [12, 15], "posit": [6, 8, 16], "possibl": [3, 6, 10], "possibli": [6, 7], "posx": [12, 15], "pouter_ord": 6, "power": [5, 16], "pr": 3, "pre": [1, 7, 8], "pre_bin": 8, "preced": 13, "precompil": 5, "prefer": 7, "prefix": [3, 13, 16], "prereleas": 3, "present": [5, 6, 7, 8, 13, 14, 16], "preserve_mean": [6, 8, 10], "press": 3, "pressureac": 16, "prevent": 3, "preview": 8, "previou": [10, 14], "princip": 6, "print": [6, 8, 9, 13], "prioriti": [5, 8, 13], "probabl": 16, "probe": [6, 16], "procedur": 6, "process": [0, 1, 3, 6, 13, 16], "processor": [3, 8, 16, 18], "profil": 6, "progress": [3, 5, 8, 16], "project": [1, 3], "properti": [6, 8, 9, 13, 14], "proven": 0, "provid": [1, 5, 6, 7, 8, 10, 12, 13, 14, 16], "publish": 3, "pull": [2, 3, 18], "puls": [13, 16], "pulseid": [13, 16], "pulser": 16, "pulsersignadc": 16, "pump": [6, 16], "pumpprobetim": 16, "purpous": 15, "push": [1, 3], "pv": 16, "py": 13, "pyenv": 18, "pynxtool": [8, 12, 16], "pypi": [3, 18], "pyplot": [6, 8, 15], "pyproject": 3, "pytest": 1, "python": [1, 16, 18], "quad": 11, "qualit": 8, "quantiti": 6, "quasi": 16, "queri": 13, "queu": 3, "r": [3, 12, 15], "r_center": 6, "r_convers": 6, "r_det": 6, "r_start": 6, "r_step": 6, "radial": 16, "radii": 6, "radiu": [8, 16], "rais": [5, 6, 7, 8, 12, 13, 14], "randn": 15, "random": [11, 15], "rang": [5, 6, 8, 11, 13, 16, 17], "range_convert": 6, "rate": 13, "rather": 8, "raw": [3, 13, 16], "rbv": 16, "rd": 16, "rdeform": 6, "rdeform_field": [6, 8], "re": [13, 15], "read": [3, 6, 8, 12, 13, 16], "read_datafram": 13, "reader": [8, 12, 13, 16], "real": 9, "realist": 5, "realli": 15, "rearrang": 9, "rearrange_fil": 9, "rebas": 1, "recombin": [5, 16], "record": 9, "recreat": 13, "recurs": 14, "reduct": [6, 8, 10], "ref": 16, "ref_energi": [6, 8], "ref_id": [6, 8], "refer": [1, 6, 8, 16], "region": 6, "regist": 1, "registr": 6, "registri": 1, "rel": 6, "relat": [3, 6, 8], "relationship": 6, "releas": 2, "reli": 13, "remain": [8, 13], "remov": [3, 13, 16], "renam": 10, "render": 6, "reorder": 6, "repeat": 13, "replac": [6, 8, 13], "report": [6, 7, 13, 16], "repositori": [1, 3, 18], "repres": [5, 8, 12, 13], "represent": [6, 14], "request": [2, 3, 5, 13, 16, 18], "requir": [3, 5, 6, 13, 18], "reread": 13, "rerun": 9, "reserv": [13, 16], "reset": [6, 8, 13], "reset_deform": 6, "reset_multi_index": 13, "resolv": [0, 13, 16], "respect": [6, 13, 16], "respons": 3, "restor": 8, "result": [5, 6, 8, 13], "retain": 12, "retriev": [8, 13, 16], "rettig": 13, "return": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "return_edg": 5, "return_partit": 5, "returnedg": 5, "revers": 8, "review": 1, "rise": 8, "rmsnois": 6, "root": [13, 16], "rotat": [6, 8, 16], "rotation_auto": 6, "rotation_symmetri": [8, 16], "rotsym": 6, "rotvertexgener": 6, "routin": [0, 16], "row": [6, 8, 10, 15], "row_index": 6, "rst": 1, "rstart": [6, 16], "rstep": [6, 16], "rtype": 14, "run": [1, 3, 8, 10, 13, 16], "run_id": 13, "runtimeerror": 5, "rv": 11, "rvbin": 11, "rvrang": 11, "sa1": 16, "same": [8, 10, 14, 16], "sampl": [5, 6, 16], "sample_temperatur": 16, "samplebia": 16, "sampletemperatur": 16, "sase": 16, "sav": 16, "save": [7, 8, 12, 13, 16], "save_config": 7, "save_delay_calibr": 8, "save_delay_offset": 8, "save_energy_calibr": 8, "save_energy_correct": 8, "save_energy_offset": 8, "save_momentum_calibr": 8, "save_parquet": 13, "save_splinewarp": 8, "save_transform": 8, "save_workflow_param": 8, "savgol_filt": [6, 8], "scale": [6, 8, 10, 16], "scaling_auto": 6, "scan": [6, 8, 13], "scan0121_1": 9, "scan049_1": 9, "scatter": 6, "scatterkwd": 6, "schema": 13, "scicat": [13, 16], "scicat_token": [13, 16], "scicat_url": 16, "scientist": 1, "scipi": [6, 8], "score": 6, "script": [6, 18], "sdiag": 16, "sdir": 13, "search": [5, 6, 7, 13], "search_pattern": 13, "second": [6, 8, 13, 16], "section": [6, 16], "sector": [6, 8, 16], "sector_delai": [6, 8, 16], "sector_id_column": [6, 13, 16], "sector_id_reserved_bit": [13, 16], "sectorid": 13, "sed": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18], "sed_config": [7, 8, 16], "sed_fresh_copi": [7, 9], "sed_kernel": 18, "sedprocessor": 8, "see": [1, 3, 6, 8, 13, 16, 18], "seg": 6, "segment": 6, "select": [1, 3, 6, 8, 13, 16], "select_k_rang": 6, "select_slic": 6, "selector": [6, 13], "self": [6, 8], "separ": [6, 13], "sequenc": [5, 6, 8, 10, 11, 12, 13], "seri": [6, 8, 13], "set": [1, 3, 5, 6, 7, 8, 13, 17], "setup": 16, "sever": 0, "shall": 16, "shape": [5, 6, 8], "shell": 3, "shift": [6, 8], "ship": 16, "should": [1, 5, 6, 8, 9, 12, 16], "show": [5, 6, 8], "show_legend": 6, "showcas": 15, "sig_mov": 6, "sig_stil": 6, "sigma": [6, 16], "sigma_radiu": 16, "sign": [6, 8, 10, 16], "signal": [6, 8], "signific": [5, 13, 15], "significantli": 3, "similar": [5, 10, 13], "simpl": [5, 15], "simpli": 15, "simplify_binning_argu": 5, "simul": 15, "simultan": 10, "sinc": 16, "singl": [0, 5, 6, 8, 11, 12, 13, 15, 16], "single_event_data": 9, "sis8300": 16, "situat": 6, "size": [5, 6, 10, 13, 16], "skip": [3, 18], "skip_test": 5, "slice": [6, 8, 16], "slice_correct": 6, "slider": [6, 8], "slow": [3, 8], "small": [1, 15], "smallest": 10, "smooth": [6, 8, 16], "so": [3, 12, 16], "solv": 6, "some": 13, "soon": 16, "sort": [12, 13], "sourc": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "space": [3, 6, 8, 13], "span": [6, 8], "spars": 10, "spawn": [5, 8], "spec": [6, 13], "special": 16, "specif": [3, 6, 8, 13], "specifi": [5, 6, 8, 9, 10, 13], "spectra": 6, "spectral": 6, "spectroscopi": [0, 1], "speed": 13, "spheric": [6, 8], "sphinx": 3, "spline": [6, 8, 16], "spline_warp_estim": [6, 8], "splinewarp": 8, "split": 13, "split_channel_bitwis": 13, "split_dld_time_from_sector_id": 13, "split_sector_id_from_dld_tim": 16, "squar": 6, "stack": [6, 8, 12], "stage": [6, 16], "stamp": [8, 10, 13, 16], "standard": [6, 12], "start": [2, 5, 6, 8, 13, 16], "static": [6, 9, 16], "stdev": 10, "step": [3, 5, 6, 8, 13, 16], "still": 16, "stop": 6, "storag": [8, 16], "store": [5, 6, 8, 9, 13, 16], "str": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "stream": [13, 16], "stream_0": 16, "stream_1": 16, "stream_2": 16, "stream_4": 16, "stream_name_prefix": 16, "string": [5, 7, 12, 13], "structur": [13, 15, 16], "subclass": [1, 6], "subdir": 9, "subfunct": 12, "submit": 18, "subplot": 15, "subsequ": 16, "substitu": 8, "subtract": [6, 8, 10], "success": [1, 3, 16], "successfulli": 9, "suffici": 6, "suffix": 10, "sum": [6, 15], "sum_n": 6, "support": [6, 7, 8, 9, 10, 13], "supported_file_typ": 13, "sure": [3, 16], "surround": 6, "sxp": 13, "sy": 15, "sym": 6, "symmetr": 6, "symmetri": [6, 8, 16], "symscor": 6, "symtyp": 6, "sync": 16, "system": [6, 7, 13, 16], "system_config": [7, 16], "t": [3, 6, 8, 12, 16], "t0": [6, 8, 16], "t0_kei": [6, 16], "t0_valu": 6, "t_n": 16, "ta": 6, "tab": 3, "tabl": 15, "tabular": 8, "tag": 3, "take": [5, 7, 8, 10, 13], "taken": 6, "targcent": 6, "target": [6, 13], "target_column": 10, "tas2": 9, "td": 16, "temp_rbv": 16, "term": 6, "terrain_r": 6, "test": [1, 9, 16], "text": 11, "than": [8, 12], "thei": [6, 7, 8, 16], "them": [6, 8, 14, 16], "theme": 0, "therefor": 12, "thi": [0, 1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18], "thick": 6, "thin": 6, "those": [10, 18], "thread": [5, 8, 16], "threadpool_api": [5, 8, 16], "threadpool_limit": 8, "threads_per_work": [5, 8, 16], "three": 13, "through": [0, 1], "tht": 16, "tif": 8, "tiff": [8, 12], "time": [0, 6, 8, 10, 12, 13, 15, 16], "time0": [6, 16], "time0_mm": 6, "time1": 16, "time_offset": 6, "time_stamp": [8, 10, 13], "time_stamp_alia": [8, 13, 16], "time_stamp_column": 10, "timed_datafram": 8, "timed_dataframe_unit_tim": 16, "timestamp": [8, 10, 13, 16], "timinginfo": 16, "titl": 6, "tm": 16, "tmat": 6, "to_h5": 12, "to_nexu": 12, "to_tiff": 12, "tof": [6, 8, 16], "tof2ev": 6, "tof2evpoli": 6, "tof2n": 6, "tof_bin": [6, 16], "tof_binwidth": [6, 16], "tof_column": [6, 8, 13, 16], "tof_dist": 6, "tof_fermi": [6, 16], "tof_ns_column": [6, 8, 16], "tof_step_to_n": 8, "tof_voltag": 16, "tof_width": [6, 16], "tofvoltag": 16, "tog": 6, "token": [3, 13, 16], "toml": 3, "too": 8, "took": 16, "tool": [6, 8, 13, 16], "tooltip": 11, "top": 6, "total": [5, 15], "toward": 6, "tqdm": [5, 8], "trace": [6, 8, 16], "traces_norm": 6, "track": [0, 5], "trail": 14, "train": 13, "train_id": 13, "trainid": 13, "transform": [5, 6, 8, 17], "transform_typ": 6, "translat": [6, 8], "transpar": 13, "trarp": [0, 16], "tree": 13, "tremend": 13, "tri": [8, 12], "trigger": 3, "true": [5, 6, 7, 8, 9, 10, 11, 13, 15, 16], "trx": 16, "try": [5, 15, 16], "trz": 16, "ts_from": 13, "ts_to": 13, "tupl": [5, 6, 8, 11, 13], "turn": 5, "tutori": 3, "twice": 10, "two": [3, 6, 8, 10, 13], "type": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "typeerror": [5, 7, 8, 12], "typic": 16, "tzcyx": 12, "ubid_offset": 16, "uca": 16, "udld": 16, "ufa": 16, "uint32": 5, "uint64": 5, "unbin": 16, "uncategoris": 16, "undefin": [6, 13], "under": [8, 14], "underli": 8, "understand": 3, "uniform": [5, 6, 8, 10], "unimpl": 5, "union": [5, 6, 7, 8, 10, 12, 13], "unit": [8, 16], "unix": 13, "unmodifi": 8, "unnecessari": 3, "up": [1, 3, 6, 13], "updat": [3, 6, 13], "update_deform": 6, "upload": 3, "upper": 6, "upper_bound": [8, 10], "upperbound1": 6, "upperbound2": 6, "url": [9, 13, 16], "us": [0, 1, 3, 6, 8, 10, 12, 13, 15, 16, 18], "usag": [0, 13], "use_cent": [6, 8, 16], "use_copy_tool": [8, 16], "use_correct": 8, "use_time_stamp": 8, "user": [0, 1, 3, 5, 6, 7, 13, 15, 16, 18], "user_config": [7, 16], "user_path": 9, "usual": 5, "util": [0, 5], "v": [3, 16], "v0": 3, "val": [5, 6], "valid": [6, 8, 13], "valu": [5, 6, 7, 8, 10, 11, 12, 13, 16], "valueerror": [5, 6, 8, 9, 12, 13], "variabl": [1, 11], "variat": 16, "variou": [13, 16], "vector": 6, "venv": 18, "verbos": [6, 7, 8], "veri": 5, "version": [0, 1, 3, 6, 13, 17], "vert": 6, "vertex": 6, "vertic": [6, 11], "view": [3, 6, 8], "view_event_histogram": 8, "virtual": [3, 18], "visit": 3, "visual": [6, 16], "vital": 16, "volt": 6, "voltag": [6, 8, 16], "volum": [5, 6], "w": [8, 12], "wa": [5, 8], "walk": 1, "wall": 15, "warn": [5, 12], "warp": [6, 8], "wave": 13, "we": [1, 10, 15, 16], "web": 9, "weight": [6, 8, 10], "welcom": 1, "well": [5, 6], "wesp": 13, "wether": 13, "when": [5, 6, 8, 9, 14], "where": [5, 6, 7, 8, 13, 16], "whether": [1, 6, 8, 9, 10, 13, 16], "which": [1, 5, 6, 8, 10, 13, 14, 16], "whichev": 6, "while": 13, "whole": [6, 8], "whose": 6, "wide": 7, "width": [6, 8, 16], "window": [6, 7, 16, 18], "wise": 6, "within": [6, 8, 13], "work": [3, 6, 7, 8, 9, 16, 18], "worker": 16, "workflow": [0, 2, 3, 6, 8, 16], "workflow_dispatch": 3, "would": [1, 3, 15], "wrapper": 8, "write": [1, 3, 8, 12], "writer": 8, "written": 6, "wrong": 5, "wse2": 9, "x": [6, 8, 10, 12, 16], "x_axi": 6, "x_center": [6, 16], "x_column": [6, 10, 16], "x_width": [6, 16], "xarrai": [5, 8, 12], "xaxi": 6, "xgs600": 16, "xm": 16, "xr": [5, 6, 8, 12], "xrng": 6, "xtran": [6, 8], "y": [6, 8, 10, 12, 16], "y_axi": 6, "y_center": [6, 16], "y_column": [6, 10, 16], "y_width": [6, 16], "yaml": [7, 8, 16], "year": 16, "yet": [8, 16], "ym": 16, "yml": 3, "you": [0, 1, 3, 15, 18], "your": [1, 18], "yournameload": 1, "yourusernam": 1, "ytran": [6, 8], "z": 12, "z1": 16, "z2": 16, "zain": [7, 9], "zenodo": 9, "zero": 6, "zip": 15, "zone": 6, "zraw": 16}, "titles": ["SED documentation", "Contributing to sed", "Development", "How to Maintain", "API", "Binning", "Calibrator", "Config", "Core", "Dataset", "Dataframe Operations", "Diagnostics", "IO", "Data loader", "Metadata", "Binning demonstration on locally generated fake data", "Configuration", "User Guide", "Installation", "Workflows"], "titleterms": {"Not": 9, "Or": 9, "The": 9, "abstract": 13, "ad": 9, "advanc": 17, "after": 9, "all": 9, "allow": 9, "along": 15, "ani": 9, "anoth": 9, "api": [0, 4, 9], "attribut": 9, "baseload": 13, "basic": 17, "behavior": 9, "berlin": 16, "bin": [5, 15], "calibr": 6, "can": 9, "commun": 0, "comput": 15, "concept": 17, "config": 7, "configur": 16, "continu": 9, "contribut": [0, 1], "core": 8, "correct": 6, "custom": 9, "dask": 15, "data": [9, 13, 15], "datafram": [10, 15], "dataset": 9, "default": [9, 16], "defin": 15, "delai": 6, "delet": 9, "demonstr": 15, "desi": 16, "develop": [1, 2, 18], "diagnost": 11, "distribut": 15, "document": [0, 3, 9], "download": 9, "energi": 6, "exampl": [0, 9, 16], "exist": 9, "extract": 9, "fake": 15, "fals": 9, "fhi": 16, "file": [9, 16], "flash": 16, "flashload": 13, "from": 9, "function": 5, "gener": 15, "genericload": 13, "get": [1, 9], "guid": [0, 17], "guidelin": 1, "ha": 9, "helper": 5, "hextof": 16, "how": 3, "i": 9, "instal": [17, 18], "instanc": 9, "interfac": 13, "interrupt": 9, "io": 12, "json": 9, "just": 9, "keyword": 9, "loader": [1, 13], "local": 15, "locat": 9, "main": 5, "maintain": 3, "metadata": 14, "meti": 16, "microscop": 16, "momentum": [6, 16], "mpe": 16, "mpesload": 13, "name": 9, "need": 9, "one": 9, "onli": 9, "oper": 10, "panda": 15, "partit": 15, "path": 9, "present": 9, "process": 9, "provid": 9, "pull": 1, "rang": 15, "reextract": 9, "releas": 3, "remov": 9, "remove_zip": 9, "request": 1, "restart": 9, "root_dir": 9, "sed": [0, 1, 17], "see": 9, "set": [9, 16], "similar": 9, "some": 9, "start": 1, "stop": 9, "sxploader": 13, "thi": 9, "transform": 15, "try": 9, "two": 9, "us": [5, 9], "use_exist": 9, "user": [9, 17], "util": 13, "version": 18, "where": 9, "workflow": [1, 19], "would": 9, "zip": 9}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API": [[0, "api"], [4, "api"], [9, "module-sed.dataset.dataset"]], "Abstract BaseLoader": [[13, "module-sed.loader.base.loader"]], "Advance": [[17, null]], "Attributes useful for user": [[9, "attributes-useful-for-user"]], "Basic concepts": [[17, null]], "Binning": [[5, "binning"]], "Binning demonstration on locally generated fake data": [[15, "Binning-demonstration-on-locally-generated-fake-data"]], "Calibrator": [[6, "calibrator"]], "Community and contribution guide": [[0, "community-and-contribution-guide"]], "Compute distributed binning on the partitioned dask dataframe": [[15, "Compute-distributed-binning-on-the-partitioned-dask-dataframe"]], "Compute the binning along the pandas dataframe": [[15, "Compute-the-binning-along-the-pandas-dataframe"]], "Config": [[7, "module-sed.core.config"]], "Configuration": [[16, "configuration"]], "Contributing to sed": [[1, "contributing-to-sed"]], "Core": [[8, "module-sed.core"]], "Data loader": [[13, "data-loader"]], "Dataframe Operations": [[10, "module-sed.core.dfops"]], "Dataset": [[9, "dataset"]], "Default configuration settings": [[16, "default-configuration-settings"]], "Default datasets.json": [[9, "default-datasets-json"]], "Define the binning range": [[15, "Define-the-binning-range"]], "Delay calibration and correction": [[6, "module-sed.calibrator.delay"]], "Developing a Loader": [[1, "developing-a-loader"]], "Development": [[2, "development"]], "Development Workflow": [[1, "development-workflow"]], "Development version": [[18, "development-version"]], "Diagnostics": [[11, "module-sed.diagnostics"]], "Documentation": [[3, "documentation"]], "Energy calibration and correction": [[6, "module-sed.calibrator.energy"]], "Example configuration file for flash (HEXTOF momentum microscope at FLASH, Desy)": [[16, "example-configuration-file-for-flash-hextof-momentum-microscope-at-flash-desy"]], "Example configuration file for mpes (METIS momentum microscope at FHI-Berlin)": [[16, "example-configuration-file-for-mpes-metis-momentum-microscope-at-fhi-berlin"]], "Example of adding custom datasets": [[9, "example-of-adding-custom-datasets"]], "Examples": [[0, "examples"]], "FlashLoader": [[13, "module-sed.loader.flash.loader"]], "Generate Fake Data": [[15, "Generate-Fake-Data"]], "GenericLoader": [[13, "module-sed.loader.generic.loader"]], "Get": [[9, "get"]], "Getting Started": [[1, "getting-started"]], "Getting datasets": [[9, "getting-datasets"]], "How to Maintain": [[3, "how-to-maintain"]], "IO": [[12, "module-sed.io"]], "Installation": [[18, "installation"]], "Installing SED": [[17, null]], "Interrupting extraction has similar behavior to download and just continues from where it stopped.": [[9, "interrupting-extraction-has-similar-behavior-to-download-and-just-continues-from-where-it-stopped"]], "Loader Interface": [[13, "module-sed.loader.loader_interface"]], "Main functions": [[5, "module-sed.binning"]], "Metadata": [[14, "module-sed.core.metadata"]], "Momentum calibration and correction": [[6, "module-sed.calibrator.momentum"]], "MpesLoader": [[13, "module-sed.loader.mpes.loader"]], "Not providing \u201cremove_zip\u201d at all will by default delete the zip file after extraction": [[9, "not-providing-remove-zip-at-all-will-by-default-delete-the-zip-file-after-extraction"]], "Or if user deletes the extracted documents, it reextracts from zip file": [[9, "or-if-user-deletes-the-extracted-documents-it-reextracts-from-zip-file"]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "Release": [[3, "release"]], "SED documentation": [[0, "sed-documentation"]], "SXPLoader": [[13, "module-sed.loader.sxp.loader"]], "Setting the \u201cuse_existing\u201d keyword to False allows to download the data in another location. Default is to use existing data": [[9, "setting-the-use-existing-keyword-to-false-allows-to-download-the-data-in-another-location-default-is-to-use-existing-data"]], "The \u201cget\u201d just needs the data name, but another root_dir can be provided.": [[9, "the-get-just-needs-the-data-name-but-another-root-dir-can-be-provided"]], "This removes all instances, if any present": [[9, "this-removes-all-instances-if-any-present"]], "This would remove only one of the two existing paths": [[9, "this-would-remove-only-one-of-the-two-existing-paths"]], "Transform to dask dataframe": [[15, "Transform-to-dask-dataframe"]], "Try to interrupt the download process and restart to see that it continues the download from where it stopped": [[9, "try-to-interrupt-the-download-process-and-restart-to-see-that-it-continues-the-download-from-where-it-stopped"]], "Used helper functions": [[5, "module-sed.binning.numba_bin"]], "User Guide": [[17, "user-guide"]], "Utilities": [[13, "module-sed.loader.utils"]], "Workflows": [[19, "workflows"]], "\u201cremove\u201d allows removal of some or all instances of existing data": [[9, "remove-allows-removal-of-some-or-all-instances-of-existing-data"]]}, "docnames": ["index", "misc/contributing", "misc/contribution", "misc/maintain", "sed/api", "sed/binning", "sed/calibrator", "sed/config", "sed/core", "sed/dataset", "sed/dfops", "sed/diagnostic", "sed/io", "sed/loader", "sed/metadata", "user_guide/1_binning_fake_data", "user_guide/config", "user_guide/index", "user_guide/installation", "workflows/index"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.md", "misc/contributing.rst", "misc/contribution.md", "misc/maintain.rst", "sed/api.rst", "sed/binning.rst", "sed/calibrator.rst", "sed/config.rst", "sed/core.rst", "sed/dataset.rst", "sed/dfops.rst", "sed/diagnostic.rst", "sed/io.rst", "sed/loader.rst", "sed/metadata.rst", "user_guide/1_binning_fake_data.ipynb", "user_guide/config.md", "user_guide/index.md", "user_guide/installation.md", "workflows/index.rst"], "indexentries": {"add() (sed.core.metadata.metahandler method)": [[14, "sed.core.metadata.MetaHandler.add", false]], "add() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.add", false]], "add_attribute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_attribute", false]], "add_delay_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_delay_offset", false]], "add_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_energy_offset", false]], "add_features() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.add_features", false]], "add_jitter() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_jitter", false]], "add_offsets() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.add_offsets", false]], "add_offsets() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_offsets", false]], "add_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.add_ranges", false]], "add_time_stamped_data() (in module sed.core.dfops)": [[10, "sed.core.dfops.add_time_stamped_data", false]], "add_time_stamped_data() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.add_time_stamped_data", false]], "adjust_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_energy_correction", false]], "adjust_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.adjust_energy_correction", false]], "adjust_ranges() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.adjust_ranges", false]], "align_dld_sectors() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.align_dld_sectors", false]], "align_dld_sectors() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.align_dld_sectors", false]], "append_delay_axis() (sed.calibrator.delay.delaycalibrator method)": [[6, "sed.calibrator.delay.DelayCalibrator.append_delay_axis", false]], "append_energy_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_energy_axis", false]], "append_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_energy_axis", false]], "append_k_axis() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.append_k_axis", false]], "append_tof_ns_axis() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.append_tof_ns_axis", false]], "append_tof_ns_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.append_tof_ns_axis", false]], "apply_correction() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_correction", false]], "apply_corrections() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.apply_corrections", false]], "apply_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.apply_dfield", false]], "apply_energy_correction() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.apply_energy_correction", false]], "apply_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_energy_correction", false]], "apply_filter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_filter", false]], "apply_jitter() (in module sed.core.dfops)": [[10, "sed.core.dfops.apply_jitter", false]], "apply_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_calibration", false]], "apply_momentum_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.apply_momentum_correction", false]], "attributes (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.attributes", false]], "available (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.available", false]], "available_channels (sed.loader.flash.loader.flashloader property)": [[13, "sed.loader.flash.loader.FlashLoader.available_channels", false]], "available_channels (sed.loader.sxp.loader.sxploader property)": [[13, "sed.loader.sxp.loader.SXPLoader.available_channels", false]], "backward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.backward_fill_lazy", false]], "baseloader (class in sed.loader.base.loader)": [[13, "sed.loader.base.loader.BaseLoader", false]], "bin_and_load_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.bin_and_load_momentum_calibration", false]], "bin_centers_to_bin_edges() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_centers_to_bin_edges", false]], "bin_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.bin_data", false]], "bin_dataframe() (in module sed.binning)": [[5, "sed.binning.bin_dataframe", false]], "bin_edges_to_bin_centers() (in module sed.binning.utils)": [[5, "sed.binning.utils.bin_edges_to_bin_centers", false]], "bin_partition() (in module sed.binning)": [[5, "sed.binning.bin_partition", false]], "binned (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.binned", false]], "binsearch() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.binsearch", false]], "buffer_file_handler() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.buffer_file_handler", false]], "buffer_file_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.buffer_file_handler", false]], "calc_geometric_distances() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_geometric_distances", false]], "calc_inverse_dfield() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_inverse_dfield", false]], "calc_symmetry_scores() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calc_symmetry_scores", false]], "calibrate() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.calibrate", false]], "calibrate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.calibrate", false]], "calibrate_delay_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_delay_axis", false]], "calibrate_energy_axis() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_energy_axis", false]], "calibrate_momentum_axes() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.calibrate_momentum_axes", false]], "cleanup_oldest_scan() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.cleanup_oldest_scan", false]], "cm2palette() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.cm2palette", false]], "complete_dictionary() (in module sed.core.config)": [[7, "sed.core.config.complete_dictionary", false]], "compute() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.compute", false]], "concatenate_channels() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.concatenate_channels", false]], "concatenate_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.concatenate_channels", false]], "config (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.config", false]], "coordinate_transform() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.coordinate_transform", false]], "copy() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.copy", false]], "copytool (class in sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.CopyTool", false]], "correction_function() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.correction_function", false]], "cpy() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.cpy", false]], "create_buffer_file() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_buffer_file", false]], "create_buffer_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_buffer_file", false]], "create_dataframe_per_channel() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_channel", false]], "create_dataframe_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_channel", false]], "create_dataframe_per_electron() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_electron", false]], "create_dataframe_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_electron", false]], "create_dataframe_per_file() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_file", false]], "create_dataframe_per_file() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_file", false]], "create_dataframe_per_pulse() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_pulse", false]], "create_dataframe_per_train() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_dataframe_per_train", false]], "create_dataframe_per_train() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_dataframe_per_train", false]], "create_multi_index_per_electron() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_multi_index_per_electron", false]], "create_multi_index_per_electron() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_electron", false]], "create_multi_index_per_pulse() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_multi_index_per_pulse", false]], "create_multi_index_per_pulse() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_multi_index_per_pulse", false]], "create_numpy_array_per_channel() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.create_numpy_array_per_channel", false]], "create_numpy_array_per_channel() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.create_numpy_array_per_channel", false]], "data_name (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.data_name", false]], "dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.dataframe", false]], "dataset (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.Dataset", false]], "datasetsmanager (class in sed.dataset.dataset)": [[9, "sed.dataset.dataset.DatasetsManager", false]], "define_features() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.define_features", false]], "delaycalibrator (class in sed.calibrator.delay)": [[6, "sed.calibrator.delay.DelayCalibrator", false]], "detector_coordiantes_2_k_koordinates() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.detector_coordiantes_2_k_koordinates", false]], "dictmerge() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.dictmerge", false]], "drop_column() (in module sed.core.dfops)": [[10, "sed.core.dfops.drop_column", false]], "dup (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.dup", false]], "duplicateentryerror": [[14, "sed.core.metadata.DuplicateEntryError", false]], "energycalibrator (class in sed.calibrator.energy)": [[6, "sed.calibrator.energy.EnergyCalibrator", false]], "existing_data_paths (sed.dataset.dataset.dataset property)": [[9, "sed.dataset.dataset.Dataset.existing_data_paths", false]], "extract_bias() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.extract_bias", false]], "extract_delay_stage_parameters() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.extract_delay_stage_parameters", false]], "feature_extract() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.feature_extract", false]], "feature_extract() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_extract", false]], "feature_select() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.feature_select", false]], "features (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.features", false]], "filename (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.FILENAME", false]], "files (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.files", false]], "filter_column() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.filter_column", false]], "find_bias_peaks() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.find_bias_peaks", false]], "find_correspondence() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_correspondence", false]], "find_nearest() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.find_nearest", false]], "fit_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.fit_energy_calibration", false]], "flashloader (class in sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.FlashLoader", false]], "forward_fill_lazy() (in module sed.core.dfops)": [[10, "sed.core.dfops.forward_fill_lazy", false]], "gather_calibration_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_calibration_metadata", false]], "gather_calibration_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_calibration_metadata", false]], "gather_correction_metadata() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.gather_correction_metadata", false]], "gather_correction_metadata() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.gather_correction_metadata", false]], "gather_files() (in module sed.loader.utils)": [[13, "sed.loader.utils.gather_files", false]], "gather_metadata() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.gather_metadata", false]], "gather_metadata() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.gather_metadata", false]], "generate_inverse_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.generate_inverse_dfield", false]], "generate_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.generate_splinewarp", false]], "genericloader (class in sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.GenericLoader", false]], "get() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.get", false]], "get_archiver_data() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_archiver_data", false]], "get_attribute() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_attribute", false]], "get_channels() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_channels", false]], "get_channels() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_channels", false]], "get_count_rate() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_count_rate", false]], "get_count_rate() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_count_rate", false]], "get_count_rate() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_count_rate", false]], "get_count_rate() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_count_rate", false]], "get_count_rate() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_count_rate", false]], "get_count_rate() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_count_rate", false]], "get_elapsed_time() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_elapsed_time", false]], "get_elapsed_time() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_elapsed_time", false]], "get_files_from_run_id() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_files_from_run_id", false]], "get_files_from_run_id() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.get_files_from_run_id", false]], "get_groups_and_aliases() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.get_groups_and_aliases", false]], "get_loader() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_loader", false]], "get_metadata() (sed.loader.flash.metadata.metadataretriever method)": [[13, "sed.loader.flash.metadata.MetadataRetriever.get_metadata", false]], "get_names_of_all_loaders() (in module sed.loader.loader_interface)": [[13, "sed.loader.loader_interface.get_names_of_all_loaders", false]], "get_normalization_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.get_normalization_histogram", false]], "get_start_and_end_time() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.get_start_and_end_time", false]], "get_target_dir() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.get_target_dir", false]], "grid_histogram() (in module sed.diagnostics)": [[11, "sed.diagnostics.grid_histogram", false]], "hdf5_to_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_array", false]], "hdf5_to_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_dataframe", false]], "hdf5_to_timed_array() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_array", false]], "hdf5_to_timed_dataframe() (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.hdf5_to_timed_dataframe", false]], "initialize_paths() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.initialize_paths", false]], "initialize_paths() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.initialize_paths", false]], "json_path (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.json_path", false]], "load() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load", false]], "load_bias_series() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.load_bias_series", false]], "load_config() (in module sed.core.config)": [[7, "sed.core.config.load_config", false]], "load_data() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.load_data", false]], "load_data() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.load_data", false]], "load_datasets_dict() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.load_datasets_dict", false]], "load_dfield() (in module sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.load_dfield", false]], "load_h5() (in module sed.io)": [[12, "sed.io.load_h5", false]], "load_tiff() (in module sed.io)": [[12, "sed.io.load_tiff", false]], "loader (in module sed.loader.base.loader)": [[13, "sed.loader.base.loader.LOADER", false]], "loader (in module sed.loader.flash.loader)": [[13, "sed.loader.flash.loader.LOADER", false]], "loader (in module sed.loader.generic.loader)": [[13, "sed.loader.generic.loader.LOADER", false]], "loader (in module sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.LOADER", false]], "loader (in module sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.LOADER", false]], "map_columns_2d() (in module sed.core.dfops)": [[10, "sed.core.dfops.map_columns_2d", false]], "metadata (sed.core.metadata.metahandler property)": [[14, "sed.core.metadata.MetaHandler.metadata", false]], "metadataretriever (class in sed.loader.flash.metadata)": [[13, "sed.loader.flash.metadata.MetadataRetriever", false]], "metahandler (class in sed.core.metadata)": [[14, "sed.core.metadata.MetaHandler", false]], "mm_to_ps() (in module sed.calibrator.delay)": [[6, "sed.calibrator.delay.mm_to_ps", false]], "module": [[5, "module-sed.binning", false], [5, "module-sed.binning.numba_bin", false], [5, "module-sed.binning.utils", false], [6, "module-sed.calibrator.delay", false], [6, "module-sed.calibrator.energy", false], [6, "module-sed.calibrator.momentum", false], [7, "module-sed.core.config", false], [8, "module-sed.core", false], [9, "module-sed.dataset.dataset", false], [10, "module-sed.core.dfops", false], [11, "module-sed.diagnostics", false], [12, "module-sed.io", false], [13, "module-sed.loader.base.loader", false], [13, "module-sed.loader.flash.loader", false], [13, "module-sed.loader.flash.metadata", false], [13, "module-sed.loader.generic.loader", false], [13, "module-sed.loader.loader_interface", false], [13, "module-sed.loader.mirrorutil", false], [13, "module-sed.loader.mpes.loader", false], [13, "module-sed.loader.sxp.loader", false], [13, "module-sed.loader.utils", false], [14, "module-sed.core.metadata", false]], "momentumcorrector (class in sed.calibrator.momentum)": [[6, "sed.calibrator.momentum.MomentumCorrector", false]], "mpesloader (class in sed.loader.mpes.loader)": [[13, "sed.loader.mpes.loader.MpesLoader", false]], "mycopy() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mycopy", false]], "mymakedirs() (in module sed.loader.mirrorutil)": [[13, "sed.loader.mirrorutil.mymakedirs", false]], "name (sed.dataset.dataset.datasetsmanager attribute)": [[9, "sed.dataset.dataset.DatasetsManager.NAME", false]], "normalization_histogram (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalization_histogram", false]], "normalize() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.normalize", false]], "normalized (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.normalized", false]], "normspec() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.normspec", false]], "nranges (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.nranges", false]], "ntraces (sed.calibrator.energy.energycalibrator property)": [[6, "sed.calibrator.energy.EnergyCalibrator.ntraces", false]], "numba_histogramdd() (in module sed.binning.numba_bin)": [[5, "sed.binning.numba_bin.numba_histogramdd", false]], "offset_by_other_columns() (in module sed.core.dfops)": [[10, "sed.core.dfops.offset_by_other_columns", false]], "parquet_handler() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parquet_handler", false]], "parquet_handler() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.parquet_handler", false]], "parse_config() (in module sed.core.config)": [[7, "sed.core.config.parse_config", false]], "parse_h5_keys() (in module sed.loader.utils)": [[13, "sed.loader.utils.parse_h5_keys", false]], "parse_metadata() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.parse_metadata", false]], "peakdetect1d() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peakdetect1d", false]], "peaksearch() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.peaksearch", false]], "plot_single_hist() (in module sed.diagnostics)": [[11, "sed.diagnostics.plot_single_hist", false]], "poly_energy_calibration() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.poly_energy_calibration", false]], "pose_adjustment() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.pose_adjustment", false]], "pose_adjustment() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pose_adjustment", false]], "pre_binning() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.pre_binning", false]], "range_convert() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.range_convert", false]], "read_dataframe() (sed.loader.base.loader.baseloader method)": [[13, "sed.loader.base.loader.BaseLoader.read_dataframe", false]], "read_dataframe() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.read_dataframe", false]], "read_dataframe() (sed.loader.generic.loader.genericloader method)": [[13, "sed.loader.generic.loader.GenericLoader.read_dataframe", false]], "read_dataframe() (sed.loader.mpes.loader.mpesloader method)": [[13, "sed.loader.mpes.loader.MpesLoader.read_dataframe", false]], "read_dataframe() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.read_dataframe", false]], "remove() (sed.dataset.dataset.dataset method)": [[9, "sed.dataset.dataset.Dataset.remove", false]], "remove() (sed.dataset.dataset.datasetsmanager static method)": [[9, "sed.dataset.dataset.DatasetsManager.remove", false]], "reset_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.reset_deformation", false]], "reset_multi_index() (sed.loader.flash.loader.flashloader method)": [[13, "sed.loader.flash.loader.FlashLoader.reset_multi_index", false]], "reset_multi_index() (sed.loader.sxp.loader.sxploader method)": [[13, "sed.loader.sxp.loader.SXPLoader.reset_multi_index", false]], "save() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save", false]], "save_config() (in module sed.core.config)": [[7, "sed.core.config.save_config", false]], "save_delay_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_calibration", false]], "save_delay_offsets() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_delay_offsets", false]], "save_energy_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_calibration", false]], "save_energy_correction() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_correction", false]], "save_energy_offset() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_energy_offset", false]], "save_momentum_calibration() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_momentum_calibration", false]], "save_splinewarp() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_splinewarp", false]], "save_transformations() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_transformations", false]], "save_workflow_params() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.save_workflow_params", false]], "sed.binning": [[5, "module-sed.binning", false]], "sed.binning.numba_bin": [[5, "module-sed.binning.numba_bin", false]], "sed.binning.utils": [[5, "module-sed.binning.utils", false]], "sed.calibrator.delay": [[6, "module-sed.calibrator.delay", false]], "sed.calibrator.energy": [[6, "module-sed.calibrator.energy", false]], "sed.calibrator.momentum": [[6, "module-sed.calibrator.momentum", false]], "sed.core": [[8, "module-sed.core", false]], "sed.core.config": [[7, "module-sed.core.config", false]], "sed.core.dfops": [[10, "module-sed.core.dfops", false]], "sed.core.metadata": [[14, "module-sed.core.metadata", false]], "sed.dataset.dataset": [[9, "module-sed.dataset.dataset", false]], "sed.diagnostics": [[11, "module-sed.diagnostics", false]], "sed.io": [[12, "module-sed.io", false]], "sed.loader.base.loader": [[13, "module-sed.loader.base.loader", false]], "sed.loader.flash.loader": [[13, "module-sed.loader.flash.loader", false]], "sed.loader.flash.metadata": [[13, "module-sed.loader.flash.metadata", false]], "sed.loader.generic.loader": [[13, "module-sed.loader.generic.loader", false]], "sed.loader.loader_interface": [[13, "module-sed.loader.loader_interface", false]], "sed.loader.mirrorutil": [[13, "module-sed.loader.mirrorutil", false]], "sed.loader.mpes.loader": [[13, "module-sed.loader.mpes.loader", false]], "sed.loader.sxp.loader": [[13, "module-sed.loader.sxp.loader", false]], "sed.loader.utils": [[13, "module-sed.loader.utils", false]], "sedprocessor (class in sed.core)": [[8, "sed.core.SedProcessor", false]], "select_k_range() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_k_range", false]], "select_slice() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slice", false]], "select_slicer() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.select_slicer", false]], "simplify_binning_arguments() (in module sed.binning.utils)": [[5, "sed.binning.utils.simplify_binning_arguments", false]], "size() (sed.loader.mirrorutil.copytool method)": [[13, "sed.loader.mirrorutil.CopyTool.size", false]], "spline_warp_estimate() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.spline_warp_estimate", false]], "split_channel_bitwise() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_channel_bitwise", false]], "split_dld_time_from_sector_id() (in module sed.loader.utils)": [[13, "sed.loader.utils.split_dld_time_from_sector_id", false]], "supported_file_types (sed.loader.base.loader.baseloader attribute)": [[13, "sed.loader.base.loader.BaseLoader.supported_file_types", false]], "supported_file_types (sed.loader.flash.loader.flashloader attribute)": [[13, "sed.loader.flash.loader.FlashLoader.supported_file_types", false]], "supported_file_types (sed.loader.generic.loader.genericloader attribute)": [[13, "sed.loader.generic.loader.GenericLoader.supported_file_types", false]], "supported_file_types (sed.loader.mpes.loader.mpesloader attribute)": [[13, "sed.loader.mpes.loader.MpesLoader.supported_file_types", false]], "supported_file_types (sed.loader.sxp.loader.sxploader attribute)": [[13, "sed.loader.sxp.loader.SXPLoader.supported_file_types", false]], "sxploader (class in sed.loader.sxp.loader)": [[13, "sed.loader.sxp.loader.SXPLoader", false]], "symscores (sed.calibrator.momentum.momentumcorrector property)": [[6, "sed.calibrator.momentum.MomentumCorrector.symscores", false]], "timed_dataframe (sed.core.sedprocessor property)": [[8, "sed.core.SedProcessor.timed_dataframe", false]], "to_h5() (in module sed.io)": [[12, "sed.io.to_h5", false]], "to_nexus() (in module sed.io)": [[12, "sed.io.to_nexus", false]], "to_tiff() (in module sed.io)": [[12, "sed.io.to_tiff", false]], "tof2ev() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ev", false]], "tof2evpoly() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2evpoly", false]], "tof2ns() (in module sed.calibrator.energy)": [[6, "sed.calibrator.energy.tof2ns", false]], "update_deformation() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.update_deformation", false]], "view() (sed.calibrator.energy.energycalibrator method)": [[6, "sed.calibrator.energy.EnergyCalibrator.view", false]], "view() (sed.calibrator.momentum.momentumcorrector method)": [[6, "sed.calibrator.momentum.MomentumCorrector.view", false]], "view_event_histogram() (sed.core.sedprocessor method)": [[8, "sed.core.SedProcessor.view_event_histogram", false]]}, "objects": {"sed": [[5, 0, 0, "-", "binning"], [8, 0, 0, "-", "core"], [11, 0, 0, "-", "diagnostics"], [12, 0, 0, "-", "io"]], "sed.binning": [[5, 1, 1, "", "bin_dataframe"], [5, 1, 1, "", "bin_partition"], [5, 0, 0, "-", "numba_bin"], [5, 0, 0, "-", "utils"]], "sed.binning.numba_bin": [[5, 1, 1, "", "binsearch"], [5, 1, 1, "", "numba_histogramdd"]], "sed.binning.utils": [[5, 1, 1, "", "bin_centers_to_bin_edges"], [5, 1, 1, "", "bin_edges_to_bin_centers"], [5, 1, 1, "", "simplify_binning_arguments"]], "sed.calibrator": [[6, 0, 0, "-", "delay"], [6, 0, 0, "-", "energy"], [6, 0, 0, "-", "momentum"]], "sed.calibrator.delay": [[6, 2, 1, "", "DelayCalibrator"], [6, 1, 1, "", "extract_delay_stage_parameters"], [6, 1, 1, "", "mm_to_ps"]], "sed.calibrator.delay.DelayCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "append_delay_axis"]], "sed.calibrator.energy": [[6, 2, 1, "", "EnergyCalibrator"], [6, 1, 1, "", "correction_function"], [6, 1, 1, "", "extract_bias"], [6, 1, 1, "", "find_correspondence"], [6, 1, 1, "", "find_nearest"], [6, 1, 1, "", "fit_energy_calibration"], [6, 1, 1, "", "normspec"], [6, 1, 1, "", "peakdetect1d"], [6, 1, 1, "", "peaksearch"], [6, 1, 1, "", "poly_energy_calibration"], [6, 1, 1, "", "range_convert"], [6, 1, 1, "", "tof2ev"], [6, 1, 1, "", "tof2evpoly"], [6, 1, 1, "", "tof2ns"]], "sed.calibrator.energy.EnergyCalibrator": [[6, 3, 1, "", "add_offsets"], [6, 3, 1, "", "add_ranges"], [6, 3, 1, "", "adjust_energy_correction"], [6, 3, 1, "", "adjust_ranges"], [6, 3, 1, "", "align_dld_sectors"], [6, 3, 1, "", "append_energy_axis"], [6, 3, 1, "", "append_tof_ns_axis"], [6, 3, 1, "", "apply_energy_correction"], [6, 3, 1, "", "bin_data"], [6, 3, 1, "", "calibrate"], [6, 4, 1, "", "dup"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "normalize"], [6, 4, 1, "", "nranges"], [6, 4, 1, "", "ntraces"], [6, 3, 1, "", "view"]], "sed.calibrator.momentum": [[6, 2, 1, "", "MomentumCorrector"], [6, 1, 1, "", "apply_dfield"], [6, 1, 1, "", "cm2palette"], [6, 1, 1, "", "detector_coordiantes_2_k_koordinates"], [6, 1, 1, "", "dictmerge"], [6, 1, 1, "", "generate_inverse_dfield"], [6, 1, 1, "", "load_dfield"]], "sed.calibrator.momentum.MomentumCorrector": [[6, 3, 1, "", "add_features"], [6, 3, 1, "", "append_k_axis"], [6, 3, 1, "", "apply_correction"], [6, 3, 1, "", "apply_corrections"], [6, 3, 1, "", "calc_geometric_distances"], [6, 3, 1, "", "calc_inverse_dfield"], [6, 3, 1, "", "calc_symmetry_scores"], [6, 3, 1, "", "calibrate"], [6, 3, 1, "", "coordinate_transform"], [6, 3, 1, "", "feature_extract"], [6, 3, 1, "", "feature_select"], [6, 4, 1, "", "features"], [6, 3, 1, "", "gather_calibration_metadata"], [6, 3, 1, "", "gather_correction_metadata"], [6, 3, 1, "", "load_data"], [6, 3, 1, "", "pose_adjustment"], [6, 3, 1, "", "reset_deformation"], [6, 3, 1, "", "select_k_range"], [6, 3, 1, "", "select_slice"], [6, 3, 1, "", "select_slicer"], [6, 3, 1, "", "spline_warp_estimate"], [6, 4, 1, "", "symscores"], [6, 3, 1, "", "update_deformation"], [6, 3, 1, "", "view"]], "sed.core": [[8, 2, 1, "", "SedProcessor"], [7, 0, 0, "-", "config"], [10, 0, 0, "-", "dfops"], [14, 0, 0, "-", "metadata"]], "sed.core.SedProcessor": [[8, 3, 1, "", "add_attribute"], [8, 3, 1, "", "add_delay_offset"], [8, 3, 1, "", "add_energy_offset"], [8, 3, 1, "", "add_jitter"], [8, 3, 1, "", "add_time_stamped_data"], [8, 3, 1, "", "adjust_energy_correction"], [8, 3, 1, "", "align_dld_sectors"], [8, 3, 1, "", "append_energy_axis"], [8, 3, 1, "", "append_tof_ns_axis"], [8, 3, 1, "", "apply_energy_correction"], [8, 3, 1, "", "apply_momentum_calibration"], [8, 3, 1, "", "apply_momentum_correction"], [8, 4, 1, "", "attributes"], [8, 3, 1, "", "bin_and_load_momentum_calibration"], [8, 4, 1, "", "binned"], [8, 3, 1, "", "calibrate_delay_axis"], [8, 3, 1, "", "calibrate_energy_axis"], [8, 3, 1, "", "calibrate_momentum_axes"], [8, 3, 1, "", "compute"], [8, 4, 1, "", "config"], [8, 3, 1, "", "cpy"], [8, 4, 1, "", "dataframe"], [8, 3, 1, "", "define_features"], [8, 4, 1, "", "files"], [8, 3, 1, "", "filter_column"], [8, 3, 1, "", "find_bias_peaks"], [8, 3, 1, "", "generate_splinewarp"], [8, 3, 1, "", "get_normalization_histogram"], [8, 3, 1, "", "load"], [8, 3, 1, "", "load_bias_series"], [8, 4, 1, "", "normalization_histogram"], [8, 4, 1, "", "normalized"], [8, 3, 1, "", "pose_adjustment"], [8, 3, 1, "", "pre_binning"], [8, 3, 1, "", "save"], [8, 3, 1, "", "save_delay_calibration"], [8, 3, 1, "", "save_delay_offsets"], [8, 3, 1, "", "save_energy_calibration"], [8, 3, 1, "", "save_energy_correction"], [8, 3, 1, "", "save_energy_offset"], [8, 3, 1, "", "save_momentum_calibration"], [8, 3, 1, "", "save_splinewarp"], [8, 3, 1, "", "save_transformations"], [8, 3, 1, "", "save_workflow_params"], [8, 4, 1, "", "timed_dataframe"], [8, 3, 1, "", "view_event_histogram"]], "sed.core.config": [[7, 1, 1, "", "complete_dictionary"], [7, 1, 1, "", "load_config"], [7, 1, 1, "", "parse_config"], [7, 1, 1, "", "save_config"]], "sed.core.dfops": [[10, 1, 1, "", "add_time_stamped_data"], [10, 1, 1, "", "apply_filter"], [10, 1, 1, "", "apply_jitter"], [10, 1, 1, "", "backward_fill_lazy"], [10, 1, 1, "", "drop_column"], [10, 1, 1, "", "forward_fill_lazy"], [10, 1, 1, "", "map_columns_2d"], [10, 1, 1, "", "offset_by_other_columns"]], "sed.core.metadata": [[14, 5, 1, "", "DuplicateEntryError"], [14, 2, 1, "", "MetaHandler"]], "sed.core.metadata.MetaHandler": [[14, 3, 1, "", "add"], [14, 4, 1, "", "metadata"]], "sed.dataset": [[9, 0, 0, "-", "dataset"]], "sed.dataset.dataset": [[9, 2, 1, "", "Dataset"], [9, 2, 1, "", "DatasetsManager"]], "sed.dataset.dataset.Dataset": [[9, 4, 1, "", "available"], [9, 4, 1, "", "data_name"], [9, 4, 1, "", "existing_data_paths"], [9, 3, 1, "", "get"], [9, 3, 1, "", "remove"]], "sed.dataset.dataset.DatasetsManager": [[9, 6, 1, "", "FILENAME"], [9, 6, 1, "", "NAME"], [9, 3, 1, "", "add"], [9, 6, 1, "", "json_path"], [9, 3, 1, "", "load_datasets_dict"], [9, 3, 1, "", "remove"]], "sed.diagnostics": [[11, 1, 1, "", "grid_histogram"], [11, 1, 1, "", "plot_single_hist"]], "sed.io": [[12, 1, 1, "", "load_h5"], [12, 1, 1, "", "load_tiff"], [12, 1, 1, "", "to_h5"], [12, 1, 1, "", "to_nexus"], [12, 1, 1, "", "to_tiff"]], "sed.loader": [[13, 0, 0, "-", "loader_interface"], [13, 0, 0, "-", "mirrorutil"], [13, 0, 0, "-", "utils"]], "sed.loader.base": [[13, 0, 0, "-", "loader"]], "sed.loader.base.loader": [[13, 2, 1, "", "BaseLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.base.loader.BaseLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.flash": [[13, 0, 0, "-", "loader"], [13, 0, 0, "-", "metadata"]], "sed.loader.flash.loader": [[13, 2, 1, "", "FlashLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.flash.loader.FlashLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "initialize_paths"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "parse_metadata"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.flash.metadata": [[13, 2, 1, "", "MetadataRetriever"]], "sed.loader.flash.metadata.MetadataRetriever": [[13, 3, 1, "", "get_metadata"]], "sed.loader.generic": [[13, 0, 0, "-", "loader"]], "sed.loader.generic.loader": [[13, 2, 1, "", "GenericLoader"], [13, 6, 1, "", "LOADER"]], "sed.loader.generic.loader.GenericLoader": [[13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.loader_interface": [[13, 1, 1, "", "get_loader"], [13, 1, 1, "", "get_names_of_all_loaders"]], "sed.loader.mirrorutil": [[13, 2, 1, "", "CopyTool"], [13, 1, 1, "", "get_target_dir"], [13, 1, 1, "", "mycopy"], [13, 1, 1, "", "mymakedirs"]], "sed.loader.mirrorutil.CopyTool": [[13, 3, 1, "", "cleanup_oldest_scan"], [13, 3, 1, "", "copy"], [13, 3, 1, "", "size"]], "sed.loader.mpes": [[13, 0, 0, "-", "loader"]], "sed.loader.mpes.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "MpesLoader"], [13, 1, 1, "", "get_archiver_data"], [13, 1, 1, "", "get_attribute"], [13, 1, 1, "", "get_count_rate"], [13, 1, 1, "", "get_elapsed_time"], [13, 1, 1, "", "get_groups_and_aliases"], [13, 1, 1, "", "hdf5_to_array"], [13, 1, 1, "", "hdf5_to_dataframe"], [13, 1, 1, "", "hdf5_to_timed_array"], [13, 1, 1, "", "hdf5_to_timed_dataframe"]], "sed.loader.mpes.loader.MpesLoader": [[13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "get_start_and_end_time"], [13, 3, 1, "", "read_dataframe"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.sxp": [[13, 0, 0, "-", "loader"]], "sed.loader.sxp.loader": [[13, 6, 1, "", "LOADER"], [13, 2, 1, "", "SXPLoader"]], "sed.loader.sxp.loader.SXPLoader": [[13, 4, 1, "", "available_channels"], [13, 3, 1, "", "buffer_file_handler"], [13, 3, 1, "", "concatenate_channels"], [13, 3, 1, "", "create_buffer_file"], [13, 3, 1, "", "create_dataframe_per_channel"], [13, 3, 1, "", "create_dataframe_per_electron"], [13, 3, 1, "", "create_dataframe_per_file"], [13, 3, 1, "", "create_dataframe_per_pulse"], [13, 3, 1, "", "create_dataframe_per_train"], [13, 3, 1, "", "create_multi_index_per_electron"], [13, 3, 1, "", "create_multi_index_per_pulse"], [13, 3, 1, "", "create_numpy_array_per_channel"], [13, 3, 1, "", "gather_metadata"], [13, 3, 1, "", "get_channels"], [13, 3, 1, "", "get_count_rate"], [13, 3, 1, "", "get_elapsed_time"], [13, 3, 1, "", "get_files_from_run_id"], [13, 3, 1, "", "initialize_paths"], [13, 3, 1, "", "parquet_handler"], [13, 3, 1, "", "read_dataframe"], [13, 3, 1, "", "reset_multi_index"], [13, 6, 1, "", "supported_file_types"]], "sed.loader.utils": [[13, 1, 1, "", "gather_files"], [13, 1, 1, "", "parse_h5_keys"], [13, 1, 1, "", "split_channel_bitwise"], [13, 1, 1, "", "split_dld_time_from_sector_id"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute"}, "terms": {"": [3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "0": [3, 5, 6, 8, 9, 10, 13, 15, 16], "00": 9, "001": 16, "01": [9, 16], "010729535670610963": 16, "018544": 15, "019662": 15, "02": 9, "022515": 15, "05": 16, "051009": 15, "0576131995767355e": 16, "058206295066418": 16, "07": 16, "087294": 15, "09": 9, "0_20vtof_v3": 16, "0_30vtof_453ns_focu": 16, "1": [3, 5, 6, 8, 9, 10, 13, 15, 16], "10": [1, 3, 16], "100": [5, 6, 8, 9, 16], "1000": [13, 16], "100000": [15, 16], "1001": 16, "100mhz": 16, "10160182": 9, "10658470": 9, "10file": 9, "11": [1, 16], "11013410": 16, "111336": 15, "113": [9, 16], "11file": 9, "12": [9, 16], "120": 15, "1200": 16, "125e": 16, "126615": 15, "128000": 16, "132000": 16, "132250": 16, "136000": 16, "138000": 16, "1489": 16, "149": 16, "15": 16, "150": 6, "1500": 16, "150000": 16, "152": 16, "152m": 9, "154": 16, "16": 16, "17668": 16, "1792": 16, "1800": 16, "1900": 16, "199": 16, "1d": [5, 6, 11], "1e": 6, "1st": 8, "2": [5, 6, 8, 10, 12, 13, 15, 16], "20": [3, 16], "200": [6, 16], "2000": 15, "200826": 15, "2018": 16, "2020": 16, "2023": 16, "203": 16, "2048": 16, "205863": 15, "208": 16, "211517": 15, "220710": 15, "228": 16, "232": 16, "23t19": 16, "24": [9, 15], "240760": 15, "242": 16, "243": 16, "2452": 16, "248": 16, "249297": 15, "2494": 16, "25": [6, 16], "2500": 16, "256": [6, 16], "25600": 16, "269046": 15, "27": 16, "28": [9, 16], "29": 16, "290132": 15, "299": 16, "2d": [6, 10], "3": [1, 5, 6, 8, 9, 12, 13, 15, 16, 18], "30": 16, "300": 16, "3000": 16, "304": 16, "306676": 15, "32": 16, "32000": 16, "33": 15, "33000": 16, "341": 16, "345": 16, "35": 16, "350": 16, "35000": 16, "352188": 15, "353": 15, "36": 16, "38": [15, 16], "3d": 6, "3e9": 5, "3mb": 9, "3rd": 8, "4": [5, 6, 8, 9, 12, 15, 16], "403": 16, "41": 9, "420": 16, "422": 16, "43": 9, "44": 16, "440035779171833": 16, "461525": 15, "48": 16, "489": 16, "49": 16, "499": 13, "5": [3, 5, 6, 8, 9, 10, 15, 16], "50": [6, 15, 16], "500": 16, "51": 15, "512": 16, "52": 16, "523856": 15, "532887": 15, "54": [9, 16], "6": [6, 8, 15, 16], "600": 16, "6000": 16, "62": 16, "6369728": 9, "637220": 15, "661999": 15, "68": 16, "684410678887588e": 16, "696": 9, "6a0": 3, "6a1": 3, "6kv_kmodem4": 16, "6mb": 9, "7": [6, 15, 16], "70": 16, "700": 16, "71": 9, "725969": 15, "730": 16, "733657": 15, "735": 16, "73g": 9, "73gb": 9, "75": 16, "750": 16, "789": 15, "797949": 15, "8": [1, 8, 13, 15, 16], "80": 16, "803900": 15, "82": 16, "836925": 15, "88": 16, "887": 15, "894941": 15, "9": [1, 16, 18], "920": 16, "924308": 15, "933419": 15, "96": 16, "98000": 15, "99995": 15, "99996": 15, "99997": 15, "99998": 15, "99999": 15, "A": [1, 3, 5, 6, 7, 8, 13, 15, 16], "At": [1, 3], "Be": 5, "By": [9, 10], "For": [6, 8, 10, 13, 16], "If": [1, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18], "In": [5, 6, 8, 15, 16], "It": [0, 3, 6, 13, 16], "Its": [6, 8], "NOT": 8, "Not": [6, 16], "On": [3, 18], "One": 6, "The": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16], "These": [7, 9, 16], "To": [1, 3, 5, 6], "__name__": 1, "_attr": 12, "_build": 3, "_hl": 13, "_offset": 10, "a_n": 6, "aa0": 16, "abc": 13, "abil": 9, "about": [0, 9], "abov": [5, 8, 16], "absolut": [6, 8, 16], "abstract": 1, "acceler": 0, "accept": 8, "access": [3, 5, 8, 12, 13], "accessor": 8, "accord": 6, "acquis": 13, "acquisit": 13, "acquist": 8, "across": 13, "action": 3, "activ": [6, 18], "actual": 6, "ad": [6, 7, 10, 12, 13], "adc": [6, 16], "adc_bin": 16, "adc_column": [6, 16], "adc_rang": [6, 16], "add": [1, 6, 8, 9, 10, 12, 13, 14], "add_attribut": 8, "add_delay_offset": 8, "add_energy_offset": 8, "add_featur": 6, "add_jitt": 8, "add_offset": 6, "add_rang": 6, "add_time_stamped_data": [8, 10], "addit": [6, 7, 8, 10, 11, 12, 13, 16], "addition": 3, "adjust": [6, 8], "adjust_energy_correct": [6, 8], "adjust_rang": 6, "administr": 16, "adopt": 6, "affin": 8, "after": [5, 6, 10], "ag": 13, "against": 1, "ahead": 6, "algorithm": [6, 8, 16], "algorthm": [6, 8], "algortihm": 8, "alia": 13, "alias": [8, 13, 16], "alias_dict": [8, 12, 13], "alias_kei": 13, "align": [6, 8], "align_dld_sector": [6, 8], "all": [1, 5, 6, 8, 10, 11, 13, 16, 18], "allow": [3, 5, 6, 10, 16], "alluserprofil": 16, "allusersprofil": 7, "along": [5, 6, 8, 17], "alongsid": 13, "alreadi": [6, 9, 14], "also": [1, 3, 5, 6, 7, 8, 10, 16], "altern": [6, 7, 8, 16], "amalgam": 13, "among": 6, "amount": [6, 8], "amp": [8, 10], "amplitud": [5, 6, 8, 10, 16], "amplitude2": 6, "an": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "analog": [6, 16], "analysi": 0, "analysis_data": 9, "angl": [0, 6, 8], "ani": [5, 7, 8, 12, 13, 14, 16], "annot": 6, "anyth": 8, "apertur": 16, "aperture_config": 16, "api": [5, 8, 12, 16], "append": [6, 8, 14, 15], "append_delay_axi": [6, 8], "append_energy_axi": [6, 8], "append_k_axi": 6, "append_tof_ns_axi": [6, 8], "appli": [5, 6, 8, 10, 16], "applic": [6, 8, 10, 16], "apply_correct": [6, 8], "apply_dfield": 6, "apply_energy_correct": [6, 8], "apply_filt": 10, "apply_jitt": [8, 10], "apply_momentum_calibr": 8, "apply_momentum_correct": 8, "apply_offset_from_column": 6, "approach": 5, "appropri": 3, "approv": 1, "approx": 16, "approxim": [6, 8, 16], "ar": [1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 16], "archiv": [8, 13, 16], "archiver_channel": [8, 13], "archiver_url": [13, 16], "area": 6, "arg": 8, "argumen": 8, "argument": [5, 6, 7, 8, 10, 11, 12, 13], "around": [6, 8, 16], "arrai": [5, 6, 8, 12, 13], "arriv": 16, "arrival_tim": 16, "asap3": 16, "ascal": 6, "assembl": 6, "assert": 9, "asserterror": 8, "assign": 16, "associ": [6, 13], "assum": [1, 6, 12], "assumpt": 10, "asymmetr": 6, "attempt": 14, "attr": 12, "attribut": [1, 6, 8, 12, 13, 16], "attributeerror": [5, 12], "attrubut": 13, "aug": 6, "augment": [6, 13], "author": 13, "auto": [3, 8, 13], "auto_detect": 8, "automat": [3, 12, 13], "auxillari": [13, 16], "avail": [5, 6, 8, 9, 13], "available_channel": 13, "averag": 16, "awar": 5, "ax": [5, 6, 8, 10, 12, 15, 16], "axi": [5, 6, 8, 11, 12, 16], "axis_dict": 12, "b": [1, 3, 6, 8, 16], "back": 13, "backend": [6, 8, 11], "background": 16, "backward": 10, "backward_fill_lazi": 10, "bam": 16, "bar": [5, 8, 16], "base": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16], "base_dictionari": 7, "base_fold": 13, "baseload": [1, 6], "bda": 16, "beam": 16, "beamlin": [1, 16], "beamtim": [13, 16], "beamtime_dir": 16, "beamtime_id": [13, 16], "beamtimeid": 16, "beamtimm": 16, "becaus": 5, "becom": 13, "been": [3, 8, 12], "befor": [1, 5, 6, 8, 10, 16], "behav": [5, 8], "behaviour": [5, 14], "behind": 0, "being": 10, "below": [1, 5, 7, 16, 18], "berlin": [13, 17], "best": 12, "better": 16, "between": [3, 5, 6, 8, 10, 13, 16], "bia": [6, 8, 16], "bias": [6, 8], "bias_column": [8, 16], "bias_kei": [6, 8, 16], "billauer": 6, "bin": [0, 4, 6, 8, 11, 13, 16, 17, 18], "bin_and_load_momentum_calibr": 8, "bin_cent": 5, "bin_centers_to_bin_edg": 5, "bin_data": 6, "bin_datafram": [5, 6, 8, 15], "bin_edg": 5, "bin_edges_to_bin_cent": 5, "bin_partit": [5, 15], "bin_rang": 6, "binax": 15, "bind": [6, 8], "binned_data": 8, "binrang": 15, "binsearch": 5, "binwidth": 6, "bisect": 5, "bit": [13, 16], "bit_mask": 13, "bitwis": 13, "bla": [5, 8, 16], "bokeh": [6, 8, 11], "bokoeh": 6, "bool": [5, 6, 7, 8, 9, 10, 11, 13], "both": [6, 8, 13, 14, 16], "bound": 10, "boundari": 6, "branch": [1, 3], "brief": 1, "brillouin": 6, "broken": [1, 16], "buffer": 13, "buffer_file_handl": 13, "bug": 1, "build": 3, "built": 3, "bunch_first_index": 16, "bvec": 6, "bz": [8, 16], "c": [12, 16], "c_center": 6, "c_convers": 6, "c_det": 6, "c_start": 6, "c_step": 6, "ca_in_channel": 16, "ca_siz": 16, "calc_geometric_dist": 6, "calc_inverse_dfield": 6, "calc_symmetry_scor": 6, "calcul": [5, 6, 8, 13, 16], "calcult": 6, "calib_typ": 6, "calibr": [0, 4, 8, 16], "calibra": 6, "calibrate_delay_axi": 8, "calibrate_energy_axi": 8, "calibrate_momentum_ax": 8, "calibration_data": 9, "calibration_method": [8, 16], "call": [5, 15], "callabl": 10, "can": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18], "cancel": 3, "candid": 6, "cannot": [7, 13], "care": 10, "cartesian": 6, "carv": 16, "case": [5, 6, 8, 14], "caus": 5, "ccw": 6, "cd": [3, 18], "cdeform": 6, "cdeform_field": [6, 8], "cdeformfield": 6, "cdet": 6, "center": [5, 6, 8, 16], "center_pixel": [6, 8, 16], "centroid": 6, "certain": 6, "ch6": 16, "chang": [1, 6, 8, 10, 16, 18], "channel": [8, 12, 13, 16], "channel_dict": 13, "channelalia": 16, "check": [1, 3, 5, 6], "checkout": 1, "choos": [3, 6, 8, 16], "chosen": 5, "circl": 6, "circular": 6, "class": [1, 6, 8, 9, 13, 14], "cleanup_oldest_scan": 13, "clear": 1, "click": 3, "clone": [1, 3, 18], "close": 6, "closest": 6, "cm": 6, "cm2palett": 6, "cmap": 6, "cmap_nam": 6, "co": 6, "code": [1, 5, 6, 13], "coeff": 6, "coeffic": 6, "coeffici": 6, "col": [6, 8, 10, 15], "collabor": 1, "collect": [0, 6, 8, 13, 16], "collect_metadata": [8, 13], "color": 6, "color_clip": [6, 16], "colormap": 6, "cols_jitt": 10, "colum": 8, "column": [5, 6, 8, 10, 11, 13, 15, 16], "column_index": 6, "column_nam": 10, "com": [1, 3, 9, 18], "combin": [5, 8, 13, 16], "come": 9, "command": 9, "commit": 1, "commun": 1, "comp": 16, "compar": [13, 16], "compat": 12, "compens": 16, "complet": [7, 9, 12, 13], "complete_dictionari": 7, "composit": 6, "comput": [5, 8, 10, 16, 17], "compute_kwd": 13, "compute_length": 10, "conatin": 16, "concaten": 13, "concatenate_channel": 13, "concis": 1, "concurr": 3, "conda": 18, "config": [0, 1, 3, 4, 6, 8, 9, 13, 16], "config_dict": 7, "config_path": 7, "configur": [0, 3, 7, 9, 12, 13, 17], "confirm": [3, 13], "conflict": 3, "congruent": 5, "consecut": 10, "consid": [6, 12], "consist": [10, 16], "constant": [6, 8], "constrain": 6, "constrained_layout": 15, "construct": [6, 13], "contain": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "content": [3, 7, 13], "contrast": 16, "contribut": 2, "control": 14, "convers": [6, 13], "convert": [5, 6, 8, 12, 13, 16], "coord": [6, 12, 15], "coordin": [6, 8, 12, 16], "coordinate_transform": 6, "coordtyp": 6, "copi": [3, 8, 9, 13, 16], "copy_tool_dest": 16, "copy_tool_kwd": 16, "copy_tool_sourc": 16, "copytool": 13, "core": [0, 4, 5, 7, 10, 13, 14, 16], "corrdin": 6, "correct": [0, 8, 12, 16], "corrected_delay_column": 16, "corrected_tof_column": [6, 16], "corrected_x_column": [6, 16], "corrected_y_column": [6, 16], "correction_funct": 6, "correction_typ": [6, 8, 16], "correctli": 1, "corrector": 8, "correspond": [5, 6, 8, 10, 12, 13, 16], "count": [5, 11, 13], "countrat": 13, "cover": [1, 6, 8, 10], "cp": 3, "cpu": [5, 8, 15], "cpy": 8, "creat": [1, 3, 7, 9, 13, 18], "create_buffer_fil": 13, "create_dataframe_per_channel": 13, "create_dataframe_per_electron": 13, "create_dataframe_per_fil": 13, "create_dataframe_per_puls": 13, "create_dataframe_per_train": 13, "create_multi_index_per_electron": 13, "create_multi_index_per_puls": 13, "create_numpy_array_per_channel": 13, "creation": 3, "cross": 6, "crosshair": 6, "crosshair_radii": 6, "crosshair_thick": 6, "crrection": 8, "cryo_temperatur": 16, "cryotemperatur": 16, "cstart": [6, 16], "cstep": [6, 16], "csv": 13, "ctime": 13, "cube": 6, "current": [6, 7, 8, 9, 10, 13, 16], "curv": [6, 8, 16], "custom": 6, "cutoff": 16, "cw": 6, "d": [5, 6, 8, 16], "dak": 15, "daq": [13, 16], "dask": [0, 5, 6, 8, 10, 13, 16, 17], "data": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 17], "data_fil": [6, 8], "data_nam": 9, "data_parquet_dir": [13, 16], "data_path": 9, "data_raw_dir": [13, 16], "data_typ": 13, "dataarrai": [5, 6, 8, 12], "dataconvert": 12, "datafil": [6, 8], "dataformat": 13, "datafram": [0, 4, 5, 6, 8, 13, 16, 17], "dataframe_electron": 13, "dataframe_puls": 13, "dataset": [0, 3, 4, 6, 8, 13, 15, 16], "datasetsmanag": 9, "datastream": 0, "date": 1, "dbc2": 16, "dct": 11, "dd": 13, "ddf": [8, 13, 15], "de": 16, "decod": 13, "decreas": [6, 8], "default": [5, 6, 7, 8, 10, 11, 12, 13, 14, 17], "default_config": [7, 16], "defin": [0, 5, 6, 8, 9, 13, 16, 17], "define_featur": 8, "definit": [5, 8, 12, 16], "definiton": [8, 12], "deform": [6, 8], "delai": [8, 13, 16], "delay_column": [6, 16], "delay_mm": 6, "delay_rang": [6, 8], "delay_range_mm": 6, "delaycalibr": [6, 8], "delaystag": [6, 16], "delet": [10, 13], "delta": 6, "demonstr": [0, 17], "depend": [1, 3, 8, 13, 18], "deploi": 3, "deploy": 3, "deriv": 6, "describ": [5, 6, 8, 12], "descript": [1, 13], "desi": 17, "design": [3, 6], "desir": 13, "dest": 13, "dest_column": [8, 10], "destin": [6, 8, 10, 13], "detail": [6, 7, 8], "detect": [6, 8, 13], "detector": [6, 13, 16], "detector_coordiantes_2_k_koordin": 6, "detector_rang": [6, 16], "determin": [6, 8, 13], "dev": [1, 18], "develop": [0, 17], "deviat": 6, "df": [5, 6, 10, 13, 15], "df_partit": 8, "dfield": 6, "dfop": [6, 10], "dfpid": 8, "dgroup": 16, "diag": 16, "diagnost": [0, 4, 6, 8, 16], "diamet": [6, 16], "dict": [5, 6, 7, 8, 9, 11, 12, 13, 14], "dictionar": 6, "dictionari": [5, 6, 7, 8, 9, 11, 12, 13, 14, 16], "dictionri": 7, "dictmerg": 6, "differ": [3, 6, 7, 8, 13, 16], "differenti": 6, "difficult": 5, "digit": [6, 16], "digiti": 16, "dim": [12, 15], "dimens": [5, 6, 8, 10, 12], "dimension": [0, 5, 8, 10, 12, 13], "dimenst": 5, "dir": 9, "direct": [6, 8, 16], "directli": [6, 8, 15, 16], "directori": [1, 3, 7, 9, 13, 16], "disabl": 16, "discov": 6, "disk": 13, "dispers": 6, "displac": 6, "displai": [6, 8, 16], "dispos": 16, "distanc": [6, 8, 16], "distinguish": 13, "distort": [6, 8, 16], "distot": 6, "distribut": [6, 10, 17, 18], "divid": 3, "dld1": 16, "dld_time": 16, "dldaux": 16, "dldauxchannel": 16, "dldposi": 16, "dldposx": 16, "dldsectorid": [13, 16], "dldtime": 16, "dldtimebins": 16, "dldtimestep": [13, 16], "do": [3, 6, 8, 18], "doc": [1, 3], "document": [1, 2], "doe": [6, 9, 12, 13, 15], "don": [3, 8], "done": [6, 18], "doubl": 6, "dourc": 13, "down": 3, "download": 3, "draft": 3, "drift": 6, "drive": [8, 13], "drop": [10, 13], "drop_column": 10, "dummi": 13, "dup": 6, "duplic": [6, 14], "duplicate_polici": 14, "duplicateentryerror": 14, "dure": [6, 13], "e": [3, 5, 6, 8, 11, 16, 18], "e0": [6, 16], "each": [5, 6, 8, 10, 11, 13, 15, 16], "easi": [5, 8, 9, 12], "edc": 6, "edg": [5, 8, 11], "edit": [3, 18], "either": [6, 8, 18], "elaps": 13, "electron": [6, 8, 13], "electronid": 13, "element": [5, 6, 8, 12], "eln_data": 8, "empti": [6, 7, 13], "encod": [13, 16], "encoder_posit": 16, "end": [0, 1, 5, 6, 8, 13, 16], "endstat": 8, "energi": [8, 12, 15, 16], "energy_column": [6, 16], "energy_offset": 6, "energy_scal": [6, 8, 16], "energycal_2019_01_08": 9, "energycal_2020_07_20": 9, "energycalibr": [6, 8], "eneri": 8, "engin": 16, "enough": 10, "ensur": [0, 1], "entir": [10, 13], "entri": [3, 5, 6, 8, 14, 16], "environ": [1, 3, 18], "epic": [8, 13, 16], "epics_pv": 16, "equal": [6, 16], "equat": 6, "equiscal": [6, 8], "equival": 6, "error": [3, 5, 9, 13, 14], "estim": 6, "etc": [6, 7, 13, 16, 18], "ev": [6, 16], "evalu": 0, "even": 16, "evenli": 13, "event": [0, 3, 6, 8, 13, 15, 16], "eventid": 16, "everi": [3, 16], "exampl": [1, 5, 6, 8, 15, 17, 18], "example_config": 16, "example_dset_info": 9, "example_dset_nam": 9, "example_subdir": 9, "exceed": 5, "except": [13, 14], "exclud": 13, "execut": 3, "exist": [6, 7, 8, 13, 14], "existing_data_path": 9, "exp": 16, "expect": 6, "experi": [5, 16], "explan": 14, "explod": 13, "express": [6, 13], "extend": 9, "extens": [8, 13], "extent": 6, "extern": [8, 13], "extr": 16, "extra": [6, 8], "extract": [6, 8, 13, 16], "extract_bia": 6, "extract_delay_stage_paramet": 6, "extractor_curr": 16, "extractor_voltag": 16, "extractorcurr": 16, "extractorvoltag": 16, "f": [6, 16], "f1": 16, "f_end": 13, "f_start": 13, "f_step": 13, "fa_hor_channel": 16, "fa_in_channel": 16, "fa_siz": 16, "factor": [6, 16], "faddr": [8, 12], "fail": 13, "fair": 0, "fake": [0, 17], "fals": [3, 5, 6, 7, 8, 10, 13, 16], "fast": [5, 8, 16], "fast_dtw": 8, "fastdtw": [6, 16], "fastdtw_radiu": [8, 16], "faster": [5, 15], "featrang": 6, "featur": [0, 1, 5, 6, 8, 9, 16], "feature_extract": [6, 8], "feature_point": 16, "feature_select": [6, 8], "feature_typ": 6, "feedback": 1, "feel": 18, "fermi": 6, "fetch": [8, 9, 13], "few": 1, "fhi": [13, 17], "fid": 13, "field": [6, 8, 16], "fig": 15, "figsiz": [6, 15], "figur": [6, 11], "file": [1, 3, 5, 6, 7, 8, 12, 13, 17], "file_path": 13, "file_sort": 13, "filenam": [6, 8, 9, 13, 16], "filenotfounderror": [7, 13], "fill": [6, 10, 13, 16], "filter": [8, 10], "filter_column": 8, "final": 16, "find": [5, 6, 8, 16], "find_bias_peak": 8, "find_correspond": 6, "find_nearest": 6, "fir": 13, "first": [6, 7, 8, 13, 15, 16], "first_event_time_stamp_kei": [13, 16], "firsteventtimestamp": [13, 16], "fit": 6, "fit_energy_calibr": 6, "fix": [1, 6, 10], "fixed_cent": 6, "fl0": 16, "fl1": 16, "fl1user1": 16, "fl1user2": 16, "fl1user3": 16, "fl2photdiag_pbd2_gmd_data": 16, "fl2user1": 16, "fl2user2": 16, "flash": [13, 17], "flash1_user1_stream_2": 16, "flash1_user2_stream_2": 16, "flash1_user3_stream_2": 16, "flash2_user1_stream_2": 16, "flash2_user2_stream_2": 16, "flexibl": 5, "flight": [6, 8, 13, 16], "flip": [6, 8, 16], "flip_delay_axi": [6, 8], "flip_time_axi": 16, "float": [5, 6, 8, 10, 11, 13], "float32": 13, "float64": 15, "flow": 8, "fluctuat": 16, "fmc0": 16, "folder": [7, 8, 9, 13, 16], "folder_config": [7, 16], "follow": [1, 3, 5, 6, 8, 12, 16], "forc": 13, "force_copi": 13, "force_recr": 13, "fork": 1, "form": [6, 8, 10], "format": [0, 1, 6, 7, 8, 12, 13, 16], "formula": 6, "forward": [6, 10, 13, 16], "forward_fill_iter": 16, "forward_fill_lazi": 10, "found": [6, 7, 8, 12, 13], "frame": [0, 8], "free": [3, 6, 18], "from": [1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16], "from_panda": 15, "ftype": 13, "full": [12, 13], "fulli": [7, 9], "function": [0, 6, 7, 8, 10, 11, 13, 15, 16], "funtion": [1, 13], "further": 16, "futur": 3, "fwhm": 16, "g": [3, 6, 8, 11, 16], "gamma": [6, 16], "gamma2": 6, "gather_calibration_metadata": 6, "gather_correction_metadata": 6, "gather_fil": 13, "gather_metadata": 13, "gaussian": [6, 8, 16], "gb": 3, "gd_w110": 9, "ge": 6, "gener": [0, 1, 3, 6, 8, 13, 16, 17], "generate_inverse_dfield": 6, "generate_splinewarp": 8, "geometr": 6, "get": [2, 13], "get_archiver_data": 13, "get_attribut": 13, "get_channel": 13, "get_count_r": 13, "get_elapsed_tim": 13, "get_files_from_run_id": 13, "get_groups_and_alias": 13, "get_load": 13, "get_metadata": 13, "get_names_of_all_load": 13, "get_normalization_histogram": 8, "get_start_and_end_tim": 13, "get_target_dir": 13, "getdata": 16, "getter": 8, "gid": [13, 16], "git": [1, 3, 18], "github": [1, 3, 18], "github_token": 3, "give": [1, 9, 14, 15, 16], "given": [5, 6, 7, 8, 9, 10, 13, 16], "glob": 13, "gmd": 16, "gmd_data_gmd_data": 16, "gmdbda": 16, "go": 3, "good": [6, 8], "gpf": 16, "graph": [6, 15, 16], "grid": [6, 8, 11, 16], "grid_histogram": [8, 11], "griddata": 6, "group": [3, 13, 16], "group_nam": [13, 16], "groupnam": 13, "guess": 12, "gui": 8, "guid": 1, "guidelin": 2, "h": 16, "h5": [8, 13, 16], "h5_file": 13, "h5_path": 13, "h5file": 13, "h5group": 13, "h5py": 13, "ha": [3, 5, 6, 8, 10, 13, 16], "half": 16, "hand": 16, "handl": [0, 11, 13], "handler": 14, "happen": 5, "have": [1, 3, 6, 8, 10, 12, 16, 18], "hdf5": [6, 8, 12, 13, 16], "hdf5_alias": [13, 16], "hdf5_groupnam": [13, 16], "hdf5_to_arrai": 13, "hdf5_to_datafram": 13, "hdf5_to_timed_arrai": 13, "hdf5_to_timed_datafram": 13, "help": [10, 18], "helper": 13, "here": [3, 5, 6, 16], "hex": 6, "hextof": [8, 13, 17], "hierach": 16, "hierarch": 7, "high": [8, 16], "highest": [5, 6], "highlight": 6, "hinder": 6, "hist": [5, 8], "hist_mod": [5, 8, 15, 16], "histgram": 16, "histkwd": [8, 11], "histogram": [5, 8, 11, 16], "histogramdd": 5, "histval": 11, "home": [7, 9, 16], "homomorphi": 6, "hook": 1, "hope": 1, "hor": 16, "horizont": [6, 11], "hostogram": 16, "how": [0, 2, 5, 6, 8], "html": [3, 6], "http": [1, 3, 6, 9, 16, 18], "hyper": 6, "hypercub": 5, "hypervolum": 6, "hz": 13, "i": [0, 1, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18], "id": [3, 6, 8, 13, 16], "id_1_trace_1": 6, "id_1_trace_2": 6, "id_2_trace_1": 6, "id_2_trace_2": 6, "idea": 3, "ideal": 8, "ident": 13, "identifi": [8, 13], "ignor": [9, 12, 13], "ignore_zip": 9, "il": 6, "imag": [6, 8], "imagej": 12, "imkwd": 6, "implement": [1, 6, 8, 9, 13, 15, 16], "import": [9, 15], "improv": [5, 15], "imshow": [6, 15], "includ": [1, 3, 6, 8, 10, 11, 12, 13, 16], "include_cent": [6, 8, 16], "increas": [6, 8], "increment": [3, 13], "index": [5, 6, 10, 13], "indic": 8, "individu": [8, 13, 16], "inf": [8, 10], "infer": [6, 12], "infer_oth": [6, 8], "info": 9, "inform": [0, 1, 6, 8, 9, 12, 13, 16], "inherit": 13, "initi": [6, 8, 10, 13, 16], "initialize_path": 13, "inperpol": 6, "inplac": 10, "input": [5, 6, 8, 12, 13, 16], "input_column": 13, "input_fil": [8, 12, 16], "insid": 13, "instal": [0, 1, 3], "instanc": [6, 8, 11, 13, 16], "instead": [8, 12], "instrument": [13, 16], "int": [5, 6, 8, 10, 11, 13], "integ": [5, 6, 8], "integr": 6, "intend": [5, 16, 18], "intens": 16, "interact": [6, 8], "interest": [6, 13], "interfac": 1, "intergr": 16, "intermedi": 16, "intern": 5, "interp_ord": 6, "interpol": [6, 8, 10], "interpret": 8, "interv": [8, 10, 13], "introduc": 1, "inv_dfield": 8, "invalid": 6, "invers": [6, 8], "involv": 6, "io": [0, 4], "ipykernel": 18, "issu": [1, 3, 10], "item": 7, "iter": [7, 10, 13, 16], "its": [8, 13], "jitter": [5, 8, 10, 16], "jitter_amp": [8, 16], "jitter_col": [8, 16], "jitter_column": 16, "jitter_typ": 10, "job": [3, 16], "json": [7, 13, 16], "json_path": 9, "jupyt": 18, "k": [6, 8, 16], "k_coord_a": [6, 8], "k_coord_b": [6, 8], "k_distanc": [6, 8], "kc": 6, "keep": [6, 7, 8, 14], "kei": [5, 6, 7, 8, 12, 13, 14, 16], "kernel": 18, "keyerror": 5, "keyword": [5, 6, 8, 11, 12, 13], "keyworkd": 16, "kinet": [6, 8, 16], "kit": [6, 13], "known": 6, "koordin": 8, "kr": 6, "ktof": 16, "kwarg": 9, "kwd": [5, 6, 8, 10, 11, 12, 13], "kx": [6, 8, 16], "kx_column": [6, 16], "kx_scale": 16, "ky": [6, 8, 16], "ky_column": [6, 16], "ky_scal": 16, "l": 13, "lab": [8, 18], "label": 6, "landmark": 6, "larg": 5, "larger": 6, "laser": 16, "last": [5, 6, 8], "latest": [1, 3], "layer": 15, "lazi": 0, "lean": [5, 8], "least": [6, 13, 15], "left": 5, "legaci": [5, 8], "legend": [6, 8, 11], "legend_loc": 6, "legkwd": [6, 8, 11], "len": [15, 16], "length": [10, 16], "lens_mode_config": 16, "level": [6, 9, 13], "librari": [7, 8], "like": [1, 5, 12], "limit": [5, 8], "line": 6, "linekwd": 6, "linesegkwd": 6, "linewidth": 6, "linspac": 15, "lint": 1, "linux": [7, 16, 18], "list": [5, 6, 8, 9, 10, 11, 13, 16], "lmfit": [6, 8, 16], "lmkcenter": 6, "load": [6, 7, 8, 9, 12, 13, 16], "load_bias_seri": 8, "load_config": 7, "load_data": 6, "load_datasets_dict": 9, "load_dfield": 6, "load_h5": 12, "load_parquet": 13, "load_tiff": 12, "loader": [0, 2, 4, 6, 8, 16], "loader_interfac": 13, "loader_nam": 13, "local": [0, 1, 3, 6, 8, 13, 16, 17, 18], "localdatastor": 16, "locat": [6, 13, 16], "lock": 16, "loess": [6, 8], "look": [5, 6, 8, 13, 16], "lookahead": 6, "lorentz": 6, "lorentzian": [6, 8, 16], "lorentzian_asymmetr": [6, 8], "lot": 16, "lower": [6, 10], "lower_bound": [8, 10], "lowerbound1": 6, "lowerbound2": 6, "lsqr": [6, 8], "lstsq": [6, 8], "m": [1, 13, 15, 16, 18], "m1": 16, "m2": 16, "m3": 16, "machin": 1, "maco": 18, "macro": 13, "macrobunch": 13, "made": [1, 5, 8], "mai": 6, "main": [1, 3, 6], "main_dict": 6, "maintain": [0, 1, 2], "make": [1, 3, 5, 11, 16, 18], "manag": 9, "mani": 10, "manipul": 14, "manner": 16, "manual": [3, 8, 12, 13], "map": [6, 10, 13], "map_2d": 10, "map_columns_2d": 10, "map_coordin": 6, "map_partit": 6, "mapkwd": 6, "marker": 13, "mask": 13, "match": 6, "matlab": 6, "matplotlib": [6, 8, 11, 15], "matrix": 6, "max": 10, "max_valu": 8, "maxima": 6, "maximum": [6, 8], "maxwel": 16, "mcpfront": 16, "md22": 16, "mean": [6, 8, 10, 16], "meaningless": 13, "mechan": 16, "mechani": 16, "mehthod": 15, "mehtod": 16, "member": 1, "merg": [1, 6, 7, 14], "mesh": 6, "messag": [1, 14], "meta": [6, 13, 14], "meta_handl": 13, "metadata": [0, 4, 6, 8, 12, 13, 16], "metadata_config": 13, "metadataretriev": 13, "metahandl": [8, 13, 14], "metdata": 6, "meter": 6, "method": [1, 5, 6, 8, 13, 14, 15], "meti": [13, 17], "microbunch": 13, "microscop": [13, 17], "middl": 8, "might": [5, 6, 8], "millisecond": [13, 16], "mimic": 5, "min": 6, "min_valu": 8, "minima": 6, "minimum": [6, 8], "mirror": [8, 13, 16], "mirrorutil": 13, "mismatch": 5, "miss": [6, 7, 8, 13], "mm": 6, "mm_to_p": 6, "mode": [5, 6, 8, 12, 13, 16, 18], "model": 6, "modif": 16, "modul": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16], "momentum": [8, 13, 17], "momentumcorrector": [6, 8], "monitor": [3, 16], "monochrom": 16, "monochromat": 16, "monochromatorphotonenergi": 16, "monoton": 8, "more": [1, 10, 12], "most": [5, 13, 16], "mostli": [6, 13, 16], "motor": 16, "movement": 9, "mpe": [6, 13, 17], "mpg": 16, "ms_marker": 13, "ms_markers_group": [13, 16], "msmarker": [13, 16], "much": [5, 10], "multi": 0, "multi_index": 13, "multicolumn": 13, "multidetector": 13, "multidim": 16, "multidimension": [1, 5, 6, 13], "multiindex": 13, "multipl": [6, 10, 11, 15], "multiprocess": [5, 8], "multithread": 16, "must": [1, 8, 10], "mycopi": 13, "mymakedir": 13, "n": [5, 6, 8, 13, 15, 16], "n_core": [5, 8], "n_cpu": [5, 8], "n_pt": 15, "name": [3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18], "nan": [10, 13], "nanosecond": [6, 8, 16], "narrai": 6, "narrow": 8, "navig": [1, 3], "nbin": 15, "ncol": [8, 11], "ndarrai": [5, 6, 8, 10, 11, 12, 13], "ndimag": 6, "nearest": 6, "necessari": [1, 3, 16], "need": [6, 8, 12, 16], "neg": 6, "neighbor": 6, "neither": [7, 13], "network": [8, 13], "never": [5, 15], "new": [1, 3, 6, 9, 10, 13, 14, 18], "new_cent": 6, "new_dataset": 9, "new_tof_column": 6, "new_x_column": 6, "new_y_column": 6, "next": [6, 8], "nexu": [0, 8, 12, 16], "nexustool": 8, "nexusutil": 12, "nice": 14, "nois": [5, 8, 10], "none": [5, 6, 7, 8, 10, 11, 12, 13, 14], "nonlinear": 6, "nor": [7, 13], "normal": [5, 6, 7, 8, 10, 16], "normalization_histogram": 8, "normalizazion": 8, "normalize_ord": [8, 16], "normalize_span": [8, 16], "normalize_to_acquisition_tim": 8, "normspec": 6, "notadirectoryerror": 13, "note": [3, 13], "notebook": [0, 3, 8, 16, 18], "notimplementederror": [6, 12], "now": [13, 18], "np": [5, 6, 8, 10, 11, 12, 13, 15], "np_arrai": 13, "npartit": 15, "nrang": 6, "ntask": 16, "ntrace": 6, "num_cor": [8, 16], "numba": [0, 5, 8, 15, 16], "numba_bin": 5, "numba_histogramdd": 5, "number": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16], "numpi": [5, 8, 12, 13, 15, 16], "nx": 8, "nxmpe": 16, "nxmpes_config": 16, "nxmpes_config_hextof_light": 16, "o": 9, "object": [5, 6, 8, 9, 13, 14], "obtain": [6, 13, 16], "occur": [3, 13, 16], "off": [5, 13], "offset": [6, 10, 16], "offset_by_other_column": 10, "offset_column": 10, "often": 10, "old": 13, "oldest": 13, "omg": 16, "omit": [6, 8], "onc": [1, 18], "one": [3, 5, 6, 8, 10, 12, 13, 14, 16], "ones": [1, 6], "onli": [3, 5, 6, 8, 10, 12, 13], "onto": 8, "open": [1, 3, 8, 16], "opencomp": [1, 3, 18], "openmp": 8, "oper": [0, 4], "opposit": 13, "optim": 6, "option": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16], "order": [5, 6, 7, 8, 12, 13, 16], "org": [3, 9], "origin": [1, 6, 8], "orthogon": 6, "orthorhomb": 6, "osc": 16, "oserror": 13, "other": [6, 8, 10, 13, 16], "other_entri": 6, "otherwis": [5, 6, 10, 12, 14], "our": 16, "out": [3, 6, 8, 13], "output": [6, 11, 12, 13], "output_column": 13, "outsid": [5, 8], "over": [5, 6, 7, 8, 13, 15], "overflow": 5, "overlap": [6, 16], "overrid": [6, 8], "overwrit": [7, 8, 13, 14, 16], "overwritten": [6, 16], "ownership": 13, "p": [6, 16], "p1": 16, "p1_kei": [6, 16], "p1_valu": 6, "p2": 16, "p2_kei": [6, 16], "p2_valu": 6, "p_rd": 16, "packag": [0, 3, 10, 14, 16], "package_dir": 7, "page": 3, "pair": [8, 10, 12], "pairwis": 6, "palett": 6, "panda": [13, 17], "pandoc": 3, "panel": [6, 8], "parallel": [5, 6, 8, 16], "param": 13, "paramet": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "paramt": 6, "parquet": [13, 16], "parquet_handl": 13, "parquet_path": 13, "pars": [13, 16], "parse_config": 7, "parse_h5_kei": 13, "parse_metadata": 13, "parser": 13, "part": [5, 15], "particular": 6, "partit": [5, 8, 10, 17], "pass": [1, 5, 6, 7, 8, 10, 13, 16], "past": 10, "path": [3, 6, 7, 8, 12, 13, 15, 16], "path_to_remov": 9, "pathcorr": 6, "pattern": 13, "pbar": [5, 8, 16], "pbd": 16, "pbd2": 16, "pbk": 11, "pcent": 6, "pcolormesh": 6, "pd": [5, 6, 8, 10, 13, 15], "peak": [6, 8, 16], "peak_window": [6, 8, 16], "peakdet": 6, "peakdetect1d": 6, "peakdetect2d": 6, "peaksearch": 6, "per": [6, 8, 13, 16], "per_electron": [13, 16], "per_puls": [13, 16], "per_train": [13, 16], "perform": [5, 6, 13], "period": 6, "permiss": 3, "pg": 16, "pg2": 16, "phi": 16, "photoelectron": 0, "photoemiss": [0, 1, 5], "photon": 16, "pick": 6, "picosecond": [6, 8], "pip": [1, 3, 18], "pipx": [1, 3], "pixel": [6, 8, 16], "pkwindow": 6, "place": [7, 16], "plane": [6, 8], "plate": 6, "pleas": 1, "plot": [6, 8, 11, 15], "plot_single_hist": 11, "plt": 15, "po": 6, "poetri": [1, 3], "point": [5, 6, 8, 16], "point_a": [6, 8], "point_b": [6, 8], "pointop": 6, "poly_a": 6, "poly_energy_calibr": 6, "polynomi": [6, 8], "popul": 13, "port": [6, 13], "pose": 8, "pose_adjust": [6, 8], "posi": [12, 15], "posit": [6, 8, 16], "possibl": [3, 6, 10], "possibli": [6, 7], "posx": [12, 15], "pouter_ord": 6, "power": [5, 16], "pr": 3, "pre": [1, 7, 8, 14], "pre_bin": 8, "precend": 13, "precompil": 5, "prefer": 7, "prefix": [3, 13, 16], "prereleas": 3, "present": [5, 6, 7, 8, 13, 14, 16], "preserve_mean": [6, 8, 10], "press": 3, "pressureac": 16, "prevent": 3, "preview": 8, "previou": [10, 14], "princip": 6, "print": [6, 8, 9, 13], "prioriti": [5, 8, 13], "probabl": 16, "probe": [6, 16], "procedur": 6, "process": [0, 1, 3, 6, 13, 16], "processor": [3, 8, 16, 18], "profil": 6, "progress": [3, 5, 8, 16], "project": [1, 3], "properti": [6, 8, 9, 13, 14], "proven": 0, "provid": [1, 5, 6, 7, 8, 10, 12, 13, 14, 16], "ptovid": 8, "publish": 3, "pull": [2, 3, 18], "puls": [13, 16], "pulseid": [13, 16], "pulser": 16, "pulsersignadc": 16, "pump": [6, 16], "pumpprobetim": 16, "purpous": 15, "push": [1, 3], "pv": 16, "py": 13, "pyenv": 18, "pynxtool": 16, "pypi": [3, 18], "pyplot": [6, 8, 15], "pyproject": 3, "pytest": 1, "python": [1, 16, 18], "quad": 11, "qualit": 8, "quantiti": 6, "quasi": 16, "queri": 13, "queu": 3, "r": [3, 12, 15], "r_center": 6, "r_convers": 6, "r_det": 6, "r_start": 6, "r_step": 6, "radial": 16, "radii": 6, "radiu": [8, 16], "rais": [5, 6, 7, 8, 12, 13, 14], "randn": 15, "random": [11, 15], "rang": [5, 6, 8, 11, 13, 16, 17], "range_convert": 6, "rate": 13, "rather": 8, "raw": [3, 13, 16], "rbv": 16, "rd": 16, "rdeform": 6, "rdeform_field": [6, 8], "rdet": 6, "re": [13, 15], "read": [3, 6, 8, 12, 13, 16], "read_datafram": 13, "reader": [8, 12, 13, 16], "real": 9, "realist": 5, "realli": 15, "rearrang": 9, "rearrange_fil": 9, "rebas": 1, "recombin": [5, 16], "record": 9, "recreat": 13, "recurs": 14, "reduct": [6, 8, 10], "ref": 16, "ref_energi": [6, 8], "ref_id": [6, 8], "refenc": 6, "refer": [1, 6, 8, 16], "region": 6, "regist": 1, "registr": 6, "registri": 1, "rel": 6, "relat": [3, 6, 8], "relationship": 6, "releas": 2, "reli": 13, "remain": [8, 13], "remov": [3, 13, 16], "renam": 10, "render": 6, "reorder": 6, "repeat": 13, "replac": [6, 8, 13], "report": [6, 7, 13, 16], "repositori": [1, 3, 18], "repres": [5, 8, 12, 13], "represent": [6, 14], "request": [2, 3, 5, 13, 16, 18], "requir": [3, 5, 6, 13, 18], "reread": 13, "rerun": 9, "reserv": [13, 16], "reset": [6, 8, 13], "reset_deform": 6, "reset_multi_index": 13, "resolv": [0, 13, 16], "respect": [6, 13, 16], "respons": 3, "restor": 8, "result": [5, 6, 8, 13], "retain": 12, "retriev": [8, 13, 16], "rettig": 13, "return": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16], "return_edg": 5, "return_partit": 5, "revers": 8, "review": 1, "rise": 8, "rmsnois": 6, "root": [13, 16], "rotat": [6, 8, 16], "rotation_auto": 6, "rotation_symmetri": [8, 16], "rotsym": 6, "rotvertexgener": 6, "routin": [0, 16], "row": [6, 8, 10, 15], "row_index": 6, "rst": 1, "rstart": [6, 16], "rstep": [6, 16], "rtype": 14, "run": [1, 3, 8, 10, 13, 16], "run_id": 13, "runner": [7, 9], "runnin": 10, "runtimeerror": 5, "rv": 11, "rvbin": 11, "rvrang": 11, "sa1": 16, "same": [8, 10, 14, 16], "sampl": [5, 6, 16], "sample_temperatur": 16, "samplebia": 16, "sampletemperatur": 16, "sase": 16, "sav": 16, "save": [7, 8, 12, 13, 16], "save_config": 7, "save_delay_calibr": 8, "save_delay_offset": 8, "save_energy_calibr": 8, "save_energy_correct": 8, "save_energy_offset": 8, "save_momentum_calibr": 8, "save_parquet": 13, "save_splinewarp": 8, "save_transform": 8, "save_workflow_param": 8, "savgol_filt": [6, 8], "scale": [6, 8, 10, 16], "scaling_auto": 6, "scan": [6, 8, 13], "scan0121_1": 9, "scan049_1": 9, "scatter": 6, "scatterkwd": 6, "schema": 13, "scicat": [13, 16], "scicat_token": [13, 16], "scicat_url": 16, "scientist": 1, "scipi": [6, 8], "score": 6, "script": [6, 18], "sdev": 10, "sdiag": 16, "sdir": 13, "seach_pattern": 13, "search": [5, 6, 7, 13], "second": [6, 8, 13, 16], "section": [6, 16], "sector": [6, 8, 16], "sector_delai": [6, 8, 16], "sector_id_column": [6, 13, 16], "sector_id_reserved_bit": [13, 16], "sectorid": 13, "sed": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18], "sed_config": [7, 8, 16], "sed_fresh_copi": 9, "sed_kernel": 18, "sedprocessor": 8, "see": [1, 3, 6, 8, 13, 16, 18], "seg": 6, "segment": 6, "select": [1, 3, 6, 8, 13, 16], "select_k_rang": 6, "select_slic": 6, "selector": [6, 13], "self": [6, 8], "separ": [6, 13], "sequenc": [5, 6, 8, 10, 11, 12, 13], "seri": [6, 8, 13], "set": [1, 3, 5, 6, 7, 8, 13, 17], "setup": 16, "sever": 0, "shall": 16, "shape": [5, 6, 8], "shell": 3, "shift": [6, 8], "ship": 16, "should": [1, 5, 6, 8, 9, 12, 16], "show": [5, 6, 8], "show_legend": 6, "showcas": 15, "sig_mov": 6, "sig_stil": 6, "sigma": [6, 16], "sigma_radiu": 16, "sign": [6, 8, 10, 16], "signal": [6, 8], "signific": [5, 13, 15], "significantli": 3, "similar": [5, 10, 13], "simpl": [5, 15], "simpli": 15, "simplify_binning_argu": 5, "simul": 15, "simultan": 10, "sinc": 16, "singl": [0, 5, 6, 8, 11, 12, 13, 15, 16], "single_event_data": 9, "sis8300": 16, "situat": 6, "size": [5, 6, 10, 13, 16], "skip": [3, 18], "skip_test": 5, "slice": [6, 8, 16], "slice_correct": 6, "slider": [6, 8], "slow": [3, 8], "small": [1, 15], "smallest": 10, "smooth": [6, 8, 16], "so": [3, 12, 16], "solv": 6, "some": 13, "soon": 16, "sort": [12, 13], "sourc": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "space": [3, 6, 8, 13], "span": [6, 8], "spars": 10, "spawn": [5, 8], "spec": [6, 13], "special": 16, "specif": [3, 6, 8, 13], "specifi": [5, 6, 8, 9, 10, 13], "spectra": 6, "spectral": 6, "spectroscopi": [0, 1], "speed": 13, "speicifi": 8, "spheric": [6, 8], "sphinx": 3, "spline": [6, 8, 16], "spline_warp_estim": [6, 8], "splinewarp": 8, "split": 13, "split_channel_bitwis": 13, "split_dld_time_from_sector_id": 13, "split_sector_id_from_dld_tim": 16, "squar": 6, "stack": [6, 8, 12], "stage": [6, 16], "stamp": [8, 10, 13, 16], "standard": [6, 12], "start": [2, 5, 6, 8, 13, 16], "static": [6, 9, 16], "step": [3, 5, 6, 8, 13, 16], "still": 16, "stop": 6, "storag": [8, 16], "store": [5, 6, 8, 9, 13, 16], "str": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "stream": [13, 16], "stream_0": 16, "stream_1": 16, "stream_2": 16, "stream_4": 16, "stream_name_prefix": 16, "string": [5, 7, 12, 13], "structur": [13, 15, 16], "subclass": [1, 6], "subdir": 9, "subfunct": 12, "submit": 18, "subplot": 15, "subsequ": 16, "substitu": 8, "subtract": [6, 8, 10], "succes": 16, "success": [1, 3], "successfulli": 9, "suffici": 6, "suffix": 10, "sum": [6, 15], "sum_n": 6, "support": [6, 7, 8, 10, 13], "supported_file_typ": 13, "sure": [3, 16], "surround": 6, "sxp": 13, "sy": 15, "sym": 6, "symmetr": 6, "symmetri": [6, 8, 16], "symscor": 6, "symtyp": 6, "sync": 16, "system": [6, 7, 13, 16], "system_config": [7, 16], "t": [3, 6, 8, 12, 16], "t0": [6, 8, 16], "t0_kei": [6, 16], "t0_valu": 6, "t_n": 16, "ta": 6, "tab": 3, "tabl": 15, "tabular": 8, "tag": 3, "take": [5, 7, 8, 10, 13], "taken": 6, "targ": 13, "targcent": 6, "target": [6, 13], "target_column": 10, "tas2": 9, "td": 16, "temp_rbv": 16, "term": 6, "terrain_r": 6, "test": [1, 9, 16], "text": 11, "than": [8, 12], "thei": [6, 7, 8, 16], "them": [6, 8, 14, 16], "theme": 0, "therefor": 12, "thi": [0, 1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18], "thick": 6, "thin": 6, "those": [10, 18], "thread": [5, 8, 16], "threadpool_api": [5, 8, 16], "threadpool_limit": 8, "threads_per_work": [5, 8, 16], "three": 13, "through": [0, 1], "tht": 16, "tif": 8, "tiff": [8, 12], "time": [0, 6, 8, 10, 12, 13, 15, 16], "time0": [6, 16], "time0_mm": 6, "time1": 16, "time_offset": 6, "time_stamp": [8, 10, 13], "time_stamp_alia": [8, 13, 16], "time_stamp_column": 10, "timed_datafram": 8, "timed_dataframe_unit_tim": 16, "timestamp": [8, 10, 13, 16], "timinginfo": 16, "tion": 6, "titl": 6, "tm": 16, "tmat": 6, "to_h5": 12, "to_nexu": 12, "to_tiff": 12, "toconfig": 8, "tof": [6, 8, 16], "tof2ev": 6, "tof2evpoli": 6, "tof2n": 6, "tof_bin": [6, 16], "tof_binwidth": [6, 16], "tof_column": [6, 8, 13, 16], "tof_dist": 6, "tof_fermi": [6, 16], "tof_ns_column": [6, 8, 16], "tof_step_to_n": 8, "tof_voltag": 16, "tof_width": [6, 16], "tofvoltag": 16, "tog": 6, "token": [3, 13, 16], "toml": 3, "too": 8, "took": 16, "tool": [6, 8, 13, 16], "tooltip": 11, "top": 6, "total": [5, 15], "toward": 6, "tqdm": [5, 8], "trace": [6, 8, 16], "traces_norm": 6, "track": [0, 5], "trail": 14, "train": 13, "train_id": 13, "trainid": 13, "transform": [5, 6, 8, 17], "transform_typ": 6, "transformt": [6, 8], "translat": [6, 8], "transpar": 13, "trarp": [0, 16], "tree": 13, "tremendi": 13, "tri": [8, 12], "trigger": 3, "true": [5, 6, 7, 8, 9, 10, 11, 13, 15, 16], "trx": 16, "try": [5, 15, 16], "trz": 16, "ts_from": 13, "ts_to": 13, "tupl": [5, 6, 8, 11, 13], "turn": 5, "tutori": [3, 9], "twice": 10, "two": [3, 6, 8, 10, 13], "type": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18], "typeerror": [5, 7, 8, 12], "typic": 16, "tzcyx": 12, "ubid_offset": 16, "uca": 16, "udld": 16, "ufa": 16, "uint32": 5, "uint64": 5, "unbin": 16, "uncategoris": 16, "undefin": [6, 13], "under": [8, 14], "underli": 8, "understand": 3, "uniform": [5, 6, 8, 10], "unimpl": 5, "union": 6, "unit": [8, 16], "unix": 13, "unmodifi": 8, "unnecessari": 3, "up": [1, 3, 6, 13], "updat": [3, 6, 13], "update_deform": 6, "upload": 3, "upper": 6, "upper_bound": [8, 10], "upperbound1": 6, "upperbound2": 6, "url": [9, 13, 16], "us": [0, 1, 3, 6, 8, 10, 12, 13, 15, 16, 18], "usag": [0, 13], "use_cent": [6, 8, 16], "use_copy_tool": [8, 16], "use_correct": 8, "use_time_stamp": 8, "user": [0, 1, 3, 5, 6, 7, 13, 15, 16, 18], "user_config": [7, 16], "user_path": 9, "usual": 5, "util": [0, 5], "v": [3, 16], "v0": 3, "val": [5, 6], "valid": [6, 8, 13], "valu": [5, 6, 7, 8, 10, 11, 12, 13, 16], "valueerror": [5, 6, 8, 9, 12, 13], "variabl": [1, 11], "variat": 16, "variou": [13, 16], "vector": 6, "venv": 18, "verbos": [6, 7, 8], "veri": 5, "version": [0, 1, 3, 6, 13, 17], "vert": 6, "vertex": 6, "vertic": [6, 11], "view": [3, 6, 8], "view_event_histogram": 8, "virtual": [3, 18], "visit": 3, "visual": [6, 16], "visula": 16, "vital": 16, "volt": 6, "voltag": [6, 8, 16], "volum": [5, 6], "w": [8, 12], "wa": [5, 8], "walk": 1, "wall": 15, "warn": [5, 12], "warp": [6, 8], "wave": 13, "we": [1, 10, 15, 16], "web": 9, "weight": [6, 8, 10], "welcom": 1, "well": [5, 6], "wesp": 13, "wether": 13, "when": [5, 6, 8, 9, 14], "where": [5, 6, 7, 8, 13, 16], "whether": [1, 6, 8, 9, 10, 13, 16], "which": [1, 5, 6, 8, 10, 13, 14, 16], "whichev": 6, "while": 13, "whole": [6, 8], "whose": 6, "wide": 7, "width": [6, 8, 16], "window": [6, 7, 16, 18], "wise": 6, "within": [6, 8, 13], "work": [3, 6, 7, 8, 9, 16, 18], "worker": 16, "workflow": [0, 2, 3, 6, 8, 16], "workflow_dispatch": 3, "would": [1, 3, 15], "wrapper": 8, "write": [1, 3, 8, 12], "writer": 8, "written": 6, "wrong": 5, "wse2": 9, "x": [6, 8, 10, 12, 16], "x_axi": 6, "x_center": [6, 16], "x_column": [6, 10, 16], "x_width": [6, 16], "xarra": 12, "xarrai": [5, 8, 12], "xaxi": 6, "xgs600": 16, "xm": 16, "xr": [5, 6, 8, 12], "xrng": 6, "xtran": [6, 8], "y": [6, 8, 10, 12, 16], "y_axi": 6, "y_center": [6, 16], "y_column": [6, 10, 16], "y_width": [6, 16], "yaml": [7, 8, 16], "year": 16, "yet": [8, 16], "ym": 16, "yml": 3, "you": [0, 1, 3, 15, 18], "your": [1, 18], "yournameload": 1, "yourusernam": 1, "ytran": [6, 8], "z": 12, "z1": 16, "z2": 16, "zain": 9, "zenodo": 9, "zero": 6, "zip": 15, "zone": 6, "zraw": 16}, "titles": ["SED documentation", "Contributing to sed", "Development", "How to Maintain", "API", "Binning", "Calibrator", "Config", "Core", "Dataset", "Dataframe Operations", "Diagnostics", "IO", "Data loader", "Metadata", "Binning demonstration on locally generated fake data", "Configuration", "User Guide", "Installation", "Workflows"], "titleterms": {"Not": 9, "Or": 9, "The": 9, "abstract": 13, "ad": 9, "advanc": 17, "after": 9, "all": 9, "allow": 9, "along": 15, "ani": 9, "anoth": 9, "api": [0, 4, 9], "attribut": 9, "baseload": 13, "basic": 17, "behavior": 9, "berlin": 16, "bin": [5, 15], "calibr": 6, "can": 9, "commun": 0, "comput": 15, "concept": 17, "config": 7, "configur": 16, "continu": 9, "contribut": [0, 1], "core": 8, "correct": 6, "custom": 9, "dask": 15, "data": [9, 13, 15], "datafram": [10, 15], "dataset": 9, "default": [9, 16], "defin": 15, "delai": 6, "delet": 9, "demonstr": 15, "desi": 16, "develop": [1, 2, 18], "diagnost": 11, "distribut": 15, "document": [0, 3, 9], "download": 9, "energi": 6, "exampl": [0, 9, 16], "exist": 9, "extract": 9, "fake": 15, "fals": 9, "fhi": 16, "file": [9, 16], "flash": 16, "flashload": 13, "from": 9, "function": 5, "gener": 15, "genericload": 13, "get": [1, 9], "guid": [0, 17], "guidelin": 1, "ha": 9, "helper": 5, "hextof": 16, "how": 3, "i": 9, "instal": [17, 18], "instanc": 9, "interfac": 13, "interrupt": 9, "io": 12, "json": 9, "just": 9, "keyword": 9, "loader": [1, 13], "local": 15, "locat": 9, "main": 5, "maintain": 3, "metadata": 14, "meti": 16, "microscop": 16, "momentum": [6, 16], "mpe": 16, "mpesload": 13, "name": 9, "need": 9, "one": 9, "onli": 9, "oper": 10, "panda": 15, "partit": 15, "path": 9, "present": 9, "process": 9, "provid": 9, "pull": 1, "rang": 15, "reextract": 9, "releas": 3, "remov": 9, "remove_zip": 9, "request": 1, "restart": 9, "root_dir": 9, "sed": [0, 1, 17], "see": 9, "set": [9, 16], "similar": 9, "some": 9, "start": 1, "stop": 9, "sxploader": 13, "thi": 9, "transform": 15, "try": 9, "two": 9, "us": [5, 9], "use_exist": 9, "user": [9, 17], "util": 13, "version": 18, "where": 9, "workflow": [1, 19], "would": 9, "zip": 9}}) \ No newline at end of file diff --git a/sed/latest/sed/api.html b/sed/latest/sed/api.html index fadc638..31ffcd1 100644 --- a/sed/latest/sed/api.html +++ b/sed/latest/sed/api.html @@ -8,7 +8,7 @@ - API — SED 0.1.10a6 documentation + API — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

diff --git a/sed/latest/sed/binning.html b/sed/latest/sed/binning.html index 38938f7..ac0c85c 100644 --- a/sed/latest/sed/binning.html +++ b/sed/latest/sed/binning.html @@ -8,7 +8,7 @@ - Binning — SED 0.1.10a6 documentation + Binning — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -478,22 +478,21 @@

Binning#<

sed.binning module easy access APIs

-sed.binning.bin_dataframe(df, bins=100, axes=None, ranges=None, hist_mode='numba', mode='fast', jitter=None, pbar=True, n_cores=9, threads_per_worker=4, threadpool_api='blas', return_partitions=False, **kwds)[source]#
+sed.binning.bin_dataframe(df, bins=100, axes=None, ranges=None, hist_mode='numba', mode='fast', jitter=None, pbar=True, n_cores=3, threads_per_worker=4, threadpool_api='blas', return_partitions=False, **kwds)[source]#

Computes the n-dimensional histogram on columns of a dataframe, parallelized.

Parameters:
Raises:
@@ -586,15 +584,15 @@

Binning#<
Parameters:
Returns:

2-element tuple returned only when -returnEdges is True. Otherwise only hist is returned.

+return_edges is True. Otherwise only hist is returned.

Return type:
-

Union[np.ndarray, Tuple[np.ndarray, list]]

+

np.ndarray | tuple[np.ndarray

@@ -699,7 +697,7 @@

Binning#<
sed.binning.numba_bin.numba_histogramdd(sample, bins, ranges=None)[source]#
-

Multidimensional histogram function, powered by Numba.

+

Multidimensional histogramming function, powered by Numba.

Behaves in total much like numpy.histogramdd. Returns uint32 arrays. This was chosen because it has a significant performance improvement over uint64 for large binning volumes. Be aware that this can cause overflows @@ -709,8 +707,8 @@

Binning#<
Parameters:
Return type:
-

Tuple[np.ndarray, List[np.ndarray]]

+

tuple[np.ndarray, list[np.ndarray]]

@@ -752,13 +750,13 @@

Binning#<
Parameters:
Return type:
-

Tuple[Union[List[int], List[np.ndarray]], List[Tuple[float, float]]]

+

tuple[list[int] | list[np.ndarray], list[str], list[tuple[float, float]]]

diff --git a/sed/latest/sed/calibrator.html b/sed/latest/sed/calibrator.html index f0c336b..b057051 100644 --- a/sed/latest/sed/calibrator.html +++ b/sed/latest/sed/calibrator.html @@ -8,7 +8,7 @@ - Calibrator — SED 0.1.10a6 documentation + Calibrator — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -485,9 +485,9 @@

Calibrator
Parameters:
Returns:
-

the loaded inverse deformation field

+

the loaded inverse row and column deformation fields

Return type:
-

np.ndarray

+

tuple[np.ndarray, np.ndarray]

@@ -1357,12 +1358,12 @@

Calibrator
Parameters:

@@ -475,7 +475,7 @@

This module contains a config library for loading yaml/json files into dicts

-sed.core.config.parse_config(config=None, folder_config=None, user_config=None, system_config=None, default_config='/Users/zain/Documents/Work/sed_fresh_copy/sed/sed/config/default.yaml', verbose=True)[source]#
+sed.core.config.parse_config(config=None, folder_config=None, user_config=None, system_config=None, default_config='/home/runner/work/sed/sed/sed/config/default.yaml', verbose=True)[source]#

Load the config dictionary from a file, or pass the provided config dictionary. The content of the loaded config dictionary is then completed from a set of pre-configured config files in hierarchical order, by adding missing items. These additional config files @@ -484,21 +484,21 @@

Parameters:
    -
  • config (Union[dict, str], optional) – config dictionary or file path. +

  • config (dict | str, optional) – config dictionary or file path. Files can be json or yaml. Defaults to None.

  • -
  • folder_config (Union[ dict, str, ], optional) – working-folder-based config dictionary +

  • folder_config (dict | str, optional) – working-folder-based config dictionary or file path. The loaded dictionary is completed with the folder-based values, taking preference over user, system and default values. Defaults to the file “sed_config.yaml” in the current working directory.

  • -
  • user_config (Union[ dict, str, ], optional) – user-based config dictionary +

  • user_config (dict | str, optional) – user-based config dictionary or file path. The loaded dictionary is completed with the user-based values, taking preference over system and default values. Defaults to the file “.sed/config.yaml” in the current user’s home directory.

  • -
  • system_config (Union[ dict, str, ], optional) – system-wide config dictionary +

  • system_config (dict | str, optional) – system-wide config dictionary or file path. The loaded dictionary is completed with the system-wide values, taking preference over default values. Defaults to the file “/etc/sed/config.yaml” on linux, and “%ALLUSERSPROFILE%/sed/config.yaml” on windows.

  • -
  • default_config (Union[ dict, str, ], optional) – default config dictionary +

  • default_config (dict | str, optional) – default config dictionary or file path. The loaded dictionary is completed with the default values. Defaults to package_dir/config/default.yaml”.

  • verbose (bool, optional) – Option to report loaded config files. Defaults to True.

  • @@ -547,11 +547,11 @@ sed.core.config.save_config(config_dict, config_path, overwrite=False)[source]#

    Function to save a given config dictionary to a json or yaml file. Normally, it loads any existing file of the given name, and keeps any existing dictionary keys not present in the -provided dictionary. The overwrite option creates a fully empty dictionary first.

    +provided dictionary. The overwrite option creates a fully empty dictionry first.

    Parameters:
      -
    • config_dict (dict) – The dictionary to save.

    • +
    • config_dict (dict) – The dictionry to save.

    • config_path (str) – A string containing the path to the file where to save the dictionary to.

    • overwrite (bool, optional) – Option to overwrite an existing file with the given dictionary. diff --git a/sed/latest/sed/core.html b/sed/latest/sed/core.html index 28bb012..e955f18 100644 --- a/sed/latest/sed/core.html +++ b/sed/latest/sed/core.html @@ -8,7 +8,7 @@ - Core — SED 0.1.10a6 documentation + Core — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

      SED 0.1.10a6 documentation

      +

      SED 0.1.10a5 documentation

@@ -484,11 +484,11 @@
Parameters:
  • metadata (dict, optional) – Dict of external Metadata. Defaults to None.

  • -
  • config (Union[dict, str], optional) – Config dictionary or config file name. +

  • config (dict | str, optional) – Config dictionary or config file name. Defaults to None.

  • -
  • dataframe (Union[pd.DataFrame, ddf.DataFrame], optional) – dataframe to load +

  • dataframe (pd.DataFrame | ddf.DataFrame, optional) – dataframe to load into the class. Defaults to None.

  • -
  • files (List[str], optional) – List of files to pass to the loader defined in +

  • files (list[str], optional) – List of files to pass to the loader defined in the config. Defaults to None.

  • folder (str, optional) – Folder containing files to pass to the loader defined in the config. Defaults to None.

  • @@ -504,28 +504,28 @@
    -property dataframe: DataFrame | DataFrame#
    +property dataframe: pd.DataFrame | ddf.DataFrame#

    Accessor to the underlying dataframe.

    Returns:

    Dataframe object.

    Return type:
    -

    Union[pd.DataFrame, ddf.DataFrame]

    +

    pd.DataFrame | ddf.DataFrame

    -property timed_dataframe: DataFrame | DataFrame#
    +property timed_dataframe: pd.DataFrame | ddf.DataFrame#

    Accessor to the underlying timed_dataframe.

    Returns:

    Timed Dataframe object.

    Return type:
    -

    Union[pd.DataFrame, ddf.DataFrame]

    +

    pd.DataFrame | ddf.DataFrame

    @@ -560,28 +560,28 @@
    -property config: Dict[Any, Any]#
    +property config: dict[Any, Any]#

    Getter attribute for the config dictionary

    Returns:

    The config dictionary.

    Return type:
    -

    Dict

    +

    dict

    -property files: List[str]#
    +property files: list[str]#

    Getter attribute for the list of files

    Returns:

    The list of loaded files

    Return type:
    -

    List[str]

    +

    list[str]

    @@ -620,7 +620,7 @@

    Getter attribute for the normalization histogram

    Returns:
    -

    The normalization histogram

    +

    The normalizazion histogram

    Return type:

    xr.DataArray

    @@ -637,13 +637,13 @@ config[“core”][“use_copy_tool”].

    Parameters:
    -

    path (Union[str, List[str]]) – Source path or path list.

    +

    path (str | list[str]) – Source path or path list.

    Returns:

    Source or destination path or path list.

    Return type:
    -

    Union[str, List[str]]

    +

    str | list[str]

    @@ -655,11 +655,11 @@
    Parameters:
      -
    • dataframe (Union[pd.DataFrame, ddf.DataFrame], optional) – data in tabular +

    • dataframe (pd.DataFrame | ddf.DataFrame, optional) – data in tabular format. Accepts anything which can be interpreted by pd.DataFrame as an input. Defaults to None.

    • metadata (dict, optional) – Dict of external Metadata. Defaults to None.

    • -
    • files (List[str], optional) – List of file paths to pass to the loader. +

    • files (list[str], optional) – List of file paths to pass to the loader. Defaults to None.

    • runs (Sequence[str], optional) – List of run identifiers to pass to the loader. Defaults to None.

    • @@ -702,13 +702,13 @@
      Parameters:
        -
      • df_partitions (Union[int, Sequence[int]], optional) – Number of dataframe partitions +

      • df_partitions (int | Sequence[int], optional) – Number of dataframe partitions to use for the initial binning. Defaults to 100.

      • -
      • axes (List[str], optional) – Axes to bin. +

      • axes (list[str], optional) – Axes to bin. Defaults to config[“momentum”][“axes”].

      • -
      • bins (List[int], optional) – Bin numbers to use for binning. +

      • bins (list[int], optional) – Bin numbers to use for binning. Defaults to config[“momentum”][“bins”].

      • -
      • ranges (List[Tuple], optional) – Ranges to use for binning. +

      • ranges (Sequence[tuple[float, float]], optional) – Ranges to use for binning. Defaults to config[“momentum”][“ranges”].

      • plane (int, optional) – Initial value for the plane slider. Defaults to 0.

      • width (int, optional) – Initial value for the width slider. Defaults to 5.

      • @@ -725,7 +725,7 @@ define_features(features=None, rotation_symmetry=6, auto_detect=False, include_center=True, apply=False, **kwds)[source]#

        2. Step of the distortion correction workflow: Define feature points in momentum space. They can be either manually selected using a GUI tool, be -provided as list of feature points, or auto-generated using a +ptovided as list of feature points, or auto-generated using a feature-detection algorithm.

        Parameters:
        @@ -750,7 +750,7 @@
        generate_splinewarp(use_center=None, verbose=None, **kwds)[source]#

        3. Step of the distortion correction workflow: Generate the correction -function restoring the symmetry in the image using a splinewarp algorithm.

        +function restoring the symmetry in the image using a splinewarp algortihm.

        Parameters:
          @@ -790,8 +790,8 @@
          Parameters:
            -
          • transformations (dict, optional) – Dictionary with transformations. -Defaults to self.transformations or config[“momentum”][“transformations”].

          • +
          • transformations (dict[str, Any], optional) – Dictionary with transformations. +Defaults to self.transformations or config[“momentum”][“transformtions”].

          • apply (bool, optional) – Option to directly apply the provided transformations. Defaults to False.

          • use_correction (bool, option) – Whether to use the spline warp correction @@ -864,18 +864,18 @@

            Parameters:
              -
            • point_a (Union[np.ndarray, List[int]]) – Pixel coordinates of the first +

            • point_a (np.ndarray | list[int], optional) – Pixel coordinates of the first point used for momentum calibration.

            • -
            • point_b (Union[np.ndarray, List[int]], optional) – Pixel coordinates of the +

            • point_b (np.ndarray | list[int], optional) – Pixel coordinates of the second point used for momentum calibration. Defaults to config[“momentum”][“center_pixel”].

            • k_distance (float, optional) – Momentum distance between point a and b. -Needs to be provided if no specific k-coordinates for the two points +Needs to be provided if no specific k-koordinates for the two points are given. Defaults to None.

            • -
            • k_coord_a (Union[np.ndarray, List[float]], optional) – Momentum coordinate +

            • k_coord_a (np.ndarray | list[float], optional) – Momentum coordinate of the first point used for calibration. Used if equiscale is False. Defaults to None.

            • -
            • k_coord_b (Union[np.ndarray, List[float]], optional) – Momentum coordinate +

            • k_coord_b (np.ndarray | list[float], optional) – Momentum coordinate of the second point used for calibration. Defaults to [0.0, 0.0].

            • equiscale (bool, optional) – Option to apply different scales to kx and ky. If True, the distance between points a and b, and the absolute @@ -929,7 +929,7 @@

              adjust_energy_correction(correction_type=None, amplitude=None, center=None, apply=False, **kwds)[source]#
              -

              1. step of the energy correction workflow: Opens an interactive plot to +

              1. step of the energy crrection workflow: Opens an interactive plot to adjust the parameters for the TOF/energy correction. Also pre-bins the data if they are not present yet.

              @@ -947,7 +947,7 @@

            • amplitude (float, optional) – Amplitude of the correction. Defaults to config[“energy”][“correction”][“amplitude”].

            • -
            • center (Tuple[float, float], optional) – Center X/Y coordinates for the +

            • center (tuple[float, float], optional) – Center X/Y coordinates for the correction. Defaults to config[“energy”][“correction”][“center”].

            • apply (bool, optional) – Option to directly apply the provided or default correction parameters. Defaults to False.

            • @@ -976,7 +976,7 @@
              apply_energy_correction(correction=None, preview=False, verbose=None, **kwds)[source]#
              -

              2. step of the energy correction workflow: Apply the energy correction +

              2. step of the energy correction workflow: Apply the enery correction parameters stored in the class to the dataframe.

              Parameters:
              @@ -1001,15 +1001,15 @@
              Parameters:
                -
              • binned_data (Union[xr.DataArray, Tuple[np.ndarray, np.ndarray, np.ndarray]], optional) – Binned data If provided as DataArray, Needs to contain dimensions +

              • binned_data (xr.DataArray | tuple[np.ndarray, np.ndarray, np.ndarray], optional) – Binned data If provided as DataArray, Needs to contain dimensions config[“dataframe”][“tof_column”] and config[“dataframe”][“bias_column”]. If provided as tuple, needs to contain elements tof, biases, traces.

              • -
              • data_files (List[str], optional) – list of file paths to bin

              • -
              • axes (List[str], optional) – bin axes. +

              • data_files (list[str], optional) – list of file paths to bin

              • +
              • axes (list[str], optional) – bin axes. Defaults to config[“dataframe”][“tof_column”].

              • -
              • bins (List, optional) – number of bins. +

              • bins (list, optional) – number of bins. Defaults to config[“energy”][“bins”].

              • -
              • ranges (Sequence[Tuple[float, float]], optional) – bin ranges. +

              • ranges (Sequence[tuple[float, float]], optional) – bin ranges. Defaults to config[“energy”][“ranges”].

              • biases (np.ndarray, optional) – Bias voltages used. If missing, bias voltages are extracted from the data files.

              • @@ -1040,7 +1040,7 @@
                Parameters:
                  -
                • ranges (Union[List[Tuple], Tuple]) – Tuple of TOF values indicating a range. +

                • ranges (list[tuple] | tuple) – Tuple of TOF values indicating a range. Alternatively, a list of ranges for all traces can be given.

                • ref_id (int, optional) – The id of the trace the range refers to. Defaults to 0.

                • @@ -1051,7 +1051,7 @@
                • radius (int, optional) – Radius parameter for fast_dtw. Defaults to config[“energy”][“fastdtw_radius”].

                • peak_window (int, optional) – Peak_window parameter for the peak detection -algorithm. amount of points that have to have to behave monotonously +algorthm. amount of points that have to have to behave monotoneously around a peak. Defaults to config[“energy”][“peak_window”].

                • apply (bool, optional) – Option to directly apply the provided parameters. Defaults to False.

                • @@ -1142,15 +1142,16 @@
                  Parameters:
                  • constant (float, optional) – The constant to shift the energy axis by.

                  • -
                  • columns (Union[str, Sequence[str]]) – Name of the column(s) to apply the shift from.

                  • -
                  • weights (Union[float, Sequence[float]]) – weights to apply to the columns. +

                  • columns (str | Sequence[str], optional) – Name of the column(s) to apply the shift from.

                  • +
                  • weights (float | Sequence[float], optional) – weights to apply to the columns. Can also be used to flip the sign (e.g. -1). Defaults to 1.

                  • -
                  • preserve_mean (bool) – Whether to subtract the mean of the column before applying the -shift. Defaults to False.

                  • -
                  • reductions (str) – The reduction to apply to the column. Should be an available method -of dask.dataframe.Series. For example “mean”. In this case the function is applied -to the column to generate a single value for the whole dataset. If None, the shift -is applied per-dataframe-row. Defaults to None. Currently only “mean” is supported.

                  • +
                  • reductions (str | Sequence[str], optional) – The reduction to apply to the column. +Should be an available method of dask.dataframe.Series. For example “mean”. In this +case the function is applied to the column to generate a single value for the whole +dataset. If None, the shift is applied per-dataframe-row. Defaults to None. +Currently only “mean” is supported.

                  • +
                  • preserve_mean (bool | Sequence[bool], optional) – Whether to subtract the mean of the +column before applying the shift. Defaults to False.

                  • preview (bool, optional) – Option to preview the first elements of the data frame. Defaults to False.

                  • verbose (bool, optional) – Option to print out diagnostic information. @@ -1161,7 +1162,7 @@

                    ValueError – If the energy column is not in the dataframe.

                    Return type:
                    -

                    None

                    +

                    None

              @@ -1229,7 +1230,7 @@
              Parameters:
                -
              • delay_range (Tuple[float, float], optional) – The scanned delay range in +

              • delay_range (tuple[float, float], optional) – The scanned delay range in picoseconds. Defaults to None.

              • datafile (str, optional) – The file from which to read the delay ranges. Defaults to None.

              • @@ -1271,15 +1272,16 @@
                • constant (float, optional) – The constant to shift the delay axis by.

                • flip_delay_axis (bool, optional) – Option to reverse the direction of the delay axis.

                • -
                • columns (Union[str, Sequence[str]]) – Name of the column(s) to apply the shift from.

                • -
                • weights (Union[float, Sequence[float]]) – weights to apply to the columns. +

                • columns (str | Sequence[str], optional) – Name of the column(s) to apply the shift from.

                • +
                • weights (float | Sequence[float], optional) – weights to apply to the columns. Can also be used to flip the sign (e.g. -1). Defaults to 1.

                • -
                • preserve_mean (bool) – Whether to subtract the mean of the column before applying the -shift. Defaults to False.

                • -
                • reductions (str) – The reduction to apply to the column. Should be an available method -of dask.dataframe.Series. For example “mean”. In this case the function is applied -to the column to generate a single value for the whole dataset. If None, the shift -is applied per-dataframe-row. Defaults to None. Currently only “mean” is supported.

                • +
                • reductions (str | Sequence[str], optional) – The reduction to apply to the column. +Should be an available method of dask.dataframe.Series. For example “mean”. In this +case the function is applied to the column to generate a single value for the whole +dataset. If None, the shift is applied per-dataframe-row. Defaults to None. +Currently only “mean” is supported.

                • +
                • preserve_mean (bool | Sequence[bool], optional) – Whether to subtract the mean of the +column before applying the shift. Defaults to False.

                • preview (bool, optional) – Option to preview the first elements of the data frame. Defaults to False.

                • verbose (bool, optional) – Option to print out diagnostic information. @@ -1290,7 +1292,7 @@

                  ValueError – If the delay column is not in the dataframe.

                  Return type:
                  -

                  None

                  +

                  None

              @@ -1340,9 +1342,9 @@
              Parameters:
                -
              • cols (List[str], optional) – The columns onto which to apply jitter. +

              • cols (list[str], optional) – The colums onto which to apply jitter. Defaults to config[“dataframe”][“jitter_cols”].

              • -
              • amps (Union[float, Sequence[float]], optional) – Amplitude scalings for the +

              • amps (float | Sequence[float], optional) – Amplitude scalings for the jittering noise. If one number is given, the same is used for all axes. For uniform noise (default) it will cover the interval [-amp, +amp]. Defaults to config[“dataframe”][“jitter_amps”].

              • @@ -1381,13 +1383,13 @@
                Parameters:
                  -
                • df_partitions (Union[int, Sequence[int]], optional) – Number of dataframe partitions to +

                • df_partitions (int | Sequence[int], optional) – Number of dataframe partitions to use for the initial binning. Defaults to 100.

                • -
                • axes (List[str], optional) – Axes to bin. +

                • axes (list[str], optional) – Axes to bin. Defaults to config[“momentum”][“axes”].

                • -
                • bins (List[int], optional) – Bin numbers to use for binning. +

                • bins (list[int], optional) – Bin numbers to use for binning. Defaults to config[“momentum”][“bins”].

                • -
                • ranges (List[Tuple], optional) – Ranges to use for binning. +

                • ranges (Sequence[tuple[float, float]], optional) – Ranges to use for binning. Defaults to config[“momentum”][“ranges”].

                • **kwds – Keyword argument passed to compute.

                @@ -1408,7 +1410,7 @@
                Parameters:
                  -
                • bins (int, dict, tuple, List[int], List[np.ndarray], List[tuple], optional) –

                  Definition of the bins. Can be any of the following cases:

                  +
                • bins (int | dict | tuple | list[int] | list[np.ndarray] | list[tuple], optional) –

                  Definition of the bins. Can be any of the following cases:

                  • an integer describing the number of bins in on all dimensions

                  • a tuple of 3 numbers describing start, end and step of the binning @@ -1419,13 +1421,13 @@

                  This takes priority over the axes and range arguments. Defaults to 100.

                • -
                • axes (Union[str, Sequence[str]], optional) – The names of the axes (columns) +

                • axes (str | Sequence[str], optional) – The names of the axes (columns) on which to calculate the histogram. The order will be the order of the dimensions in the resulting array. Defaults to None.

                • -
                • ranges (Sequence[Tuple[float, float]], optional) – list of tuples containing +

                • ranges (Sequence[tuple[float, float]], optional) – list of tuples containing the start and end point of the binning range. Defaults to None.

                • -
                • normalize_to_acquisition_time (Union[bool, str]) – Option to normalize the -result to the acquisition time. If a “slow” axis was scanned, providing +

                • normalize_to_acquisition_time (bool | str) – Option to normalize the +result to the acquistion time. If a “slow” axis was scanned, providing the name of the scanned axis will compute and apply the corresponding normalization histogram. Defaults to False.

                • **kwds

                  Keyword arguments:

                  @@ -1517,12 +1519,12 @@
                  • dfpid (int) – Number of the data frame partition to look at.

                  • ncol (int, optional) – Number of columns in the plot grid. Defaults to 2.

                  • -
                  • bins (Sequence[int], optional) – Number of bins to use for the specified +

                  • bins (Sequence[int], optional) – Number of bins to use for the speicified axes. Defaults to config[“histogram”][“bins”].

                  • axes (Sequence[str], optional) – Names of the axes to display. Defaults to config[“histogram”][“axes”].

                  • -
                  • ranges (Sequence[Tuple[float, float]], optional) – Value ranges of all -specified axes. Defaults to config[“histogram”][“ranges”].

                  • +
                  • ranges (Sequence[tuple[float, float]], optional) – Value ranges of all +specified axes. Defaults toconfig[“histogram”][“ranges”].

                  • backend (str, optional) – Backend of the plotting library (‘matplotlib’ or ‘bokeh’). Defaults to “bokeh”.

                  • legend (bool, optional) – Option to include a legend in the histogram plots. @@ -1556,7 +1558,7 @@

                  • .nxs”, “.nexus”: Saves a NeXus file.

                • -
                • **kwds

                  Keyword arguments, which are passed to the writer functions: +

                • **kwds

                  Keyword argumens, which are passed to the writer functions: For TIFF writing:

                  • alias_dict: Dictionary of dimension aliases to use.

                  • @@ -1567,9 +1569,9 @@

                  For NeXus:

                    -
                  • reader: Name of the pynxtools reader to use. +

                  • reader: Name of the nexustools reader to use. Defaults to config[“nexus”][“reader”]

                  • -
                  • definition: NeXus application definition to use for saving. +

                  • definiton: NeXus application definition to use for saving. Must be supported by the used reader. Defaults to config[“nexus”][“definition”]

                  • input_files: A list of input files to pass to the reader. diff --git a/sed/latest/sed/dataset.html b/sed/latest/sed/dataset.html index 1841f09..f9689e2 100644 --- a/sed/latest/sed/dataset.html +++ b/sed/latest/sed/dataset.html @@ -8,7 +8,7 @@ - Dataset — SED 0.1.10a6 documentation + Dataset — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

                    SED 0.1.10a6 documentation

                    +

                    SED 0.1.10a5 documentation

@@ -707,7 +707,8 @@

Default datasets.json "subdirs": [ "Scan049_1", "energycal_2019_01_08" - ] + ], + "data_path": "/Users/zain/Documents/Work/sed_fresh_copy/sed/tutorial/datasets/WSe2" }, "Gd_W110": { "url": "https://zenodo.org/records/10658470/files/single_event_data.zip", @@ -759,7 +760,7 @@

Default datasets.json
-json_path = {'folder': './datasets.json', 'module': '/Users/zain/Documents/Work/sed_fresh_copy/sed/sed/dataset/datasets.json', 'user': '/Users/zain/Library/Application Support/sed/datasets.json'}#
+json_path = {'folder': './datasets.json', 'module': '/home/runner/work/sed/sed/sed/dataset/datasets.json', 'user': '/home/runner/.config/sed/datasets.json'}#
diff --git a/sed/latest/sed/dfops.html b/sed/latest/sed/dfops.html index 7022a6e..b755749 100644 --- a/sed/latest/sed/dfops.html +++ b/sed/latest/sed/dfops.html @@ -8,7 +8,7 @@ - Dataframe Operations — SED 0.1.10a6 documentation + Dataframe Operations — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

SED 0.1.10a6 documentation

+

SED 0.1.10a5 documentation

@@ -481,14 +481,14 @@
Parameters:
    -
  • df (Union[pd.DataFrame, dask.dataframe.DataFrame]) – Dataframe to add +

  • df (pd.DataFrame | dask.dataframe.DataFrame) – Dataframe to add noise/jittering to.

  • -
  • cols (Union[str, Sequence[str]]) – Names of the columns to add jittering to.

  • -
  • cols_jittered (Union[str, Sequence[str]], optional) – Names of the columns +

  • cols (str | Sequence[str]) – Names of the columns to add jittering to.

  • +
  • cols_jittered (str | Sequence[str], optional) – Names of the columns with added jitter. Defaults to None.

  • -
  • amps (Union[float, Sequence[float]], optional) – Amplitude scalings for the +

  • amps (float | Sequence[float], optional) – Amplitude scalings for the jittering noise. If one number is given, the same is used for all axes. -For normal noise, the added noise will have stdev [-amp, +amp], for +For normal noise, the added noise will have sdev [-amp, +amp], for uniform noise it will cover the interval [-amp, +amp]. Defaults to 0.5.

  • jitter_type (str, optional) – the type of jitter to add. ‘uniform’ or ‘normal’ @@ -499,7 +499,7 @@

    dataframe with added columns.

    Return type:
    -

    Union[pd.DataFrame, dask.dataframe.DataFrame]

    +

    pd.DataFrame | dask.dataframe.DataFrame

@@ -511,15 +511,15 @@
Parameters:
    -
  • df (Union[pd.DataFrame, dask.dataframe.DataFrame]) – Dataframe to use.

  • -
  • column_name (Union[str, Sequence[str]])) – List of column names to be dropped.

  • +
  • df (pd.DataFrame | dask.dataframe.DataFrame) – Dataframe to use.

  • +
  • column_name (str | Sequence[str]) – List of column names to be dropped.

Returns:

Dataframe with dropped columns.

Return type:
-

Union[pd.DataFrame, dask.dataframe.DataFrame]

+

pd.DataFrame | dask.dataframe.DataFrame

@@ -531,7 +531,7 @@
Parameters:
    -
  • df (Union[pd.DataFrame, dask.dataframe.DataFrame]) – Dataframe to use.

  • +
  • df (pd.DataFrame | dask.dataframe.DataFrame) – Dataframe to use.

  • col (str) – Name of the column to filter. Passing “index” for col will filter on the index in each dataframe partition.

  • lower_bound (float, optional) – The lower bound used in the filtering. @@ -544,7 +544,7 @@

    The filtered dataframe.

    Return type:
    -

    Union[pd.DataFrame, dask.dataframe.DataFrame]

    +

    pd.DataFrame | dask.dataframe.DataFrame

@@ -557,7 +557,7 @@
Parameters:
    -
  • df (Union[pd.DataFrame, dask.dataframe.DataFrame]) – Dataframe to use.

  • +
  • df (dask.dataframe.DataFrame) – Dataframe to use.

  • time_stamps (np.ndarray) – Time stamps of the values to add

  • data (np.ndarray) – Values corresponding at the time stamps in time_stamps

  • dest_column (str) – destination column name

  • @@ -568,7 +568,7 @@

    Dataframe with added column

    Return type:
    -

    Union[pd.DataFrame, dask.dataframe.DataFrame]

    +

    dask.dataframe.DataFrame

@@ -580,7 +580,7 @@
Parameters:
    -
  • df (Union[pd.DataFrame, dask.dataframe.DataFrame]) – Dataframe to use.

  • +
  • df (pd.DataFrame | dask.dataframe.DataFrame) – Dataframe to use.

  • map_2d (Callable) – 2D mapping function.

  • x_column (str) – The X column of the dataframe to apply mapping to.

  • y_column (str) – The Y column of the dataframe to apply mapping to.

  • @@ -591,7 +591,7 @@

    Dataframe with mapped columns.

    Return type:
    -

    Union[pd.DataFrame, dask.dataframe.DataFrame]

    +

    pd.DataFrame | dask.dataframe.DataFrame

@@ -602,15 +602,15 @@

Forward fill the specified columns multiple times in a dask dataframe.

Allows forward filling between partitions. This is useful for dataframes that have sparse data, such as those with many NaNs. -Running the forward filling multiple times can fix the issue of having +Runnin the forward filling multiple times can fix the issue of having entire partitions consisting of NaNs. By default we run this twice, which is enough to fix the issue for dataframes with no consecutive partitions of NaNs.

Parameters:
  • df (dask.dataframe.DataFrame) – The dataframe to forward fill.

  • -
  • columns (list) – The columns to forward fill. If None, fills all columns

  • -
  • before (int, str, optional) – The number of rows to include before the current partition. +

  • columns (list, optional) – The columns to forward fill. If None, fills all columns

  • +
  • before (str | int, optional) – The number of rows to include before the current partition. if ‘max’ it takes as much as possible from the previous partition, which is the size of the smallest partition in the dataframe. Defaults to ‘max’.

  • compute_lengths (bool, optional) – Whether to compute the length of each partition

  • @@ -637,8 +637,8 @@
    Parameters:
    • df (dask.dataframe.DataFrame) – The dataframe to forward fill.

    • -
    • columns (list) – The columns to forward fill. If None, fills all columns

    • -
    • after (int, str, optional) – The number of rows to include after the current partition. +

    • columns (list, optional) – The columns to forward fill. If None, fills all columns

    • +
    • after (str | int, optional) – The number of rows to include after the current partition. if ‘max’ it takes as much as possible from the previous partition, which is the size of the smallest partition in the dataframe. Defaults to ‘max’.

    • compute_lengths (bool, optional) – Whether to compute the length of each partition

    • @@ -663,13 +663,13 @@
      • df (dask.dataframe.DataFrame) – Dataframe to use. Currently supports only dask dataframes.

      • target_column (str) – Name of the column to apply the offset to.

      • -
      • offset_columns (str) – Name of the column(s) to use for the offset.

      • -
      • weights (Union[float, Sequence[float]]) – weights to apply on each column before adding. -Used also for changing sign.

      • -
      • reductions (Union[str, Sequence[str]], optional) – Reduction function to use for the offset. +

      • offset_columns (str | Sequence[str]) – Name of the column(s) to use for the offset.

      • +
      • weights (float | Sequence[float]) – weights to apply on each column before adding. Used also +for changing sign.

      • +
      • reductions (str | Sequence[str], optional) – Reduction function to use for the offset. Defaults to “mean”. Currently, only mean is supported.

      • -
      • preserve_mean (Union[bool, Sequence[bool]], optional) – Whether to subtract the mean of the -offset column. Defaults to False. If a list is given, it must have the same length as +

      • preserve_mean (bool | Sequence[bool], optional) – Whether to subtract the mean of the offset +column. Defaults to False. If a list is given, it must have the same length as offset_columns. Otherwise the value passed is used for all columns.

      • inplace (bool, optional) – Whether to apply the offset inplace. If false, the new column will have the name provided by rename, or has the same name as diff --git a/sed/latest/sed/diagnostic.html b/sed/latest/sed/diagnostic.html index 5bd8050..93a455d 100644 --- a/sed/latest/sed/diagnostic.html +++ b/sed/latest/sed/diagnostic.html @@ -8,7 +8,7 @@ - Diagnostics — SED 0.1.10a6 documentation + Diagnostics — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

        SED 0.1.10a6 documentation

        +

        SED 0.1.10a5 documentation

@@ -507,7 +507,7 @@
  • ncol (int) – Number of columns in the plot grid.

  • rvs (Sequence) – List of names for the random variables (rvs).

  • rvbins (Sequence) – Bin values for all random variables.

  • -
  • rvranges (Sequence[Tuple[float, float]]) – Value ranges of all random variables.

  • +
  • rvranges (Sequence[tuple[float, float]]) – Value ranges of all random variables.

  • backend (str, optional) – Backend for making the plot (‘matplotlib’ or ‘bokeh’). Defaults to “bokeh”.

  • legend (bool, optional) – Option to include a legend in each histogram plot. diff --git a/sed/latest/sed/io.html b/sed/latest/sed/io.html index 820de4c..5c5bdfb 100644 --- a/sed/latest/sed/io.html +++ b/sed/latest/sed/io.html @@ -8,7 +8,7 @@ - IO — SED 0.1.10a6 documentation + IO — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

  • @@ -489,7 +489,7 @@

    ValueError – Raised if data or axes are not found in the file.

    Returns:
    -

    output xarray data

    +

    output xarra data

    Return type:

    xr.DataArray

    @@ -526,7 +526,7 @@
    Parameters:
      -
    • faddr (Union[str, Path]) – Path to file to load.

    • +
    • faddr (str | Path) – Path to file to load.

    • coords (dict, optional) – The axes describing the data, following the tiff stack order. Defaults to None.

    • dims (Sequence, optional) – the order of the coordinates provided, considering @@ -552,19 +552,20 @@

      Parameters:
        -
      • data (Union[xr.DataArray, np.ndarray]) – data to be saved. If a np.ndarray, +

      • data (xr.DataArray | np.ndarray) – data to be saved. If a np.ndarray, the order is retained. If it is an xarray.DataArray, the order is inferred from axis_dict instead. ImageJ likes tiff files with axis order as TZCYXS. Therefore, best axis order in input should be: Time, Energy, posY, posX. The channels ‘C’ and ‘S’ are automatically added and can be ignored.

      • -
      • faddr (Union[Path, str]) – full path and name of file to save.

      • +
      • str) (faddr Path |) – full path and name of file to save.

      • alias_dict (dict, optional) – name pairs for correct axis ordering. Keys should be any of T,Z,C,Y,X,S. The Corresponding value should be a dimension of the xarray or the dimension number if a numpy array. This is used to sort the data in the correct order for imagej standards. If None it tries to guess the order from the name of the axes or assumes T,Z,C,Y,X,S order for numpy arrays. Defaults to None.

      • +
      • faddr (Path | str)

      Raises:
      @@ -589,10 +590,9 @@ data._attrs[“metadata”].

    • faddr (str) – The file path to save to.

    • reader (str) – The name of the NeXus reader to use.

    • -
    • definition (str) – The NeXus definition to use.

    • -
    • input_files (Union[str, Sequence[str]]) – The file path or paths to the additional files to -use.

    • -
    • **kwds – Keyword arguments for pynxtools.dataconverter.convert.convert().

    • +
    • definition (str) – The NeXus definiton to use.

    • +
    • input_files (str | Sequence[str]) – The file path or paths to the additional files to use.

    • +
    • **kwds – Keyword arguments for nexusutils.dataconverter.convert.

    diff --git a/sed/latest/sed/loader.html b/sed/latest/sed/loader.html index ae901c1..3c6b465 100644 --- a/sed/latest/sed/loader.html +++ b/sed/latest/sed/loader.html @@ -8,7 +8,7 @@ - Data loader — SED 0.1.10a6 documentation + Data loader — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

    @@ -508,7 +508,7 @@

    Data loader

    List of all detected loader names.

    Return type:
    -

    List[str]

    +

    list[str]

    @@ -534,7 +534,7 @@

    Data loader
    -supported_file_types: typing.List[str] = []#
    +supported_file_types: list[str] = []#
    @@ -545,14 +545,14 @@

    Data loader
    Parameters:

    @@ -581,7 +581,7 @@

    Data loaderParameters:
    Return type:
    -

    List[str]

    +

    list[str]

    @@ -613,7 +613,7 @@

    Data loaderReturn type: -

    Tuple[np.ndarray, np.ndarray]

    +

    tuple[np.ndarray, np.ndarray]

    @@ -669,7 +669,7 @@

    Data loader
    -supported_file_types: List[str] = ['parquet', 'csv', 'json']#
    +supported_file_types: list[str] = ['parquet', 'csv', 'json']#
    @@ -679,14 +679,14 @@

    Data loader
    Parameters:

    @@ -723,7 +723,7 @@

    Data loaderParameters:
    Return type:
    -

    str

    +

    list[str]

    @@ -755,7 +755,7 @@

    Data loaderReturn type: -

    Tuple[np.ndarray, np.ndarray]

    +

    tuple[np.ndarray, np.ndarray]

    @@ -806,7 +806,7 @@

    Data loader
    -sed.loader.mpes.loader.get_groups_and_aliases(h5file, search_pattern=None, alias_key='Name')[source]#
    +sed.loader.mpes.loader.get_groups_and_aliases(h5file, seach_pattern=None, alias_key='Name')[source]#

    Read groups and aliases from a provided hdf5 file handle

    Parameters:
    • h5file (h5py.File) – The hdf5 file handle

    • -
    • search_pattern (str, optional) – Search pattern to select groups. Defaults to include all groups.

    • +
    • seach_pattern (str, optional) – Search pattern to select groups. Defaults to include all groups.

    • alias_key (str, optional) – Attribute key where aliases are stored. Defaults to “Name”.

    @@ -880,7 +880,7 @@

    Data loader

    The list of groupnames and the alias dictionary parsed from the file

    Return type:
    -

    Tuple[List[str], Dict[str, str]]

    +

    tuple[list[str], dict[str, str]]

    @@ -931,7 +931,7 @@

    Data loaderReturns: -

    the array of the values at evenly spaced timing obtained from +

    the array of the values at evently spaced timing obtained from the ms_markers.

    Return type:
    @@ -943,7 +943,7 @@

    Data loader
    sed.loader.mpes.loader.get_attribute(h5group, attribute)[source]#
    -

    Reads, decodes and returns an attribute from an hdf5 group

    +

    Reads, decodes and returns an attrubute from an hdf5 group

    Parameters:
    @@ -995,7 +995,7 @@

    Data loaderReturns: -

    The acquisition time of the file in seconds.

    +

    The acquision time of the file in seconds.

    Return type:

    float

    @@ -1020,7 +1020,7 @@

    Data loader

    The extracted time stamps and corresponding data

    Return type:
    -

    Tuple[List, List]

    +

    tuple[np.ndarray, np.ndarray]

    @@ -1041,7 +1041,7 @@

    Data loader
    -supported_file_types: List[str] = ['h5']#
    +supported_file_types: list[str] = ['h5']#
    @@ -1052,14 +1052,14 @@

    Data loader
    Parameters:

    @@ -1106,7 +1106,7 @@

    Data loaderParameters:
    Return type:
    -

    List[str]

    +

    list[str]

    @@ -1130,7 +1130,7 @@

    Data loader

    A tuple containing the start and end time stamps

    Return type:
    -

    Tuple[float, float]

    +

    tuple[float, float]

    @@ -1178,7 +1178,7 @@

    Data loaderReturn type: -

    Tuple[np.ndarray, np.ndarray]

    +

    tuple[np.ndarray, np.ndarray]

    @@ -1226,7 +1226,7 @@

    Data loader
    class sed.loader.flash.loader.FlashLoader(config)[source]#
    @@ -1241,7 +1241,7 @@

    Data loader
    -supported_file_types: List[str] = ['h5']#
    +supported_file_types: list[str] = ['h5']#
    @@ -1254,7 +1254,7 @@

    Data loaderReturn type: -

    Tuple[List[Path], Path]

    +

    tuple[list[Path], Path]

    Raises:

    @@ -1307,7 +1307,7 @@

    Data loader
    Parameters:
      -
    • formats (Union[str, List[str]]) – The desired format(s) +

    • formats (str | list[str]) – The desired format(s) (‘per_pulse’, ‘per_electron’, ‘per_train’, ‘all’).

    • index (bool) – If True, includes channels from the multi_index.

    @@ -1316,7 +1316,7 @@

    Data loader

    A list of channels with the specified format(s).

    Return type:
    -

    List[str]

    +

    list[str]

    @@ -1400,7 +1400,7 @@

    Data loaderReturn type: -

    Tuple[Series, np.ndarray]

    +

    tuple[Series, np.ndarray]

    @@ -1451,8 +1451,8 @@

    Data loaderNotes

    @@ -482,12 +482,12 @@ and give a nice representation of them.

    Parameters:
    -

    meta (typing.Optional[typing.Dict], default: None)

    +

    meta (dict, optional) – Pre-existing metadata dict. Defaults to None.

    -property metadata: Dict#
    +property metadata: dict#

    Property returning the metadata dict. :returns: Dictionary of metadata. :rtype: dict

    @@ -502,7 +502,7 @@
    • entry (typing.Any) – dictionary containing the metadata to add.

    • name (str) – name of the dictionary key under which to add entry.

    • -
    • duplicate_policy (str, default: 'raise') –

      Control behavior in case the ‘name’ key +

    • duplicate_policy (str, default: 'raise') –

      Control behaviour in case the ‘name’ key is already present in the metadata dictionary. Can be any of:

        diff --git a/sed/latest/user_guide/1_binning_fake_data.html b/sed/latest/user_guide/1_binning_fake_data.html index 9047964..677b4e7 100644 --- a/sed/latest/user_guide/1_binning_fake_data.html +++ b/sed/latest/user_guide/1_binning_fake_data.html @@ -8,7 +8,7 @@ - Binning demonstration on locally generated fake data — SED 0.1.10a6 documentation + Binning demonstration on locally generated fake data — SED 0.1.10a5 documentation @@ -36,7 +36,7 @@ - + @@ -47,7 +47,7 @@ @@ -127,7 +127,7 @@ -

        SED 0.1.10a6 documentation

        +

        SED 0.1.10a5 documentation

      @@ -540,33 +540,33 @@

      Generate Fake Data
      -CPU times: user 1 s, sys: 49.9 ms, total: 1.05 s
      -Wall time: 1.18 s
      +CPU times: user 1.33 s, sys: 51.7 ms, total: 1.38 s
      +Wall time: 1.38 s
       

    -
    +
    -CPU times: user 1.78 s, sys: 1.28 s, total: 3.06 s
    -Wall time: 681 ms
    +CPU times: user 887 ms, sys: 353 ms, total: 1.24 s
    +Wall time: 789 ms
     
    @@ -810,7 +810,7 @@

    Compute distributed binning on the partitioned dask dataframe -{"state": {"a67ebd2127104917aed511743330c89d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6aeb07ce82f845808734a570d23327f7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e7b0cb9fa4845b28e074a12257f2da3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a67ebd2127104917aed511743330c89d", "max": 6.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6aeb07ce82f845808734a570d23327f7", "value": 6.0}}, "f39b23e20aa84238928e932d37e1864e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d147107f1d64db093dbe611337e5bfc": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "816ae6c71fa34858b47615bcdb6ba552": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f39b23e20aa84238928e932d37e1864e", "placeholder": "\u200b", "style": "IPY_MODEL_7d147107f1d64db093dbe611337e5bfc", "value": "100%"}}, "1ae28a6b4ba449a19926fcc54b986682": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f2cac48f9a640e5ad9b4c137c7f75be": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8d2679906f464c4d8a62ec21995e6985": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1ae28a6b4ba449a19926fcc54b986682", "placeholder": "\u200b", "style": "IPY_MODEL_6f2cac48f9a640e5ad9b4c137c7f75be", "value": "\u20076/6\u2007[00:00<00:00,\u2007\u20073.80it/s]"}}, "355b6d5be12d480d832e865768793745": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ba03d9838e04889b706931effa08ed0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_816ae6c71fa34858b47615bcdb6ba552", "IPY_MODEL_2e7b0cb9fa4845b28e074a12257f2da3", "IPY_MODEL_8d2679906f464c4d8a62ec21995e6985"], "layout": "IPY_MODEL_355b6d5be12d480d832e865768793745"}}}, "version_major": 2, "version_minor": 0} +{"state": {"29853c78541442e0b54ffee6104555c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72c5bb347cff4e409da48ad68b2db1cd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "701249fcbac14731adee2c8baec82b02": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_29853c78541442e0b54ffee6104555c5", "max": 17.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_72c5bb347cff4e409da48ad68b2db1cd", "value": 17.0}}, "e69449a036fd497ea439a7d9702fc921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "defce0d3c4c74aa185bae8ed120b7003": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b2e336f2a6494cb58cd09ee38e347246": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e69449a036fd497ea439a7d9702fc921", "placeholder": "\u200b", "style": "IPY_MODEL_defce0d3c4c74aa185bae8ed120b7003", "value": "100%"}}, "c517ecd234634541a0370f8ef7cb4bfe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a957c3c0981d4372ac7b67de7db47ce6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ecc1589858e04e6283e979b0867ffb6e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c517ecd234634541a0370f8ef7cb4bfe", "placeholder": "\u200b", "style": "IPY_MODEL_a957c3c0981d4372ac7b67de7db47ce6", "value": "\u200717/17\u2007[00:00<00:00,\u200725.17it/s]"}}, "8b8fb3e8b4ce47cda6a4a465f2a2dacc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63d07608761045ecb8879835cda9c412": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2e336f2a6494cb58cd09ee38e347246", "IPY_MODEL_701249fcbac14731adee2c8baec82b02", "IPY_MODEL_ecc1589858e04e6283e979b0867ffb6e"], "layout": "IPY_MODEL_8b8fb3e8b4ce47cda6a4a465f2a2dacc"}}}, "version_major": 2, "version_minor": 0} diff --git a/sed/latest/user_guide/1_binning_fake_data.ipynb b/sed/latest/user_guide/1_binning_fake_data.ipynb index 1fc0aff..2d4ad17 100644 --- a/sed/latest/user_guide/1_binning_fake_data.ipynb +++ b/sed/latest/user_guide/1_binning_fake_data.ipynb @@ -19,10 +19,10 @@ "id": "fb045e17-fa89-4c11-9d51-7f06e80d96d5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:19.569493Z", - "iopub.status.busy": "2024-07-08T17:09:19.568984Z", - "iopub.status.idle": "2024-07-08T17:09:22.439931Z", - "shell.execute_reply": "2024-07-08T17:09:22.439464Z" + "iopub.execute_input": "2024-07-08T21:56:09.683840Z", + "iopub.status.busy": "2024-07-08T21:56:09.683631Z", + "iopub.status.idle": "2024-07-08T21:56:12.294341Z", + "shell.execute_reply": "2024-07-08T21:56:12.293658Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "id": "2aa8df59-224a-46a2-bb77-0277ff504996", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:22.443081Z", - "iopub.status.busy": "2024-07-08T17:09:22.442675Z", - "iopub.status.idle": "2024-07-08T17:09:22.460938Z", - "shell.execute_reply": "2024-07-08T17:09:22.460585Z" + "iopub.execute_input": "2024-07-08T21:56:12.297467Z", + "iopub.status.busy": "2024-07-08T21:56:12.296944Z", + "iopub.status.idle": "2024-07-08T21:56:12.323119Z", + "shell.execute_reply": "2024-07-08T21:56:12.322522Z" } }, "outputs": [ @@ -90,33 +90,33 @@ " \n", " \n", " 0\n", - " 1.099223\n", - " 2.358426\n", - " 1.273596\n", + " -2.352188\n", + " 0.018544\n", + " 0.087294\n", " \n", " \n", " 1\n", - " -1.225348\n", - " -1.008053\n", - " -0.421557\n", + " 0.661999\n", + " -2.894941\n", + " 0.220710\n", " \n", " \n", " 2\n", - " 0.269306\n", - " -0.709568\n", - " 1.330315\n", + " -0.924308\n", + " -1.126615\n", + " -0.637220\n", " \n", " \n", " 3\n", - " -2.039608\n", - " -0.134934\n", - " 2.528361\n", + " -0.797949\n", + " 0.051009\n", + " -1.290132\n", " \n", " \n", " 4\n", - " -0.289571\n", - " 2.037927\n", - " 0.832904\n", + " -0.019662\n", + " 0.205863\n", + " 1.269046\n", " \n", " \n", " ...\n", @@ -126,33 +126,33 @@ " \n", " \n", " 99995\n", - " 0.243452\n", - " -1.305578\n", - " 1.034903\n", + " 1.733657\n", + " -0.240760\n", + " -0.523856\n", " \n", " \n", " 99996\n", - " 1.188316\n", - " 0.425674\n", - " -1.380265\n", + " 0.933419\n", + " -1.249297\n", + " -0.200826\n", " \n", " \n", " 99997\n", - " -1.674443\n", - " 1.715874\n", - " 0.104226\n", + " -0.211517\n", + " 0.836925\n", + " -0.111336\n", " \n", " \n", " 99998\n", - " -0.466612\n", - " -1.209274\n", - " -0.092987\n", + " 1.461525\n", + " 0.306676\n", + " -0.803900\n", " \n", " \n", " 99999\n", - " 0.294573\n", - " -1.874502\n", - " -1.150481\n", + " 0.532887\n", + " -1.725969\n", + " 2.022515\n", " \n", " \n", "\n", @@ -161,17 +161,17 @@ ], "text/plain": [ " posx posy energy\n", - "0 1.099223 2.358426 1.273596\n", - "1 -1.225348 -1.008053 -0.421557\n", - "2 0.269306 -0.709568 1.330315\n", - "3 -2.039608 -0.134934 2.528361\n", - "4 -0.289571 2.037927 0.832904\n", + "0 -2.352188 0.018544 0.087294\n", + "1 0.661999 -2.894941 0.220710\n", + "2 -0.924308 -1.126615 -0.637220\n", + "3 -0.797949 0.051009 -1.290132\n", + "4 -0.019662 0.205863 1.269046\n", "... ... ... ...\n", - "99995 0.243452 -1.305578 1.034903\n", - "99996 1.188316 0.425674 -1.380265\n", - "99997 -1.674443 1.715874 0.104226\n", - "99998 -0.466612 -1.209274 -0.092987\n", - "99999 0.294573 -1.874502 -1.150481\n", + "99995 1.733657 -0.240760 -0.523856\n", + "99996 0.933419 -1.249297 -0.200826\n", + "99997 -0.211517 0.836925 -0.111336\n", + "99998 1.461525 0.306676 -0.803900\n", + "99999 0.532887 -1.725969 2.022515\n", "\n", "[100000 rows x 3 columns]" ] @@ -202,10 +202,10 @@ "id": "a7601cd7-cd51-40a9-8fc7-8b7d32ff15d0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:22.463558Z", - "iopub.status.busy": "2024-07-08T17:09:22.463363Z", - "iopub.status.idle": "2024-07-08T17:09:22.466269Z", - "shell.execute_reply": "2024-07-08T17:09:22.465965Z" + "iopub.execute_input": "2024-07-08T21:56:12.325619Z", + "iopub.status.busy": "2024-07-08T21:56:12.325238Z", + "iopub.status.idle": "2024-07-08T21:56:12.329235Z", + "shell.execute_reply": "2024-07-08T21:56:12.328683Z" } }, "outputs": [], @@ -230,10 +230,10 @@ "id": "758a0e95-7a03-4d44-9dae-e6bd2334554c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:22.468375Z", - "iopub.status.busy": "2024-07-08T17:09:22.468183Z", - "iopub.status.idle": "2024-07-08T17:09:23.647705Z", - "shell.execute_reply": "2024-07-08T17:09:23.647247Z" + "iopub.execute_input": "2024-07-08T21:56:12.331599Z", + "iopub.status.busy": "2024-07-08T21:56:12.331394Z", + "iopub.status.idle": "2024-07-08T21:56:13.717885Z", + "shell.execute_reply": "2024-07-08T21:56:13.717243Z" } }, "outputs": [ @@ -241,8 +241,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1 s, sys: 49.9 ms, total: 1.05 s\n", - "Wall time: 1.18 s\n" + "CPU times: user 1.33 s, sys: 51.7 ms, total: 1.38 s\n", + "Wall time: 1.38 s\n" ] } ], @@ -263,16 +263,16 @@ "id": "c4f2b55f-11b3-4456-abd6-b0865749df96", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:23.650321Z", - "iopub.status.busy": "2024-07-08T17:09:23.650113Z", - "iopub.status.idle": "2024-07-08T17:09:24.086051Z", - "shell.execute_reply": "2024-07-08T17:09:24.085576Z" + "iopub.execute_input": "2024-07-08T21:56:13.720290Z", + "iopub.status.busy": "2024-07-08T21:56:13.720066Z", + "iopub.status.idle": "2024-07-08T21:56:14.354099Z", + "shell.execute_reply": "2024-07-08T21:56:14.353377Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAEFCAYAAAAfe1P5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Sa9tSZodBq7PzHZ7utu83tuIyGSSlKCUoBRZg0IVUBBAoEaqkYaC5tQkR+JEgkaaaiD9CA1qWuCEs0IJIiBCHalkMjMjwsPdX3fb0+3W7KvBMtv73Pc8IoNSKDLc4xrg8Pfeveecffa25mtWI6qqeByP43E8jsfxOB7H43gcj+NxPI7f4jB/0xfwOB7H43gcj+NxPI7H8Tgex+P4/RuPicjjeByP43E8jsfxOB7H43gcj+O3Ph4TkcfxOB7H43gcj+NxPI7H8Tgex299PCYij+NxPI7H8Tgex+N4HI/jcTyO3/p4TEQex+N4HI/jcTyOx/E4HsfjeBy/9fGYiDyOx/E4HsfjeByP43E8jsfxOH7r4zEReRyP43E8jsfxOB7H43gcj+Nx/NbHYyLyOB7H43gcj+NxPI7H8Tgex+P4rY/HRORxPI7H8Tgex+N4HI/jcTyOx/FbH4+JyON4HI/jcTyOx/E4HsfjeByP47c+/sYSkf/mv/lv8OWXX6IsS/z9v//38U//6T/9m7qUx/E4Hsfv8HjcKx7H43gcv8543Csex+P4/o2/kUTkv/1v/1v86Z/+Kf7z//w/xz/7Z/8Mf/zHf4x/8A/+Ad69e/c3cTmP43E8jt/R8bhXPI7H8Th+nfG4VzyOx/H9HKKq+tv+0L//9/8+/r1/79/Df/1f/9cAgBACPvvsM/wn/8l/gv/0P/1P/9rXhxDw7bffYrVaQUT+z77cx/E4fvBDVbHb7fDq1SsY87uD2HzcKx7H4/jdGj/EveJxn3gcj+M3P37dvcL9Fq8JAND3Pf6H/+F/wD/6R/9o+jdjDP79f//fx3/33/133/maruvQdd3092+++QZ/9+/+3f/Tr/VxPI7ft/GLX/wCn3766d/0ZQB43Csex+P4XR7f573icZ94HI/jtzf+ur3it56IXF1dwXuP58+fP/j358+f48/+7M++8zX/5X/5X+K/+C/+i4/+/f+K/yccsl/5eeIcpMjnv5clIAbatcAwILTdR68xZQFkGaSqIM4CRQ6938Hf3EKKgv92MnT00K6DZDkkdzBnGyCP1xUCtOmgTYOw23/n66f36Ufo0PPzrUU4NkBsWJm6glmtoIsKWhYw2z20H6BNA7EGUpR8j5MGl4gAIkCZAyEA3QBkjv91Pa+7aXiPztbzhfQDMPoPvuMI7XuYugbqEuHdFcLhCFNX/AxjYFZLhIs1pBshw8D3CcrPj1UmdQ6aOZjDEWh7qCokz+CfnwGqkDZ+rgGk6SHeA20/3YfpO/Yd1AeYzRqaZ7wnxwbjz34B++wp9Mk570EICD/9Rbz2CpI5IC+AYYD2PULTQYzAvnoOWD4XtRaaZ5B+gIwj9H4H7TqEYwMpCpjNenp9mk/+5hYIvHazWsI8uYDujtDm+PAhe4/QznPlO38W5+yD+WAMQtMCYmCqYvpZmk+ncwXGwlTF9Lah6QANsBfngCrncfqMroeOI0YM+P/i/4PVavWdc/NvYvwm94r/W/H/gunC9He7XgF5gXB3Bx1H/uMH9w0AoDrf99N5HO/b9GyODdfo00uu98OB9z3OCcly2FfPgG5A2O2mtz/9ndNrk4sz6O7AfaNpeXlVOX2+5DmQ/ZK9r23ht7tfvVedPn/vYc/PIGUB3ayAECBdDwwjdBgRbu+h4wBTlXzPzQq6O8Bf38A+eQJZVlyjRqDrJddx10Nd3Guu77jPFCWvp8yB0XP/enaOcV0i//YWGD3aP3gGCYrsqoFpWuihgZQ5YC007uPS9dOz0WMLPRy+cx1O9zHLAGuAd9fQFHzGtWYWNWSxQLjfQvue9yHPgSLj9ad9XBX6i28Rjg3XEQBt2+k56HY7nyUi37nX/KqR5pM9P4MUBXSzhLQdxp9/DXu2hpxtoNv9R9f/4XjwzH/J7/y1QwT2/AwQgbbtR9f4Q9gr/o/EFB+O7zqvP1pfF+ecw03zUdyR5pw2DWAtz+J+QNjuYFZLaFlA37xDaFqetx88V3u2hhQltGuhPnD9Zg5SVtPvhLs7hG4+A1O8wIuNe1rbAEEhVQU4Cy0LSNMi7PYw69W0/tLvw1lokUH6ERhG4G4L+BFytuHvNB10tcB4uUD207cY377j9cdzFsOA0PWQPIfkGfDZK4RFBvf2DujjnlwVCKsasm8gxxZ6tuJ7v3kPaICUFfR4hN/uprXDhyK8/hAYZ/Q9dBi4B9kY/7kc+vISMgagH6Y9D4gxRttyj92sIMcW4XB48Nwly4Cz9bwnDwPQDXxvgGs2ftd0H7VpP5oPkufAZgXcbeFvbmHKgv9WxpiuaSBZBikLxlOq8Dd33JNP5oNkOfdKAAiB8Yq1MBfngPfcrwq+t7YN58o0QcJ0NqT55K9v5rNx+s4ffwZ+Bajq190rfuuJyP+e8Y/+0T/Cn/7pn05/3263+Oyzz+AkR+bmBaXeA6owZQmkNlAI0GG+4cYJYA3CAMAbGMkAEYi18+vzBcQ5wGQQFaANULUwWQUxDhA7PSBxDiojVAJsvYKsltB+AIaRCZBXhNZDTAGclzx8h5GHVLrmkDavAsir+NkClZwJQNdBBkCaERI6SA9otQQqQGzBYF4kbkInQY1zvL6ignQ9QtNAgoH4AMBBjYWKhwSBtAGoK4R1DTm0kLbn4Q0AbQe1MajwAux72GIJ5DWQxUk5jsAAuJuGh7ctefgGhT49Y2LRjYD3kOMI7RTwAlkuAWthGwBjgBw7bnCZg/QARgUkA4wA5UmQ2LTQrgdG4WYTRgAZ3Jc/5s+PIzTPAHFAvYIWgcFK8NB2gOQFsKihtuXGfRwBFwM8GOgAXucwAFkNuBJhNJwrrQcCAMkhhkGSO7vks2o7iOQwnUIHRRjipm0EpiqhPkC94eabNk0N0LaDBoHNDCAGGAApashyzXskgvD+CuoDRDKgyIG8mjbBICMA5dyJr0/DxjUiMRA3+YI/GABVx/eIe8n3HZbwy/YKGxxcZqFBgeBhgoUEA5++PwBAIMOH31+m+4dxbi1rMIBk3CtE4I2HkRzGllCjUBkQJPBZABDJYL2FQmEk58HgAwxsTHLioTOOMLaABAcdBWE0MOA1Gsn5fIsC0ACMge+jCil5wMI5KDJYH69VhAeYcxBjeNgcDjz4sxxwHdR7mGIB5DnUFoAfIF0H7Tx09LB5xX0pz/g+3kJtCbvYQGAhnQIuJklH7qFctwbqHPeoTLhmRvD3JRZ4OiC7GyHg9eQhh4wBbmggg0BHgYwGgAVSLO8ZAOmihOQdJK/n+5lXEBHIcgGIgXQKLXJomcMsRqjruVd5D7UlpCohRQWtFeoGiC0gJgNsAUD4mSEAPkBX50C9ngMpWwLjCG1H3vPM8PlkGcxyAQ0BemwgYoG85v7sPfd88OyYRl3GPVy5z0vHvUcymNFwPzE5kJ8kltUKOoxzcgJM5xP/4jkH08+yHJI56DByzzkNMuIZGN8ERi2ggMpcxFNR6A9kr/ilMYUp4fRjCEl6VjqOvFfuJFkJACBwNYt5GoNZeOH+CoHLayYruxYaHGzu4tnvYbyBBMPzFAAOIxAC13sbgKGb9gEZBNCTuMVlMJoBwQBlDPbG+fPTsPUGqAGpmZyczhmMI2OQYskktiqh1gAZPy9ID5PXDOzbHvCBhcohMHBXBWCBxYbvnWUQH6C+59ntSrhqCbOMCzjuiXAOcBXXYFVBBwC7ABQLiPXQ/YF7QAdIsIDJgTYwtluxqAbvgUUGV6+ZGFjDaxOBljWkG6B+4GuLnPuXCNQJP78DZAjQQ89CzHrJ7ziO0Dxe534AjINbnvH7qQJNC6jwuoLGQB58Do7nsiADPFh0CRa2WACmgHoPyeJzEM8YwpWQGg+T4I57OyTnvnkYgDyDuAy2XnH+GAPAQ1NRcwDMeg0pcvj+LTQobIgxRZXN80IzqHroOHIdZyXU91AJMKOBOIFIxvUe579ZrWJCN3KvEDfFHfylD9YFANGBscxfs1f81hORJ0+ewFqLt2/fPvj3t2/f4sWLF9/5mqIoUBTFxz8QMwdzANB1vLGLmpMSrFqFu/vpV9QawBgGyal6YS3fJ70+z+bXjyM0ViTnwFGnCtfpYSKLGuF8Dfz8G4T9HvbJE2AcEXY72LMN5OIc+v4aejwyaDDm4SGSL2BWy/nvJaDDAB+vS3c7YAdWrP7u30KocxgRyDACbReD7Ph+xkCM5YLMMyYiux2kZfVBqnLuAHgP3e0hyxr9RYVclRtJVUzVTbEGsDnCbo9wOMC9eA7ETQ0hMFk5NhivrmGfXDIhO7Ab4DclVAC3bWHuO4Srm+kaURaANZDbLbRpMN7dwywWkOUC2rHrIWUJKXKERTXJKxhlZQBNixAPdnN+hu4PnyN/s4N+9e3cmaoqCMAN9nBEuL6J17iA5Bm0H+Cvb2L14IyBDIBwd4/QdXCfvOI1dqyshN0udjQ4R0QEOFtDRs+5FgLCll2U02o71jnExYpVnk+dOlWF7g8MCKuKz6PrYNZLyGYNv1kAVmD2ByDNu/h6bdv54BNhtSO+fppHRQGxFuHI52Hqekpwf5fHb3KvUO8hdQ30AzRwA4YqA/rplxQ6fFy5NnXNZ3pSHU5DnJsT9l81NLBAEQsFOo7z3EiBM8ADDuCG3/cfX0/mIMsaemygTctuiQbYImcAmvGghRHuZ8PICmeecT0PI8QI97eMFX/xHigLaKyky+hZvYvz155tmPykrzIMgBHIagl0HUI/cK0ZQbi5434AQGKBBNYyQWqZ9GvbMfgoC+B+z/3w/Axa5rDNAOlHyP7IanLPTgtCmBMRAChzDOcVXO5g8gyyPQC+m6urz59A9keEqxvIagHNHbSOHZm2Y/IGTPdBFgugeFj9w8Au8HQfXz7j/brd8ud1Ad3tEW5j96koYmITOxqHBv7tO+5n1QLStND4bAHEw5wHtFnUfAZv3sG3LbDdzve761j3KIvpOUjcO6XtELb4tYapSqAqeR2n8w+AuGzaz/iMx+96i9/Z8a+7V/yyfcLkDjjpnKbBAhXXrVjLZxFHOByBMcA8ecK5emy4dk/31xgkh54VIrOoOQ+DZ8cMMUnwHv7qip9RVQj7w4M94PTP6TpUld37iwXP1KZlweFkvzJnG2hVIFQ5Oxjf7Cf0hDYNdBzhPv0EWpfQau78Stzb1Flo7iD7+N2OzXwdRQ7JMuj5GppZSBO7qV0PE5EVWuTs7rTtVImXPOf1L2uERQnz5prX/MkLaBaAmzue/2F+Hnq/ZYHjk+eQEBg3LGvosiLiYxhZaBVhcD56aNcz5slPkDHpz/sj9HCE327hPvuUxY1hZJE0z6FtB3/9HvbyAnpxFi9CifbwPiJL+F2n9y7jPtMP03OYPj/PkUJyDQ/nmdYlCxKxg+Pfc2GbqoSOI0LXwa7XROssaogqzwFrWUhvOxatF7GgfMUOsLbdfK/7/sG1at9DxcDYucCh4wi0mAomfMYF8OQccnOHcB070PZht/3DdQGAhfwBf+34rScieZ7j3/13/138k3/yT/Af/Af/AQASxf7JP/kn+If/8B/+a72XXdasRngGFunGhe1+XkD+4cNOSQpbmzEgdI4PaRxjhavjJAPmbkXm2Eo7HLmZxEUcmpYHezog+oHXIYYbe57BagCCIry/BoaBB9U4shPw9CmDoZ6H+7R5iGEQLTIFklPSYwR4ewUDtsvhHGS9hJQFZH3SAms7YBxhrm5jW7KAKYrYsYhBR5EzWdofgLdXKA9NhH/l8Cu2Al1TcFHF1qQUBTeIrmdwZVh1Fedgq5JdkN2ekzLLIYOHmLj8fGCQXdc8VI1AjQFWC2BZwz69BLZ7bjjGzJPde5j9kQu/7QibMMLAQArIgklR8WffTgd92O6YVKzZztXdAWIN3Gef8vl1fQyOFPbygt9DhAFQ0wBZBlsW/LPInDicHDC6P7AesNvzekPghnu+hlzdIcSAgslurITHQAAaIJs1A8K7ez6Hk5a7lCXCuoa9uidEZx/vf55xg2lie1UDKxFG5srmySFLSI+ZktUUvD5YF1n+a20Yv83xm9wrvnPExA3huxMQJhmWm3X41ZoeJt5v3e2niqQ9J0TB39zx9R27D6Fp5+IHYiKbOidlEYPjjIFmKpbIvMfobs8CQVlwvxl42EI1dj1GoOsY3K8q4HrLuT+Mcc3wgNXbOxY+ipzdww8SKvvkErqs5/sxjFy/w8BA2DnoasHPvL6F9gP3PGMhjvctvLti0SN9vzwHnl5ARh7ikmcQt+K1HxqY+z0LKmkPLQsm8cC0R0pdQwG4XQdz7CHHVCjKud6GAXJ1OwfaV7cwdzsGB8YwAPOee31Q3mPDLqUej1DnEC5XMNsG+v4KsqhhqhjotD3C/XY6M6bnn6q6gV0POTRAP8Cu1ywM3G/5vKoSdrFgYtrMgWLY7YHDEbJcwG5idVeV+2uExabCjuQ51AgwDNM80Kb9CIaVzqV0dug4Qu/u+d3FwKxWhHUcj9BxeBB4fOccLwuYusa4u4tdgN+d8ZvaK0I/wnyHmOivBXGL5wL35bnrJc5BYxEIGvhcT34nXizXNQC7WbPTdfo+sZtlLi/4+v2e+9YpZDnGC/p2x/MtxQzWxCLmjrBiAFoUkHgGSM0uIvKM59fVPVEJdQl1lq9pOs7pk5E6sOgHwoAuNtDMwlw18xnZtHDvd8DtlgW8Rc3vUuRAniGsKsArOxeq7Gpe3/HPsVgAgJ9j4xmmAXISg3EvGWInIyZgYiAtkTHy/An3rn5gEUWVhZ/AAqBs1jA/+gTYNfzuIbCbudtD8gzuy8+5b0xfXIDLM/7ZByaeTQP7/Bn0bAXZH7lXIcZXG3ZZ9HBkspk5dpJSIqI6d2FGz1iozGGODfeSqoSMIwISZKyb5lJomOSY8zOo3cPf9dD7HUzXI1g7n0s9YxpZLmA2a4TbOyYtKf6tyogy6aYip5wUUrUfIHe7iPRh/IdUzDMWdr2c5uzpUP31goq/EWjWn/7pn+I/+o/+I/zJn/wJ/t7f+3v4r/6r/wqHwwH/8X/8H//rvVGWAV0g3OWkuqNDj1/2/SUjrEWMQH0MEDPHYN5atqK8x0dhh8SDV/Uh/Cl4wMTNJnCBaAgMvI3hwV8UrNzv93zI1iIMI0SUAbQq1HZcKH3PQNIEBsVxM5HMPQguw939FHCbumYwkDluRojVyCFCi04x5mljTBuYtfz8wM0t7Pdwn36CsIjtWctqiAzjg0oGgOkwh40Jg7UMkg9H6LHnZM7ZpkU4ac2JiZukne6z5hngDEJu4ZoOvutgqmpq6WkIkLaDti38/ZaHdVnG9q5DWNYwhwbj6zcRx8gEIgSFS8nZ0AOuQtgsYfZH6KGZMKGyib8Tk9DQdbB5TvhK2lSrCH85aTOeJsBiLe+NcwjLEvZYQuIBJNbyPqX7HgKrYMbEZEp4L07nljHQzEJ3O/jU1TMWooRXnAbP5rRCIfIQ9nFSeZ3m7AdD7K9Xufhtj9/YXvHhiFhbVqXDd+8XsdIUTrqnv3RkPMS163nAqE5zQcw9g9E0VzQAsHNF3Bj+W9xj2EGw01oFwN9xjkF6007vPQ3vgUGgZoiBfACqgvyL93dTgSNx3hAYgMqSiQQSn+x01BXCpoaMgTjqVJQZ4zVbA60LVkpfv4s8kDzyQAqg7RCOR66jBCmyBmFVwjQD5Mhkf+KsDcPUvU5Y5uk7Bp3uW1pHph15gHf9DNv0HsF7dg/jfQv7A3QciMtO0AwxEVLhCf8qC37/wC6OLx3M0XIfiN0KtIRLhbaDycMcJIlwnyhy7lE+zMFCVQL7A0LbwiaIXFUyYDpJRDQmqW7xjJ3bMvFhBgY6qSvuPcNkaxkUWEJpeI8+4PXBwuTck1EUwP12DhCNhYlFKDQSu4O/OhFBLHDI0f7OJSLAb2ivCH6GDn34779qqDIGCR9A3qwlh6jt4j2OXYiTbuj0EU3E9K9XAE44CSLkgeYZdFVzb/GeZ/tJdTsVEtIzlqpi4u4cwv6A0A+wWc73sgYTvKDIoZmbCmm620/dUoiwk7rdM474oHgiRYEQYd8WgBrhXI3XpV0P2R1isksYkOQZ53eRwy8LmGPkZ8T95bTbku4tjLBjaw3gY1Hk9Oejj3CxIcYklvuws9CqAvYNPyMVpo0BhHuKVgW6pzXKQwvd7ib4Wmg7WOfYXRhPYWiA1nG/afoIqfRAkWPclMiaDsRImZjQFUSYxO+vzkJGP3N4g7IrNsZk6WzFmCDPAE+4p4LFLk3zDGCcOvSEW5Y50LGTlTpcjD/NNCe162CXCz7X+D4mZ4Kbim5prn3Y7YCGKZkW51jMTPzHGOMK8BGPRvXX66z+jSQi/+F/+B/i/fv3+M/+s/8Mb968wb/9b//b+Mf/+B9/RDT7a0cIhJt8V5AgMmWDp0OPDTf2yAcJTQPxHiYoZLWEuziH7kkEJwHIwazXTChO374o5k5KPzDJ6DouTsvJ49+9jwuP2b/75BXC7R1C08Kulzy8RICuR7i+mSsYn72EXxWQwcPsO+j1DbQfYE6qsvblc07oLlYG2o7t2WPqqAhbfW4BzSx8nWPY5CiuGtirLSuYTUNCfpHD/uQLVhaGEWGzhGYW7i++5aJ+dgmtCkg383FktYBWBYZzLlp31xLCtT+SWHVRsFuw28N0Hav7Zyv0Xz5F/+98gvJ9C3vfAKOHDDGgcHaCB9jLC+DynFyR1+948K2WkLpi18QYVgUB/rnKoCHA1DWJdZtVJPTHSmKeQT9/CQwe5m4H3e64OQblM04JXNtBNmvY50+Aq1uEu3vYJxcMiIYBWhQMaLyHDiPM5QUrlEUG6QaM37wGrq5huhlWo12HEBTStNPBIJnj84/PLYwjKwubNSvJhwPCzS1M7HqYumZF3Hv4/eEBCXraOFRZudM5YRTnELZ7QANMnkHVsepRFMSx9wMwDBi7D0j1vyPjN7VXmESwi0PHATp+kH0YS5hPngNZPLybX03G8/fbGDwsGWTmOXR/gL+7Y6FAzHRwhKaBqWvYJ5cI2x3C4Qj79JJ7xdU1g+CSHUsJYcZ6AxHSdBK4xu4tExhh1dIYBhF5RihGPyB7zyqrlCUP89EDzT2Q5XCvXjJouL1jxcs5yJMLQgerEnpzC3n7HviDz+FXBey7CKm82ED2R/hv3sDqc4TVAmZRs0vZD+yWgpVWt6h5SBoTeSc9zM/fQMoSumH1UHc7dk6dg/38U37X0+prP7D694efQ63A/quv45rLuQeWBfzlip/xhp4RUpUTX2MKAH3Ejq8WDBCcISdtNycteHIONQZux8DRffKKr4uctCRQMMEyFzVcWRJycnePcKB4iHn6hM+pZ6BgypLwrqCx4DDDgpFnLIL1PfztHXAbi0uLGv7pGewwMtC7OOd92+2n4od6DxzZsZ14RqoPu7axkwUzc5EIC6bYhv3Jl8DtPeGpcT8JXffRvJ8gZZn9nSxa/MbiipPxq+7HhyN8UA2efxCmRPN0mLpm0JsSn5PEdPqdxYKJa+SW4mdfM2b4IFBUVZjtgfPg/Dy+WFhlPzaQRQ27FGDoyc88fe12x2v8N36CkDvYr1+zEg9EvqaFgIiL8P6ayfB6DalLrv3McX/petjRz7D2U7jSpy+BMgPeXPN6AGjm4EsbE6scZheLG5++BAxg3rGrqZEQLT4QHiUCvb6Nz+cEThhhlHh6CS1yhDqDDAHm2AH3e/jbW9hPXzGx2jeAswg/+RTiFeXrPeTQcG2ul4CzsADvw7fvue6qgsIbXQf58lOoMZCmA0QYr4QAd3tkAXdRseAzjJBv30PFTNA7aftJNEiA6TvKZg19dklRjaYlyRyY98eLMxaEx5H70QdzRcqC1yGxAB6RF6GlII9J0OTbuYjN+zYg7A8wywXc559Cb+8RElHdWHb2hxH+RGTlgXhQIEReVfkZcfDs/GhKf+f4GyOr/8N/+A//j8MrYpsTwMNq3qQeFCt9pzctJiAQA0isYseM1giJ7Il8NMGhUsAbq2UqEnHYhgshvudEYM9ITEPTsPLmPYlL6TUmbiQR+5ywgpJI85lFyCzsGBg8BIVYRJITOwBTBdMaHjLKa56+s+HPNFXVcwNfCkJuYRJRPmj8zjwM1Rh+v/j5ph+46NJ1R2gRVKFFhlA6hNxCIrxBfHi4WQflNY/cEEUVEEHIhO9fsFsyvS7hO1UJnyscN0Fjp+BaiwyhziEdExjNHGD5vaS3U2cG1sTOlyGkLCjfazwJ8MRATKyQpHtXFnzPPHGEhqmzlbpIkmUTVGfC2lsLWB87bQE4HKbnnQjSnEd2bilbkocRCP2RCHEDABwOTBIezGcBVB7AqsQaBlve8zucVu68J7QokiIl4lOn+Rv/r2kt/Y6O38heEQIrvul7/rKgIq1LYAoWp71FzMM954MhIuxkWPOgqspuaazom0gCdW6GKwITJl/S51k7w5kSl+u0ijqtdQNxZl7/6TqtYWFh9Nxfgo9zJ8IfSsPiwgewVkn/L8mngvdzRwTgvUn71khlPBnGac/RbuR3iHAnLbKpsgprCe1qWt6TxGdJ72tJQocP84E7jpGgyb2Gv2sxiZGkjpIxUCsnXQozd5ZUuUem/dIaqDMIdQ47zOtFjQCZI1RUlc8/dTHTfYldagpCxO/t7PTdkDrhp3MkVsUlzYtEDk7wk1jxRZbxzAgxkcgz/uxEDQ/Och9SnQnUH8xHSR2aCNXk3jrM15HOtBNu2S8dae9N9yP87u4TwG9or/hw/DL/g9T5tPbhHvpBzPFgTNyL2A1NQWOI3dn0zE67pWJYcQ6eRSUjjAMkxhJR8Eb7YeqcTHHF6XsBD+BcE3+r73lmTXGD/fg7p+q6tTDOAZvlpAg1fbUhzuuILpEsm95HM4dQOLh03gCADzCdBxQz2TooYE+6s8L9kr/v5zWc7lue8bx2du50ZjFuUJBH0g9QDdxfpp9FaH3uYAZPoRwTO0Ux+TJlgqQf+Z1GdiYgwgKqw7w/iJn3mfQ7IUDG2J22oAhGns37wwe0AVjD7nKKJc3JPTBxTqUz+7QwHkK89yF2gub9CiJzvJligQhJPX09z4Bwwl85+blz0351OoenkYQvThPkGD/zzMFfO74Xqlm/bGjbsfIWK5FpnFYmPiTlJgiLqUq2pM42hBDs9iSdHY4IhyMlXV9GkttAbKH2Q3xtxU6KKnB5/tGEksjDkLJEwgKH3R56fQO7WkHOz4kX7wdmwtawihEnlzQ93Bhg7lnRN9XcicCTC4SzBcxf/AJhf2BnJsK2pCoRFhW04EZi7o+x29DBNDlkKCFBEc4WsLEKKOebuToWJ1+oMwyrDNn5hsRGES72zZIVgGODsCjgFxmKNztm+E07ty0Px6lNLdaSB2EM0PXIf7pH9i8a6GcvMJyV1IgYYvXl2GD89jUrf5t1hIOw+wLvCY1Y12if1aj/6hZ4+x7y7AnCqkT7NEeeGWQAyWEhsPJZl3zvEHg/InlO1ivYi7NJxhjvriHrFfofPYNtBpi7w0Ro1q4DRjs9qySrN08yZRVDA8z5OQUSdjuY1YrEtbYD0nwaBoxv3sLIgmIEu91UbZO8jBhTB9zezvM5cjvQNKB8bzVBsyg1WhCq9wHP4UNCKr+4TIT4cH0zby5/HfToez5C2z1QEPqVv3tooOMAyXNyAwB2K2Pl+1R+18ZOSKr+kYRdwl5eMHG3hrCMpKiWcM55xjWfxBYiz0fKEtgs4c8WsG9iRX1NDoV//XbG/SfYV9xj/NU150YkjSdokKoi3NxFIYQyEgpLQo0SN0TXsBFfja4HqhL+6QbSryCDJ8eiHyDrZVzH7MKaquL13e9ImhxZuTdVxU5xziQ9lDxmbFlG6MBJZ6eKcrMpQOsGqDUke99uMd7cQv7k30TzvEL9sy3hFU/PSfqOohJQhTnw+4YPD3eA3ZWuAz57ycBjd4QYg1BYGGuZnEc+HwDAIHY4R4SbOxKLE7k+YbT7AeO3b2CqEma1hCxq6EXG+ziMrDInWG6C2K1IJg4///qBWApEYJZLPhfEZFAE6DqYtzfxDKiQxEg07QNPL3n2dD3lolPHzFi4Vy/YIb27n8UvVitIXUGfX/Az394Q6vqXP58LPSewZnGUotcodDKvpV8tRfxDGrwf3/19qYDZw56fMyA+NlOi9iDuMIQwpfAtndd6bOCvrojcyLKZ0BzXqalJNA6HI+zf+QMmzq/jnh3hVFo4mF3DinTbQkfDM30gH8gsF8C6RHj7HuF45DxKwWJRAJslTFtzf2oGojDONvwOAAPuyAfF6CGfvURYFNh/UaO4HVH+2Wt2d/d7nttVhXC2QqgzdE9LZPcDsjf3kK6H7YcZAl8VkK5H9s9/Drx6hvblEtXXgN8f4N6y86rHBrJaIlxewuxboGnJvzAG4fklC6alQ7qxLsKdVITf4+o+ciNadoQ+eYlwYuWAEGCbAeOqQP+yRm0FJgQWIoxBOFtSOCMlBte3wLNLcvfumRCGzQJme4T/9jXcJ6+gVQ5pB0g/wH/1DdfQ86eMX/oB/ukG4zJH/j/9lJyZiiqpUleMsQDIagmbZewEWws530APR4xffT1D0k9GaFuEr76OQh2R/zcO3Iedg1xeEMEROb2/bD6HXXyOmzXs00t2RT7gRiaRnlNoFlQJ83WOcMCTOW9yAQ74a8f3OhEBwIqNGFbeJ4zbrAYFxMQgVuenkXggTTtXyIchVpsC5TkTUSfKPSa1IxgqVYlI7EZ8h8qGCGAjDyWbb7OqQoY+ck3CzE/Js4l0L23HDDdCvDTi/AAQW9iOfE1KQlL1VZUBOCxUwEqdl6lrYJoRcKwc6vma6jtFDrVxJQ8e0g0wxwGZKluMyxrDkxoyBLirPTe4cYQ5Jim+iHn8MJANcwVVIw9Gdkfe07hZQBD/z6qiFDkXWlURD5rgaOEUnx5gk6pJlkPrAiF3yO9HuMMQgz87dYbUGCYjscqKMd7jGIRJCvJjxcF0/G6yPxKDG+/rhOMMFnCp8+Uw4VM934PVKE8uh2UlQ6yBpmp0uk9TJZpVNVMy0JF9A0SlIk1V4dMqvoCf8aB6JRNU5IGqStw0NEJbELt/oeumztbv7TghiE//ZOSk62CmrpGOI6FSkT/GZ8vnK5so53p7Dxg78anYgeC8kdjB1LaLxPhhWvM69IAHbNJZH3pIx4BAh6jMEtWsTOyWSVShmvYMj7kQEzsfp9VKsSednJO5gn542MWM319UoUZgBh9Vcohflq6f11ZZPCiQSJFzje3JR9CqYOBybCG24vU4C0HB9V1kJ8/hpMIWCex+XcEeebD60mGs5z1OM0uCq/cTCRUxmZGIf0bwQEjVOc+EqSOeG0WOkDvuPTbyqcZ4HhhDOfPBkxCbUzhAnaWPQZof1kzFLI37LsbUbRfyNrxnApSelw/zfEjd4riGJa5/ADEobNihPuXvpPMsHvazQmKEe0bo5lSdTWdG4nbE9zA7QrlSYEJehGASBUj3LCjv7fA7iMP6bY3TeCJ1tj8Y2vckfp/ep/SskjpiErHxnh3RumIF3n0QghmZFJnSmhYfz/8xxDOdfAVJzzhJ2cdOqBrhz5LXVQz+TVHMEtxlycp/4oCgIHJCZO5AAFNXdUqwjIEKYAaFGaMCZLpHcZ+TtoMBYJucvxO7EBCZeRpFzs9yLiIwiGAweRZlq2OHdBxhds0Ui0jiqabvb4mu0NzMndEUe1UFUGQM8l3cf1QpqZuKH2OAGTxsFzunLu4LqizCjJ5JYkb1TSY549S5Eq9TIYHoFI18G5n35Pg8dfSQfoTp2DWf5kbqWKnyGacuChAhbJwrUxyShrWME3xgcSLGKABmOwoRmNSFGk4EKYyN6I1ZVGEapx0VYIIAcx6Z7+4QmtQlHqbOGTs/v6Sb+MH4fici1sK4nAdl13GzTRtyytKKghl+f2IqpTpjPg+H6TUPK8gB4X77URtKakphmqkd2k8KCd81iN8vWf1Whd5v4XctOzNZNl0zipydhKZlBm8t8MlzHoTbuRqluz1M2wHLBeUzT3GlPkDaHpI7aEaIlRYZxrMCthnh3m0RliW0ztF+tkFwwqA+zu1s18N2A+z7O1jvoWcr+FWJux+XKO8C1n/1ZpLUlHfXsEUB/+IcyB07LN8V2FqL4aKGbUfI12+4Aa9X0OxkghpAywxaZsBqwbkbAHl/QzWO5JEAQJoO+VV87WaJ/qKCGqD6l2+5WZ6qhlkDGMCfLyBDgH1zzc5WrJBoThiI9sNEUHNX5I+MV9cPv4cGzhmhpgrl8Mo5oVAF/QKI7zcn8siS5wygkskjMOM802bx5BIAMH79DXkin76EvL1GeP/+g/nEoMKUJZJ/DADOB+/hT7ocZrlgNeV+y++YfFROpEF/X0fiz5yOybMny+cgW7nGk8GVOMcANKpbjc/PoM4g63oegnlGA60YJEpUv5oOyRiMmFWswB8Nn+nLZ5B+wPjTn8MGhYkmlaHr2DHIHLlPJ/BAZI6Stkp+W1JkSwp/p991FjKgOAKGcVJJUR/mKmjXz2pe2wPGb76d+HBht5/I0fr0As1nK2T7EaYbEQom5W5LhbpQOLj3W4R3VzDyFFpFyGNZYHixgvQBdveBElFSqlkt4Zc5ZKhhmg3alcNQywTZ0NyxUnmgjKjuD4SYZo6y4Uly3cRuRz+QLH59B7NcoP/iCdRFyEgUi0A/kMNVFoAPJM0XOfeqPCOe/Nu3JN9fXpAHt1pGY0ZWXREh0eIccHkGOTQYf/6LKEfuJhKuxLU6Paui4H6UAqdugL/fkkoc5ZUVmLge5mwDqPLZ5Dn/XpWcsxGrPRUfwMKFFJRa1mPzYI+Y5sipfG/kTiJ4+N/zvSJVmQF2qpIE+un4kKD74PV1xU7Y7X1URWxh8xxhXQMbSnab+8PcwQzhgSrblJx2A8zoCWfUgTLZ6fMjOdk+uWQcA0STu5bFgbj3m0XE75cFhpdnLLptG4RlhVDHZx+UIgapkBiNFaUsZ16UDyivethDjKcyVsIlGjviilL4RXfGJKTIMK4K+MKgPLQQjBjXJcyQwQDwixyhEOiyhuk2XCdGpg70+PYd3I+/xPByA9PGrs0NYyLTF8CmRr/KkJ2o/qkz8E+W0MzAFxbuMMIeWORBvI8A2KkJgcIXY4h8NnBPjZwbLXPoooRf5HDvtpDtfvZa6QcWKV485drveoSzBYLN4fYbdrTu5zVkbnY0ai6jzHdFIjtS8VmonDrxa8oSWmaQ9mOTTXGOMsb9ALx+x89KpoWu4Fz1Hlgtp7k3XUdUTg3HY0RZzN57ySdl4qG1HQs0qdvx0YXILDGcPv9DsvtfM77XiYiOHshisI98Ci5SB4NEMzslIdoPsYMQiTuq0Zzl18va+JlR+SCqo0iCIGUnLb/U2Vgt51a+RO3+nJXDB1mlswjLkgGuCGFiXQd7t2P14mzD698f+LltBxnHmYyZKuNxmO0R5j5W6q0hf6Mj1tEAQACKfc8gfUW5XbvrqPiSJCJFILsj7DBi+W0Bd4yVgbJgZSHKzdnrHTXGz1aTwosU0ePifI1Q5iSkiSB7/gRaFhhXBUw7Int/ZLKUPZy0IXcM7ob15FqbvErQdjDDGMmmFvnVAWotwsUq+g+cEAaNQLyFCWCVd1EBUkOeXjAAARjk5Q8XuWTZRBKULIOmSszNHSY/iOnZpeoHK02aZxP8i8HoLIEnkX80Ecxx0i1LXijLJQOTYYQ4y+vIc8JvTja0aT6NI7HATTvDPSQaC3k/4fwRZtULs1h8L3xEfqPDWJh68Utb05NPQCKV9g87md81VJUuwADvsfeQ+/1MKh8iFjdKRGsUv5jku/dHPoMQOKfjPqKqJCCnDmzmGHzX1Vx5T+9fFYCUwPtr7kfJj2S6pkDJTGMQtjtWTCM3QwCu6cRzCGHCl9s7zhuziO9nzAPTRHQ9qtcHyDEeoHHeJby2EYE/WwIXS+iuhTQdpTpFkF0d2ZXNLMyxnci0WuSxw2SQfXvPYGBRo3zXINtlhDyMHvZqi2QySGGM8yjMYYkJP+lUT9DXxYLrYxeQXVdTkUYSRyRJ+9YlO5QAJcyXFUxyjj4N3iOnDcDEE0wGhgpE9UT/YB9BLFgAYBckSoiyo9OzWtt2NJE8j4nhsZmlQGP3W6MimD074/mQZeygNO1UOCMvblaUlH6YOiuS59MZBWMfdrai1LJJuPF4zkyFum4Ww/hBDpEHZ/mvE1AlE1kd+mnvTdw9EXJxQtvNsvJdB/v2ZuYwAYR2xYKRDiPU9JAodJDOPxFhIQ2YOt3aRin8LMJDx5HVc2CC4klFGV4FC3kIgUF5O0B2B3JGnSFPInzI84zJbCyGiPeQVgmbVoVebCB3O17LskYoHWyEacruAN2sMC5zSFC4I0VptOuRvb3nHNwfkI0edk+vJl3WsTMQFT/jeYljA/fOICwr8kkiN2R8skSIxoOhyGDqMu6RgvHcwQ4BxbsjvVP6KPHrPWOBqGoFEcYO2wMFfKKyHkRiR5TngOl9lEuPwh7RMFJzmqsiBHZIQqB/RuaIUGnbB4Iyk/RwOEFpJLVUALJaQhYBeqTMvnl7wwJRNheUNK3n03mYkqvYjbAX53M31dpJAhrWTpLNqXOi/cDC5WZF0Y00r9Jnpc+IQh3SWmjw89yf9qh8OusA4Hdavvc3NXQYgQyTzObs/OvZQktwlf4EGxdbZhPO7jsqHL9yeLasQ2xp69DPXZh0XZGgrSUfirSxPZ+qXx/qtVuLUOdAYDKOaCYW7rdsK754CnNg5S/JOBrviVWM5Gotcm4S3QDd7iYZUckcq4VRGUFEeMjeb1n9+PEriFdqd/f9ZDam1rITc7CoClb0kVGWNtSsDOgwMDgvCoQvX8AYM0lyapGhf7HCWCeCqcA8WcFXDmNtUf+shdzcw7+4/CgR8ZWDrwxMV03E+sR1SddozjZsbV9vAWfRf/4Eth1hb+dgXRIJcBiJOy8LaJVhXGawB0LQ4NzHsLI8oxfIaoFQ5VPAQujOQ88JsQYiMSF0DiFz3LSBh4aGE8n1BBqDeIhFx2t6JBDXiWGcgpVUFZP9SeUtzae4oSV5xPjFeVB5D6TXxCqnWEulr6aF/z1KRMRaGhri+HEiEqVxp3UZPI3GjPzqQCQo/Dev6V57ccaDOXoBAJi6H6fKfmLnCrz2s/eDiYGulAUP5MkzJp+S9VCXMRCIPISBUo+aWcgvaNJnImdN+6hL7wOwOONc2u2RyJ8qhG8kRSt0DIQpxBCA+x0Dl+ViqrJLPVfNpO0p6dl1CMM4eaPYV8+hygBseLpAd5Fh9S9H4NDAv9gwIHl7A6lKjE9WUzCC1WLilKDroW/eswN0toJ9fw+bJHoj50WsmToJoS7JixOB6bOJE4ZxpE9ASbPBcH1DxcIshykL6HoxE7aNIcyjyiY4jhYW46pAdqdMmEKUWEasGg7D3JmKEM1JOnO3m7rx0++cwCGTIWGSOE4KR6nDLecbIBmkpmEtYCzC7S0gBvaTF3Mwsuc8MyWf0YdqbwpMUM3JH2ccmRgvF7N0fFHEZxADiZSILBdALJD9oCGdyf/rlxHUv+sl0/0cptcnAzkAnM8R3gjwXBjfvJ1k5s3ZhmfroXloXhjVDSWP0K64z4vLYC/PmeAMPXBxxnXwzWtywYoCYgxVEaNZIADGA93ABP7YsThwOEaIoYW0w8diBOk+RHEJFkE8pAe0yDGeVXBdD9nt4Rc5/CKDvS6ARsm1XS/hawe3G2CPTEK0JZ8Fw8CO7/4AucqBF0+hixKmY7I1dRDLgu91bCCLT+EzB5M5hLpA+zQnTGxQaGGhoeD3MAa+tLADA/npnkYIk5QF1EaTxoFqobrfP5DJt08vmfzlKQYhz0MjRDUlfChy+EUO03vC232E9zsL8fH8sFHaPwSgP7nHyfSwH6ZiWDJuNoF+M+Pbd5PB5STRHPct84EoxpTMSDScjQaXkOj1Fs0nURZQG7vxbZSKdhvyYqKJptmsADEIx6t530pm34nPnK75hCMy7YH4PUlExAiD5q7nRI2GV6auqf+/283qRtZOGNpkuiLWsAIUD+7J3CVBGaIi1QOps/2Bh3LmILaIOO94ECc9ZoCTfXdk5X5Nl93w5h1ksSABcDc7m+LYwP28nQ/5qoStSuirpwjWMrGK18pARYFXzwgveHMN7H2cqCVNiNaUK5Sv3/L6S8oHS8XFB2uAnQXCiJAW2XoZM3mdN594P0NcrNL1QF0iFBZhVTHgjgRMGeIhGw9XNA3c2QIyZsSadx72/gB9voE/p+KWLQsqb5UWY21hBkW27WE7DzME6ou3HXB9x+dmiCk152cIFyv4RTGpbuW/uOYB/Owc0sWkZbtnIPiTzxCqiF8dPLL3x0nCVwEevC+eUnUn6oWLCFvaw4jh5TmQW7i/9WNI00HvtjNGNGFtYyVZ3t8wIDo/o/nliY+IOT9jkBm1znUYJ86RRjLoZFbWtjy8kliBczSYU52EDtDIhOd8qILhP56PEuWsk/OuKqucic/wAx9mvZzNJT9sHXvPn53iZdOmHu+b+vAwSDgcoxqKhXEyYcDDCVTSffISuqxg39/MPLTkcRM/y16cMYg5HjmXfvIZW/f749zZfXfLgDOpHcVKntiYQPQCubwgBOndFV3Cz9fAPYD9YTYiPL0h1kDLfDIBmyqzwORtA2sJP4j69gD49xiQiBHo5Rmhmftm6rriSCPCzApEKx6+mYO7jUWfPINaA9MRiiBVCV1W9BB6d8/v+tlL3t8+Yo4TsR6A2awpGnBzB+scUH8gHmH4+Vqs6JR8YEcG1kLgics2QuhF8gVqWugwwB4bBl2bJeAVpvNRHXANp0pZ7mieKsMIPbaUOY5dD/PlZxQEiTLCCeIgPuM54j0k4clPhqyWfN9fvGZCYe3UedC0V6TKpI1qjomzE0VX3GYN3e4feIXY9XKCbCTTwgTLSPjyKbGzFuH27kRFJ0kEB4qWTB2g3z3z09/YON0785yFr/S9jUyJHgCYRQXIgnt818Fu1kDQGRJz0jkyywWAxcPP0jBxATSZAucZE/BhmJLoycvKWrgXz1nwiM/enp/zLNnu+BnJODV9RtNA3oPmpjHRV2cR1hULlPdbvrZpyWuSaPybZwjna56vZTmtk7AoIaowt7vpPoSzBaQu4F7fwg0DdLMCqmLy5ip/fodQF4RrlhSnCJdn0NJhXBcwved/x4FJRCzmTbEOEHkmDsN5CZ8b2CZHKB18biJvdCSq49hifL6BGsHip/fc206MRwVE0uhuH6V/l/PPqgpWDNdP3JcgAnM3F5cATF0mqEK3+7lQ2AyT6TKAqesyQaKbBnj1HOOm4rV2PfSbN+yAeR/9XSwJ+TGWktWSPmhDNNoONGw0y0W0FIid9A8FdICpmJVi2NC0sEXO+9HERPBwZAGrLHkG/dXX3CPK2YSWXy6eg+MIf3vH+KgsZy+7CBUPhyNjnbKMRYvvXmYfju91IjJJXEZ5Sk0BVYQnzFK9AkQDMY1BmwCYJB4TYTNt8CfO41A9eQ9MnRCzWk2/KwBw8ExMoq+IeirQCHJCe46Ezpj1ivrSRzvJOKpS0SBlmxJN+pJHR3YVg9lERgQwrpjRuqjGoMpESp2Br5ixZlkGFY9J2jKS0wDAWAPFrDjBQMTOxPWAEzO1+F9KVAIxmCizuSKXWrrJubgfYJrYrutHSMdqnxm48NUST69WEKzA5yeE/MHDKAizCJHPk2Aq8eBNksQKA+kDzIGQMC1WvPaIkdZxhBaW8r6qkAHcANoWoWkjNtLOlVBPP5MEr8DoIaoIIgh1TvhcE1v3EdKSiHAYIrayKCCVi1yiYp6rCXs7UlZXkjxorE6q9zR/CwoduqmjEsAERaqK13JsgPCBoVMa0/MgWXciWp5WR6NgwOQq/nuQiCSH9Ml0EniwrnWYRQEmf6AExzEmHmAyvW5ytLfRRCpBs6LcNjRM+Gh6SESYgUtCCqnoUHEOxQDQ1xksMIlhKDBDvbJ8NiQUiQWAOA+KHCICf3UFW0T4ZHIDDgrICSHdCgCZYASUdjXT95ocyCPMiiTmDyLP2O4PdQ5fZbBWuN4jt4AeRQVMk81CE1FzP5mnJUlgyTL4PEI0fQAspXWlHWGOsxpfEmjQ2BnSgb4e7IA7BnNpLxeB5hm5Jt5T5MNGmdWUdCWRigR5aTse7HkGrHmGSBTt0ILkVzkh86oIcGzJG4kwWV1W3DuuHM8a71kVdTrJrE5wiRPpdnWWil4A5XubZhLc4C8EaLxfqaCgwxAJu/FZZQ44HPlMxcwEYjvO8z05ERrD+YSeVXXkk5fJA6W9tD5OAuvfVfPT39g4FTqI0ucAoJj3U5rlxVhhH4Vwsnwm+as+UNOUml0KTdBBa9nxCPGMnM4CdsoSpByRIKyxu4+ETmjbSQQBUeY6BaN6bKb9PiVSLpoDa5IHPhWJiBBSJuhmNikGz2lJ+00IsesQZf8BiA+U1c4t5Nv3CLs9zOUZ4wNVwr/2R4o6ZBEKZWRCJnQXDra1sK1HPkTZ7rQ+E4E7BIrSlBl8YaE2xh+pKh8U0s9iEWpJqJc94yZN9wyxIK0KPXbzmZhiPOcgxck+GYUv5Ng+6BRJkjLWuM+n9w5RwS757aQEJc+gfbzPuYOvHDkpvURBmmHee8fxgQKjZm5W4lJlN8kHmEU0c04CGek7xjiMPI9h5pGmaxUzFZe0HxD6YTIk1H5AGA5zFw44WfM8N2lW2cXk1M6QLGPm5Nu4OTb/Ncf3OhExVRGJdw/biRNWVokvNJsV9NjQFGq1Yua/WVHj+YryiKHrSEJc1LGqFKuf3hPSckrmMxby2UuoMYQ0WcsuzI8+Q/d8ieJ//hn8zR1OH4NuljCLipMAwKTFH/GDJC/lkYBK/F97kcP2Adk/v6K51csL2Pf3E6xKCwGeP2HCsztAyxyhzOCu9yRNPTsHAMixgxmZsKAuoVWO8OISKgJ3eyRu824LWS6g53OFAE/PAVWYHe+nnq8hhwbZ2yvg+RP4VYGQMaC2u7kSLFnGw/huB7s1s0JOWcAcOix+rhhXBYazAu4wwh1H2NbDjCE6Lse28cUK4XKF8HwD8QF2301SwfbtCHtlpirP+Aev+Pr72BnreugXr+DrnHyUhtUWzRzC2QJ6uYQaQTjZUE07EuO/XmB4sYHd9zDdAPfmjm3wWz5r1BUhc1Uxe59sD+xMJLx1201SjHzeBv58AbPv4L/6hsZDn1xGVaK48eRsT0vXQ69O2sldN1fl4oEw/aynMZ8pCooiRPMrv93CLCrKUyMGVLf3s8RqUUDqmodc74Dj9teuXnwfR7i9RxZlj0/lvRPO3tbVtDmbp5cI5yvIz76ZeDniMtiLc1aXj0e4588oD311Oz+/zRp4cQm7a2iY+fY98K2HLhc8ANp2hgKm1vWSClImwg7t//ivWBG92EQ1JMsKYwiUiB6j8kt035abe+5VTy+mbjA0QG63M063yCZcsC5rdM8WcMcR7v4DAzUfEG5vuZedVBFPh3QD9PqO++R6AWlHuDFgOC8RzkvIixXy6yPC//LncOsVQuXg3nbQW0IepK4w/vgFTDfC3kavnbLgwW+EcKnRw9xTplPLHHh7hbDdE+a0rNF9eYnsJgdev4Heb4nb/qPPMNYZ7M+PxIIXOYwPyPoBWmbw5wtYPItrlG7wfpHDHnqYbezUGEN5zsgjVCsIhYWMCtOMxMI3FM/Q1QLd5+conAU+EJT4aOSEQgjYXcAwQJuRsKtU/LrfwzYdDVOtpVFmNNOV1Bnp+tlLwXv4SFiWBDfOM8J7vGd1XgN/JwUTCSP+AbacP3OELhozQxQjnCOZt06/WxbAx957P6ghUdkqOV4n2X8YM0GKEIm+U6JyZMBtL7kWRWQywQRAaNX1DaSqYJ5eMng7SSTCoQE0MG5I63UYHiQWuLtnEPjJC8jdDuPrt4QQrVdzzANwL+t6rpmqpIT17T0LLCFAfv41kOc0Il3WDGT3R55nZ2sW4F6/A843GF9dkAu33UHOFvBVhuPffo78roP9i2+AZ5cYz2vg8hx2tUSw5Fzg3TWkrhEu1zC3e8ibhkViY2B+9gY5gMIa6OUZhvMKoXLQwsK0I9QKxnUBt+thX9+g+/wCh1cZqvcjsvuR3creo3rXw913sDdb+Kcb+BcrZK+3kNEjrBaIxNsJfvXgGec5updruF0H++aWnZB+oLFgXaL58gy2C8i/vp3V+U6GWkN+WsW9Up2hkeH5mr+wi4lQRUgUljVw7FB0A3BD8QJztomFmzbOoYbPMmO3Y+Kb5hl8fA7a9dBouoi3V5CqwvjqAnbXco8aBiY9SoU+2azY2Ury8U0XCxSWkurjCH939zHkMvElVbm/XJ7D3G1nSLeJJPcYI5uigHnyhFLixyP/LgL8GuyH73UiAuA7YSUPZHqNcLOQ+P/JrIzSc5qyx1TBCDr/TpRCS9rbk0wdwIeTlJCMhdmsEZyJlQ07EYaggfjiZHTmA07laFNlZao6JCKqoaKV6cN8XamCay1hDUYQSlbRZH8ERk8lC6WEXKiiS/khfn7CgwNTZ0S6Ibb2igfwDABzpyhVGJ2hu2nTssI4BmjpYsfEAIbVCHF2NjX7kOA5egb8VQa4lKnjwe/IGDtECbphMxZ003udVAolLThPJ3pJFVRDc6BQ2kkRY65Y23lOfHB9JPzRb0W8n59HnFciMmNDNZo4nhD8JhWrFGwGM0Pdwsl30DDPhSjVeArrS2aEU8hwapB3CiuyHkDENE+yefHgS5LFcZ6lCu30XsmdPRLOfsiJSFIn41903g/8XBVnUKgnlTh9+LzMww6TjIQLnuJyFfGAyugrEPoBNhlaRXfzVNmX1I1NZoFB6YIb4aLJ1weq7AyqMiiNyai0Uc3rxNxqqoInqODpTUh7Ei+WXdLJANUAEudIlCuWIQohROlGjUEp7j2SepU6Vmt9zq6r7QI0d7DnG8KvmmhylubsydxVI0jWLuIVIidEWWej5C99c0yqTIcAX1jYKmPSle79GIjRTlLDUQWPksMnnYW0LxQOY+14fUPqEFLJTB27NdJ5WPRTEyFVoDWue/FxzcdDHdbG/fSk0hrX9zTnTudaniPxURA8O25xTZoFiwTiLHQEK96xUw4gdsZJHFcf/z4In9UDs7MPz0KZrydwLzB1HXkRMXhOv2PM/F2AeH7+66nhfC+HsRMHgJ4SJ+vG+0ly/aOELqqbJSM3BWZ4pTEP3gN9hOeO42z8Z4TSsrGDOXWmMveQVyqES9s8I8wOmM58aDRGVCXCIn1mNDimMd8YpaoJ99SyQFjmcE03n0lRec6sV+wwJPf0eKarQeyuMKaRwSPUBSShJGQW2pi+20ksMXWGI8zT7TquS0ezUSYPfF+KeQTYHjCDzvvih8MrXxM9TybIpkbJ78zOe2b0ejND4PpOvD2NXWtnGX91np8XPzN1tHSS/40wLEMO6IOzOYmdWAs1J2fJh15HxhJOO/STKaVmjrD0GGey61mexBKB1gw9eWqaxS52CJPFwjQ/076TTJnHk6LmqqYoSYSNqg8Pv0Oa/xGmDOfmpDz9PM2JdD6ddmU+rnl85/heJyLJ0PCjfz8h4eowzmpBVcnKzjACUd3ktLocjkeqUZUlpBD4/Z5GU5+/IjfgcIQxbKfh5p5VqesbuBfP0f3RK+TvDyj+5beACMzFGd80SnKauiYBOlVITklheYZwtoK53yPc3cNEb4L6X10z0I1tt1QllPUKcnUPE0naag3cNRCubhD2e5h/448wPK0xlha2D7DXAn+5xP1PaizeDMjfHmBaJhOI2ND+bz2hpObhhMB8fctJ9vzJpDKVhhwaGFVIFeFVpYO46MweTYOk6+e24eiB/ZHfxwdkqnCZndzTh3UG13j6k6Rn1rYQEbi6moPDKHUcVlTPsO/uIPsj3IGdhfHmFvbsjLK19uPZId0AM4xRxi95AljKEMfWp9wLXAjA/R4YeoQvXkGNgU1u1kXOakUixqeqruokwwgA4X47G7zlGWxMNE1VsgLy+t0U+5vLi8jdoXJHaFsq7sSOxi8bUkXDxsj7OB1ht3tgRJau9dTQcFJWOdo54Po9GJITiuL3BxYL6prV4vhsTNt9N5k/czQ0vb6BvvPsqMSul6qSGOkoUyt9SQ33vqfZ6OfPmCzvGgY5boRs96yUx8MmVZjkfjc9T2mFwU8IU3Vd77bwd3dwz59RsjrCyLQq2T29XMEc2FlEXHPJ4TzbxsOzyKDRTJSkdQYW6mmcNwX1RQ5Z1Gg/2cD0Hvn+CK1LjJsCw8LBFwYQwPSK/LqBZhbNn/wY5dsj3FfvCBs7Y5VQrYHdxvta5OQ+DCPMgd4DcrvlfvTJOaaW8uYZZHwK9xffUnQjEwzrHOWPPmMFc/SwN3vYEOB3O0IINksGe7sD/UPiPZY8p5RoaTGsHfJbINzesTJZEGaGABqoHY4I796zU75eQVc1sKohdzugaVF8dQMMI8z5eZQuNcCbq2l/n4wEY5ICxMO/yAmduzxjYHSYS4aTc/bf/jGD2u0R2O7gb29hnz6FLKME6+iZnJ3C1oBJNCXxUT4aGoVWYuVdFgvIy6c83yI5GHoib59IqNGDQtRh/CH7ikQVsUmqNlV1I/TkVL43oSSSudskj/qhnK8I5JMXDHwPVL4cv/l2enbu5Qt6aFRUsJS6otHk1S3sk0vgbD2pVAIAyoKcRyxh0plxdw+8fMZg+NhyDawWwKFBuL4lL7XMESqK4kjkOakIxvMK/VmGuhlgtgq9vSNM53iEaVrYZoC/WELtGqYfYZshupYr9NUTyOBh747oPjvDWFlUb45QmyGcPZ8KBFqXDMyjGeb4xTOMiwzNkwybf7lF+J/+N7gffQFsFgiVgxkC8p+9n+5R/vUNsncZ/KaapLeDM+g3hJdLWMLeH2Df0dwTYiBVMa2L4fka/XmO5a4Bdjvg1XMogOzn76GLCsPLM2TfKrsAJeOX/H/5Ge/3iVk2okt7+PQpY7K37yHGwFcriKdKlrk/AD5gfHnOLnU7TkR3cnQMBCsWeq5vIXWF8PwC5u0N/N09jH1GpEeUBQ9NQ27QxQnHKBpSh8Nx9k4aRnbPIlnc1EwykhKfth+0MfMMwyevoFaQnS2JnNkd5hg1xhYGiJ2UloIlmyVwt51RQ3Fo9/DM1K5D+H0gq6uSJJNG4m9ING/ScZwPABuxiZG/kRZ9iDwNcW5yyE2dAHt5wcrIoWGrMlY8p0pRdLmGKtx9R4Lp4cjALsk1pspn6p7kGUxZUFs6diIky2jKU5cwiYwKsLovwg3FUeEB7RANdVg1sMeelbmqpEtwTliU6TysCDeLglyA8s7DNsRUs6ohwNkKMAZ220MzQyJVM9A08enFVBUW7wHPNqN5/pR+JEVGkvmoMPueKjPnFeyxZ0IRqx+hyiCDgRwckgETiozQtt4DvUfhw4QZ16qAsRfzc85oBqa7Pasv3kM3C/jawSxrBljOQpoOpmnJFckiDtMrYAC1AjOM0CInUW/bQI6xOqCUIxSvU8VRhlg1spZt5lRpTtVGawCdieBUyAizVK+j70MiHgJgMhZb/ZNyW4h+NAkudOp3Y8w8j+NGM7k1J3OtVKFLZpzATLouCpiieKioBTzgQ8D7ybDohzzkZO0/GBHjq9F0Cp4SthpNwBDlwDXEJDVVzhO2v2eQm+AMes9A+iPpX1VIF03yooqeVOWE8RVgkmKdqknTOuXeJVFOEUkKVNlpSHMvVTLRtDB3ZjYji/NHfYAsKqiLHDpgMgxVYwgFSoIYqwUPu74nZLMuYTu6LOtqAS0cK5CBAUl+P3IthwCogSjI41rWc5AchSVkf6ScaHniNt32rLxebKDOwAzsNqkRaGaguUxwMarkBKgITNTg9588Qcgt/VzSd00E/aqcxCQUgNt1EJ8jFIadmBO4kjn2XFsDZVApgclDGNGoLCncwRoIoslX+o7rJSuoI8mlv0yZjkWgbi5IxWdt1kvOOYCmlvsjYCzs82dMYpICY0yqPoIlx3kgGY1wZRwZlJ0akZ1woaAhukRTDEUTKT0lwdEVXjI3S8vqQ4jLD2kkmBsAwqKSwECUNbZRNjccGQDKcgGjOu3ZH5oeJjic7I9R/IEkbJPMDBMfNXFONHZCojiJLBfsdPjwoAPjbomAkNHP82V35ByJHYj0M7NZT3BDVsc/6ObEjqs6Qp0pwMKOC6yFND3sQP5okruWwUNzh3Fdcj2NnibKAGMHK/BnDm4XoY+pGxLnoWlHWCPIdwa+zuD+1k8QCsJWZYxd4sR9KkhM18zynG4Y2BtnYEaFjHxNWFXAalba9Kuav7c/wt21TIgyR+J++u6xE2g6xgZyeQ6/KKBGYJ9c8HlINDEcRsiC8aS5O3CdlyXUCNxugBn83F0G+HlRpnzqTnc9TKMzRB+YTRtVmTx0PdWwspgMDyMlvXfkqjxATmiAth0h9ocGoaexpTg3mxXGrjk7txE1EU2Ns3c7/uzYToUnHUeigUI5xTvqA/lnPbuy2rSToh47XLPAy8QzMxYiCvwa28X3OhFBUMj5eobD3N0jtJ6KAsZG/f64UUcHcz00JAdFjw/dbmf53YszjBcL2FuqXuj5GtJ2CK/fzS6YJ0MsuxMAYF9fIWx3xI8v6lmuUWSuUrUdzLMVqwO3d4RtrFaEAxQWvqgB1LD3TayUHYAsh391Ac0sfGGR3zRcFHGx2dsD1BpKvq0qAKw82n3HBW0EYZlDxoDqFzsqSkW4jjqL4ckSZvBwP38H/+oSxxc56jeAGzzaV6zGlz+7nbCK/nyBYVPCF4Ri+ELgjgHmdovw9AzHFzkW3wTivwGS5xcZZLCQQw7ZH2mMdkZTQ3N3ZEX0TcsNZ7NAWFfQ7ISrghggXN1MwQQ+eYJh6QBfQXyJUFrYQwnXdkBdQQtHrkkI5IQk8t+yRvu8QikCm4heIUwuqtMz7vqoJENMpaQ28nRBBoj65WqEz3AgLjd5LejFBn5ZUAmo7ZgsdD2rpFUJWUXZzGFghX38eMUm4n/idojLyAcJrFo/kAjGw26gqWvI+Qby1s+/ow/lh3UYAekeqm79AIc4+1EF53To0EMHAKkTtZwVxzTCgsJuB1OWkM2ah0pvpi4qvnwFc+zgf/E1rBGg/sD8yftJUSVsdzAX51RV6frJLVgtu23SdNz0k1pSVULEAcuKHYG7+1nbPfrgaNdDBp18hrDdsUvnHLtl40hSdbiAZpcTNBNxfiFCIsyaHLrxYgk3ehrgna/glznclhU1fx6N2HoP01sAht2BrodultBMYXqSWPViCdNFs7AItwx398Smn/JQGppFNl+cQwKQvzsAziDkFmNuEXLD+zV6uMM4FS2SLHnz4nM0lxYX/ROYYz+rgQEImwWGsxKmIyzUvrmGLCqE4pwBT1FMZH253RKuCxBPf3nGve3unlVk44Chn+BvE8csPkd/sQaskGi/OwC3t9894YYR47evydXarCepZXnxlIUjT5Ls+P493CevMH5yCffNNa+jrhkgfOB/BIDqVomI7uakBEUxq+0BTK6KAhh6jFfXsM+fAU/OgZu7eX+QmXuCooh7VY9fV5LzezmE5GyNHIvkK+SeP51V2/ZUQ5SqBNZLFulSwfODrompSkhdwV/dkLvz9HISHtFFBV1WkGhomKSz9djArFcIT08C5qATdFr6Afr1mwglzNlhqwr4X3wLBIX97NXUnddlTeW4KNv7nV/ZR/lba2gqrMu50zawaws8RNkIgPD0DN2n9Nhyx2jgqkqrgTzDsLTItkB4fz3LxkYjQDm0cN0AexzQPaux++IJlt92cPfdVNDQPENYVuifVoR+OmDxsz3kECv7BjBDwQSgHzA8O0O/dqheO0hQ9GcFsv0Ac30H2e1h+gH6408xXi7grmNHYR2TlW2DsK7gqyVCwaRrOCsgXslfPQ4w+4Zr0wD4858hqMJ+8hIQgbvaRW8Ty+QpBKr15RnGswpmjInI7kBo+8XZlAxq10PfX1MxbbNm3LdTyCU7rRJhfOb9He9x3DeTyExoWpivvkWI6/OBoWGal0kuPBZpcUteSvjzv3xYdDiR37XLBYAIwRoG+A87KogF/igtnERewv2WyVWeITgH7D562Ufje52I6DiwAlkWzOKzjNlfwmBHB+FUEZakbpOGc7BPn1IL/3iE3NzBdT3l11ILPUpBIpA/oD6qXpyvuUlc86CRbD4UtGEH5RS7Pf3s9g7YUZfdAjyAdgc4z/ZlKHNuGv0wVb3tnvCKbBjhL1fovrhAdtNQSeHYUglqOMEEAjOGO12DV3IunEUoM0jTT50AANCLDULukB0CxppJkT2yo6B1QX3spoM59si9UjO8sJP8LwDIsUP9riAJdhhJNi+imo3EYP3yDHhyjv5JjbGyyCrH7s1NxLd2IyFCgZs6Ami2BMDECgUAhHZE+a5F+6SEOoE7eoTKYfzyedTx1pkkH9W+9GKDcU35P4yBMoUFN/KQO0hmgbBg0hUCdFEhFNlk9mRvIhTrFEPZtExg0iGxXPAw6XrI7RbumMOfrwCsYP7yF7NWvxg+4zgfzXJBidiE1RxptEkJSf6eWS55HzuSzcx6hXB/giU2lkZow0hH5IRF/gBfLC7DpCg2EqZBnPovX2vf9xH6EQZm5nkkvkzahJPHQjXLFuo4UukuyoEjj13O++2kmsXEboR7dzsFeRrdjCe1qCTRvD9MwYD2PeRgGCycquu42HlbLabK/DT6gQfJ3/oS9uoe/t17Htalg7+oSQA/9Y9IUp6xc+JevgCMQf6X70jYrnKEVQmsK9i3d5zzZytokSHklpryUdkuGZiJV9iho69J4eCOA7QRjE9W5FXFLiSrgQZhkZHPNoz08SkLyoinvSoq+emKUpfZfohCHNxbfOUQsnhgZ5GnNwaYlIhY+jYs/uoO1Wuu97Ao4J8uYLc97NU9sG+QdwOGywX8MoeJHWbTe2iVAS+fTDxBqQqu5+2JH8x6wU5SRU6HOT/jvw8jTBTGQFS4MR0VcBIkzj655PPoOiqk5Rmrzul5VxVd2G/uZzPZ1P30gRLbxwbuNc8Zs1p+BMH8pUOVCjeJj+IcpPQn4hgZ9+b4GfKGimH28gL+9n7qnGjs4oX+B5yApKHcu7Xvo4yrgSncJEuNoUeIz+XBOQDETmnkc/iT4s8JVDsR1LUilNdsjzOsMnbOUyJkru5no82ElEgeQFHcRhezt4RZM6HlWssRPnlCpIUzcCM5Z34R53BmYfYdcLeFU4XdFVR9AmZ57rZjTPJkDbNrmQCd+nodOyz//I7wyGFE+XqPUDr0n1/AZ4Rrhtwii0qhkwpfutWx0GCPI+rY2Qh57Dj0gMTz2efRlLkH+osKckYUjHiF2w8sPPQD3LZjdyTyt/LbFmbP7rHEApI2PVw7cN/JLM0WvcL0DtJ5ZMce/XMWl7PtiUFw6i60HbtHn74ktLcuohqnp4JgYZENfvYK6Qe4K4+wrtD+6AJut4I99kS2JMUpF4URDAufEjviYcVilomc2XC/pdlhVUZ0RGBREpi7ncBUPDC/bJ9Ixc2OgjoSCw46joxdxUx7AoCJW8gEh0iBpPKpwwgkBEeCsMXiOyXvfz2vsu91IgJVYukNqzuT628i4zo3bwiJoAXMbXRjgLqAaoBuR1bqu3mTnoOUbJZ3jG1PrYsZspQ+L2W4LQ8hqav5ZwBgzKRq4l69YOsxKhnp8Qjz5AKSu5ngCLDr0xCvHbY76LM1unMa8tlhhl18JKdoLeB1esJcLCNCQRK77enoaQbPrsWqgFqBazyGhUNYCKsJ7Uj+hxWYjvwNGUaYxL/QKAEs9N1w1w3bfCM/yy+iqaQAagxCncEvsogtF8A4mMJSLStWNgQnh7EqFKxCJGdmANEJdYT/rMZYkiTrrcWwdLBNgDsO3IStwN1zMYzrEr5yUIPZ8TQaQsIKFAJUOZOubkBYFBjj9Zves4MSn+P0rIeBbUrEDeAsdtHGEbqlXGz45AIhN8j6HqEfJidjPcFaT0RAYDKjm0wL4yHE34lJThYrHPtT/4doYtR2wHbLQPsUspV+L4tt2wTZGUdIYX74kpxieI8yRyPBBKEQ/ptE3fbJLDDqu5sIn0RZQPcHhPb+4XtroKLatGbDRFIFMMH9NHVo00EATD4T01sB7EqsF1G20zxIjLCs0T2vUfUj5O5+OlD7swy2s3AnEt8PCieZg56tIG2P8edfw27WMOcbDC+J6y7/Ysfv++KcxQUr8HUGyS1EwapjFFuQtgekgOSANAPgFf3zBYITlG9jMD2yIzKWFlm6JyXx0QgZg4XO8/s5A7+KEIfYdQmFg+Zmck0mRM0AVpmEhIBZJMMC376FsRb62QuMlUV3nqEAYO9dVNrrgGdL+MLCVTwwzcBrDMuMpNQkJzwE2N1hWuOhzCk9CkCU+5CMFAuYOlxJ7KPrWRRKpmerJXHbbQdZRFiEs7MIRp4hLArYQ84uWIKwxHkizjEovumnbpW03SwDC3ycmKSAMug8t6I8OzQS670nnBUMhLTtEPZ72GdPuQ7utyTBAxPX5fdhaNAJnjKpZWXZpFgWTjkzSao+3f8E6x3zeQ9PErOJ5xjFE7TKIceOf0/PKykj1hU7mPvD5E8jZQE17FqKWhYs8gxaEuIsqjA1FRMxUB2zPyumz3dbAQYmBmoEKoBpqMglQWGabkoWtMqZKHsKT/RnBXKvhKBVJ67zTYfw9iqqfWZUycwzHL54geAEtg9QR7nt1C14cK9jImJ6D7fvJ/iVCmGc2vWEYTtAesCMimEVLQYUsG1A+e7I4mU/wOy7SUACqjA7cuR0GIGVQ1hV5G+MHuGCRrC+dpBRyZM49pB9A3lCRU0T+bKhIG8MIlzzqggvL6akSTz5Vr6w8KWFsxLtIaKoyP4IPa/RXDrkhYE7OhRv9nxWscClJ15I4tk98WWEZlUFldqOR9jFglDcuH9Ins/rP821BPE9LWKpPvh/SiRMngpwFTlxx+Mk3xsORyT+5CTWlM7CtgUGeWDWi/SdI+wwNC3U/3owzu91ImIvL+CqKM17fTOrl8QqYJKvNB+avcTDXYeBHQprSUjMafynC24asj9ikq3dHiZHby1zmtyIQJ/GitfoIdHxPFW+sFlB+gH++gZ2uWBGXkXn2u2BB8Xnr5gZ327hL9ZoPlkgPythjyPMX33DydR29Ct5+Qx212H5l9H45yTQ0UXF92naCE3KYI7dLJ1mqIOvSfUndxARmF0LLRzG8wqmGWFvjrDLAr7O0DwvGcgfo2pFmUGdIFgDXxqEXNCtDWwvKJ+fEQPf9WxhlzkJpLckysvgYe73MEcHu8+RJWWM2JkBQHfZTQ17tUW4uoH+nR9hXOWwDSdzcAbDKkN3TvND44GhEkCAYWlZ2RgVtvOwt0fIqkQoHNoXNbGaFsj2Hqu/2BK2dXGGsKGcoH19AzgL/+yMMr+39zCHIwpjZs7GcsHN+W4LWS/jPT8x/gke4fVbuqG/fEZ36v0B7l/8nJvEooYtWUXQpplMDGEtzI8/j/ejnRPmGNBIVbFlut/zd882TDDuZonWhwvDznO+aScXev/+6oF8r7mMPJygCMPxhy3JKTQjUx8+cp1OQ/sBuNuyEpyCOFXyuaydjCXdJ6+gkXQqJbtbk0dJOfNDElbWPHtCbLKuIPsjxjdvYQK5TrJgt4VqbezA6OHIYCLLpv2GGPADcGxR/WLL/ebFU8j2AHe3Q91ecI4v64ittlFr32BYZIAA2U1Dgvr/5d+EHwNkCDDtgPxIyUoRgReSK81dz85ClcHdNrHDE4DMYXi+IdSgi1Lbw4j+DzcYasG4WME2AcX1PJl8ncNkFt2TCipAdqT8ppQZQsZqb7br2aU8CVbscYTd9yT4xwBDRSDdAL8s0Hy+xOrPFeHr18C/9YcYNiWy2xZuy/8QwMrwZgEtWKSYpsPgIU2P8GSJfu1QvqOp2nAeq616we970iU0Pffb4bIGNPLwduTmsZvtYK/v+CxPux6OIgjkFgbg/S3nReQySjfEKmJOPuIwIpwteZbd3s2GhsvF/J5lgf6zS7htC/nZt9M1hpjYmsgvS/LU6QyBJINOTyjdMNDo7HzD8+n2Hv7u/qHqzodL6QdsaDit4Vj0mZSUImTXAJNxqfYD5NbMvMCaXh2oCVPRJFKgihBhxebpJZPQv/gK8vSSkvxvbqH7E4PjaGYb2g7WWnIF+oHFs/IEjtcPMHce/ZdP0J1lWB5adq7u7mHaFqX3CKsafkmoH7xH8RdvoWWO7vMLhCqDqSvo0wuMmxLmyIfaPasQMgNfnqF636P82Q3C+RLDy/WEsJBQshia/MAyRzl/Z1C9jUIHCtjoJYaBSnxhWSJEhIPmBsPSIdsLYZ57nrPtJ0uMC4cCrxAKB9sqsvse9thj+ydnGJaC1TceY22w/cMV6rcFili0lKbnPRJhkpZnkCVl280duVBa5g/mthogFBbHL8+g9pyFVQXC54SmqwCu8bDHAabKJw6LAaZkBOB3tZ1nQdUYDE+XSCI7vnawvSLbj3C7nr5y1qD5ez+BGZX/NvBMSJDLhISRhtBpU9eMGXY7dh8iXzSp5Ik1s2F1+m7eI1zfRouIVDwnH8kUBUIbRULOz5jMjiO7fY5qrFOMOUTPkdglTLy6JHyTIOIalEpuGbnQRuWHL98rRc7APpFQk1lNUi0Zeh4C2QkWOVUfonxqaNuomz9Lo1Gyj1hMEslOgpZE+ksVrdjKB2JnJMvYAncOIUloJsOY9SLKXRrYFKxk0WgvjxAgAYI1kMzAGAuYCB+xFlpHido+umkGnavzJhqFWWqCT8SyCfYR5TpVgVSJzIUVgEEi8TRBQQpAEMmiQMhkUs1SQQzqSSQ1IxOCUGYwItEAjFmxObYM6EQeytoqjY6gOrUntchjhSLn5us9QuEwLNwsoQd+9lgIrGFB24yYvNr4fBGVuWKFM1MmTxmrKFBMGFMaKloks0YE8zBAjQoZmuZB5iDyAeROZCKr6hDI+xFWvEyTA1k3VRMlBrKSyF6pNSt8jirCin0URVBVtstPyWmisXUeSWWnZFUxcyt5USPJAItzc+s2tmGRZZikOCVAxu8OOn4wI65NwQConTkx0eQJwAzXipKqyQCPBqhMICmhaie5VmTxQIh7zmS6CT6/6XNE5r3jtIIVCYTiWalMnhEYR+Lyk/xlbNfLOPIQSwZ2AHT0TAiiRDjNPh2D/MzAlwyGMrAKOS4zmJ7SlGbwAJQJDC+aCVLbR7nv03so014DYF5rgQUACQKfCcRLlOAEYQxWEMTOECsj0VODghnqhAd7PyLUUXFPTz4zIGLGZ1K5Zga+iJ+jgTCwnN0VhMACR7oXhUUokuw6YlBGeWLCvNhlkUSQF8BX2fRvsPE7n+wNyWPEDITZJCWfyegyy+aAIBGTE6k9ikxM0J5UbXWOnY7EXQMmGAQC17FmDtJwX0XcZx/AjU9FKCJmm11PfyLVLIDGAHoYY7cwnh8aIm9MkCTOJ0nf9Egy+8NNRDJ7IkZh+Twj4R8AY4zIU9RxgI58RvQToaztQ8ljrhnt+0n4hZ4hBxaUYqA6dS5PX5dGEq4QmWDHAKL/CKJ8tkRHchYYEdi5NEWO4KN3EdiVFWA6TyV2WULGmCN9tjpgLHnGU0hC4LO5Q+kaj5BZmLrkXpNbjHUqeLTRRJRr1l8uJ8SDCpCyaTU8lzXeg8RdDROsK8K6494gTc+4xMU9JCiC5Z/TuaeZIyTdzvdK4WB2CnQDdFkShh1lgVXAdeQVIef1UCIY6NfRI63TGPOYqSubBH/geG6H2Dmenp2NIhtGuI94ZUG3jfGb8swfaxZV7TEKfAAUE0gx0omYjOQZO5f9QGEiQ7SEpDmW5ZBk0g1M6/zBiBLTFNuwgFIwQ6OrO2IiM6OLTrquGqBj2pfieXo6vwH+zoQUEvy6ct/f60SE2W0B0w3MzKIx4YMRjYHSINGz5/maNvuqhJ6tgLdX8Dd3TBysha7XrDC8eYtkPKU3d3yImzU3htstpdG6jhvByWdpYQFbwlxeIHz+HPd/sMDZP7+D+eo1+r/zOTQzKP7qPR/k2Qrm7oDlm9uJ20C8eEW5vmWJ4axEcEwCiuuWixtgi+/1O/i//QVu/2iB5esB2bZHiNVF09F0TwYPc7uDbvcY/87nGGuH6nYHtD2y0UOLHP58gd2PFujOBM/++3tI02P/dy5YxRAgv+3hrvYI6wohs1i93wLGoH+1Qb+p0G2WKLYe7uCR98Q5d08KSFCUIvClw7hwxHb2notPgFA5DLVDd25R1k9QXCzRPCvgC0H1NsAcOrjtAe5iBdsvGUgNAfa+hahiXJfTBkd/kwIIAbYZkO0Y5NmOVc9Tkqx4D4VF+3c/gekDsjf3DPxePo2/QK4N7Mlh/GRN1a3b7XwoFHmU6DWQ1QK+cMDlGrJesPs0eIR/9VOY1RLD3/4M2W0D++5mvo6bewZnBe8VWhLdUBbQXTTYDCca3wlXemq4lXGjkrpCePGK2NljC91HST7v2Wb9wy8ghxb65j3JzeMAbOr/nYvw+zGmSudywYpTlCjUpp0PsXGEdh3s+Tlks4I95W8kcYCmnZ4FgMn/R48NoXmbFdWzEuwueIR3VxH6VU4SirJZAxcbJjc+kOcmQiPDODSq4sj+GOGbDedZWUyKWP7lBUJmkX17Axx8lMomLNMECx0Nqm/uqLyyqACvKN4e4JcFhk3O/cQBPhO4VrH4l9dz2997mM7Db0qolFO1z73jmtfMEVKgiuX/+hYQwfhsDV85tM8KuL1Hft8jJAjGkJI/sPt6e6BjchW7tyEA0ftI2hHdiwX2n+TIDwG2I6F2Wm8iyHc87MzZBvjLb1D/Isfxjz9j53PL+0qfAIXpPPKe3BJzt+P75Bnc2zu41xEKJQK7KUlWzQ2GyE9h95VQMtOPyL+5Jxn3SY1QOGBTM1hqx0jszjF8/oRwzusdE1dn2Sl2FqgKBnfvr+dn7aimJF30EvjqNdf4xRnM/Q6+6xCebNBf1ij/BWXes/+Z0tOndRgTzyXt+hmOd2yhN3c8+7xnxdJazv2YxIRI5kXmYC/O+LMEBx1Hwp/TtRbm16pyfh+HOdvQgO4DA7tT6VMpCxpGRoVDc37G53u/YwySyOqqsKslFS3rmt3OCMUGAH91DXNs5kSyKpmwFnksBkQJ7WPDn3lP6eh0TSOv0W075LnBeF5DlgVM5K9qhC7Syyeqbp3xZ/nr7RT4m6t7FLc7DJ9eIuQG5df8jLpiQhYuyJkwo2L3mYMdFJf/v/fQqkD3coWxthgrg+zgYdsA0w2QQwP/7Vt0/49/C1/9A4eL/1Ww/lmPbNdDmpk7AyAqYfWExYtgWNCPbfn6loXmy8V0lq1+MaC/j5DrRrH6s3tKzt7ew//dL9E+LdGtY6yyC1y7fYDLLGyZ4ebfOsNYAy/+8dfAXhBeLZgItCOy/TDBM/0iw80fVcgOist/0dLceN/xmaQidEYJ5eGsRPOsYkGjV5RXsavcs+Nsfv5meq4aC0thWQNWsPjFYfr+oaYss+mTR1tG9/W2ZedjTYSNDAPPClVCe6MSm6wWCMuSvKMu8mJEgCcXc2J7bAi5+utG7NBOYxyjFP3wQOwGFT3XTtMdOrbTtuD3w0ekH2bIQKrgnJiOAbEtflIxIun0BOdYFMzaVNlysnaCZgCIZMh84m0k4qf0w1zdDKykCoDJEDFlisYQP6yKfE8fClkuGBB7xST3pjRIwxCTiygTKekAC5Sd1IxBtTn280YZJdlUhPreI6VCXXIoXSVCFZMRGdlhMKPOJmdJEaQbkR0CEw/ldzEdK/PZbqBsZsVWrx3njdq2I0LOrN7nBlDA1WxjqgHEY+riSCApTZ2BbbkpjaWFOhqchdxg2BT0QEmJtolZeuD3cweS1NQKgo0VEI3wiSjZG+p8SqAgQL/O4FqDbPBMKmIlJMn7hsxQwi+SvLUuJvMz4lYjEW4q6ZxUSKPBkRhDr4RDP/1OqkaZRPaKlRqxZqqgaojvGQ32SGiXOeCNXRJ4Tw+cVKkDAGPnKkSscppmmDDsU7U+KWgcOxIPw0y4PiW7/SCHBhpGIWdlOGJep24q4j02cf0nU6jYxv5wX9EEsxmT6Sa5Y6wwn8ijRsw5VNk9AbjfBJ3MRFnxDLNEd6xAmwOFEMgt0dkQMe09RmZuVRJYSHsPANOODyqFSB02JRTCNXOHYqwpVqB1AfSxUh67dAk+BSuQ3sBF0z6JruVqHWwT4RiB+0y29VPiYoJCvcakx2Bc2OnPMlK225/XD64dhUPIDYxPZcIYWGmChrDCqCLkZaXrtezg+srC9DIpB6oIq6qDn53TM8d9vO8mSV7TM7kJmWGhowkIhYXPDFzs5mpNPl3au0Jm4WKgBGNIhB+ikEGe8do8pZvVx0JIkUVVvtSp0WkdilUquInhvpLmXzvA7WnIJqnbkkzUIp+J50+cpGmOJen5aJg3de2m6mjs4KUz7MSkEzHomGDPRgD/w+WLaNdDTDcF+Q/8WAyFEZDlLF4mUnrXQ7ydZdPzfIJ2Tvc97bMxoZi8STQ8EM1ACNyzgaiixUo0vI/dVc9nH6WvdeRen20dzMAAVmL3cFzFolbqcoYT7lFPREKqgCdCfLBRZfO082LMJEBR7ALP6HUNX2UYKxu7GuDZHBShzukxZg3c0aN8nyPf009EBn5XX+dTd0WCTmI7iQwPxDM1EGqt1gKLip2FlvuYGRShzgAsYKyFLx2CE2RNhIV1jDVk2j8MbK8z8R8xVordxQByCNlttShuFbYn98N0du4ixGen1rCTO7CrCoBd2rjfsFuMmf/ZD5NYhaaCSxcRIRFyZ5KJYzqTU1wLzHtEUGDBJEOj/YSOnh3e9kQd7aSjccoNwTCQPmBkJsxHHzYMA5AMCx+I3JjpzEkGnxK7uFNcDMQuyyziksyV/7rxvU5Ewu09YPIZo5lnEGSzvCHAm9ScVDPqiu3uY8MbuVpG8k1PU6GLs9kczgjEMRPV+y389c3kURK2O27W1YmPSVTnMmUJRH8ROIOwWcAcOiz+twP8xRLDj56i+Pk1D4/NEhMBNGXakWCsbQuUJfymgr1vgJ9/MyWYmmQZzzY8jDZriA+orkdkty3s3R7+2zcwdY3+//6HCI6vzJcZsm3FjP3YI9Ql/T/WBbLbFubNNRZNj7rKGYRXGYrbDnbXQb/6FvjiEzRfrFB9c4AcWoSzBSs/VzvIUCNkNYaFxbCwgFZ0Jx2UZoX3R0hXQHyO7qLAWBksv+KGOEZ97mwfMFaCbpPh7F8eYO4OlN+tMgSzmLpF9noHvbrB+Mc/wbCOUsZtoNZ2HM3zEv3SoLoaoU5w/2WG4s5i04xRTURgOs8KbfQlGJ7WyN8doK/fAX/wOYZ1AV8wwcrue25s/ThVjTmpZCLj+cLB3jfQn319Qi6NSckTcjKyt/czkWyIhOLI6Ujyv+ZsExWy+hlvfORm4bfb+aOLAqYqOfcQMcxtN8lDz3J+UaLae/g//8v579P7PJSm/qENHUf4u/vpe5uo5IKmoZsxEHkglhyeu3salWmY/IRO17p0JAyH3f6BkEC4u5+4ZrJcUKnm+oaB6GIxcU30eIQmCVAxhEzUFfTpBiFjByE/Uop34qj8+HNI27PDEj8D91vylqKKDk6eo9zcI+wP0D/6ggpX7+K8yTOYbQN7PUK3O6AfkL98hlAXaJ/XcK1HdnUkkbuwk1R3XzjYnv4cdtcCN1ugfgK/ziHKfSBUDvYwIP+L10BdIdQlTBfVV8waw8rg8MwhZEBwBTY/HVB9s8Pd3z7DsBAsv+XD6FcGtlOUNx62i4o/hZ28CmwXeI11hv7T8/iFmYQEKxiWFu4A2CO5ZbACc8c91l+uYrIHmGPEQm93QDdSHWjMoZsC7r4BfvoNzN/+EodPaxTvmTAeP13CDAHVX15DFyWG8wpyu8X49j3sjz+n8tT1jupj64pGtIcj1e4A4MtP6GtUlrMk6+hnzlHmuM9nGQsjJde4fv0a5lsDJA7DyXzU/RE4HmeIBMAK/Nv3k1GnMUITzfWKnxslxU9LEMng017wnvqb20limAmMgb6++9+3CL8Hw1/fQOS79UbFOcYLdcUzve0oadrS7ysZ15rVcpL/nYUqyFuVJ+eR59THJHiAtncIXUciso+c0tUKeP6ESUfH/WHqztYVdLOANJGHdLtFdrt9cK367Bz7TwtyJgdFCdBXrIly4W03q3cl2VnHBHz3RQ3bK8r3lNIVzwTCDh7r/+UArXJs/9YaISGARoXrAlzrIaOieVnDHQuU2wvkX13hi/933JNSsJpn6C6L2YZr5PXo2QphUcBEf6KwqdmFvDvAXy4xrCnp7w4exZsdwqLA9ieLqORH2wIJisXPduR5VjlhZ4UjPEoVy68awrtyQifz7UA+TGHhc4OQCfoVE6+n//0tQp1h+5MFVICyHaf4w1cU3LB3R9gdUArQn+XoVyZCbKkgqFYwfPEU9r6Fub6D1gX8koaqEhT5toFWObpnNfLbDuYummGKTCp9Sa538o8aRoRPniLkFi5aBmjbMl68A/eHKGYAgLzhNC+aFqFt4S4vGO9G89rx9Zvpd+xmDS1zxi0f+G5RkeskVsgzYDS0FogyvtNnDf3viaGh91ESM1rTnxhTAWC1Mt3I+DvmbMOKWFKr2R9m/H9OrWvtOhp1JTz4yTBVSex2fG9CMjKY8zPofo9waKYN2zQkIaLrZ0xmhAuopfqFRl4FgMhrGXgdzgHCQMgco4mhc8DLpxjPKmRfXXHipYqLpfpEfsODKCwqmM9eAQAWP90hVBn6swK2ezixYLgRuG1H7GKWcbEscmpnD1Gqd5HDvnoOv8xZRRiYgSdsNACoNRgrA58T6pGyJtuSGKs1q/wyMLjgawTigfxuzpzNaBAaQb/JYZaxchAUJuI+s21HBa36FTXMD54V3Thk8MAw0mRttLBdgI6C8ibAdQpfOdhmhNkOE5Z+LPl62wWSTs/P4A2roqKsmthjNK3KLPxmAWwWsK+v6IT+4hJwBibK8p3CJSZllBP3dRqPRSWn3NKxFEAyOKQZZqzCdFH5A4AsaurEb/fwb99N0pxykoynCgo3jMXMmTpZD5qkfcVAshzhV3hs/CBGqt4k/kbPZ6J+rt4kgzIAhPPEf39QyEieDNZChN1NWPMQjuU90GMywLQbHpIwMpGfJzzu2Zpu7XsG6/Z6B1mWwCqSposc5vKC1S/PfcOcn5FwGcnNMnryFBKPK3IHUBYwqhjy2G1sugg1zKBFVMdxdoKhGACuZbczcTXscYDpWf2TwONiWOcQBWzbT8RTxEqsDPELViUrmgADHSvsmI4By28HqBPCOfaU6y5vPLIDAwOfGWDFbog7etjoTGwj56M7JwcOAHydoTvPsPj6yMJKtoqcNnZXfJ2xkzkq/IodpbHOYDuP7PUdwrpG//kFsm8MDRw9FfPsVlhddA6yb1G+ZyVUywxmCHCHEbjbQoocY2XhXl3CLmsGl90wKWNJM8zmqMloN3x8j3RRAXUJHGMXTJVmktcDg4zU/TYJMmEeqOJIceJzlYpYJ119/p9zNskEp33hdJjkUdCywyUu47XsD0BN0vZ36Dz8YIZkOUSyyTsoFXHSmAqYdTklBpKUOlP1uqDqVAoQSUDmv8n+SEWoNoqSpC6YyyaVLXtxzg5YNEFEkZPTJLQiEBEqbiHOG4Bzs8h5Vt3tIE2P+u0A246EQd5RpYn7BK0NtCwQ1hXn6LGDbJgEVO8Jm85uG0qDL3JCoIcR3acslJRXA0LGTqrtw9xZUGXxcQzQuoRWOfyyINzRCLJ7zqtsPz6A7eh5TCTGQL4LMBkYAuw6jrVBcc3vBCGvrH7bQ0aFGTyOLysMC0Gdu9mWwDC5GhduKsZKmIUnEh/FDAHZtmdH6ROK2/gVubLlzYhsN0wSvSEzlCQXwfByPXWCbOuRA+jPcwybDOXbWRRFS8fvqMq4qidfJqwrBMc4w5cO4emK9gf9QIhVPFcmyJ4xQB4Q4v6nDcUt5MRTSBIEtJutAGhyaCF1DRuLHfPv57CxQwKwWK95xn0MYFFNlUqT0zqhLx+G8aNkZfod54ge+TVyke91IoLgEQ6H+e/JPRJguyrBtoCoaUw1E60K4N4CfY9wgv20T59OKjiAn4miJ2OqRMXsNNzdw56fI1ysqD4wUItdsoySkTHwTAZY4nVSVdAP737MTqWqZtlWH2AODaE1RY7j5xvsPnV4ul3BXM8tY80cpBuQbY9sm64KhCc17HGA/LP/DfZsg/wPPvnO2yhjNN8JJEKPyxzDOkMVN59wFrsmyxic9CHKBI4PHUKdwVAZhAxQC0BAJYbWcyLXeUxgPGzLVrEaEuvyqwPUkliKI6AiOL4qMVZCrGevsNYg2/WwN3sML8/QbzKU71uYZsRYnXAchhGyPyK7KWDb6JJrBIs3yk2ptuz+vL1BeH4B5AV8SQlE25EkJxcrVlEHDwzzPUKeIVQZxjqDLw0WbwThwA0bRuBu93zeJ0OPDQOcIqd04G72KEjyjEm+T6LBoTaUFoZxlHweop9FXePwB5eovsmBt+8md17jCwYMMdgBQEJ65oD7bSTHnyiUKY0Nk3+GfodZ0Q9qRG30NKg2Fp9TErbIswccL8r7tg8kCk1ZTqoiIkIZSGfY7VMa4SXIhhiBWKrnAXiQ0MBaauSfL+FLB5dZyLGDvr2C8WcIJR1/kWfAekHVrOQ+vlmyOFBncCX177WM0qEtIUoht5Aqdm+TZGfTsK2+ZmdxXGQwdUYuw9s7yOhhDyWJp4sM7jAwSEkCFKjgC4Nh7QgBbaqJh0ZYIDlYUKXBarqNUZbT5wZmUJQ/uwbyDH5ZTAFB+a5hstgMkHUBIIskzoHmrFE2U6sC7dM5ERkXFu25werPWuDNFVyU6PaFgQroVXQcIZ3HcFYgOIEvDYobRXh/Db1YYv9JgXWzhPMUMIHvYWOHWvMMEn1IwrpGqDK4lnKj/voG9uIMvjJoXi5gnlSo/+evoYcj5OKMENixmWVZy5jAjoQST2telft1YZF/1c0JbddhvLv/YB5HcrMqYRTpnxc1zzVgguDpB0kGIlQw3N4+8B4yp52+qgSMZRdPw6SKEw4H8kTifv1DHVLmEMmBvod2noaEscqro4e/uuLvrRYTNJaCODEQjKIxqWNOU8R+2lf0lhzV0Lbce9OciKIE4hx9ZVr6Rpj1inPQE3ap9yNCUNjdgWaFy/i+IhjOidcvtgdI06H4xS0NhPcH+KaBBoX7/JNI6M4QlgX68wJFQ04H/AoyKorXW663toM8Oyen8zZA2g67T3NAgCf/9BqaO3TP6omvmYY7RLjQosS4KdCdZ+gXBj4XrH4BuOMId99NBdiQW4zndUx2PMaSaztklvECAF8YjKVB3QwwsYsg3iP/+m6Wy375Bfo1eajJAR6GBZDuzKFbCVynMANgW8LPWBwh/Mu9vYfe3qHMv8S4zDCuKOpRvj1O1gLhrKJE730LzSwOLwq4LqC46qms1Xrc/0EFnwP5jYXpI3yzIMTb7tqp6ITMoXu5ijAyj3HhMNYZ6m6E6Xro7d3cBUs+VlH5joUhRdjumbwmeWggFn4MsN3PaKFYVJdFxecPTEa6yBxwvpler3lG2GyEsKX5fMoNEWvmPegUWni6lpxjZ+YHn4h8MCY8Z6oMxsUHsAIpRYFwdcObOLD6b8uCVc+kQNTT4E1Vgd2eCcUp2f0QnZStBYyFPdtAzjfoniyQB9BEJhrTJIy/ti1ks0ZYM1g23QjZHSj56T0rrIsaul5CLjYzyTwEwrUiiVDXS7hmxOJtVKdaVBifb9givDlgfLpC87xA+a6DPQzEjPYjibFnawzLLLY9Y0cj8XBLh/7lkhvEXYNx4dCvLMyLBewQpooBeSB21vb3XLwQmbgfdlDU7z35JFEOsPl0AbWgGsWoM2kVbGdKAPIbJjJj7ZDtB7j7BuZ5ARV2WaQAQi7wZQmzyZHf96h/3mA4r6CLDPkd+SLtqxWASK7riUvN3u8Ba9B8tsZYW/RLg/wmmyAJMnis/uxmxlaGEBOwJRfkcOIx0PZwbQ9bErqGIoe9PId5v4X4QJnGsoR5/pTVp4wBIWKQKseWzuqbNZ9LdE2lvGGUnE5Y47KELipeZz9ANjyUqtcHmO2RxPbVkgFNP9BYqOtIXssyktT7Pjr5lpP0ZHp2p4aG+Nik+Qc5khSqWdSQPEPY7oll/vQTrtdkGlhkkLCAZBlCS0Uq++LZ/EaR9yHHDmLM1PE8/QyXiK8nLW56ApTQwwH+9g4WgM0ybujOAa+eA8MI9811nD+O3AOAFc9hhF7dwoYNuyPRaCyA5EcAsftgYZyBANEvwyB8/nJOKkKA20Xd/UB+SuK1mSFMbuii0cfICPrP1yRv98Rga2GnKlqIfDAZogJTYSeCabBLhNxRIWZUZKsamhmMqxxu18OMYdrzststpC1Qlw7qBN1lCf9JDbVA9aab1GcQlGTxTGAGENLx5BzDOqMLe1TTCRaAOFhnZnNXxATlJ58hZBb127hXnWDUZRgpyftsQ1ly75lQWUM543aAfUZBi+pNSwhLDDpQzAkBhpEHfVUgFDl5Nk0/7TEsSFnY64EGt6oz9KEq6cR9bKG7PeGX3kdFLksHZon8vtjhlIH+UOF+O611UxQzEdoYBtbJ1DAFH3HO2jwHnMCulzPPwVp+pxCApoXYX6/K+X0c2rRQYafalCUhVamwZMzU3UxCHwAmmGSIZPWJ1Ns0FAeJrvQwQsIxQEhM38+dLkR4rLXkDeQZ8MUnk3q07A5A103SqADPohRMqjXwL8mzystYfCtyOoFfnjGWiJAs6YfJJR4A+mcLmMsKQ01Hcun48+HzC8ioyLY91T43C6iJsP9315DzDXy+pMz2fYuwzBEmT6OA7O09nCqCNbANEyl3GGHaEfb+AC1zDE8XlBHvxshfU9Tv6B0ScgPbGkjbI7/vmVRkFnqxQHdRwPQBxTsgLCtoYZEdPFZfK9qnOeQiQ/mez8d2HrY3cJ1BdUXuWvskm5S33DHAdh7dF5fQHz2hih/wUYI1zRGJxUpVLN50GBYOuy9L2J5F2s1PW0K+wQTEJ8U+AGoqyLKAe7eFHBoUXwfCHY2BvQcKAONZCb88Q3a/h7gAPH+CUDoqk7YDpPOwd0fGKNHvTrseslkhnC1hbnfA/khp+JScjCPna9+zGNV1CFF2NymtSVmymBFFUpJxr4nqtO5HX8w3oY0Fk2S2HKXxkyGiKUuYsw2MDT98Z3WSzE/+rtGcbUgOxyeZWqw6TCYtRTFtsOLcRN5K5B8ArPgneIxh4oGBsJu0aaAooGUOXxpolUHbYs40E7EIiIecnYJa7Xvi9ZqGjtmLGlpms3ylV7oQp2zfRBOkISDbjRPRbKws7CCwgcFGtzYobg0TnIGVSqkqhLJgAjHqw8UVr2viWewp5edzwbiw0M7A9AGigQdtlKtLEqZyaIg1rUsSQgdFftfBvdvy4C9yygBagbHEfrKNSYJXyEhQnzCqhQH2YAKWEGtRHVGFCQnUIL/rIPd74KJGcAJ3PyLUGYalgc8oZ1hde+TR5ZpQOEAN4HNA81meTnwA3l2zip38NyQS2YGJUDuR/Xz0gGhislkW1PruOoTDETYu3JA73q+MYggmaqpr0Amfy0oyprb2BJdILrplBtMV0z0GQFOmtosyvG7unoGdPwGgztEz5HikVLSJh1xaKpN8bfxM+7Dz94MdQXFqZKhRHEDrkpvv7jBDPKOGfzJB1GXFZ98PlM300dQu3btEPE+fkUQgmm6uTqfK1tFMHVVE8rxZ1AjLAubeQ7c7mFi5nAjwdckAsGmBYcEkYaQfhBQ5oNHsKwkxxMoZYpHAL3NCHHtPKJX3hBWoRunvSMAPTM4nyOgwQizx02oBc+RaSOZjANcvjIH0Y5S2dZzvPQ0PmQAB3jBJCbFDYjMLOD+JTRAWG+D2PcZVjnFl0a0NQg5kOzfh0NUAY01oq+uU1dO6IL8mygQHC4Qo3S1hnt8SCd3DWclCxX1H9Twj07PUYKBlhnFVwEkPOYYo30nIloyexSMA7q5hkDeJFNjJdIxmoXkMCmP36OS5wUU+yDBGyeZ8KmJp5hBWJYnN4wjpe67bJDASFEgxjo+yv8PIILjvp/NPLfHoSbp3IsmfwpjTnE3yv0XBf4smnAlpkGTyf6hDx5HCKI7ypNo0D6rKsljQXX13El0l+V6AyVvTToaIALg3awCCmavVqtNzV1UGjElAY6Qzut+UU4JLRAeLpw9EDpJ/hiHESC14HigJ2ElaN11b9rrnXJ3EdAShEgwRImhS0dtZ9KsM2X5Etu/m+EUB4xn4mtGzSDmyWyKlAzILnwvl4AdCKk3v6ZSumLgaGEagzDFWDs4PcwdDBO7oaYQoDPpJqh5hj4zFgjMYlha2E+TWIlQOY+1geiYU2y94ThbXsUAa1azMwG6NGTzGMkewgqzBBBEbVg7DwiC/90R9AHE/D9xXi5yiNYmMOSrcXQuf1TSBdkCwBou/amDuDxifn01xTbr/vrIQb+Di+pX9kWu5yCaIrD55hbG2yK2BKiFiIYsF4KCwYzyDup5nVRREEWMoO36t5KMtqgn6OdlaAEDoyH+Mst0AeKZYC5QsdiFCsTTtay5DqGdEgYkiPNo3LNpnGaA9tIs+JBFSqOa7YVsfju91ImL/6McwX72bjMPSCNF0xUw28z3/G4fJ0j70hByYqmQScFlA7neE0eQZjGMHAhkJ21IXsOdr4HYLPR4ZQAhNYkxZIL+v+cCKHIimVlLkQFVi/DtfssL/02/5WXHywFrYi3Oa1cW2egpWASBEnDhU6amxypDtBmR3Laukw4jqL/ppUyl+eoWnfxGxmZmD2R0AYzB89gQwgvw+KmUoEx0IFbUggvI9qyuhzOBLQciA4m6APY4YlxkrmGflpCXefraBjGtkux4ht9h9UcI1iupdT2J91yO8vIAvHZa/aKDCZKR9VmD/0qK6JuSq/orQuu4Zu062DRiWGYb1OcaSOPHlVy1CYXH7hzlsB+R7RX9RwuVPkP/iGlBF+5Nn8AUJrv3CoL0U5HuBHgT+yRrSj6j+4gpFXaJ8WiNYg/aPXsC2ntWYPOe9SU7rmWOFp7Cw25aJxt0WeHaJ7b95ieXP9jB/+XWciBa4PAfWC9iLM0pwfvsONjrO8mHSfRtFAfuTLwiz+fYdNPpYjD95yWTl69fkHF2cQRc0ptQihxhuUjJ66N09D62ynJycfeRKmSReIAKUJa9hHKFtOyXhaU4BERNtDcbuB6rHGYcpH5Lxw34PHAwQPLTzCD//eqoAm0MBKQo+mxAr1CLAmyskudSk556kvpNJXCLtmbJkANeeOCefDFkv4RY1wtU1K9EvnlFi+h2hOHK2YWXqdssqUww8Ql0CP/oE41mJfp0RqhDde1HkGF+e8ft2Hn6RA0sGlPY4wuxbBiEaYRPrEu6O+8jxDy4gAaj/x6+AsuCaaXjYaV0C1mDx1Z7qOfcHhM0C3bMabjfA7ntoZhEyg/7pkvCthaC6ylHmhIza2yPK0k1QTPEkt3bnOfyLAq4NMF2Ae3aJYEgwDdHXIN/z/hXvGkgI2P3hmkTzEajetiThRzhBth+ZfOQG2aiwTVzfQ4Bf5uTKbGf1PrtjQUM3y4kcq4VF+8UmeggEmF0LXN0AZ5/Rmb3MKJEMcE3eNxg+f4phk6P+cyoc9Z+eU9nvqxbqLLR0VDqMHRI15oGypVYFYCrg5p5JR5EDuxHyNc8jFAVkuYBVZSfEOZKZR/IUJz6kc5BFNa37sN0xiGzbiSwfjkcaj5WR/1AUkKyHtuZBkiHWQM42PF/3MwRaigI4QUT/kIZkOezZBQUgornb1KEKgbC2hLJw5JWG/YGKa198QrjMiSyz3+0gxyM74HnORHYYofc7Yv4vz1koG0d2s8WQ7+PDVP2WfmDM0bRTvOJfXU4+Qe62gdm3qP/8GonHhICooKQwIbAoJqCBL4BQZRiWGfq1RbbzKO7muKP/7BwyBNRfbYkESFyYwWPxeqAS5x//BOIV5dsG7moHvb2HDQpTZMjessrvX5xjXGQYlg7uyIRk9yVRIWuwELD7zGH5NZC932O8WMBXc+e0/HYPvy6w+3dewnQsoNqOhZJ8S2h3qNjFye869GcFxqXD4SW7pJf/PWFL48UC+V2P/BYYVxmGtYNrFNnBo/7nr2l6uq6Q7Q1ktMjv2H25+8MK5Z3H8s+/RvMnP8b7P85w+c9HVG/IR8NIv6Vqe0T5TY7jj85wfObQP1kgyx3snmR/X9XsyhwGwmStQfvlOcQr8qsjCxv7+fx1+57+RFEZ0/3/yfuTWN3S9K4X/L3dar529/ucOBEnIrJ12umG8q0LhiouFyGQqmZ4ViMkhsYSmBFDRhYjRoYRMiMLCQkKQUlICIFVlPAt3QRjG2c6I50Z7el2+7Wrfd+3Bs+71rdPZBY3UzjDzmRJoYg4Z+9vf3t9az3ref7Pv3l+Jz1Jntxbg7Bh4myCCgsZ+NZb4m6P/dZOamxZEDfbEQiP8bufQWiDfXwp18N6I8NI2xGSJlUZCS70n7wQ+/mH5hhDXs3De8daoRh2PaGSHlXZ7/Fzv8fxIz2IRKtfF5INVncxAiGhmYLyDOjQIAQfxb0PAwGHjcog5AlpGvQH0Z+yImwfqRYJcRRBuVhojkEvRpCxUdDddmBbeQAN4kJ7CCb79DEKrpQahwfdSnjZIHKLaTMRy0wcMXZVspkTUarYzKX/1wpd+4OtJ4z5GMLtRtCHAMrLzw1WHCWIB0qVCoI0YhWmMfjc0E3kPYZMS26GNeI4VWjy2wYU+EJsOwW5EXR1OHyhUR5072UNnDQmkIRlRiXNCZguoc6JLz0WyhBRHSmgTI00tG6eoTuLqzvQsnIdLEkl/DDKw/7BlkAsDwVNGZq38TrTHJCEQQCtlGhcikyoVAMNZLDcG4IFszRYDLawwzU0DIhObuYRYR3Q0z4h1F4Gl9Ey9tNbvOHvbeJz9w9WhunekOC0eBhKhr/7cT5CgHhA3eR8H9CawQxgrBUP3IdGgXtVjdsLtEZn7vVzr/XBPCBxeYlRtiGDrfewNdE6uW3l0vSUQn2Jqy2qyGVDs33ggjRcb0aQSbw02cCBw6uVWE36IHbZooYVndNQw8bffbC2PNzTxCgo1qcMOkY78uE8Pgjci8P76YOgZEHuj26icKUmFGntH5JJh1bp/pb7LxrGcNRodQpCVIf3FxICGROqpzV9rtAezN6PSH/Ukios1pyphvXJbtuHkfYhkKbUEkIQRLqqiCdzQm6FtjugmMPlkb5usOmMzqRGT1LlY59ymkKUzSuMNU4c7xItLL2XkCcrzKE2xDieX2W0WHmnRO4hOFNpfbDvHkJRYawtcQAfBoqdiRCNNA9ewjiHSqCGLczwmQ62pCNoEg/163sd32dI2Y/sMdTfh7b/6fkQ6lp0NYPFqdaJTitfNyaPj3S2B/ed1oet1TBsjvfVYHcqgwjeCyj5cNOmlZhjDKYnShEG610jFCZ0clsyEPVAM/QoJ9tDCeRT+NJK/zQEGQfkmaSUDA6QAgTV2B8N24rgtAB0tcck8bkqhBkSrQQZRydAwphTlGuiTudHQXtS0s3NyJaQCAZez98btrpD/ehloxDVoTfypdjhDywP5aVevBYuOPx7pAOIta9ppF9TfbIZrz02ymuO9PPIodZpJEzR6vFeHnpBdb/Brae4mQRUB2dgKjbfqpccI71vgYyQK3wur+/sg54yRuSDk/5GTQqptQ9rL6TnerLaTttT5Vyy407Pmvjg+rUWokLCDrUA6MNz62HA7oPrXw3XPPJsHMxt1IPzGZOd90Dxx5ikG3ndEfT7Of7IB5Ff/dVf5Z/9s3/GN77xDcqy5M/+2T/L3/t7f48vf/nL49fUdc3f/tt/m3/yT/4JTdPwV/7KX+Ef/IN/wOXl5Q/0s/TVvXBfSddYWomGxFMbfPcVjBxbfXpMLHP00Hil4Dt1tyYMX0NCPF9dozOHOT46/NDMSXjMwzcSAubFAQVpP/8IP7Hkr/bQB7GB7HqZUpsW6prwxaeCrq1FoEXTQgr3ArnR9AcvJUimyDHWYotMtCX7inh5RpiV7J9O6QtBIE0TcftIft+ha09/OYUQya8r2pOS1bsZx9+qMe/fEBez0bs6akkJHtyw3LpHd4bmxBFsRjMXb+7Ji06sNHc9/dyNLhTD0SwV9WnO/CND+dKx+nxGN1VMnxuCg/2lxm0i5Y08fPtSU78h1Kr9mcE2h8botdObxLZuC/nGiwZm3aCaFn+yAKvJbvZELY2P7iz52pBfN+i25/5nFyIee5pj2ojbBYrne8yru4SkGkmW7j1qtRk/W1M1aGvGBHt1tCDGyOK9DarpUMdHhMWE6IwEHIZAt5ygC4t1ljA4orXCP+++8FhQ1m0jrlunomUhRtyzOyk6F2fEqqb/5Bnm9ATdLQgvr0RXcnwsguqjhXztA7GqLgux9r2/F1H7xRmsN/jbO8xyIffCbo8yCn18zBjQ1zSEuv3uYvQZHJ9lrQh1Q1BCMdFlKQ4gA0VLG8zJkQwETfM6ZQVSYxDw261QOueJSpk79HonTUVZiKC0KFLWgD00/U0jRb8sZCipakFZrYHLc3CW7qjAVB2qrlHzKd2jOdk3t/jbO+wbjxMtQOiCyvdkn1zjr65Rn39HkPw8IxaWbmHQrcYqhburRhOKaA39+ZyohDOtqk42CU5EjAMyuP3px9jKk71MkHeeJX57pH60gAhFsrB065b6rKCfaJb/5Rq13VPe59gnR6zfLum3IhxtHpcEp5g8q1E+0C2ytLVQmEryiYZsEdUIDc36iAr5+HVRK9qTMtlrKor7SPnxluZ8wubtC/L7HtMG6jMn4ak3HVErukWG3R1cbqJR7C8zbBMon1WopqW/vUO985h2mdHN5X7Pb/tDLUr2t+ZqhV45uos51kf8tz8UhHo2xX50hf1Ei4A4c7ibPQSIR3MZXNIREzVNqLZuTJRXu0p414uZ5MkkKkw/y7DbFrXawSY5Hz19Q7KZPnxOSI2qns9kmzts/l6spOm4PENt9sTbu3Sta9TjC7k2X14fLvI03NA0ks9VFMToxWHrUxs9lX+2grLPsk7E5IQZ21ZqAUgDfirW62w2mMWM+PQx+k6CJQGppy+vx0ZNzWfo6eSgAVRKGsXNdsxciF2HqlQKlU0oslZC+dvXcLcaNYCqyFFFTvelJygfcB9eo8scPStHbVIsDoONn2Y0pzn5TYO93qJyNw5JITPsLzKyjWf2/hY/yfC5lhDQCMFleB9xabAd6F3Rasy+xSihXppVDR+/IDx9g/ZzZ7RLydtafOP14ToqRXOs8c4ye94RFdz8VE7IpLkfqJSiQ03gitXsn85xm57576feSiuu/swZ/VRx8vsNwSm2j91Il5p93FK+qJgup3Lvn89G7V59nlEfGRYfNGQ3DaGQ81H/xGPsrsPcbLG1uN198pfP6Eu4/FqLu2/geEn+cs/j/yjC+92bJYsbMZyp3zkVA52Pr8jevyL7SBPmU8Is4/pnZtgmcvT1jYS3Xt+iL89gURJcnlLmFaF0hIGG13kBQoyi/vyFsHY+7XQawX7jQ8JmgypLuVeXs+R2mmO/9Qx/ey/sjKIgnMyFAdO0xGmBn2S49w1hvTlcvyAmTPOpmNdYDYmCaspSDHRSSKo4y6Ycu7J4TWdG044xGn69xfvvzwTnj5wY/pu/+Zv80i/9Er/1W7/Fv/k3/4au6/jLf/kvs3vgbvW3/tbf4l/+y3/JP/2n/5Tf/M3f5NmzZ/zVv/pXf+CfFVPIIG13yP74VBOB9/LgtxY9n8uJ2lYSLjYI8JpW1tsDFzbpSQZhWAxB0tO7jriv5Wvr5sDdHqw7E4JlNw3ZXZME4eEgdC6T17/LJCl82xIzyYhQVYNKAtER7dfDP5o4KaSROE4iZ2vGT882genznnwtqILPDX5ix9AwP3H4UnjWfWES5SchIp0gee3C4suDha1wQz1u55OuA/SwGdAKs+9x65SO/tBFJZI2KhG7j7id/J3uIb+NlDeB8lVLedVR3HQJtQTTCZoBsm3xuZaf2UO3lOCk8qaXELNE2RCxZ0JUkx5juHHdVrigykeK+0C+iiNSogKCLJfpwT2gEYPVnXPE06NEl9Bpq2VGylZ0CXVMQZojt1yJvfAgCFYJ7Yx5RiyzQ2Jq7gTtibKtaU4l8Cg2wt9VWmOOjuRkbHbC+Q5xzImIZS4PiK4bEYfYJ67xQK1oJXROD3xNZNuCMdKAf9of3L1OXfosjs+yVgCgTaJTuMN50ka2UM4dAqC0rKSHrcXDQKkYozQWVS11BFIDlwTIwybEp81B70dUVA0bkOVcrr0H/N0BeVQ20Ze8DC7m6Cj5/FtxZrNJ/2WM1LOEnA5Bp9mqxzRBEMh0ncYyF099nQJPB1F1upajM4RjoSahkq5ilo223TElApsqoNtAu8zopwexp/KRMC+Ii6mcuy6Q30VsFVF9IFv1FDedILGFpZ1rfHEwuBDBqDjOdOcz+rO52F0aLehlFXDrHrdpceuO4i5imihU0dIQLGMg6TBQByMc80EPEo3GbhrcqkGncMXmvMCfLTBnZzRnJfWJGYNeQyZauWgUYZrD6ZFsmNP2OBqFfftN9OW5fJ7zqVippiGCVGP8NMOX6cGezpeukhtZ+hz8NEu5BmbckAxbdLM7fJ3Kc9R0ctCdnZ+iT48ltyJGsZatxGEstinINAVl6vkMNZGBVVWNUHuHgMIHGojogwAcCagbnPZUqpGSj/HZKtU/0zoRQ7L2jsn1x4qFcVWJo6UVe3TV9ON2WepHdgg1Bam/A2Xuod7seIlezEdaF2nAUEWBmU3RyT5cZfK1Qy6QmkwO1uIRYWf4gN43I2U3zErCohQ6VusxVXo2GzFc0U0vYYqtJ9t47N6jBlG1S31CYWXT0Umyd8ykRlSPSzZvlwKQ7lv60uDnOep4SZg4fC6OeKaJhMzK8xgwtae4biVcMIKpfOotIm4j/0QD3aMlzUlOt3T40uBzhc+VBCYuSrrzGc1jMQrQ7eEZ280UIWNkY/iJHc9RyAztMmP9bkFXaglqNgpfOumRci3ZIbkwSgbKpO4RZ61GzpVqOmI+ALPy2sMGurpwVJcl4fyIcDIX6ptNLBmfepog9YdcNlmq82T3Pfl9P7qI6laYIP08F4ZKCkpUvTwbdBewq1o2P1rB+Qnm8SMZAqL0IarpBdjOHOZ4mWylD1slVIpO2KfMvKMl+uxE6Nwgm526TfWhEXBkX0nY6wDKJD0KWo1DCUPdGLYfQ1ikMa8xlv5bxx/5RuRf/+t//dr//+N//I+5uLjga1/7Gn/+z/95VqsV/+gf/SN+4zd+g7/4F/8iAL/+67/OV77yFX7rt36LP/Nn/sx3vWbTNDQDOgGsh0A374lNN8bOf9rzG4C+x6/Xgi4vF4QXrwh1g33rDfmQ6oa4r/DrtXx/LkVBGf2alWcM4jowiHz0ZCI/a1h9VzVqPpONyccvJeXy5Gj8UKKzhIU49aiuJz6/QllL/5NvYnwk3K/QWqNyCwlxUs4lIVNGfzZj9bmSyVVGdi+BhAS5KbN1h/mdP0Q9fYP9Owv6SXJhaKTzbo8z2rkkoHYzQ3aWkPgQMbuWqHP254biXuHWYLbJzQuIuaNZTsXxqg1jHoC72qPqRi5opw8DSBAKl2o6Ji87fGHwhWxrZh802FWFuk1TuFJ0717Szxxuf1jx+UzRF5psK0PS7tLi9pGjr70iLCfUlyX2DhFs+5m4ac2EK6obL8jy+tBoz761IuaO7dOJ0LZa8eyO6TwoH9H3O1TTyed7fsL+nQXZbYvZfcqKN7N084ys6lBDPghmLLz6gcMWvTT8/mJBNBr3UhDo9mKKrj1m19CcTGnmmsk3EDRSK0ntPT9CPb/Bv3wl79FaGSDLTHJOHgagaTuKU3WymhyC9YYiEwc3nhAOLjAPDj2bwN13/fEP9fhMa0WyKR1zQJKVrk4bTpIOJ+4ZKXRqADceHsliO6zWxL7HPnkDrCHcbuTeXsyTYDhRqkJkTMLOM8JsQnc2Ef3Avj1kzESxslZp86FbL/WizAlJfO5nGbrqsaud6DaWM9R6B1VDeFscnPIPbvGnc7ZPJ9idRdUieh30Frrz6E1FLHPJ1QDQivq8IFglmTta0RwfhImZSxlF1zv8NGfzTomrAtm90CDtPlCfl+iTgvzlDt30LL/TjCnB2Sd30HbUX35Mu7Tszw1uF5m86gWpA9xtDRrufmqB7iPT5+3olZ+tWtFy3G8wSrHojumWOZs3D+9xRFUHPWamx3s9KgWZRn/nhhgj5tE7tAvN7tLRlzOmRrN+29GcKM5+t8PUgXY51JOIPyvgrKC4qlB1j953EnT2px5h6oDdJ5pujNhVAwOlNrM0p8UheTnRINTtKmm4cvzRjOa0oPAB00lQaoyROM1RbY9+eSvPAWeJi6nQz6zYMzefP8Wk8En18gZ/dYU5WoK1oifwDt12AqBMjkZXLf/8peiSTk/Gzaia2dF9S8L1hMsfm0a2qcn5KTYN8TO2zPpM60SM8ju77BDOFoLYGYO4YAFqLYi4KoRdMYTSxhhhX4kO5+4Os1jI8JjAhP5kKq5RL0Li+ZeoIkthxnOh+1S1OGKez8W6et8QjmcCWCZKUEx9xPA+MIb2vCRYxeQ796idJx+uw9zJBj9ZCqump+yDGFY0LeiSkEtgqeqhfCF6haE+RAV3X7Q0Z5Hj3+5Rmz3NV0/oZwb0Kd3MEjIBQXQbUtq5HHZdo6/uCe4JwTnMtkU3HYsPU4BgrugmmrsvDVbWjEMLQNSGkJfUR4Zuqsg2kWwn4EVwiuYIsrXoTfuJxuciQldpMNlfWm5+JnL8dcXx12u6hZP3/eDoo0X1spEgBNwmYmrQVS/n/n5F/6VL7j9vmLyIFHdegOj5lNW7GrfTBLccN6jFywbdB9wuCI0c5N46Sv1G1ZJ/9HpulwL6iwXNWUZx1aJ3HToFIobCoXcN8aPn6Dcf4U+n7L94gvJQ/u/V4TXWW9ErXZ4Rz5ao2++2q1K7SjRHxwvRCR0VmH2PXa1Hq+nxmk+BvnoyOfSxfS/mOg9DE0OAdfP6szKBbiqqPxmuWauVNJ0nJ7La/NrXvkbXdfylv/SXxq/5iZ/4CZ4+fcp//I//8XsWjV/91V/l7/7dv/tdfy6c7Vwe8mTy0G+SfoIgoj5jMGenkIKcYic2vXG7E67rgCS7DHNyTJyWYlfpvXBmjSDiarsn1g3m9ERQzwee6rHI4M1L4l6QJrHzyw7UjIHfD+PKUi3n8rpdEN3C2YlY7Q2/m0KaDaVEtB4iiw9rvNO0Rzl2Ky5QkiascafHxBgpXtXj97cnhYQOFQrdR+Yfe+zOj6niUSmxtbSa8jbgtoKQNBcl/dRQ3LTgI9lGJnPhdsv39UcFKuTCf7aK+Sd92mRIUNnu3cW44QDoC0X3tCS/dxTOiJAuhCQI9di9vEe76zG1oBUDR2r6vEf7SH8+JyTnmfqNOepiKiFEPtCXKePEauwmorfyGaoQxTY5RibPUwCkAj+xtJmmfFmh2p7u0RKzb1HJxchnsl1RzcH5JEwyQi5iOjc44PRiEax2NTiLPynFkvR2k7ZWGnu3JxpDfzqTZuW+QTcdqmqYf0szTa4mr2VYgIhOw8khfyK5h9jVTh5WIJSKLMNcXiQueDdywmVQT848RgudyAfi/iCMU2UpRbD9488R+WHWCl1k0kT1PartRrQzth1xV6EfbvW8hyZZeIcAXQtKS+MGib87EXekPoUBTidyvw92rfPJ4WuDPIBCngmNb7B6TZbNEHE3O9mcTEqIEXO3G+ldquuhA3sP+DimAkelCGdL0BI8SAhjntDkWS2hYs5gr7cQ44iWillGwOxa+mVByM3YTA8uNcEobO3Rjac5zYVa9fE+uXKB6pGckdsO1QeqtxaygR2sx9tk4+sM7ZsnInCdCH96+spj6ojb93QzS3ukcblsFOsTha1g+hy6haU61bh9j7nthfbkLH4qtFBXifueqcOYSVSfpHspKLqppi8c5XVPtmrxj8/AyjZG9zB55SmvWszdjsWHBe29we582uKAzzT9RGPTzxAXQJNqnpbtU+2FajnNCJmhO04NVScopdv3BJO48kodKL2DP38IZKtWgCUEsEIpSWMHaWKTRkUljrY/P0K3nvJDuV9i0hXoeQKYHugc482d3PfzaXL2a2UIclaua2MOG5XtHjUpMWVxQD6/xxHa7/3nn9Xxw6wTwrdP242Hf5yl/iK5a76moXlQO5S1qNNjccRMpiIAcbUWCqizAkS2regqQPqNpiWcHxED6ARODPcQmRNBs+rpTgpM1cPtvfQnQ+q2UthN96AncbQnJW5Vo1d7/MlMasGtbJFCZlBGoaLD7DqKFKgXraI5KxOgKBuEaBSzZ4HiRtE8XmBOphQ3naD2rVjjRqMkJLhKwX/TnM27U9zOkU1z2qUVN8upGN90M4PEAghwaR7QvIOVXqC490JRtGBaccozrWxgu4lFeVh8J2A6sc21+yEs2uGdojo1BAPTjzXFndj2xkrjvfz8YJMLYJvu4VlOX2bifmVh/2RCNs/IlUI3nqM/9JgqYNpA/9Y5fuqwtQxOIPUiGJjuW9Suxp0XI7ganYCV5l5yxvq3ztMGSrQ22ZV8LrqLNMcZ6shRvBLavgyjNaFu0Psam1l5XgxOeyHC9R3RWsmdSZsPf7Yct9Cm6tCbbtxaDC6H2fVehq2mEXB9oH2ne18c+B5QwKelOMdpLdvfXFwdQ9OkuiJW9CNT409CsnoIgb/5N/8mf+7P/Tm++tWvAvDixQuyLONooJ6k4/LykhcvXnyPV4G/83f+Dr/yK78y/v96veatt94SbvvkQSBQajQAefDu9+jpFLWYyxCy3R0sDav6NRqXyhxxPsUfTbAvE+VqoOTkmXh7a42aT8W5RjPy7sKspH5jQvlJQkqKfJwg5SGSPozBGlIrKEuhRqVwq8HNgkE0qlSiU4jfvtl12E/WxDePqZeScqz6g2A0LKdicXezkbUw0M8epRWkEgTyeTXawPlsaPTFDzu77yXB2HuaI0t1rtGtw+5leAFGVBUF3dyN1DDdRfKXe3HWmmVU5452oSlug9ykEXyuqE800VhMW2K30jARIqoL2MqL/d6mRjcW44zoUIyieLEHq6nPi3E4qU4NfWE5+YZH153YJys5t6bS45pR7Cvl3NqrjQSpzXPaTNMsNeWLiGp7mlOHzTWF0QchfYjy0NAKkAYkZNLIjLxvL6ivqkQH0BcGu0HCqJKwUK3FErZ5Y4ZuA9m1aExi26Lu7oXydnIk101KNCaQ3LIW6eekqa7rJatkFDAmm9+UVaLu1jKMDAIz79NDVct7Sam+4/dnabV6cwhZ/OM4fti1QmVCr6AX0a5ZLMR6u5FwN9+149ZEztvhNSV1PZNtRy/+/2K3nYntc9vJ5xdTDsykIMwOaKKKr79HWbmnHIl0qLu1fA7LmdBHU2AZ+cFOUbWd0LkeZAD0S7HlLj5ayYMpz1BNj9tUhLm4rnG/lgwCeylgQmqGVNMQj0t8bnCrVkSWuZG0dCMPX7NtaN4t6SeK4srKIBJlE6KqDn23lpykN+aJzmQeCLeFLlWfOnyuMK3QnoqbTrIDWo8/yWgWSbiuoJsxUgm6iaI6Vyw+MLgQCMuJAAGlcNFNFWQbvKmFx55b+kIC12wlSKu452nUXaQ9LQi52HubTt6HvatQmx3FxxnZxI2flWk8LDKaY7EJVT6O9KqQi1jdblp03cmGyRmhgiyEWmcacfixm5Y4cWKhqjlw59MwoPqAWTcHgWd6Rqj1XjYby5mIf7t61Bqpk7lcnx+/EI722bGElU1KASgGYwzvhQ2AIPexruW5l8So4oxjZKu/r4j7vWxQnSXe3r+mQXv9Zv3+LDl/GMcPu04MTpifPlQmAnIJNw3f08I4xoiyhrCcCrthX8nnGVPwXAyYpEUMbXcwUGhaoX5lZ3Jd3CH3UHfQS+idfBY+1+hWi/bv6AjmqW9QSrb3g0GGM3Rzg9to1K7Cv3lMNxNdhwohNaKK6CN636LXHr2c4CeW/WWOChG3gWgVPtOStdMG9o8yVLDM3t+O20zVGbTTMoTsxGFSZZbqVNFNrDAxJvJM9YVs9PpCNpamkq1BsIOoX0BLPLh1T8g03dygu4iNaRAJEV8IFWz+YSO2/05jN5KdZgsDU83uwqTtaiBbi2W5TkHK7dISnLAvMi3ZPuG4pJvb0UCjOtH43KGbGbr1TL+zFetxq6kvSvpSYeqYrImF7tkXYu/NaovbHck2Fsb6YO7kGdHPM5ojoalmG41dDYyKKAOUU2R3GtPKVkZyO1rZXu4s8dlLiX6YTA5bzJNj4nTBYOAzPBsgAUMPBoqYTIzM7Ya43wuAv5CsuxEkS1v910LDTcotG3rUVO9jK6CGcu4QHs6fkEHkl37pl/i93/s9/sN/+A//Xa+T5zl5/t3FQWevv309m8rmIwlO9XwmN2bTjhOezhzgXhtCxjCnV9fYdWogfCC+vDrYpBY56tE57Gv0vqJ/eiG84zWoEMivagn7e3ohtnudR20S8lzkhOWU7qSUB3AfsJ/cinPB+RExs/SLQqbc63vUyVI4izHKRJunZGS7ILvakX+QkH1nad9Y4DNN9WSGW3e42z1xVoCWFHLdWdqZFBZd92zembB5SzP/KJCtJCEYwE8d/czRHkvWQH4nepOQSY7IcNRnjupUMX2R8kyQdOObP78kX0XmH7YEKze49lHscTtFtoHZs4CpesymER5p7kbetN20RK3oFwXtUUa70OQrj6nFdpMYcZvkTtMHTC3ZLWYrjbt3ir5UdI8Uk1IxBUESOi+WxLmhezIRq8Lna8rOk9/JdRBmBbqT1PXuq++CUhTXnTjcTAr270qQW37XEYzQzPqJg6cXB4FZ00DTMPlWcv1J10rcbIlvnBNzR/HBPVhDf7EQlHq1Rk1KQeZ3e7HbrGpBJlJQESCppyC87rZLmqX+0CAbI3S+T4usy0LoAnWd7DvFVWUQXw+BWmoYWv4Yjx92rYg+YIaMGDjoZh7QOaMPQs0bvmQ2PTT9Sh+GRCDe3knY03QCyUZ5dMHaVZj1lricE/OU8hs+PY2og7A4uVdFa0QHklnUJEevdsT79fie9Hwmn9t+j3rjEn8+l4Ri7/HzJHZ8fi2bMB/QShGQ6yDOp2y+fCwIYB+xW4/bdmIrWffJ0QVYFKguYGpFN3fUFznFrce8CJhtC1ZT3Mo1Xr01Z//zx3RzxfyjHrcRWmS/zFm/XZCvhQutexlKmoVQOL2TjYRpZWApbz2Tj3aozmObhWx6nNxn5StxkAnLCfWjiWSPNEKHctd72sspuzeWTJ816LpjciWp67qNzFYtR+/1tMuM/eOS6cdSj6uTmTh7zSxRTXF5Eo2nun3IipnjEnLbzS19IYPK9EN5nX6eYQb+/b7F1T39dE5worPTiRrjbvdkVSvACNC/fQEhYl/ei/5mUaK3e+JqI9fPA3c9v5BQVG2NNCBNg3p5e2iKqxq13cFsKsNGChgD2XbaRxdjkJ08y3JpigG9mEl9KDKhE1W1XMNGy2un+yPGSLy9x1ycod56g/Dh+/DH5Pb9w64TKj3vB9pJuL2XmpwS0M3pyXh/qUkp5/P6Vj6XScoZqoUOp964FPpyortE7wnPX4pWJIUlqheN/P/REj3QgPOk56okCFUl56RoDfl1ja47KNPPLrMR3db7lqigeesI3Xhm30wGKGWB3TToxhMmkmPic4NuZTb2i4JgNe5mh95CVloxQ4jgrWRy+VwaV3muI+/HQMis0K8zAVVV04lWDDj5RiPofIxk99Ks66pPwnJxrgyZRjeRvPOyUXACPuhOUV6l3JIm4tZ+1KOG3HDzUwXBgeotxV1g8qpn96YwQI5+7x60ZvvGEWYHy2/taE5yNl+cJw1nomN3Cp9Bu9DwpdPXXDx1F1m+L+ezvsjHzU1+U2P3taSrV7D8/W3S4WZ075S0c8XuSydkdzOyD2/lXJ/NRTPS9PQXS3h0hLuvcbfSO4bS0VxOcJuO/MUWu80JuWH/uMA0OdP3OuJ8ipm9S5zkslmpj1G7XDb8kwnm828TSocvnTA7Oo+7FcMMNQSdgtQWazBX96+F7JrTE4gB9eJmdN1SZTnSEwf5Q9ztUUoJ0yIE1GQi9K2yHK3A6Tq+z/njcL5/sC///o+/8Tf+Bv/qX/0r/t2/+3e8+eab458/evSItm25v79/7etfvnzJo0ePfrAf4tzr/z/YkxmTuODJHne02k0WhQ++Tw22h4OL0L46rJUSokzwQoVI9J/YdQdaVJFW6SlFPORJIBRE/ExqMKIzozAq5CkYsW1H1MMXRuzQHtqoakEKg1Pj99J2xJs7eQC1giyqCP0kia4ySeD0pfBCTdVhG7mJolJ0paJdRILlIN6Oou2IStaL2oOrZBU62O0KBUwm/m6qUrhZEsNnivZILDtVHERaEdWTBOfC1Ta7TiwJu56YG/qZE5qY0aOuIuSGbqZplkp+dmT0Sx8/s3Cw1g25lVTnIJsXWasqotOEwhFmBd3M0k8N3VQL5SuIiFYn2tVgsYeWotNPrYjCBmrJXNPMk91vYBzMQpkG4d4zCJpVJc1qnMowSN8LGmI1arsXeoTRYyAkzkmzG8W+caBUveZiNYQW9l6EY4NN7IDK+dToDmYCw/cak+w8D/zOcc2qlXx/GmrUf8uu84d8fCa1IoRDENywrYxBzkH6c2X06+chc2OKtYSSJbF6EFRrDDUzg6hdhO54T9jtUU07NrZ4yQMY/hlDxYYVtx1C6hBxdWZf4+Uewqj8SA+JTovj0l6uqWiUoOaDmDDKfRLLnDgrhTaZK/pci5W2O9ALR7F8kwwVtNzfwSgRl65kqKdPFrYKQqZojhT1GUKzaNPm1Gj6UgYOQCw1fRztL6WxER0YiM5N1/J75Dcd2Vq40SqArWPaQlh8rkWYrlWiTbYEq2jnetzW2ipgqkT5rD32eisUEyfmEpL8nrbIyRSjn7rDhjvE8R5S3mOaFJ5YyHv22UFkH5xQtAZ92KirU/I1eHnvqg9jXRjToZ0ZaRIhS+YXA7Wy68brAqVEnD7QgUG2HmnzEXvRbeATjSeZmwzXZZwUD6xBYbDefQ14GJ5XwzPwgYZsqDGxO4Tq/nEFGn4mdWIwiLFWholBDAxiQz2YWoxWqg9aqGED3Q0uVu4AeCTb1NA08tw3OlFAG/mchuDSrpfnQ7oeBuv2mGqM3ndC00qb7PTGhFLZizmOTzRHtdknJ78s2dP248ZveIbSB4Iz9FObhqhWNrY+jmGlIJuYvhQWRVQknZIdTRVGwxoj90NUCnsvhjyqj5i6x6StTlSg6y4xMB7YBw9GExaCY9ySgvzd0KfIvQd9Ae0C+lw2lj6X3kR5EYSLCU5Eb2vRvc0FrPSZUL9MJ0Y5wSqapdAnR8vwINRT0wSpV9nQj8SD+VCIqPsNer1HtwK4qAB9qelnbqSehzxFOPhIyIxYDjcevavRqx267kXXa6VWmG2D3Xbp95Fg1ZhnMoQkUxIylwbhAjUt6Y9K+lkmG5D0HFFNL8+gqhkBzOFai40MFaNUoCikT2gaoWwOIcfWjI5to213f9BLx91O9NFDjMHD+vMDHH/kG5EYI7/8y7/MP//n/5x//+//Pe++++5rf//zP//zOOf4t//23/KLv/iLAPzBH/wBH374Ib/wC7/wA/0sPZ/B+oBghkS90kUuJ/1OOJoqT8KzuZGwud4LncBocaCqG7TW6MVc6DEDuvkTn5MBIpcAQuUDnC5QzQT94UtMWbD96Ue4bU/20R12uxfEspKk3Zi5NCVm6H1LuakJM7mYJIlSLmSVO6oLRz9bYB9NpaFAEEOfG/ZnhnwTJGgnc6jTY/rzBdEZcVXxUQYVq+iOCsnyUGCv1ujbDcvrNf50zu6dGSgobhVuJ5uF/Rsluo0UL/aYNeQ6rRGdYf9I0EVTe/qpYfuGkRCx60h9pNifZQQH2sPyDwPZRlaf049rps9TNoBWtAtLXyqqs4LyOjD7pOHuCwXNqRJ3nX1k+lx0K+3cUJ1pqotIeaNxG3lg9oVhf3m4XIOTRmf/2KF7xZv/di8cUKOSK03L/vMn1CeGzVNxwjj9vQ7tI9U7R7QLQzfRHH99i7nbkwHNac7dlwzZvWb6ShLqde2xlbiBmNpjdi36bjNmxLDayI355IKYy+YlOkGccqUwRmNerTAhSMBQ43DWSDH43BupYEYUC9SkTwm1OaHI5YEWRBw4DidaSQGaTsQCeHBN2SXa0b462EPuKxFlP76QnJmPXhCrWqz9ZlMxU7i9x2826MUE7n/Am/2/8/gsa8X4M7ue2HeQLL7NciGhTbd3mPkc9fSJDItVBRenQjX6+KU0ass5qm4I9SFtOaw3qElJfHIBMaI3lWhyikLMFHpP/8YJaCV2uemzUZUMDINd62CTq99/Jsj2tKR9ckw3v6B8thWUNRV59dYjgtVi65gedvZ6I/VkuSAspxKqtWlRTUf1zhHBKZZfF269n+WjTqU9m9DNZEh3+8DsP75PeHrJ9c+WnPx+w+RrH8DRQrQLyPC9fZJR3HkmH+7I1jl9YcjWQrPs54Iyz575cWDXXUBFxfRloi+UiqgZG3uA5mePIUK+kkHBZ3psALqZZAcUV+1ovxutA78gZBrTRpoTRzdPwWkhCsXiKMMXR5guMP2kpr6Y4Avhcdsmkq0eWPQiw0n91vFoS6570a91M0c31Uyfd7jtwQbYNJ6QaZpLQYCjgvrYQITylYACITeE0ynqOImcfSD71nPRoV0c42cZzalDt3NMCCN9IiYBs/vgijgVN6T4UoSz5vxMKJnItosUokrdyLU3IJapsSRG2egP+RVFjuo6/N0KXdQSeFcnbWHXEr3BXp4frm9jUJMJcbVGbTYHzdpndHyWdUJZc6C3hUA0ZhSoj4cPh22UVuj5HFUWhJUAE3qakOQ4HQdEfXmODmJKQwjicDYpYZEc9IxCr3bSNxQpZ6rtJJx4kfRnPkpIcYhwciw6ktvNYROe6OTFSwFaw8mcflnSLexovKKfX6O7bqRwESIcvU27tOTTAt0IzXm4B0wTyVYt91/MaY4Uy2/LcL59q0QFoUoVLyvs1Zr+cok/nwqIl+4rXwgICPKeqlNpZqfPO2ztcfc19eWE/bkdh5zySlLQVQRfauqloTl2dDOYvJR+4eTrHX2p2bxpyNcBd19TZJpupnn5505QEeYf9+g20jxe0E8Hsw6wdaB4Jdlmpsrop5pmoSlvPNltTTed4p1QMIVmKWyM7L4RWtnxhOrcEZxi9/gptpZaMnnVMv1E+qpoNPd/+gneSV3J157iFdhNM2po/FJCaX0pPz/YHDeTz0p3XgT4heLup5dMXvWUv//8oAE9PZY6fy4bC9HWiguXebUSHejlGbHM8MdTzP0e/633sW+/SX8yxbXd6PRJyj9TeQYMzmxR+hUQC/Cux6y3MohnbrT0HYO9T6bQNPirG5Sz6MlELPL9HxM165d+6Zf4jd/4Df7Fv/gXzOfzkaO5XC4py5Llcslf/+t/nV/5lV/h5OSExWLBL//yL/MLv/AL31NU9t86Yv/fppPEB8iyGtDQIcwpIRSDzelodTa8rg7jzSphf3HkXqI16rqHupEVfKIYiFtOJ8mzWguy9eDhAowbkHAylwu2kYerrWWDEI1Kk7Ug/KoP5JuArZJjVelQRgkCqpBVqwK368evD1PhGIoLigxEIbMEKwij8iSBp0zvxggFTHUiVu9KRz+14zYkpLWsbgENPmMsQrLmFLca3acckBSm5qdGqExtoC8N7RKU15hGNkt2xyGAKESCSo1JBFMpvIsiDN8lm8s8/axk9WuQ9eqAuNIHFEMgWTEWVLuX9zpY30WrRtFtTJaLuuqwe4vdOUzD4fz7INskyyjwp2mJ8ylhXqATciUXjqDURLDbbvysGUTPLgmkE9pKQxo2QnofTnjDWgmSMaBhD6iFGI0qyxTG6A+c8yRyjXF/uN7HG0HOjVAKEmob02CtldhTfpo69Bkcn2WtEMei9N8xgk4bpTFU0hwEqEPAmw+HAKch1E8pafTUA9RnQMlCONC3UkCq8gnNTPoltFhF6vV+tEaNSgkibwU0YXTHiWifak7SDQHyc5QZUdJotBhdGEXQWmiWU4P2FoOgmcEIL1h1HrOpCYWjPy5TrkikLxKSPykFoY+Idim5LsXSjTayuosjP3w4p0NOYMgOyKLu5Z4bwsaGQFMVNX2uZYOa0MduimxVetnI6i6igtSCAb3t5qK/sI0ENnYpy0h36X0M/xg1bm/jUoSqbteP97yrBLns5sIhFwtx2aoOw1E31dgqUtyEEZU1rWxRBamV9xbTz9Kd/L6mZWzwlA/yfhTj1kH5eKgHSTOim2QEMilSwGrabhg9UgNVkyx1H2z11GSCmhT4aSFhksOmDUHv0ak2pdeUJkau6eicfLbpz5VS6KIQNsCAair1eh1xVu6XvYHPUK/+mdYJ74mhlc2oS9Thwfb8IfVVpe2p0vK5eMb6EYeBcKjfIdURm8DO4bMo8lFLNt7bidERSZ/h8DPjg4wtrcbnlkqsiXG7mp5lUWvZpFm5PkNuUN6h8yzpgw6bcd2nxPIUTmrqgLICIgar6I+dPNMqRiaIgIzItnCWoboZ7VEuetStH80jhk1lNxFgoTmS+yZfJ1OLSuhYIQNbRXQPfVCjxfbggDVY6r5Wb2JMmhHGjXCw8r5ITAyQYYYIbh/HP4uZTkJ4qRPtUtFuNLoV1y2UbHZRh03NkMMSEzvE5wKGRgW6M+K21fq0vTX0udDXJORVPgPdJUAnMwQnhkM6ZZvpnjHwkRjFOMNrojZSNzIngzLy+6ooQEnU4mSqOsR0JUovOlBBVQK29VRMe0yVBlFr5d5H+hx5Yw8YOUNvMfTQw9Yf5L1oPVK3Hj4TX7tuv8/jj3wQ+Yf/8B8C8Bf+wl947c9//dd/nb/21/4aAH//7/99tNb84i/+4mvhQz/o4a9vMZP5+P9DkMrDI7YtYbPBDNz4FOCl0t/1L14Kv20+YxCxh/sVxCDuIT6Ite50QpxN8Gdz/MTgtCE2LeW3rg8XaN8T65r+S08k9+IPXsqqe71BL+aE44Wsy+qO+//TOX2umH/cYmrP7A/XqYHWmHUtouSjKfSB8ut3hNMF1VtzuqUUheKqhi6y/sIMtwtMv3EtFA9nqB7lNAtNdjFD9RPqi3xMLJ0+b3G3FTGz+ImlWSpUr8hWOW7dojcV1eUxu8cGu5PCUJ1YbB1Yvt+yfpqxf1Nx9M1AeZ0EdJmmTgIrSGtbp2mOhGu6+NaWYCfUl5FurmlODGe/0zP5cEdzUYJSuPuaeFLSzRTZOjK5kq1LuzCcfF1cs4JT2DZS3vjRErO4HdbT4GeZcLlLLairkqHu8v+7R3eefp4R9AHpUT4hltMc8+KOfL3noj4a379NHv6mDYQoibOqjxigu1yweacA5ugOjr72Er2t6WcnuLsKvv2xXG/WypYtc8LVT02j3uyIt/eHB87jC0HGQxIvpr8jhNEyGkBPp4JQ7Cridz4RI4ZSNEjKR9RAF3rAf1br5Jo0bAzLUl739k7sJ0+O6G+ufuD777/3+CxrhcoyaA5F1symIvQtJP14tOpcbcZ5hfu1FFhrRwSaZNmt2pbYIaCDtaibe2LT0t/diUHG4Pn/qSMsSnZvTZl+qNH7g/VizJ1opmaFiMB3Fe7lCnulCPMJMbOoOq3aNzv84zPas6QLsZr9W/PDhmEASG2GmYhbTdRQP56QrTrcHz6n+Zm3uP5qxsV/rsk+uMFdLGT7+uULglVMX3ihfR4vqR9NxUXvqoEI0xctRBHKV+eOdqaZRaEstgs7/ny785hVjb6+IzYt5u3HIm5sOqo352zfdJiKtNFQBAfBGrJNZPFBA1iC1ditx1ae5z+Xg4In/25NP89YvZuTbSPZxkvQahqOgta0U0VzoqguIvP3LdOXSVuyC5TPO9rjjLsvO+w+km0inFoBQLpIX2juvwz5ncZ0SXzeijW4anvI3WGm1ULvyu4bMdpoy0TzEjG+Xm9kkHNWPjsfJNjSaKHKNB57XxNmGd3ZjKxuR2AjFBn+Yoa9q9Cv7gSdP1rKVsNaOD/Gl45+nuNSQjT367T1kDDfgW480giVwhwdSa5WajpiVaNmU/TpsYhiE10TECH7cBwtBHwJLbz6Qe6+/77js6wTQ/CpNgZVproBh/NQ1WCtWIEXOco5/N39a3bI/uZWxOrOjTo8AFXk9G+dCS14tccvJ7RHOfl1JVbhKacmFg78IRBVVQer1/jAqCJOC/ppJs8wJwY0ugtMvvESpfXBAAdojyxqbslyK5qw+93YYOpty6TxQjN3hvzZWs5FkXH/k3PuvqI4/b3I5FsN1blLOq0olOy5pj7OCFbuTeUjkysZHvpcYRtpqOsnhvpc0c0EvLSVJivk64YhZfFBR3bXsH17Mr629pBtAsWtDBE+l2FjYEdkmwQqHOXUJ4Z2pphch6T5lEHGZ7KRKF92dAvJPNk9zglGtrLVhWL3tKebWvLb5ObVxzH9HASM7Y6kRzKNxydGhoA4ouOdIEDw7s2CrpSaYbqDq1a7tPSFQQ8i/z6SX+0FAK47/MmUbiGAiOoD+Scr0IqiyMBqukdLAV8yzeSjLXq9x33wHHW8ZPPTFwn4sdgrATvj1Q3KaExZStjp596E2w3q2x+L7jRzsN2OWMkYWkjqScpCnnv3D/x3++TUVeTEiUOVYoAjGjSNLhMl/VMhqP9Hxw+FmvV/dBRFwa/92q/xa7/2a/9dP0tnFn12IshOSomO3aegmjGYqUNVtVAglJKtR3Kjid6j+p6oBRUdQoVIXFlVFNJsDGFUnRcP//QaanAtcha1mKH3HVnTC8LlJEAtLqb4ZSEC6ranuO6IVmM36eH0gNsfSofKrDz0lMI/PgGlRBCfW0KWHKSA8pUITiU0zwnfGUEPfK7RSbipBicmLda7UckN7dKwofuUZeAsbuspr2XSjwa6qSJq8ctWAUyFNP4PBGx9oSBq9HEumwgnmxDdyVRtmkj5icXtIL8XqtOA3HqnaI4WiYcJsRQeuSAYUJ27ZA8o+hOhkQAEfC5dj7j0yIZn4Jf7HDl/pR2HC90G3H1HP88klCnXhKwgnL/x+nWjwG6R3IVOiPt21yehYIFd1yz+MNItJSXan4kQTjdemsZ3n0AnosZYJH53HyRQarsXOpW1B01TK9oZqlrQqjBsMEQQrZSSBiPLhDoYo1yXPjl2zSfirnJ8NKauRx+E992JRTVKo4zQk/S0RB0tkxtHh8osn3E8wGdaK+g61GSOMg0hhsP2QykGmE30OUH428bIcGI0rNai35pJHgCzEu0cqq4P9pwxgrWYs1NZXw9W3EphNo2gjdOCfpbRlymZ2Dn8tCAUVjYgEdlcWS2W0ykcE3NAl2KZEWYlMTe4bY8vLEwsykfMEAQdho2C/F42Wc92Uw3RYU+W6DYw+yRpFI6mdHMn9ph1QHegO9FZdZdLurkVmlQhDns+NyJUdfKavoB2YTCt3POD9iJYQYHJxVChupzgS03UE9qpTtvQ1AwNZocGghl+D7n/Q6bptSK/TzowJ43XEFio+0g3PwQ6gtBFAYKTx+xAX9U6NQE+Sj3pOHDhFQQjaOzsA9nq1EuNbaRedXMJfAtOGihC0r0o2fYQcvSwBYWEuMo2S3WJ0mWNPDe0xs+T/XlCNINVuDJHKdl8E8AlW894vJAAza6DSSmIuA/oqsP1IpAGUNOJGB+UYlBC28EETKJgDPVmDG8dwjbbTiznhyMF8akU+htDQNUN2nvCZ7w9/SzrhLIWpURXGndiZ0wK9Bz0I6pPToRFLqBSXROQIDmCESBiOJfaoDLGTDBdS8+BE2Ahv0ob6jKTz9CI8FnFiCqsDAyrrQAmzuJPBXjVu2Z0YtK1x25aumUuW7oEuPqJo5ta2pnG1hEdI0MAMM4SpjnNSZ60TpDfiG5jcKBrTwpMG5m/r8jWQiHWPQTiqOPoy4Peoj4V8G/2Qtgd5EpAkJlJOkwoboTBEHWkmyj8YyeBhAq2jx3mzNKVatSSDeHIOgUD2jqO9S1q0bwNw0awoH2kKxXaIdtJSD2DoZvKliJYiCmYUHfgtlA+t8w+FpBz/VSo5M2xUNHH7Y6NMnAh9cp0kdknwmjpSxla2uMM5SP5JjJ5VhOdpjrPpNb1wqros6FngagL7L7HVi3BGdq5ATKM1bh9A1Hyo5QP6KonS7Qv1YqWSB0vxQjnVSMZZoPjVZ7BkThuxtUWVdWygM2dGOk0kmE1ZN8M21LgoD9KDIqHbKEhD2esJQ8CewczDEDE+YNe6vvYnv7Qc0R+mIcqcvrLI2nub1digde13/NrY90QQpBGzVkJjxtCx/whHE4ZB0u52ePtvRSM5WJ8Hb2p5KI8moKPmBc3og2Y52M+R/bRHapqxgFCNR1+XtAeObIQMT5SfHA3rsOiNdKspsPPJNQse74m5pbt23PK65bsD54RT5b0RyXrtydEDZf/9hkA/eWSbpHRLOUp7qogWhEjqcXaB3TjaY9y6hN7sNK880JNSHzumFvymxq3NtQXOd1U084V1kG3l0EkW8sDWMTfUmz6SbrBtaWfSBE5/qb49w86k+P3NPldT3a1ozud0B5n1EtNP1XsH0d0o8jvIUykIZn+vifbdLz6OUGrZ88DPoNmqQCNi9DO1UhJw2q6SQoy6yJhpgiZoj2ysnoGQVc/fIW+PIHTCd3C0JWa9Tvyu02fx/H782tSCFjA9FE4/koR5iXq5S3q5SvKL3+B/nTK/nGJ7iKTjzb0i4L9OxPyux637aRZVEiI4aYRb39rx6R0TOIlJ+3SgCYMImVzdiIc74H2sxVrTzWfEjc72FeosyUhd/SXS7FjfHUnGoS2fS2Ek4EPnh/RPzrCvrgnbrYy1Dxw6ftxO2Lbos4mKZHYf2/7zb4/hJllDrVcEHNHePYypSeLMUI/y7DTXECJ1XakOagiJy6mEkCYDhUC+m4N1tA+PaOby4M25OLK0y9zfK5x625M2R0ABd3614SRAH6aUz0uyG873PWe+smMfmLI1oma6RPyv21l0C8MbuOJGrZvZrJVrGeYXcfyv+7pzibU5wXtQtb/2V071qXuKKc9y+imQu1yKQfE51pMK8p032dQB7CVYfZJC5mmnSWaVmZQE8ml2L7haBeKfioPcruThzERdAMEUkp6OnmJXtGXQmGYPe9FXJpceuS8iAalXjr6Euwu0Wn7CFERnfxbdzGJ2hW5EppVvn5dkAvy820TOfsvFfVFzv0XLPoV5JVPWQjydbqHbONHPV9fynA0IJziCCgI9mBQEItMqHSJy98e5cmIJDUmMel3nMFPMsy2JX7wCeqNS9onR2Q+oPqesJhITb3bwb6Htj2EHs4nEnpYihOYWYl1OJNS0HRr5Jr1fqQGyv3hoE2/XMrLUEbDbCoNStsSV2sZ1h8gxT9uhyoLlMqkbq7X2HTeYp7MI3JH7IPUgllJmDjcdi+UmLTReHh2hEoj93o0WvKmUv6Cvt8Sbu7g7Sf4RY7tZEDtp3YESsqbDf3VleSXzWcCQEYo+iD0nkyTXe1Q9xtQp+JENS1GM5h2oWmONOomgYKkATmz1OcFq8+5JAyH843HbAN+mtHNHds3LJMrz+K9FaGQ7eQALPaD8cUEshXYfaT9HPg8on87YtpAO5f+oJ0JRcm0MPtENpf7cyNC8ymYWmhfm7cVIQe3ERC0n71+f6oIk+cau4vk60BwyfFKASTAtRfgVEXI1mlgaCPVqaY5fv1m1y2U17JtKW5h+d4O8+KOzZtv0U0V1ZlsfrJxISD3atSy5chXgfw/fVvorOdH7N+asT83lDee/L7D/Kc/QB8fsXv8DiYM58SM4CkAc01+r7FX0E8M9ZEAqTbTZM8C0Uqie7bqsVcbAQxaAUOjs3Rnc3Tb495/OW40YiFume2TI/ARd31LqAPs9vD2E5pHU2Hr7Haok2OU94Tb+wf3QCm16m4l4OiDkPCYOTHiAQFYHsgjlNavgxkxoGz8kxFo+MM8og+453fEqhLaSYxix5kSpMNuJyvoyQTyXDYTXQd1SkzWGpXn6Nl0TEQWl6MHp6XrieuNaC36XoTCzmFuo7jjrNZorYE5uulRNeJuMMkTgoggEUFWlNEo/DzH7YV+FWclocjol7msbPuAe7WF3tM8FeFk+arFJlH+kKqrkg4jTEuU98ntRgpNNxF3mfI2YPyB3xicQfUBtxWXrb7Q44PXrSWYTNUdu88t2J8ZJtcimCqvxeZu+4YhZIKEDDf64js1wWnuvpyL+8SRoBb5KlKdW+pTm1AMae73l467Lx7jdoIoDDf1/NsJ3fTihhEyRXVmaI40bi9IqHfy2sWtp5tKDsjsmSA1m8/NAHB7KYD7C83seSBb96MjWLSC6uonZ9QXE5ojoZNFdRhAbCXCs/y6Ekewk9kY5Fh9/lQ2KusGdXaMmU8JkzxR5cQyujsuUX1g9sF+FP0PArWRH/7G5SguHdGFjTioxOQNrk6PZTjZV/I9aes3OLqQrmMAMoe+XqGdFZecYSvoxVZYl4Xk7Hg/XvOEKEPRriI2DaH7wVapP2qHelggkWJL5oh3K6FPNI0k0Z+fQ9fKFmm9kXv9zceCbCu5fppjJ24wuwp/fgQazLMbCZLb7sfQunA8xxeZ0DRixK6qtGHLMVVPzOV1TJ2c3DqPvrknLmZop2VFH0FVKXNAKcy+ZfrRIWPA1j5ZXEpgV/7RjrAoac4ncq3ue9ZPxepy+rInOMX67Zzy2lI+F/qQ83HUurlnt8QipzufYTdClagvCnymye9a2cYeS/0pVgFWshEwnTQBwYrexXSwu7Tcf37O7LnYZi/fb2gXluufsagG8lUYB5F8I7Vg90gTMsX+IkvhqBw0Xq0gpdVpNg4A7VTjXSbgR664/UqGaSLTlwG3jbhVer1zSzdPWSXlJGlTYnIHg3wtoYW28lJrSovdeU6+LkCOqXsgxzglQx9ioCGBrOC2Ihb1kwz0gV8uW5vEZ98ll8PkNJS/3BNzcdHxuehnQp6ciDSi2ytyoWyCgFVxIhQapKZ/momtqibRLCR/Jl7fok6P6d44Ru87dNtLVs20xBhxYQz7vdhwDqGHrTg6CoiW8gGyFAj6P0CtAKQGHx8J4FOLXi8aLSBmAgXMaoe5TU5Z0wnNO6eoLuC+8ZHYHs8mKQi5hpMloRSXSN32mLudCNGPn44hf2FWQAhkN3XSOYmroS4Kwuee0M0z8lt5luimAw06M3QnEzguk14zoDd7YizxZwXFrWfyIjlUpYDTkBuqRwVRw+SlT/qLiN09CK7rIsWdaF+bs5LV5zK6ueL8txvYw+anhIpld+B2kWwbOPmvWrYTpWR/1McHR63iJozbjL4Q4NG0iuIqJu0cFDdyrxS3gWhg+0S0HdoLUKH7SD+BdqEob4UStXsSsZXC7mDYfIZM/rs5UmLt+8ke3ZXoTtLZQy55RcFB00sPFHKw9YSJUZga8nsBXFWKBjCd6FFAalx9IvTvydNHUHfo9Z7qZMnqSzD5D2B2Hd2f+UkRqt/12Npj1i26zfGFoZ9Ifc+vW+ymgfUWt56TbS2TZ7UASadz+f6bVn6vRYlq0n1dClhtb3cS4/D5R+OWVrd9yidKro15Pjr6qV1F8Sy85owntvPFyB4iRrFhToBdnE/lz3aVPN/2NeFUQDq9qYRK3rZJIy0ZWyrLwGUo/f3Vih/pQQQg3D9oJFImwHhSB1uxspATY40MIW2iviglOQxFQZiXclJTswYIxzZ5yodUhI3RwqlLaHWoKtGXwBhCFHNHsMlyNkSiT8Kiupc/zxKHLonfQ3KWsHug9aj1jth2ND9zDgryV1Va24rFb9RCH4hRCfLVKlRyz1EhOUoNU3cUtEPQQfk+7T1dmsz90J89eKI1c0N1rihvFKb1uJ0iGE03l5VmcJFwK8OIvdqAs5h3EucyNQ62jlSnQv/KNnITZ+tAO1Ps3oTJC0W2JvFKobyVFFWfJSEokW4m/52tB0GaFJrsvqWfFPhcJQQ3sn46QXuYvAoEK4XGVoH8uhJbOyvCtJBpuqUgwO0iIZEepi/9yDF36xZ9dY9/fEI/kxMkxcdgay2fozNASlGOEbPtiM5Qnxe4dcBerfFnC/qZk3V84l7iLGFRotfIhmOw6QxClRhu/jAvBVkbaAneM4gilZOBetziOScOF1olK+q0UUn0Cz2bimZkX4nLkrWCVlQpJKnvv+/goR/ZwwhFZqR5JFQyVtXoGKTyHDWbEPcqud/VAkxcSjK4anzK9UkCvrrBT0+ITmNeyXAY9/VBRJqaCVU66Dx6vZfU7pAMMLQW3YeGUCQL593+tUC1qEAnwXHMnDQhm0p0B7lolrRK937n4foO7aykh7egukA3k3qw/LanLw3NkcLWmiIBE2JljQixV2uUPiJkRlKZNzV25sQkYt8RlaPPhTZpdyJEHzjPUaW8gaTN6maa/RsR5Q2lUSy/sUK3OWCF4tnIoEUEtwsyiFzK9qWbSm3ypVhrS3ZBoorO0n3bi3GGz5Mg10FzErE7xeyZDAh2LwhmP5F/pEZJs1FeJxtiI4JRu/fSFGhNc1pgak/+6gDn2dISeo29byShPTfEAErFMYulP5+O25poZCMr/wNFiGh6grHozmNut4I8huHzTgJWo0bKmsok1FYNRikhk4Y42ZiK2YQdgxBJ9t8KoGnx2x32VMLsss5DK9RfosV0E7AtKjlphSIXUTyJpqjVKGYlT8ni/yPUCkDlmQwSTTfy4pVOz/OB1lnVYoGa56hJQbu0knmRrLlj4VA7MQwYAMR+YrGAaVrivBxdjwhxzPYwm71sbgdb6LKkPsnp5obs1U6GQ0Cl+7efSWBotuoxXoJSYwgp+6odN/kYTX80Ge1qbRUp7nrstkNXCbwaWh8vWT3RKrq5Zf9Y0R4HLr4mtauf5uhOAARbR0wdmN93RKXYP8roSoUv0sayV7gqkN92dDMLpaKfRdiKxqMvoZ8oslXEVZHiusPnmvpIrnvdisGE7iKbuSEMizur6JcBlMZUSu5jklhdQe8gbBRm25CVNtUInbaQUnv6Vja6/TRSnWh0W0h8wS7i9olmmgHJIEcE5ZE+RRh0xyV2pTHXNX0J3VFywWx7tk9mqACzjxvMvkVvK2xKs/eF1FR7X6N3FbEVkMA2Qf5su6d9+1SGjZVQe0NuxRzHaolniBF1XcN8QnskQa5Rg9uIDsje7ccgbgZ61bCdfRjKqdRhcwcjLVwuBCWbvrT5GAYOjhcCBg1fm4aQUNeYLJNsHKOF5vh9HD/Sg4ieTND5lLjd4ZvDhDdY89rHl/IHXjjzpPAXVUb8yyuU0eiTY1mjg4i7llP01b14s7sMPc8JJ3PMqzv65y+k+QPi+SmQPrr5FF9YTGoGVNujez0m8I68UMBUrazXmhaKnOrJnJA8qt26x6wqwrFY8w7c7va8JNgJPj+luG1xq5q5DwSjaY9zopYgn2zdMX9vhX1rTjs3TD/eExWsvjQVKsHa4za93BTHTtCHu8SxXmQ0Jzk+n1PcecrrSHNsqI8d9ak8uI/eC8n/H06+XuNudtRPjwA4+d019cWE9TuyBfIZKW8EQCX+uqa4j0yuoyCZOcLLdrB+ahPnFNwO7C49iCNkOzkP+zPJAWlnE4p7z+L9lm7hCJnCVuALuPuSpbyKXPynjs1Ty92XFiy/I2LWvpBVq24FVdk/VphKBqfsrkW3Xh4Ws4zmZ56I7Wga6E0bmD6T3IL6PBe3Hc/omDbQ8oY8hXi/Rs1LmDkR6JImvrZDv//i4MLkLKF0YiM7mcj2LEti2N6LOPL0WCwe7bEMS/tarsG6EUpGkR+2I9/ryMUHfBjaAUFDQYSXRYGOGj5bV87P9IhNg3/+UoCHUgIIVdMSEhdeD5tUhGKlsmw8V2pbJYctg72pWN6L/3uMkewPX8jgeDJH7RvC+x9hnjymf3wsIXcv13B1K+/h0Rkhd6IP2bVCkTmZEwpHc1Zgmoy8Pqd6esT9FzJmz2XFv3vrBIDyVYtuegzQH09oj9zobNPO02burRnZfcfs967wZ3O6mePsv+xBKaqLHBUjp78ntbJbZNhdf0hwziw8fUx3XLJ7w6EuHSrMDw9+N6UvNc2JcLcnTUiAxgH5tPsDAjb/xDP/RGiawcHV/3Qkf/5+xBeweSqGGLaG1eeNuPF54WxPn4tBBSHSJxfA4ASIOPpWSzcTW/NoGUNGdQtDpsL95y26h/w2MnvuKa5b6rOMZmG4+bmIW2sWH4TEQ5etSD8x3H1pgYqw+I5sf6q35qKbacSOWPWR/dtTGZ42Hl9q2pnB1A7nY9LapWtOg4p6/H6Uwk8d+4sM2wRm9wcupK696MucFm3IjfxduJTP3q4aARFixD2/lwf/dgcXp2x/4oTJxzvZylmhEMXNVjRLX/kCsWmZ/M7HonWwZgQ44koaVH20JM5KYmFhm2xOy0KAtvtVAvfyZI1fYOZHn6lY/bM8lNGooiTWNeHuHnNyLFqQ9Ub6iH2y584zEbAfzeH5K8LLDbP3JuI8d7QQeuD9VqhwR0v48AVWK/TTxzJk5imIELFe1Y0IyJUXOo5qOkGel1P8m6eYJjlbWU3UCRwrHSE3KZRUBt9ukVGfP046rTSwVw3NFy9pF1YoQ01g/pGE9aFFQxlyI3bbySkpWC10zeRqZ2pxsrz7ci5D/MvD0CAUTE2PvIf12xrTwsk3Oupjw/6RZvWOQb1lOP5WR3HrWbwn1MV2Du2Rol1GFh96Jp9U3Hx1Rl/KliRGcaeqzxX9RLauuofdI0NfKMxGk90ryiupKcEo5h8LqLF6V7O/VPT/l9M0WKQbU8ngYSvF8jvCrqjOFKsvRW7+z5HF1xVuI3Qu3YlYHiXnUyy9wTQki+FIczlh/9UFs+ee42/K9tRPc4o7LwGNlxnFjSJbVzRnJftzy/YtobKXT45x+2OK28uUfRSpn8zQ/ZTspho1g7Qeu39ApZwLA0Ufz1BNz+y3PyHOJ/hleRiUHxxxMaV+aykg67alvZwSnKb8cIXa18SqEgB/UspwXSXWUNfDdz5isPlVkxLmM9TNPfo6Eo8XogEEMAatJSuHFIjq/yQkq/+wj9dEbA/twtK243W7PXVAn5USQY7WsnLyQYTFmQT0DdsKlZxs/CQTeovLDtuS4TWTrZ/ycUz9lj+PYxLo6CCglIh3HqzFBns97wSxBwgzccLQTSBaTTc1Y1BfsBqDUDGwka4UF4u+UOjOYtZp+OkiwSb7uUR/iEaNiEdUjMFbIpoath1KQsHaQFdafKnG1a3uo2xOohKqQtfjy2T1WYu7lLy4/KN75Ocped12BsV9JLsXVDBqTTTyXuT3I71+Qh+6OP43MY7uE0NjpH3AK51+j/R7KqFxZPctPLWCmDppNlDyOw62g0CyDuYQrIRw27u5EfpYHcbfx9Q9FGJrPFiTDuFow0bJVCGh3SohzbLpwaZrLQVkKWXBubT94SCGhO9hFSnXcjTJC9AaaQ4GO83hOhxEY1oLIjGbYpyVYSXZzspri80jgxCtLEVc+GM8iBACsenHAMMYwuF8ferrAEEkU32g99JbGo3q+pS67cVAYLeXc3q6kPOuNGgt92kfZNhp2++2Ux5D8wSZk+2JUD8G2pEMGbJZkdwNDTEV++SSo6LckyGJL/tS47aiS4tG40sjrjydR51lybo7IbQWQeAVqT5CnInAVUJBGbcQRLC18MJ9IfeR9oGoRTch4vBD0Gk3ESMMt+kJx5aYabq5SpQuobmM9ztps1HINkPufdm0qD6K1k0f7jHdBnSvx1qhvQwhD+uYT0txFWXzYnYt+iihiJ3oyoYBSneptjpFN5NaElLKczfV5IiZRxxcuZKgXXeiwxvsxxn0PMM2w4NK9UAnkWl8QHpXIW3otBrNCrwWfruqW/mdH1g3q8H2NxlaxL5HGQmaGy2eB4AjSK3xpUO3HWG7k1KsC7n2fbr+jSDlAzXwNbv7GAltK9e0D4y2wT+gNeeP1JGs/GNVCxVtsN5NfwdS24nxYJuL9CJ6u38QMhuEplIWogFtGhnk9g1YQ5gVYi7SyfWh6l5MR2AEosT6W3QgkhcmFv4K/YDqK72A7gLdXKxn+1KMHBB5lNSU8XcA1Qds5wnO4Eszmsu4jbymhCvLPR21PLtNLdqN4IAYydcRW8s92uWadqYp7uQaFQYGQmmcCr3qYR2RTZ5sIodzqzvZSqrOi3teNnwtKc5AobzCtHJf9RM1xggMwvGoFUoLtToahfZSY5oTqZ+jHq1njB0YNrGmNQQb0ZOeYB3RyubV1FCshBYeLMnYR/QlykeC0fhC0c0g34Cp0iZRy99rlezTnbhlDvbCMgQidFENtpLfzTQRX2g84FZ6BC9M41H94EaSNvKI1kd1yVjBaHRmpRYolYTkQWx6MytuZ7lBdbJ5DVYla++0HXGOMCnQVU1IvUrUWoaUxCwaepORinV2DCbVi8EIo0vMDqW/L6MJ+BEfRPzVNUqtUNaJJemDAhn7Hv/sBbrIUfOZhI6V+XhDqrcluMx/9IlMcnmOHsKFjuaCKoHkbxQGv5xiwiPhw4Ug3M8hmChEHByERIU4n+jbTSo6E7HmdSm9eXiTIciD2jnqU40KGcQF9an44y+/sSLkltXPzxJKmBD5i8nY9Ptc05WK5lhTnWviV5bkt7Iuvfr5KaaJnP9vd/hpzv5JQXPk0FMrQvMMWsQVprjpsPtI0QU2TwvqU0d9IgXirX+zplvmXP1cjt1H3BYJQjwrBFGMsH+6oDk2dHOF3YuYLNsFglHUx9KEbN+G8KGmuIbJC0Gb6/MMn8nGxHSi0YhGmrDB+SdYha0DF791T78oaM5y+lLTznLmH9YQIvVPTDA1nP1Oh6k9KkaO3mvxuaY5MrRTCT4LVtEuLW4bmb8/5ItE/MTSG0c3ExcvSV+VImoaQSJ1Letr01iKVzXm+S3tuxdCe1h3gnJ/9AI1n+E/9wRztcI+vyK+dUnMJek+lhnxncfjtap3DWq1P7hRgLgmZQZV5tAWIkavatm+ZY4wn0pD4A5uFirLDmhJkUmi/DyjmxsmH+4w91v00VJeP4V2htt79MkRnCxR97ew/qO/R38kjhgJdS0Ulb4Xobpzojkbzq8PMFirNq1kDAybKC+0K5TCvHFJdBa7riVksu1QTx4xmFZoL85pKEVczlDrHWa7xywz2QA0LeW3byk/NHRnM/qpZf6dHVFB9bgErbD30qgPug7tI9kqZXck5L19+4zdk0JoWLsSt6qZfeOWsChZf35KcduTv9xRPZnRLLMEhkA/VZg6Ut6GBHxAc6SJGvS1cKab40i20uiqR/cOFRX5vTSxu0cubRsj5ZVm8kKNG5GH9E9bRabPxFTD1LJR7AvZbJgWuoUd3fgG/YY80BW7J/mYzu62kWwXcFuhiUniu6Y6tXQzqE8U+cpgmoK7Lzn6Ai6+5mlnmqufU8w/gKP3WtbvZLQLNQaprZ8KCNMu4Og9yG8amhMJnitfNjJc1B1mb3Ari73ZovY1/fKSvpBmNFt3uPdfEU4X9MclZttiNp7lfS1N/76SjWhuMPseVXWYYUhtWrl2Xt2kkMqZuOF0vYRthuSaF+PoaPTQalct5yP1b3TYs3bkfwNiyjJYb253QtnIUhp40lTqIUvkgR24v7/5Yd+Rf2xH7HtxwBwYFm0Huk5mAAkBs1YC4HYV8foWXIYpCvna2IquDxlOJIndiC6vbeHlFVycsf7JM8rrjuzZmiFXJu4ryBz+eCJDTgSzb8k+WcGLK6Ha/uTnpAY9e4VZzKBfYK7FqEf/xFuJGXEQEPuJpX73jPzFhuLb9Wjpq+oONS/wpWH7hqU6UyzeF7vcuy9p8jt4/O9v2H1uyd0XDYsPPfldT3XmQEG2EtrW/iLj/gua6q2eR7+pmT5vWbxvUFHuw8HcZnLtyVY9wSiaE8f6T1eEyjJ7zzH9JDJ7Jv1AczEhXwvboLqUDLDsNnL8zZbsek9zPqFbWK6/agj5603u9EWP2/ayMcwcu8tT2qWiPo90U9g/1szfj5RXoiO1Ndiqpy9lw7T4lka9VyQjHsXmiz323lDcJWF+qbCVx1aB8ibpzRaSlZatI3dfsDT/s+Hyfw8UV7JRBWGiBKvYv7vAVJ7l+x3zjzS+0KzecWTbyORVS18YfCkAUzCw/vyM4KA61eT3kfnHmWxlfRBQtIqE3AI5+vRI5r2qRa/EgTPuK6K1xMtTojNkqy4lvVvKb98KNXu7EwH64wv6ZUFzkjHtetjuIM/RRhMnJWpS0l8uMdcbeHUjgZ5KC1BiXgcmVObkn7IgKv99bU9/pAcRPZti8mkKCDp4hA2ohHIpGMr7VFBkExKtToE/giyD8OmV94I6ZC6h7AeagUrIKNZKkFHTysPAaJQ1wtnWWlauRUKgq08h20NQVCpkQ1iVaQLZWtyefGFGtB5AdeLqoBJFYUBHgVGEPYTijHzrfZCgn154k9Wbc3QfyW/75KQl68aok7g0yhQuhwi6+pJxexJyS1+aMfRMvs9guojbDSJTS8hEVOb2MmBtnuZ008ThtuJoY+ooSKoR5LQvEi2tkqIyNC3BKPJ+0LwofNCC4uaGdq5pkyPW7GOFaXqx+vVxTHMOefID93EcQPpCJ9tRRrRlcA9rjm1CoOXvTBflnPpIfepQITJtpMBnG8kXwUhgVLSKfirf706PRdjcH5D1gS4i4XSJ35lyBoZNXUh8YL1vIBoRtA6NcELVVNUcrqdhbWrNgQM6IKbJDtpUvTRMu1rE7k0r90CeyRDdJgs/Y4jNjz/v+3sdKssEuUkIDmlTEmOUugKoRr1mVxij3Pcx5b5EL4PvsD0hR1ApY4ZVAYBw+1PWD8GP4ZUg9AyVbD3H9+bDSJdQUTaEUZEc+nSy05ThoF2I7sJFGeJj2tq5bXpYupIiXb+mFcpTfLBtGeqIqeO4Iehz4U/rFBoGJGFpFBrlTBy1uqlC9+K6JTUBimu5132usFVEVdAuFTETMw3TRvJNooSle05FRvc9W6fzUicdx4N8lCFEzCTxa7CKfqLRncJtelQI2DpIBklN0ogI9WsAOVQE00p97OYm2XhKAzR+XlqQT+8UzXEu7yEixiFBPgeVNuqxcOKj3wWMVnRzQ7t0xC9cotqA2bZiKOI9kCwvy0KeQV2Q7Jh9TQyJwmmNJHt3Sq4RowToqhvUbHZA4pXC7v0hPBUYbIKJEb2XQZnMybXdBnlGaYVqRWgdY4S+JzQNOl1/yho5AYOZxgO6x4/zQiT6IIBRylGJfQ99omLFKMLzvpdtRduKvXqhD0NKCKM9MiBbZx+Ip0firFXVxPTs1G042LbHCMmKNWqxzvbpGWYAvZijYmR3VmDaQHEzlWyaLm1ohp4nysZjCOQdrLSHrXp7OiFahd1JMKfq5RkeLGRbcbRyO42pY7LcjbitZIY0x3YMJDTtoUnJ7wEs3SSyv8zINgLc+UzTzjXVucJWGrs/UDjjKsPuNfmd1AxxnVOjfbcK4qSlu8SmWFiimeJzLannLo4235BYE0oYJnGSC8102Jh2aqR0mS6mngBUD31pxe3ypaed69GOGBTuzogLHwNNXOqN6gPeWXEC6wQwLa89/URo4jFtQbqJRnvRnoUhRHm4ztLpy7YCGo+fnZfzo1GYJuCDGp2/zF42PdEJVQtI9t8ynERnR2c8fJBe11n6o0LqXfUwWDvpnpJzZzTSB+o2jKwAZeUZNgQn622LajpCjCkA2WOaFJ6ptfTSYyDqoDf5/pJPf6QHEfXoAn9yJDaGz14e/iLPQSsJV/Fe1qxVLSfr8gySFzQ2BUQl4e9rr52cioYgM9V0hLt79OW5eLT3IgiMOidOS/yiGP3t5cZPnvytHx2vAFmTFhn95VKGAqVw257sVvQO7UI+QNOJOFFXHUdfe0n75jF3X8rTe4MySIOAIjlcRLJNwK3atB5V9EVJu1A8/7OW+ftw+a++jX/rgvqiYPbtNaruqN45wpea6sTic2kEumlq1lPzsX2roJ0p+mmkn0ED6FZhasXZ7/b4QnH/FXBrxfxDme7d8zWrv3hB87jH3ljcRgkacStc6OYkF573RbLN/UZHNzNs3hQxmtj9KZxPfuOZoj2bUJ07Nm9pukXEZ5Gj98SVavKyHbmRPtcjzQ0gv+8FfXjX0U2hXUbcRol/+I1QvlZfsZJQv5XCnN97STbtA1d/KiNYcNsct2pxn9yLLmA5pS8EyW2WYk5uHp1R3PQU79/I9baYE6zQN2g7sRheWNy6R7WNFADrRq9w8+pOLKONGm1U+/MFobS45+sDdaJN1+NiLg2NS4NIJfoR1Trcx1f0L14Si0JW/HuhDmhr5YHYNPibO9Rmi99/Hx57P26HVrItTTXiu44hebqqBdx4gDhHmyw5k0XyMISE+xVqUtDPcwmsSxkS0QhIEQorAXR9hdq1I9XTvVwRk5HBwN5RvdjwxpRfYPde0P7HBaYShyfdiBPf5k158E5fqHFoyO96JlXP7Vcn+NxythdHt/xWHkj9PB9DSHUf0Y1Y0vaFCEW7udhzLr8dyNY+NQEytPQF7B47qjNNP4XmSGgMy/d7yleek9/v2D0p2T0yzD9sceuG1bsLfCnN8+QVzL9dUV+UNEs9NiDVZcQ0Shx17gPFdUdz4sbhRVKNpako7oOkIk8V4Vh+75NvdOgm4LY6PcClMaiPhW4Sjdh/qwjFFaBg86Zl/klP9nEvAvTUJPQTjWk0fQmrdx3FXSBfe9TzG9S0ZPvFJXbvye4a2rMpIRP7Xt30VBcz6seK/RuW898OzP8/3xETgvR5R2fxZwux2F036Jt7wnoj9rHOjdxrggBjIbeo7U7Cdv/UV/C5wd7LNeuu99LQPjyclVDcq2tUUYgJw2ZLbFrUo3PZ+K/TPV8W4hLXNGLsMuTgDMP1pw6VZT+2NM7Y9a9p6WLbChg0LQWwu1sxhMsql8lnmmdj0KDyIQ2QogONnfQQ9VceE3JN8UI2p8VVi72voG4Id/dEH+j+/E/Tl0bMWApDfWJxpcbOHGZREJzm/osO00ROmjPMrkNvK/nZeZZo5bIV1X1A1z3dcUE/U5JVpEpufyIXi9y1o1gFJs8bZh965hF5P0DUSxkk5gW29iw+iNx/IaM+hW4eE7VJxO5uFzn/zzvs3Z6P/u/nbD4H7/4/xRRl/cU52yeK/qs7NkxRwZKvPKaOHP1XoT4vvl2xf5yzfie1oolKqTxMXgb6XOiS1YXBZ4biJg1YGSkjSOqJaaNY9WcWn8/TACYvaXeylck2B3r3oEGtTwzT5y2zrz3j9n99h90biumzFKJ4l94QiabWpp6uj7TLlFvSKSb3PeV//QS3vqR6JM+IdmmpjxW2VpQvJCFdRUAr+sLQLqXfmLySIdTn0vcJkCrctvJFJZQuU1K+6nDvv8Q/OZN8l718X8g0ymvZahYZfllIDRto/kbRLg3ZyjP51gPKQ9eP2sahJpl9h9mLNimC1ACtoYnEXQU3dxygeYT7enWHzjPZEJpE20xaNO5WxOb7KxQ/0oMIqw02CCdNzWcH/tp6IwgnSDOYScK1GhyvmsOUFo8XqPWOsN4K5QrSh6SJRQ4a3NVewqNOjgnzUsSmXTmiH/54wv5xSbbusbsO7Q3eaapzh+ks5RBMBvRHJVFPZFhJiEQwGkrhQQ82mIPzgp/n3PzCCbaOzD/pha7UR/qJoS8V2zeS4K2KoBS6tWgfICADwd6yv7A0x/Dq//Y5yltPft3Sncj7kEmYQ2rpg2D6bAVuL6t/t1OYxtDOFd2c76JaCAoQqY8Vyufki1PcRgH2gYUlNEsRm4srjojCbCMIre4ibnN48Ilnt2b5nYaoFM2JpT6SdFbdKOwW9peOfjJn8smekFv2j7JRLyJZAtAcW1mfriJuA+Wr5PxlFdWJSSGNKfG1FocOUwV2j4Wu4bZSHLP7BkKke3wkeRBTyUUpr7xkNFgpiO2Rpf/JC4rrGrOqUD4SVaS7XIBSuFWH3bbobS2vNbMigqsOWqLoTModUJJjEqRAjJomH9DzGXE2kTCszgsa3ycdRAAmJfbRpaB6PojNdAgicvUe5TL0co4qS4wNcP9HfH/+CTpUkWPPT8QFq2lRy7m4UG12Cd2RrxlsvGPXoY6XEi734hWh79EPebBaCz93UgoSlFxF1GyKajuyZyti4QhHs1EfpDc1ysv9GkpH1DOx4YyR/mgiTkov7gjLGd3ZBHdfo/aNWIfmjub0iL4QPZgKitClDWPtWX67AyW87CGYD8SGVnJ24mgPHnJDN7c0C022C2KXaQ86FBVg+spT+STgQjYS7UzTTxTYQD+LVOdiODEMTsHB5k2D8ibRTElbEY2eOuYfyuDQT2Q4aM4KseheKiZXgfxetjTKSz3rSk37dj7qyIa8jQGoiCppPNJQYhrRUvjc0M1lQ5OvA9Wp1K1+IsCNaRL3PeUVoUgoq04hror62IzBZ24vW+v6RNEcWbK7N4hG0F6xH3djuCsAUfjz+UqjolDm/NuXUgu6XjQDk5zqssS0AXffoLqZXF9pux4mGfgoLjlaCe1zMceUJXFbo3dKdCRGuOcYTUTS2wkRUmaJnk4EDe96UIJaDkNLTNRO5RzMpuJ2YyWVmUoor/TCeX+YJfBjf4QgNdRJEGeMEVYbMBp7eU6sG/zd3Xd9m+pENxm2O6kLj86lqWsasrtagMVNTZgX1OcZZmZxRyXuQ0vcbMiu99hSQjN1FylverLbGr3a0z1a4nNNtnpgIztxhImjXThCrrBbf9i6O40vrWwCnaI7KlA+UZ8bcbtyG4/ZtXRHhehQXXJnMxBRtEcO1Uv+hQoR5RXLb5GC+cSGN2pFcatRdcv0RUB3muufm8kWslRivfvNqdC3L2XjAAJ4QqQ9ku2cSZRsSTUHIuK8lSy8TQXZ6tCj2ArUWpGvpLZVJ5piFbBVwCeWhamlVnTziC8U9YmifCX9hi/TJtgqummOe/wO9ZHGNLB7LA6jfRlxW8XyD6W22CriS00/EerU8Dt2c0txssRP7KjlHTavUUdCJjqcbqpx22Q6kLbcdic62+rMCpC87elmYuVdGNGZZmuxZidzkh3jFP3UyebLS98XT5ajrbdpPDSIjihCcQ1636K2+8NmPzE1VOflvFvRHQlzSIvT5hC0bQ3KGtQ0ObwN+pG2Fa01yNCRAphV1wmYMtSW7+P4ka4u/vpWJrjZFDWdpBApTby+GS05dVGgphNZnTqbxONp7eqsTP1NJ0GIQ0OS6BdhXoibxfUtTErC8Qw/S7SIrkCFQCgdzXEu4Te1JrtqUd7BRCZi3SmylRUud+dply4hbTJQmF6oTWEUTkpDrtuAanr6syk3/5Nn9m3L8e/ci8Vw27H/6Sf4XLN/HFFAdiciT7uXhGPdBrIXG+yswH5xTnMS2X6l4+S3HNNv12w/v6SbqtHLfwgAC0nMPThqZZtAturQrWfyQUf11pzNE0tzfKCIgQwZwUG7lN+lOtO4jVBD6lM1MlTamaJbCB8dBcffjLitTytP8SMXQVhkdykWw/l7L4lFxurdR7RLRT8NYv97H6nOFe3CMHtPxLlNKia2CuNA0ixE6zG59pjK47Yd+zdK9md6/D3KaznvppWBwFQ9+8uc3ZPI8e8Lx9Xc7QnzguoyozrRtEeKy6uO7NWW+NZpKqSKZq5olwoVc8p9m8wPxG3LNIHy4w1q38C+opudUZ1byqt+MM+T5sIZ8VzQOuXEBBFGewlaUc6Jw8UkJ5ROwvVAUPy0pg+TAmYFerUTClaeEbsOf3uHMsJbVtMJYT5FhebHexDJC/zjE/TdVhyF8owwLzBVI0NE8lL3Zwv0ag+rjjCfCo3q+csRMVYDhz5RrPR0QjSNCIetDCZUtXDHv/CU/ihPtpyB/H43UvZ8YaGw2JVsX5uznGzdET95jnVv0ZdzsisPq41sZKYTuumpiMUzMJ1GuzTAVx2T95IDU3LjCZmRQMPBTKJHUr8TINLONPtHmvybgfymJqQsi+rM4vaB4mVFNCXByPd7J5vSfgLRRHwZqU8FERxT0S3sHzM28MUrxfR5IOSKDsv8g4qQG1bvSAZBfWyoT8Ux5+gPQ0KC5WFnGwE1hNaRKFKf+kx9LgCCrSOTFw1m29AviuSsp8i24DYdu0sJT/Ol0FVNm5qtpIGJJlFCzTDoKOrTBNB0YCtPcdOzfjenm0fy+zKdQwVRYyuTKBlJvOzF/UY3XgJaM8X+zQnTLmBWQqf0pWN/bsh2Wmp9REIzowxjvpQHeHRa8j/2NWFeEp3BvLwXWhAyPMc8Ixoj2/uqkeEhRmk2JuVorTlYcY7bf2tliE5hnUxKqR+98MtHisZgivE/yjGwIAbheQj41RqdOeIX3kHvKri7e42uNlBlY9MQNhvsbEp3scB9InlE5mYz0mvVJKc6NuiFQZ9YjnYLdN+jXt2hy4L+XcmrsrcN6vk1/tUVXP4sIVcUKy9gZJQQzX5m2F0Knfr09yOq6UdxdEhhw8EKrUoFAdlUgGzV4zYdalcTzkqahaEv9Jh5E4yim2iyTcDu+pHKfPzNBtUFbn66FMp0gZjitB3TZx26d7z8nyG6iN1o8lvF0TcDuyea+jzSl2qMGAAlgYTI+xrCAnUntDBfyOv7AvI70a2t3jFjtpDbRJbf6anODLvHmiwZXfQz2bDaRmx2u1kkukC0EdNa4kY2utGS8ofk38WVOHbu3vaoZcv56YaXz49YfNtik713fWrpJsOgkQaRqdj4DvSyPlfjUCUbXDEQaOcatxctm0p4q6k6fCmZK7qLZHfh8BpKoUPqv2rRb8VkP9yXBu21bEYQgHu8fBtxQlR1suq9uZP0dEDl2ei0KRRyMVSKNpP/3u7l74pMqOB9EM2Us6O7rPyMFEeQrH1f2xS2+RiL8en8rv9/x490dTFnJ6ghhrdpBZEAonNo52QFDclbPRyyHEIQ1CLP0IUjFhn2naffRX7VTU90hvYLj4HE4es8tunBKKIdJtBAcScOSu3ZlOy2wl23nP2OOKUEd+jYs7uW7A7MpgEN9WPh+w4OWdFAfWyTDmOJivD0/wW6k3T27mSS7DrlNY/+QF5XwrnE1i7baGwd6ObH+Ew42twqTJNR3Iur1+jUpeUhvH1TNCC+jCy+DZOrnvvPO/YXhvqoxFWRbOVRHhYfdPTXgrS0C+Fszj4UlBOFrHAfBybPdLLtJf0cmD33TP63HTc/t6C6kEbAFxI6Vi8N26cHH/DpRxKqVH/5kThJ5IriNjL7GMqbDrfpuPtSKba9P3tEXyr2l2Lll69iCnE8aEJAXIK6RYapA7PnUXipWhBkFWQQ6eaG/cWE2See5ftxtELcfekEu/PMv7HCvTln11j2lxn12TFDHopPYY92lziyZ1OyVzv0tmH6Pui2h+s7QeZ98hwPUP7hjYgf59Nxza+bTv5sItQqdXYshWW1Juwl80ZXC3SRH7QNeS5bkQ+foY6XhGXiEmuNP5oJfz6TgSRWNeH2HnW3IrofY+I3ELsO862Px6R5c7/GDLqxSYFKoU3mOtHfihxe3qD6XihZeRwzXlSREx645ymtidNSuLJGS6ZPXxC9bCsGxxsyh+p6so/vxFp3kcmQWbVMvy6mF7z1Bj4JSkPp0IuZWAlPijSARKYve0HutWL/ZELUE9zWY9qA3Uiien2SUb6ombzYoPslfampHk/SyZCH9OxjQdS6o5zqTB6w1YUiu9e4TYZP10RfyI2tPZJCfGPS1iUBJ700KT6Xez9aQU+DE9FncyR10m2t6Lh6aS7qE011GelPOlbvZti94e6n5EbN1obsDhbvCz1DrL2TbqSKydFKKGHBKXxeUtzn4siXye8RlWw/3T6S3yvhtUcEpTQiTCexjwY6m9v36E6T3etUO2Rz208NxVUkv4XyqktOeZb6RLP6ouX4G5Hps5b2pCCk/JABXIlaXqM7LmSwqDt0HyjuQ9pEa3Rn0CGg9i2q6jFayzNGqxH5DqUlGI2uptDlQtlyhlBa7KqW/KncQfmAApY74mKCn6aGIERJYa4b1GwqG9L15jCU5BmUOaoRPZqaJz2KkWYzPtBN/jge5miBsoXw461NNK0O+8Yj4d7f3ANgHz86uBuGiKoFcFLWYo6PwRjMKm2wJyX+bEHIDHYlAOny/UZqw75FVS2UkmVGjBTfviYWGX5Zos9PsNMJYSMGCfVlKeGDr9booynBFWRrcY2LWrZ52U0trlS5HdPX1285+oli/ok0nvWppV0Y3LE46ZU3PfWJsBdmz1qhd1Ud+7fmXP/sBF8ImFGdZ0J1PJF64LZC0ezmb7K7FJbG9BPZmmSbyP4RvPxfe8ydw+1ksNAtTJ/F9DqyVR0csJSHySt5jlaXEd1JWGHUEl46fSEGOJu3FXGhqE4l9LibweYtCTIewNRhc2p3im4BZJ7t2x5TaWYfSu0abMF9LoY5KsD0fUO0JWtXMt+BbWRr0M3N6HpVn0m/la0Uymvc+YHm2pwIWFS+EpAkZKL/LW89PtP4s2xkoYRMjCqO/yDSLSzrz6XPt45s3pXhQgWwdYbbFAy24ftLMTQqbrXQQ1/t8Iuc9iij/KRBr/fyvM8t6u4eXZSEi2PUthagLOlHHlI6w7wgnEyFXugD+vaeWNVojmBXQVWhZjPifCLAROYI17fo6YTwf/0Z7E0F33pf6IpOqFrET8NH3/v4kR5EVOaEHwejuAyQE+AywnIidrrbKlkfIpoRf0iWVF1ysEmJ1GNkfYzgI2RKQuk6oTXoFkjrTyBRigJ2d3CxAqDrJUgoz2jPp1IYrBYbtrZHb3ZiI2rm8j7Se49KHrreycrP7TzTb90RpjnNaTFa7QUr0/9k5UeLvXYq1AnfAsiDNGpZUaqQqFtdJOq0WjRSuETILQiBCops68mvavxPOgkGrAf7O0O29mSrFruXArd9kon4fS3isZClf+Y9wWaHApmGFLf16I9e4L48p46D8F2m/76EbhoJeSTayPRjjeki9YnFJ5TBriOzT1qhrVQt9mkhQ8yJFvSkjOO58blsXga7zaiRQDqjMG1A7/34+3dzQX6Vlwarn8D0hSd/VVE9mdKXimaR0q7rBrcpyEsR6g78ddEMyUBja/l9hYIn153e1TJIVPWIpqlktcxqS9jtUEdzoWUZLRaQdQOTQpwpMnFyij5A1xHaDpWla3twdzJaHOPWa+ykBMRhKypFSDQdXRbyXquaWDeEvoOj6R/pvfkn7oiRsNsxpsdW9YgoYxINru1gs5PGP3fEWvzV9dFSaC1dK2jSMIQMNuFG9CIjkGHEBEMsHAO67sYVOiFIQu3RVO6JIJSOeHsvA+jFqbjrDWLy5OgS82Rm0EeyuwY/sXQTO+qnAGKl0LWhLy3tXFO+ALXZ49YlBEd1MZhjJFpAI6YRPtntdlMlHPBWBK5DSvpo7pDEnvnqgNoNlEvp5jXRSIOhk5W2H+x+E1XBtNKgeITD7YuAzj3dLNWipTwYWyzZSpOtA3EptKcBRVSiJU3ZH7KdaRcaFUQQK1bI8r6DVWN44kF8I/8Mjc/D1yRtUU0rn5c0SQkd3ol5xWB/bFoR7bcnkumkG08/SdsRrUDFg4h2ENI6Q0zuXqaRa1EoHEquq2T3LgLRNIw4Q7A6/aMImWjIXgvOjVG2Hgm9HPIgopHA3G5mx9/TaS33gUlUzaoWYSuCmD4M9EUfaBxiER6+b0vOH8VDENz0uzorFJQYpD8wWiha1gpwQar3g5seyPBW5AJIpCZPWZuGAjElUTFi143QZTZ7ceosMgmsaz3x7h61XBCPJ8TcEHSBanuxA++FYqUGa1YEVNA+0bljRNcp/6jz6NzhvSUah88Zga+uVOiUX5avPbqNB0Cuj2KssG8IbkG7lM2g7uT7gpXnbGyVuLVOFMEI/TG4xC5oJf9r98Rw9mjN7fYE3Yj5hYoCJvhM0ZQSPtxPhnyOBERqASsgovtU3zS4dUgAo2i+2oX0DVFLAHKfHmNCsZTvtXtJU+9LRSwDvYuY1mAa8D4m6+DDliNfyX0bjdSHfgiHZrDxFbF8NGmQyQ60UTHPYNzImGT8oXthwHQzqddDynw0WuhXNzW+nNIXkKcU+Wo5aI2FhhqVmHGY2hO1k/filNSypgXyQ4BqCNIzxFRTnMPPCwhIQK5NblfDvRwCURt8Kdeg9LlewDfvhUmxWmOMOdCxjCHWDbEoqE8zCh+xzsn9kbkUwvz91Yof6UEkrNZwdgl1Iza6eSaoznwuRaRNw0me4Y+mhNzint+j9hXm0YX83WorQ0zbyZRnk/uEMYIOVR3lB/Vondi8e043t5QvKgkdqjuMNZitrM2iM7SnJZyWZNcS6qIbT32Rs3tkKG+E85crcVFoF0kcGc1YTCaveuE9njt8bunLY9qZ0J2mLwLFTTdmejTHh+ZiUvXwCvYXlupU4/YS4jN/b8P6S3Nu/5RHdxZbTaSBKRTVsYg6j9/zYp3ZBLqpYfO5KcpDfgdnv1vRF4bNmw7TpBuuDxgfmL5Q+EwoUaFQtPNkI7q1FLdSXHZPI2YvVpv1iaX5X77A7lKEr30uhaedCWXi/D9LkFBzDM0RdFMrQUQx5YNsA9nzNWFR0i/nyfVL/k5FNd70vlCs39G0i8jso4iphY6iUz6J2wXsqmHzhRndVHjp2ss5Le488/dbadIWGbaSwCi0ojqzvPx/POb4m4Gj370jFHZsFPxE9DimiYnXeXDGitOC9myCbgOuzIlGqD3Z9Y78ZURNS3mArXdQZGzfKljUHfp5TSjORaz+7ReiXSgK1GwqovNEwwjnRzJovroT957J5DU6hfIB98mtuD7tdgcaYqJlhAdp3j+Oh8pz4pc+J1z79Y643482m0opVBKrRyDOJ/THE6zW4jrU95Bn9I8fo6sOvd4LkHAfCEdzcTTaN4eimzYqfpbTTyzFRuoHAM7iH52CUrh1N25xByG8ultj9xlmldGfTmkupuTX0mhOn4s1tb7fQZwQjMY2QqeYPKtRPtAd5ezPLZu3FaYtmakz+omV9f+JhiB6ivpEU51DeSUUh8G9JWQau5cBup0rmhOx0DSN2F5GDdvHJm0ZAts3DO1SvgYlXG7TKvIbCLk0GfmdDObBgmmhvO6xtSFqTbY2RFNS3Aol0+2c3M8NBBvZvnEIVZs980St2D6WzbHuoLgRvUy2Fgex/YWgutOPpbFav5slPndqgkJy4jESpmYrMajwTtEsDbtH4oYTrDQX/US8/kFx/E1Pdt/TT60YfJyK68/0/63IVz3RaoqrWvQvp4XUj1yPWpX82Ra9q9h/6Zx+Yg4anZtuzDCSgdPSnk2x+w7z3scAGKWIj87x8zyF2iF20L0hRjNqlIbrT613Yg18OkdXHeXdnjDLZRAqc0H8k6NkqCqx6c1zwsurlE+S6J3PX6BnU9Tx0eHlPy2M/3E6tCJcX3IRQQABAABJREFU3Y4hjmQOnR+LFbfWcLSAqsZ/9EzOy6QcB4KHR8wz/MkUcwuqrzCbGm0Met8QJjn1owmmKrDzgn6eSbhcslSlKCBEScbe7IlVRXzzklA6iusaP7Hc/enHQtPMRc81edniXmzAe/zJDL3vUJ+8gscX+GUmlKoYaedOnO4WCruTPJDdhaWfil5T+8jtT5T4ckJ9siTbwPQTscjWXaRZCl06ZBFfBPqp4ugbcPTeHt2XdFOVwhVh88Sgelj97ilH34HpS9G4+lxz+xUz5oo0b7V8+Z3nfPPjS/qbjMmzRDPfynBQn0UWfwjzj1qqCyc61UUgZpH6UaR4YVl8G1ZfjHRnUk9Vq5l9x4h18JWnXhrahUvUUrn3dSnMBdOK0+fukaabw+wjGUCqc0VzEpl8ecX2O0uW3xSqqC8j008k18SXUj8mLxPbRsnmNxrZXEQN/ezg9DnS2RMYMl5zpfSU5ceB5qKknxjKWznnxVWDLyzd4uCMdvzb9yjvCdNcwPYHR3dcYjOLudlAVdNvd5j0fGkvpoQ352T3aRCuW3m+3bQYpWTQSH1wvDwX49TtHgWYszMInnh7N/YPejlHGc38d16hqoYAo9lFXG+ITfV93XY/0oNIHKzvlBKf9IGzqQ/N8ohSKnVInFRq5Luprhd02HuZ4hJvbkSYB0tOEB75EELW9qgm+boDyhlUE6DpaRczQqYwdS5r2yhWsLaSSb0vNZkzhyA/MyCLMomrXsIQTSvip24qtCQV09fnGlPLw2CgT6ggk73d9dhFCkA0aYIvEjrbDtZygnRGDb5U0ETYimODW7c0RxOapRJbTS/DwGCfGawSa1zS9sbK1w3Iny+BAKZSo7As2IhOTqbBCiIQhysvoYW6P1iEmjbiduqAXCbqRwzy+7aPF8LHzA9BRUOI0mCBJwhoWukuFSaHbI18QZThSZf24Nc+CAATDcsUJumJkpNF2mgNCLCEI8WxCOggWzK5xuQakebHYHbIdu0BOBALSz/PxPmk9Ql989CK64pO4uIYo1B90kbrNfqg0dCTQtH0aMEH0nhjdLpWu0MjPNjUGtkoxiahed8r3O/H7BiavSH0TSklFLmH59QH6PqDtbKzIgROoWBRy3+rxMVXMRJJqChChXn4GanI4dxmTobWwqLrXpJyQV4vSq0YnYq8H6+XaFLIX+PlfaVtrfZhvObRCZVcGEESowz53SJLlA3GADTv1Gh9OWwxeyV/NuizVIiHDYRPm0I7UCmHmpM2sLkMDjJACMUh20b6HlSvcDtBB7tSHUJDrYjWhyCzMQS1lZ+frwP1kaE9koZJdwNokShVaWGg+oMpRTBq/N1Ng9Qjw2sCV93HFOQof6+8ULd8JjkBw+Zm+PthgBqsQNEKX2j6tDEydcSlNPmQiYUwyLZDNmJpi5rCEKM1ozZF+8P7VjrZe+ZOLDptel4NYEMvtsSvh9q1EqoGh2Y4XaNCi4jofZtCyzy67onDM1FrASV8YAjhlDcouiM1ySEGscUfQnkTOvpjfShFDFH0Nin8VCV7UpJl92vhpClcbrD7xpiRF68aL99T5vL5B7l3hbop968KcbTQFrF7d+DvKyVCYefwpcOXFrsWjYbu5ZkajVyDg1YAY1K2BNj5DD9xEojY9AIetkHCSBudwgEfbFPSJRSc0Cx9GQmVGmMBQP4t1zOQGA1SX0SI3pfidhdSODKA3Q+WuIfXGVgSuge8oksFKZpIPxW9hK2SfmMm2xEZ3pUAAzHVDJMaYn94LVwgaqkZKgnfB4tcATjUaBkerfQVB3tyqQXykE/nI6beJ9kLRyV1ynSJZdIPAnW5Z1Winw5hx1GL/kw2KQhDYnM438N5EbqnHgOSxUpdQrJ16zG1/F0/tZgVoulI2Wajrskffi7eE0NAZ060pp0nluZQv33aonoP2oxGLhRFCl6Ocv1OS+khkslN9EFMMKwlNmJhrXaV1JvpZNyc4r//7emP9iDSNPTPnmPfeIx/9xx7vZGQqKaVRuPB1+oQUI05FNLUFPjcCieu8dJgay1i1RCkQdGIsHXi8BOH3XXYu0rCCgc6mJkQSod9uSLe3eM/9xOC6i9K3D4weVZTfrRh+rsbqp98zP7cUg6uNsl3eigKtg7JzUEz/XCLn2Vcf7XE7pMw69Swesdx/J4I2utjlaZww6TusauKedP//7j7kyDbtjS/C/ytbjen9+767d978aJXRCrVUZlACUrC0IBBUeSsGGEMhUzABNNQZpjBjAmiDMMwjZDJjLGqTANRQpSUkrKTMjIiM7rX3b5x99Pvdq1Vg2/t7fcRQopEEZGK2GbX3rt+3c85fs5ea33f9+8IpeXtN0qaE0VzMoUAq+/E8dAdNpB2Dtqr0YEm20B1pjg8hJgW47N/O9nvfio/W10kuohWVGdSJM1eeJqVobrXU7y2ZNew+0IgTL1sDodho2GcTJqOUShfrAPN0rD+kqa4isyeB3yiNZdv5TNr55r9fcOL/yvk1wa7l2mr7uQxBx2KrSKTz3Y0yyWgaf7kAe81i39QSq6AgurCJmFuJNt73KbDTyzbx47DpVAZzn+vZ/rxVl63M3R3JuQ3PQ/+v6IRai9n6UZkTFD3GcKPTz7iwSlOXu9R2wMZiCZgvSOcTNg/yCBmaA/L7wThb+YZqmqZf3+Lvt4RQkBf71BFRjxdCk/75RuBP2O8bSRihKDE594Y1EoculTVEK5uCIcj9sE9efwh7TfPUC/f4N9eEWL701ii/8pcsesw3/tMRHc2ZSPkGlLiMSAi3aZBHY/oV+KgFYuMcDqTtflmK7zY5QQdArSt0KxixL94KSjUo3vEhJ6aY4fugmzKzlI/XAiVs4+4Fzf0nz3DfOULhEXiE4QwhmaC6ImcT4ncBmlCQhCkFtBVjwrSaBzv5vhcsXssuqzJKym49/cs2UGec/Im4DNFvdK4Q6S4hr4UDUj1WA6M8o0U7Nm2p5skXdZNQHk43JUQ1JBBdQf6qTT8ulEjbUtFCTQtr3oxfah7EVhaTTx3RA3dzLC/r9n+UoN9k5HdyB6mO0Ef3A4WHzU0i5LmRHjoto5cfVO+785vyucl+SWyf9QrTT9VtHPZU0anu31ke65oTgN3/6FQQ9dfdKPbl9tHps873vyJnPo8Mn0ig4l2BdkNrH54+3lInoGhnaVUeJJBx1wKJ+017cJi2kD57CCIfNuJocQko18VRDuRpOo2UlxJrlO3sMSDxzSKbvbONNVowuNLmVwea4JLKIUzKBUw2wMohcmcPA+CqMTcEZiiDxX+D36IOV3B5bncq3Uj+qcYiZutpH0X+ZinpeYztFLE5VwKi41Y/Ma6kedoW0FTPu92/4tzGXEaU5MS5lMJfwyBuJhKA1i1kDnM2UkyhrCwlniAcDyiJxPih6fofY3+4RPiFx7S3l+QvTok+gyoY0P5cdK0th3WXeAnyVI9Rvzd1e3QNImQq8uCYGG+77CbmuWTK+JiSnc6kfDUuqO7O8fnRpLVTYb/YDoO+nyhxSjlyY5cKUw1HZuo2c6jfaC6yOjzlF4ehKKpIrTzhOylPAtbKfJrNTb03QzWXyq4/uOBmAfOf0+oh4d7tyh7s1L0xW25mW1u3/LiqePj4/2x4dm/FzBHxer7YljRnEb2D4WN0JwFog1kN2ktZBrdyWvMNmAqS3U3jHTM4GD3wJLtUsjytkeFyPFORjcZEN+IbQZDD0VzKme4O0gTFV+smGppinQr36OCuJsWV0IV2z3KxqHM9EXA1hG/fCcTTsnraZeCqMyeiknP4IKpGs/xvamgzQf53vxGkNJukWGPPeXHN+y+fsbhrmZWLsg2PdmrtD7LTJqiNqBr0fcQoiB79+8KLXYtzqL9zAj1rmrw12tB/j54gN5JQKdKdrxc3aCyjMMvPyJbt6h/+ARlHarI6b5wl26RUf6D74rm8uyEuJjRn89wL9aEt9d/qGX3c92IoBQ6z4l9j9lUo2831t7a8A7oSBVQFeI81PfSIVoRng5TSOWlEVEpYCiCcIa9R9egOuHdxdwRlzNBSkJIriUp4MwYbBXIdio5JKSJR2GJ80lqOiK+sKg+MHntb6dtCXHQnXTkEnwGxXUQvmElNrqkpEHRIzAiB8Ep/Czn8LCkWaRpRJXCcGrIt37Ul5haGp9BAOpz4UG3qzzZ38VRaO7NbZEPt1xtaWZkQ9rfF8i2fGFFF6Igu9aEvcIXMl09XIpoS3l5LJlyDM41Bu/A7eQ9ON5RY7iapMArDvdE2Oa2WiggTdKjOMQ3W6WipZHP0x0j+U2k+WSCDeAOcUSVVFAJSRGeZ3MmoT62Fqg228p0oV8KTCq8cyXcSQS1UjEkLrhKHHZpqEZkp5OpR/V4iW7nZNeVvGdnK1CKfB3SJCoSM0uYFFIowO1kXGvirCQU2a3GBEbeJkbL/V4lv3sjIsvPISdB4KR4PKKKQu7d1GSrokDP5wT/CxoMMFwxEppWGsEiwceZJQZ/i4haK9PMEOTvfY/qNHqbKFxeJsT6AHGSw7RAvd0Qmwa9XIi2JD3XuDcoQ1hNxcXGJQSg6fEXS9T5gjqJm4uXRzEn2B6Ik0LyRKxOoWPSjHRLSdZ1qiHk4nJlj1LAiu2lYvaEVHx83tUuagkSjDpNB9M6GL8nTSgH9ET0HGKn3Szk/rZVmlJmauRt24MULjatVdMIxWuwovaFTQiATEt9DsdC9FzZswzTDEhvMrtIe4sv7fj4Kum7fCFopooDlUoaKneUn5MwNmmK8q00Xc1SaJduLzo4MIIuDewiBb7UyR70HS1ZUImnfruOsq0gh+1UcoW6OYRM9i/JPhH9jOoj3apANx67kb1tmJSq4EXH8g41Y0BLBk3NoHEb0BX6gDkiNODOC+3GJ8TOaOGZDwi+j4J6WE0sMszJUqw0m5R1Y4wgJIPWY0BPIFn1Ju54CLfIHMjPJX3V5xCBX7Ar1u1oS6p6Lw1Y30uOiHH4k6k4aQ523b0XR05jMGUh9DalBOWcz4ghYI49qhXDijARt01VNaIDnIltt9qF9BnJMGKwgta1WAK7iRVnzSh1QTxbEI2Sn+2THWwbUFbTJAqP9jHZUicdSRdHR0V7FAfP6twyed1jrzsJMVRpfXeypvvhjE5hnrpNGsiDoAnBSTOf7SP5laGfaKrzmPRb3AYuD483nveJuVBLppfuNLqV763uSANRn8lrdzstdUwtKGw0MmwIWdKqaFmHYxipiqigRpvuvpRaowuK4Nxo7KM9ScOqaBbSaEQj+4zykG3VLZJpVBoGAQrReuSih5HaSwYiw+9p6gAISlSdpyaukXqEtdRkUSuqy1z22X0a/GSKbBtSZpIgo740Mticu2Q+NLBARAM2GJ5opbApcyqUDpXy7ggBioL+RMxKsnUvIcdNi14tRVdai428mpSid3RWzCyUonhbyx70wXsJFQ3EqsdFoCzQWgmds+3QTX/LIOo6YvjxaJw/142Isg61XAik9PTFiB6qSdpMu9s3ITbt6JhD8LDeSCMzmYjVWP6/sxkzZkxLVk2H2lfQdfiHF3TzDOaZTA0aL3B9brCZQzlHtm4wtcWta4HSFjldlsMiByUNSj816E4z/d6VvL7C0Z5Pqc+sCLaUop/Iopl/Uo05JCqCO4oAKTiZCA4HeF8oOM15+01Fe9mz+ieOfBvSAugpP7qi+sIZh3sZ+VYOlW4uicP9BFRUgKWbQrQRvdVJfCXP3U3FF3sQfQ7uVr6A/fuR/K3i5A881ZlwUBcfC+d0+76mLyO7DwL5taZ8HfEldPOA6jW6VzRIEzF77tm+ZzjeD0yfatw+UuUSrrb7Wot765h/lNx6vGxWA3JiatkY3F5+t2zdYxrN7MXtx9pNdLLKY0xlDk5RnclUc/bck+0E9arvzTjey6nO5PMorwKWIO4nxw59bEfBaMhF7D55VhNyQz812KM4WV19MydYuP+/toChuShw257JZxIqSUwZI4XFvfpRZKI/ndLNLJM/2EojHcLYjIyBhruDFA7pUPyRK0b81TV6OiXeP0sHV0+clgLdXr+Bw4+37n4urxglsC0VVirLxMUqifQ4HscckXisiPvDmL8Sr9cyMV4tJLthu6f/0n2a84zZ87eEzQ79xffE6hbQPqXWB0RXdFGMYsas85hdw/brK3aP5PAVBK9H3WzpX7zEPnpIf385vnSThOuHuzaJHCWJ2Jea8kWNOTT0yxLlA/NvbfBnc/aPJyOVimTHWZ9KIz195emmogH53JUO1ODAZxp7lITyV3/a0c0id/9R8unPNe1UYw/DNFHc5oQSKT75dt/SLTLapRwxUYuwtJ1D9aineGm5+B3RqjRLOdTVO5Sq5sQmD/zkspUpQpmKY4TeerwbKd+IAYdMQCWIzDSR8m3H7mHO8YNItlVkr+S525kSLVx7i0bXK0O+CeSbJK7PZDoaNdTLRHmIMPv0iD40HO+eEjJNc5Kar0qKA1vB9IXQ5w4PC2wdKH0QOp7T2F2Dajy6CwSnaZcJ2WpvqVt9MVBaNabVY7EJoPZHuSePlQwgVkuhDOaZFBwtomVUilg6yWS5d0fCznYHSPc8dUNMBYpoIXNBO+rmVmidnCZD00qj8u6e8mNmA/w8XnG7JTaBmIYScbcjNA12MSNmjvqyxB48+bERukrTCsLkLLHMRppnLDPJd2p77NudUDmNxqegU3OzhZMF/ckEs6kxxxq/P4BWmO1RmhSAtzf49Zo8+wp+kYOP+NJRX+a4nSe7qsam0RwkILc+k7qguI5iADNTTN5E7KEnTJzoT3YNx7sZ6y+DrQ3FC4879Khg6BI1qnzbc7zjaJeCfvoshY02itnTMDIAJm89+VVLV0qA8u6RrOfmJGBahT0oQWDXgd3UJHG3sEDc7tY6v7zqUT7y7N/K6GaR/SPJ8Shfp32miqmAh/1DQ5tBWHbSPAHqxmHqxGIJCncI9IUmZNApNa5tlDhaqRBxB3l/xOkqiqXvLKC8Qj17Z2DRJWpXOp5vviZ7QnGtxkYo20TynSfb9EKf6wx96di/F8huNJMXsHjSC/uikBph+57BtFBca5qF6NiEmu7HAU47E1Oc5kQcQYu1RyWNcMyNDNm3O7T3qBjplzl96VB9iap79M2WkDt2jwtmzxuyZ2vJ/eh74sN7Ugtcb2RvSPd5dIaYOzE8+P5ncH7K7pfuiO3zTY1Z78V1cjqRQNTBYWtrpe4OgdB2RP/jQac/142IXsxEZA5SRBRFol4Y4bUeb4UykoDcYd9/RCwy4hOpTvXpSiZEfX87Se5Fd+KnmYTJbQ8CVc0nqLYnu/LorSSk9udzgr11xDB52owUEiIUoyApTkuzsu8wdT9OMWIpwVWqEV666WSqEKfJtWaAVjNxh1g86Sle19R3itsJZxWZf9bQzSzd3FBcK0ztpHBugrhCLSz+63c4XBqaM0W/Fo5ocRXxDrqFHOimiymIUBMteBvp5wEVtRzUmWguyrdy4LcLSUL3k0C7UuweyUYTDOweC1oQsgj6dsIXnEI34KKmuJYFLvkDChXkdU2fSXiT7qG6lA3EvXEoD8e7iuVHgcnLDhXc6GrhS8X2AyV0u36aAsqEDyrIjXxfvonj+9rOZSOZvhJOfrPU9JMcc+LwmVAw8o0EEsq0Uo8uW7rLMbXwfOtzJ1Pk5tZRqLjxuJ1n8anHO7Fa1b0YAgxc+e5ygS8NphJbxbCajsUWmUPlmQisU4jh7b0/J5ytxE7TBzgEWQuZk/u37aS5zhzKWXRRoC/OZXM5tsIvbbtEt+h+4bnfsarQg6UgiH334Zj0IlrCIWMk7o8Qg+wngwPIpBBkKnMpqyVxqnuIDy7Qq7kUGnmGP5lIvkju8ItcwsnakCB90X5FZ8g2PTNlcQfhe9f3ZpjzCfZsRbAau29lX0jOXMpHJq96seg9SHhhtIp+7vATK4hcr9GnM5rTnGahcZWggiiIUcTm2idENpMiOtsP+TnJjS/Vm/1Up2mqYvJCnOgOdw1RCd1g0GKFDDorjXw0QhvSHbhDRjdTyQ0LadJfRMoGorHoTsIPdSeOe7svQHCR1XcUppPsn+qO4ng/sPoDxeR1YPFd0b4dk3Xm5JU4/PSlTGsHpDY4RXUu9Ctbyb8FlxDRXqbDUaUJa1prw9e278vvUbwVRNO8M9DrFhl6YpOzELid0EGmKQF6cN0JuUluZoaoJ2Ja0SWEW2t2H0wl2LGUvWX6ohFKTaaZf9ZIozm14sa4bUQHMi/Rm+Smdf8SrJHck2FL6L2s+bYDa2gXWXLmctidRjcdcTFN+qQCeo+epoyRw4GYaFejVmQ2AWcl2CxpJCIJDfkxi4ufy8sYVO5QkwlxPkXHiDpWxM0WVTeUpZP9OXNpP043SBrsDEh01Bqspl8Ksum+9wwOHereiVgxf3CJ7gJmL+9lLDLM+aloPBaTERFRZYa5f4f2XL5mrw4JESzQhaaf5+jMCNpSSPO5/LiXc6YOqOASag/BadzbIxhFfW9GcIrirSKYSH13klBRJWiiU+wfiHFE+SayPoFu5Vn8jkG3sH8gKMXkdeBw17D+4kTCiatIuxAWBMjPhMctxAmkNHbTMrpg1hdidGGPYBuDbiPZRmEqsQfuprD5qid/Y8g2iupS9rPT3wvYg4QumlqanaGRkDcujpoOSJRwdasFOV4qVFSJcQH9NJKt5bXs35OawB0lj8zWkd1Dw/5x0ru0cPqdkAYaIr6X0Gax7F9/mI9OoqaNPPxfAu0cCWOeiA1hszL0RWo8GshvPD6zgrJa0bAO1sJDbok9SP7J8cIwee3FbrgRZDRcrOiXJc2ZS/od2L83xbSRaQioGJm86rBrYVUwnwmLp5AAU72Y3TKDNvsx6kLlGd3X3icaRX7TiRV920vzGwIcK3GhjfFzUgi0xsymxOhg+y9edj/XjYgqcuKmSoFLueQtDMiG9+KE8649Wd/RJ//+4mot9JbZRDJI9mkTsUloY7TY6dGPIjS/KDDbWrh1T1+IuP18PsJ2WJ3SaqXw9blQkdy2xaeMEFP36PVBChdr8HdW0AdUI8JD3UXauUB0Ph/EpOLe0i4i09eiYfGPJnTTlOzbgXu1JZol9ZnBbSVIMNtK0mq7MHSlojvXNKeKdiGohj2KtiNYRT9VSZQ6FC+KdpVoT6UnHPRoudeXAkNKirMUB9iInwXqMKANiuYkgI3YrWYIRAKhhAx2gNluyOkQ5KXthSNebGTSOoQGRRNxWxGjtivhrOdvK/qpkXwAoMqgvvTo1pKv7ZhSH2wSi7n0nHuPz3VyxZGpaHHVEZymPnUIK1yKJJ1CFgGOZwbcremBipHiRmhazTx9vo1JAWmQb2SaOXleEZxh/cVCciCe34rDm1NHO9PMn3rwkX7mRqRtoPqpqsUMYXRKS9rvbEJ3McHuuyRIHYSkYps3WAQrJ3oIVeSEBOebGxGd0bQjUhh/TL/vn9crtH2yM5YrVpWkpQ+hS0WO6nrCejOiJaTwwlhkUljA2LDpXhqI7qRATxzus7dgRWemtAKr8YVNQlGZYOkm6Q2sxu17bO0xW9nwd1+aA5CVFrvvcDcSXKp6L4FSIVC8RabYjZfio48ytFBiR620op9l9BPx83eVpCL7TJDNfBMSyptoBL1KgWVpAJJr6tNb7Vo3kSni9JXkB139MYPPk/XvUeG2ScCpoDkRSoOfpGL/KMGjfhogC9Ar5p8KohOM7Gf1eWTySuGOkX4eiaXHtE72rLmmOYvM39vQf3qCaSLzp54+VxwvZY/J12FEEIZUdRDxd1eKKca7OUYDx32wL44qjqiRSgzZ9lT47bMnaqRWDlc/MagglpraR+xRUNLZJwfqy5J2lqyDk9jdZ2Jwke0VbudF42Ejx3NNP5EmTnei9ekLg881kx9sUYcKffdEmt19RSxywsSh97If+JOJNHxNn+yhpTCIbSvIiA9i824V0Wp059HWEEqHn8q0U/UBbY0kf697Cezse2hTATIkML/jpqeCFSS2Pf7E1uW/cpfWKJPJfllmqK4QRPHqGg4VJgUnx8zK/vruz75j/a8yR1AGP5F0c+c9sapQPuILTbu05Fctbn0QandmYTET1GSajZSmsJAAZVnDcWw0JZtGo0sjCICPt6j808O4FvrS0E6H5kihDxWxyEa3znwthX27NAnVjNhjIMw19akmX0fRQRiNmngZcraRm6+Zkb7ZnGgOj3tW3xYtRnQQE2impx0fXr7lh88fkl9rsn1MdY4wLLpT4aQrr+gLhTbJyaqWx+6miumDHYc4l27igwNaR/K/X2Irxf6gcTtF8VbCjbt5HOmdIyKsGDVdg6lGJ9st7pAoXpk8Z34TOTxQYGWfcMeA2/aEDyzdZUt/MNiDZvH/qzG7mubuTJgVRvYF78RtK+TyPNPXgck/+AHZ19+jOp8I7a3UYjtcDGY7Qs0yJ6KEH+IY+iJlnBQq6YeF2tZOoLxKNUgIRK3x84Lm1FGdmnG4VJ/KPlm+yMQi+LpCHWoZPp4sCLkktasgA/EhWT1ud/itdA9mtaS6+xDdRSZP9/I9Qy5fjMIeGGvsRGMb/p7nKG1/8RuRsN1B1aMaBYcKHSI6z4RrSdJQpDAwDdKcfPpKAt2SD7jaHkbHkViJ8j8+ukvIDO76SHSG5iv3sYcOc3MUTm6RoU9XqCKnupCQGd2E8XH6iRVqThWw+w77ySvUg3PqsxntKsdmQ2aFuCH40lHfPUsFaEBNb2Fw7cHskwOElywLvnHO5gMzcjDblaIv7pDtA9PnHW+/mdOcQr7W2DqKuNIlHmUvfOnBJ3v3wCRoUagFto7s5kqEm08F0VifKEIROdyVZmTyUsSvwcnfVVDYo5PnyKEvxdoPwBw0y+8Jn/TwQBZZPxUNhmki+wfSTE1eymbhc2hOJRRo8iqhPZ9GmqVi+7Ue1WjcVtFN4Phoxs1XLD6H/FroZbrVqJioHMm1o52JHqS8DpgqSBDin5qw+9Bz8m0JP9y8Lwfu4IYx8OhVlMIKheQIBKTo66VpaxcmTTeFO5vto2T4xFt+qWo8xkug0ejOMWiNhqamDei2Hx3JgFFMZrIkHsscTArC6q5QNhqP3tdSrNw5k5+52crkcjIRyuJ6O2bsqGdvRA/R90K/sHYMMtO2+IWmZtm7F2hTSON1PIoexFrJYvEBUzfiIPTu1bRCSSl+NB1WVR1uq7FXsn90712gW0/22bVMmbuOoiyImaO/mI+fs27Fn19NcnzpRsTD7cXuOf/sZhyeDELZd58/5Ba/FCtG0wRMK/dSX2qMj2RvDti9w+1yjpeO7WOL28vP7r8iFKLFpx53CBRXPc2JpVm40Q1u8jqMBhLd1NDNoD3oFLwnzcv8U0H1bBPZvmeoz9IkMkD5QsTy7hDpS01fikZDBegLKfxdWkfRiqV3tgvMv2/pS0Ozkn3OtBHdwOGYo+9Erq3F1CTKSKAvFbtHmmwnk8f5EwmIu/nqhGgF7UCJPs80gqy2S7H6XX2/Aw3NwozFSl+o0RLY55GrX45Mn2ku/3GNLyQxOb8WZLIvNKFWZDuxAQ+5HZu73SOpwMqr5GzUDCnRmmhlwrx40tNNNZsPZF8WZzNBU7FGkIhdTZgXHL92gT16CapcTlG+wLzdYbSmuzPHVEEmmN6LCcV8Qigyite1UIqfv5EzLURM24mwPVGz4vEoQ4pSiu3YtYlSGMUtDmC7E0TOudv7cjb9sYqLn+cr1g16rSQ89lCN+rGolbyvx/oWoW7fseH2Xt7DsxP6y5mcCdsONRV+vn7yGjMpMXcWov0qU2aRUZimI2aW/cOCbOeZfLKRAYgGPy+EqjMvicZQvhEjDN30QuPSIlSORtFcTFLgp6ZeKdqlYvoK3K7Fn81RnWf1my8JiwnNnQn20KObnvqiHG2pg5X7myhmDJOXin6dU53JWlp8LGf19VcM/SRidyYJwj35taWdK/p7AfOi4OnvP2b1RtZ5n4vuIdtLWPHJ98NIj96+b2gXsgaDhfZUsjfit5eUB4Wtof7hlGBg+55ovrq5F33rTNDJyQtFlYRvbcoVOd4LhDyAi2Svbo13QqpJVID8SnRrx3uyRxIUwYmBzuGORXeR+e9lIxp88+US0yXL9YQyD7lLJ9/zIyIFcPyVL9KsPk+XHgagF/+kEzvjrxeYBmbPQsowSprf1NC5I0xfJgF6ZNSsHj5codtAflXj9gafKYrrHnPsKa61uCseGkE03edfg4pRAjbbDrZ70ZKVt4MHs1iAtSx+/RNwbszSiWUGNxvCZifD+DFXSwTw8f8Eu+LnuhHBe7E9DBFil+hVRpxwYhwtfWPhUAcrH8ZRJo1MhCcfhwmQ1qM4LzrJeJBCJKcvjRR9IQjiYRR6UoqjjktIQkSgrolMMKK+FV/GpkV1PgXY3NrfqiBFc7SakIuAXPskYPYkLJFUGCRxtrkNFRIrXykChBeqKDqhX0hAlyAJPrulR+i0X6p4q/EYcr6iHjjKgoSYTqaMujKoTmBEqluhVcxurUAHLmU0ibaRHDCGcLAQBNL0OXRlgl+bJGizEVurcZIhVKpbykW2j/gcsAEajWnl9xKeeyTk4LbyvaZSKeX5ncdLm8cQKuYLsTiNRcDUmmznqVeCZJk6vU/d8MO3jzEIYk0t1rrSVJj0GcVkIRhvc9OiQN06ioDUJBG9bj26l8bVtGF0wxEXE2SaFaLQhgb3FBA+eObwuZGpUpumE30/HlgKRLiaWWKvRuoiIYijVrqUTrSjYQcYboxf1MvZd270eLt5Dte74n6Gb4tChem9vE/JPllZC12POSixLVSiESNETFWLiUDXy3RVKaHVDQYTSok4cKBwOLHpFPpWEDtwa8SRRylU7wlFJmirUUSjxcEmWcLqwexgakS/FQKq85ha0DGfKZySe7KfyPRxWPcg66SfSEOgO5mGRitFzOgMZQBkyq8CuEPAdPL9wZhR36G9cL5NK438EFZqWiCtyWgTRa0TTZgKcuDaoww0+gljUrv2ira24KJkfhiFrRVqk0S1BYRkiS7vRxj3M/m7SsgPt3aa456nknFH2keT6Fw38vP9aY93ElI4vO+8854Pl+6jFIgDjWIq4nv7QlDb4bXojpEmkq87VG+xlb41v0iD3OiMDBzSPemzRLnLDMpodK/RG5kYDPbiguSnxtrIhFwfW3HMO8r9qYwRRzjvJagzWfoKFUkMWzSM5+G4BuomMQ6s/EwUw5Zf5EvZ5OnatBLY1neoYnaLkOJR1TucvcFqt2lFe+OT/ibZYMteLoOf6GWNq8aD1YRJduuQlSzYBxOYqLXsP41HTTIJnJumgdk7tq6hUASthR6e7OeHBPCRrQEQI37qUK1Bv75BWYM5Jupv06HOCokUcPKzuiPZ/aeX5+XfVJThXbOQgeGo7YLUUEdMIbWLPSqmz5O+oxPxfDRSZ9gYsVVPN7P4XIuDXxlxXhFtJMx71N6SXyXL7ijnvOjN5HtjFvE2ikZjK6iOOUpDEFJie7QRSo8rO8KVHa2DR7OI5OApgY7pa2mYCcLI0H0k28RxD+snCh8SvdMmkwkDaHBvAqYWOmbINPWpGPlImOAtrVdHcLselBiPmDqONsNiLR7Fwa4XdMYe+rQHyfBDdGaaQU6k+4A7ijmCObaQAljpPWSaUFhMkxwjh/NusAT3Xmyj8ww9nUjoYS4fvL9ZiyPkpBjPQNLPKJ3fasiG3LIYx6H8j3v9XDcierHAFFPZLHZ71HIuXVvbytSnrlF5SiwFQlVhL+8I3JyEf/FYScMyyVFaUqn1oUFVGlUJXzfb5Kgo/H2fG2kcLgVRsXs/BldV58L9nbztsUdPcyLBV7PtHZlivE6hZ0Nxm2m2X5iKxe+nB9mYrKa4FrFodW6FIjFTYw0lk4SebK9pZ5o3f0oWm+4UVa+BnJPvtdjf7oSrPLV0Myn6y7dhTBtuVrKg50+EY1ifyORk+4FGIYd3fSbN0dnvILBjLi+8nctpHxysv9mjyiSmvHbMPtNkG+FfHu5LSvr6K2qEPbcfRi6/8ZrtzV1mLwL9TOFXPd2DiFo7Zp+kCapXHB5GQhZZ/YG8/tU/yUaPc5TkCoQMohErUtNFpi/EKvBwL1l7djB/Koti99jIFGVhKF/D5d8zLL+3R9cdzWJFNxWhnz3eTkeHoiNYRXWqKdaB2UdHQmnxhWX2WYXygeaiEIpMfTsNUEH44roVEZ5pPLr2uKdXcuC3HZP9GWFe0K5y0E6oVl1AtT3hZA7nC7wWDmrILbrpyT59O/I5SUUrHz+RJno+F8riYiquS1Zjnl+JJiLPRtGpmk7wZwmfjhFev/mprdN/Ja6mw19dyYYbIyoXy1Jd5OJ0c3kqoYTHz9NOYoyo7V4mQoupDBoWpbynH10TFzNUUZC9PkiRNwxA5pb2vTO6qWXy6RZ6T1iU+EVG9XA6+vZ3U+key5cNKMX+G3fxhaIr9UgNGhC9+We3RWK7MHQTzexZiz32BOsIzlA9XuJLTb00mC4yeyEC82AV+Y0ZxZa7B5bqTnJn6mH1/Qa7b+lnGTdfydn+WxXm+xOWP0zi+FzRX3T4o9w/3slr9AWETGhKplLMXkqIV7PQVBeK6n4vKKUH1UlBkWeK8m3k5HsV118vWH9ZC0oboL4IEBXuINx199KNiG1PJOSy1xKlkfE5HO4rDvdLVITyVaKWIvuB7mWw0k2hfC1DmuOFFW3L7J1GJNX+02fys9XekW+gW2b0E53C4wqx0yx1cgKSKWhfGPb3DfWZTEdtRaLYGjYfGlbf98y/c0V/NhWk/fUeBxRvJTFbVS3t/SXNiaM9m6C7Ap9rbOVZ/uZz2vfP2XxYMnnb47Y9Os9QXY99syNOC6qvXGIrj6479L5B1XJuxdzh//iXMMcWtbmFO1WRCy34XNa/6jyhkAFH8f1XQk/shO7lqxqtJ/Iz6w1+syUUv7iuWQDxwSV6fyRer8EY9GyGPl0RJwXt3bnoPA+3+tP28Tm+NBT/9DOZCp+ewP6I+cfPMffvEpZTBtvt7vG5DIy6QHOaU58aJq973K6jXxaoPrD61hq/LNh+bcn0eYN9s6OfOrq5WEcPwwC385iqIzhDP7XcfFnWysn3O4q3Le7FmsPXLlh/wREyRXNWUJ3LwM0+eE8ahsqDyVGdI9rUVLS3w7RuqkajmHJVk//tuehD64BpNLbWowX47hGgDeVrQTNVozCVONgN+WGuClK3/LmW6BXudUF3p+Pi7hXd754zeaFGClJzrolZoHoQMUeNbmD2VM7V618OxNyDiSgT0TbQ7EtUr5i+ENeu/UP5fcrnhuOjSL6q6BrZg9Z/viK0hvk/zUcmRn4tmUJXvxQJkwBYef3r25ptoFTm1xLSmu0C6y8ZZn/2NVWT0dSOm1cldmeYfzogwbeOeuWbDrdpKF4bQmG4+XKBrSNnv9cIXbxI5hg+svi4For8wokNPNCeZvSlZvFP3whjorxP1Ip2leP2HZM3h9EV791sq35ZsPnihOnLjPylGfVElClP786CbuZoTiy2XqDbwOTbL0Rb+YXHspeUDlN1guhPJ5jMydAzz0RikHRS6kVLOB4xRT7M3/6F1891IwKM8KiyCfHQGl1I5xb3B2LXjdxsXZYM3tlDiJsyYl8YrUmbbxyFZuQZ0ZrxJoCEXlglX0vUnRA1Pi3iQcQ5OLlEpeiXhXjCZ1qmnkEWejDvfEpG4SeWbpI+Ei0CysGe12cixpZ0TjsGBNnjgATIc4pA0WOOHe1JRpc2LkgTyWGYlRCRw93Bm16EUCE5Y4hNnzx3N0uTxTYVBOUttQsbUTYQe30b9JemkkMKe3CJ8tSA6hUhCqzaLGRzCXtLnMqIoJsx+mjrfkAwFLGN2EOknwotq5/IBCJbkyaHgtJIyJC8tj6TzyKYZNUnxiX4Vo1BR90qh5BxvCPuGpD0L7UgHzrx8IlCEzNNmpJHmaz40jLYLketiNaM9K+QC+87GilghvslFhmq6yTROFlFtyv53F3SDITcys/4iOo6Gd7oNF2PouHBWTngEjc5xojqWpmwNQ5F0jZkbkQHlbXElOyuKqGooNSP0pJ+Aa8YonDflUwnRxtSI2FPqvfvZk4KZUVreY9TJgvOQi57jSpy1GyaAgkTbWU6EUTDGnxuCJnw9NU7UyKZtKlxIqf7iKm6ZAHu8E60UFHfBoFJInhIE06VEIiI6WQqKg5w4oIXjNjQqoTQgdx3+U0cwz9HYbWD4KE5cfjC0M20UA1rS9YwNkymA/fajeLO4Y0SC04Ri5oa2qRb85kIQM2yI77KMVUKEUvP2Zeij+pmCl8EsQNOt6AK6XH7z0/eQxYTwsA700X5e7sQfnY04LkdJIiYVI0248HKoGI4IAe0ebh02hfcFtF+rYRGq32ib6lk+61kH7S1uF65Q0KJLageSaDO5D0JVpzvQiboaZglKpQRLZGy4tAoToByPgyfKyGiq55i4wWl1RDmhdyv1W1jGq0iZBYda7mPh5ys0orrVowJzTeiRwxiD6r7pDF5N4RzcM0KAeUEaZFJqE5/foEREe/Rx3q0/le8g1YDuvbCkzdmDIwjpsJ9tRBEM9FedZ6PPxdniZr1LpWqC7iDoKHKi8OiSgHIMelM+9Kgl+lnR0tXRv3poAkLTs40hdy3gJwzfSTbJtTUDojwLRIZnEVtekwnWjLvkqtnrqnOxS7fZ0CvaWrHJJ3vQ8CxnIdytvskvhZ3TciS62Z1piHcopx9mVh+vdQZ+ERPTkMRsaeN2K3BTwJx4uldAK/o1ikewCSKQ62F9eGUIHr2Vg8yrGUVwRwM++sJeRKxh6tcapEUbGgSWWDIASNAda/HrQ2T17xjY0yy/x/qhICpDdtjQVM5QmVxtcK0iuBu7Xx1/w4rI53jKiTjFKdkaJ0JmiURBwq9zEZTG6HfmoRWKdoHK9kfICHZCWVLIYRS6NzWCiqIcL4vNdydybBzCNpNDIzBIGE0/khhmjGxhXTdC3KWrMCHWmJEcH0KeE6SCFWWwmL5Ma6f60Ykdh3h2MlGWRZpgUM4WaDajnC9Rm+2aKXAOfTdO0K3GhwBjCbqfISk1P4ITTOGF5qU9aGad2yA5xnBaYrnGxEFLksoLR6NO3gJwTmIiNDtBWo93i9kIuDESckeRSyNFuE0Afp5xuFuRnUu3vhiQdmTJ4pQdcexXSrqD4SSMH1qsMfI7MkgwE43HYCXm2rznsOX4vMdnOJ4V6X8DaERhRyaPyuBOO3T6VhcmCY5WewZUQ+3Nlz8duRYapoTcblQAegVobLogxFIFJka+Ewmlm4ngUTKC5rjdpq3N3P8uSdkmskLKcqqu45+Eqm+0BKeZNgDZGtZ+M2JFDvzz4Qb3s8i/VSe/+4/8pjK8+rP5ML1vGG06GvPPNEFmteWfBtZPOkFYZrKFKc+0xzvZoKS/LEjfWVZfCsj20Umz2rsVg6k45dOAU3xpBsRD6HTafZ3Lb5UuF1MYW2K2XNP+cMr2kcntAtDfSobzul3aqLRtA9XZE8hvHyFMhpfOraPjViEfuwJmaU9zcjf1NjrPXGzha7Hnq6kMM6Ey+nnOfbZNWGzRU0mqBjwV9egNHp/QM9nmElJnJYwm6DWO8gc3YMV9qaCj5+JX75zhPALTs0yGl0WQjPJ8x/997c3P8Jt9ecL/NShqx597ODTZ4kr7kRjdrKgWwqdwW5rYpbh78xG2pXPhILlZ7kIi+seVQyooqabKBaf9WTrFvNqTSxzzGlBV5IoOcIHznbi3GK3NX6SEU4duosUhyAuKFWLaYQXfrgjYsXybT9mBgl9NHLy3SO+sBzvirOKPUJzHunLyNtvGpQ3o4vL8ncybEIWhsb84d/p6eaW66+KkYNoysC8VuTXMgDYfkEKdXuE7rTjK/de89kfvMfss8j+8W0zUN1RHB4Y+lJQz+bUi9bsMKCnt59DvhYtzPqLQhfL1gmldIrJm0DxtuP6a3mia7yjQ9tA9lIE7SihkfgcqsuAqRXTZ/Iev9uIRAU6wPyZp1loNl/QTJ9HJq97to+tiPdfSnL08Y4mv4nYQ2D13SOm6th9OKedazYfGtweVj/sqFeGN39iyvS1xx4Dx0uZeIhwXswCABGsblt024+hvHExxb7dMf/sNf7BOf0i5/hwiu4j5ZMdRDFDic4QMy1i9U7Q1DBx+FzjlJI8jGlJmGSYVGjbTYWqW8KbK3TmMM6J0DTPxSYcJGdgoFxYiy4LYq5/YfVk4VjRf/QJejpFL+byvg2W302H++yNDDzLHLU7EI8Vdido5uFLp5g2UHxyI5lhZwtpHJSierxAhUj5Wx+jioLuvQvy1xXlxzUxc9KQVi0YTb8qCblJQnBLfe6YPq2xu5ZuNhXnypkEBA6ZISDOj6aNqb4w1F9eYY+B5Q8ruoWgIu4oDW+2bmnOM3YPLMsm4NZ9MsmB+ac1x3slm697QTVqRf7Kop9atI9iBJHrZDMbKW7kDIaCZqU43pMMstX3Iod7mqs/4cnfGtxOJUYGuBeZaDU+C+xqx5twwuQoBXNx49Mww3K8p4l3Kk4XR1ZFxffiQ+wuNTaNIb/SQuNywgrxuWhmlZchZXCyF5SvFeZJRnUZ6ZaRx/8fsSF//SfF3nv2LHC80DRnYpajguFX/+y3+a3nj3C/NaM+MewfB3SrRqMd00Tctmf+RLP5xwvm1TCsBIiJORKZPe8F5Z5ofGlAy/kTjHwezVKx+dLtUNruRWS+f6CxtUQaRC0otOmEbvXszxaELHL5G57ipsF9+kbMmqYFobAyxKrcbcbIsWX6VLN7r2D9RcviUy+5SJDo5qJRzLbgdh3m2Inxk7PQduijF5ZR14mld1FIsOGDFQDu5U6MFGrRo5jTE/zlis56+PhfvO5+TODk//z1X//X/zVKKf7T//Q/Hb9W1zV/8S/+Rc7OzpjNZvzar/0ar169+sM/uDFCy2pbCSmsW0k0vdnCzRaV3IIoC3G+camDKwvxQndOAly0Rg0Cvhgx13vc22NCMcxouwii4dCdBBKpQ4U+dsLJq4IIzfuILw3d3I2Csd1DQ7NQ43S9ObH4Qpww+lL0IT4TYXl5FZi+6pm86oTyVWp8Kc/t9iI0d7s0dUyOMX2haKdyo/eF5vCwYPulucCI6QxRvYQQDROM+hTqs0jzakLzYnKLgnhBF7qpNDxoKF5Y3EbRLKUxGPnWBnSlUWkqMUwjhgnJAHl2i0C7jNQroVipT0pUUHSrQDeT79HJn5xW088C+8fp+bmlTvhk02v3ClvJ611/wXL9tVymRAUc74tlqOrB7jR2baXpsorqzFCdaeozNQY52mMkXwOfldi3jnYh1LN+7qgeLTh+eEo3NXin6GdGXCaO4tfezg3FJjB55UfIdvGkJ9t5/OmMqCUEbvbcM3vmYeD+KkWcFtgH98WtIorne34dBQmJkey6FWvHrkcN96lKqIuzAquCTC0yBycLuDjFXt7BLBdix1nXYmHdv1Ngh4Bu0lQvCE88dt2t08Uf0fVT3SdAUI/7l6jTE3kvvRdaptbikpUoVu9aGev1AffmIIhD14u72CD8bzr0scaupRCJuRMU86bCHGVwYSuP2/Xp5+UxzKGluO6YvuhYfNZLpkRmCKdzCTFMYMm7YYODnquf52PQX3BiId2eTUQMn0K+TBMJBqozQerc3qdgP8P2CyWHe24M9LM1TJ8olt/VTF5Gims5RKMSV5luLpqHZiEC1td/Ouf6a9Iw+1zS1X0may2mtd5PI/1UNF3u2vK933uYMoRuAxb7aaRdBZo7nlCIZ789SC6J7BkSpBZc0sRNVQpVhODE1aY+k/XbTRT1mYhJs93t9NHnUJ/BzZcNzekgSJf3sXidDC+m8j6S9GxEyQnQfRSbzSjWpVEhlBZk72tnQjMp3whadLhrOT4oOD6aUZ+I5/8QGNsspVDMt2GcQo/T1INP9sNGcmEKQ7/K6U5KoQAuJ1QP57SPTvAPL+Se2rXY8awRx5x+Li5Luurp7yzo3rugOynwhcHWXlwZk9hc9WHUNKjdUYqMxRy1XBBPlzLJ1Jp494x4cTpa2cdJgZqWYoLxTj7XH8X109wr9HSCnk5lT0hXHAJKu16yiKyRNXe2kkatltyp8tmB/PWRIXTQz3JB0DqP23XYo5eQw0nBOw8uxWLniYW4cemqR/fS7JpOcrFCbujn2YjKTd54imtPtgsU1z2T151QqkxyYlxZulLTrCzVZU47N3SlNPLdVLP5YsnxTLSG7cxQX07GzJFXf2bGzZcNqlUUbzXL78tgYYgKsCkhfP9Q8/abhu17jubM0awU7VKs/LtFZPuepl3FtL7VLcVJC7rZriKbL2r6ScStDf00Ul0mfZqTQONso/AvJ7y5nvNiuxAmh4Ls2iQKOAlmgPbcU73XcnjkOd6Nwt6YQH3Xc3js2X0hiMtordh8wbH+0NBeePppuofOI9V7Lc1ZwJeB33z2mOOrKTE1DOWrZIRTRo73FId7QokTq/HA8V7kcD9pY+ogA9lUZ+gmkm0Dh0vD1R/L2D1w1KcG2wxhkGr84w6yNxfX4lhWXLUUVx3FjacvFIdLQ/EW5p+KvXDIDO0XLgmrKarz+MLSrjLai5LmzpTm8Qnd2UTqjLVn9jRQvmrJrircusFUPcFpcdbatLfujjAyL2KRyUBztUBfnKUQxEZopi93cL0R/TUIWpg59LHFbP8VyBH5jd/4Df77//6/55d+6Zc+9/X/7D/7z/hbf+tv8T//z/8zy+WS/+Q/+U/4D/6D/4C///f//h/q8ZXWxE7SSMfLWsLVNdF7CSssCsK0fKflssSAJFgrJUhI08p0o2tF1PvitTiQnDwWsXswgNAfVB8xBMkb6Fq0s8QQsEYRUnBVt5DCFeTQOjwKFK81xU2gm2gRVu3kEOtzNQo/7dGTbaLwzbuew5dPZZqXrmwrh+zgP90PmsYkIhvsZg/3hbv9rjhdd2AOCebT0Fx4WHRMv12gesTvP00WxP0qoFvpyOefpqTT01sIdRB92qOkrvYznwqFpK1oZRLRTyKsOvrc0Jw63A4mfwBXfxzURUu3K4Rf3pIoVhq/8HCvg49L7D4J14JAuipGsmGy4mD7lR5sJH/hCHmku9NhrhzFW0W2VonmIQ4Z9bkaKSNuKws+26UchUa4sIeHgabRNDeGZiU0FbcfQtUMuokSLKZPaeeK1fdb7KFj+95cXC9+/5owL6gvS3QXcYee7NUefKC7Oyc4uRH7eY4uzuXDCZHpyz41lxZ77HCvNkIP6DrRNA3i6pTaO9jJRmtQWUZ3NiNmGptZ9OZAvLkhHEB1vRgrDC44PqD3rQTzAbGT5F7yn/pM4v/w+mnvEwAYQ3d/iW4kUJCbNWG/l6lnkRFWU4H2u/Y2L+T1FQDq3p2xEZEE6zJpfFo4HNFZRvveuVD5Xt+gzlaCqB6loFBNJ8hqoru4PpAla9720Ql9aenOJrcC9kRfetcbNGpFt7h1Wevzwf7RoTv5bFUQ3nI/URzPFNlB4bYdh7uOdimhXfYIyx96bEodnj/tyDYSPtjNpBjuJtCuBmvbRK/MwPxrN9S1I//tGX4Wae/0qKcOd5Ahgc+hn/eoXqE6TflKUb5RvP7XIuH9CvPDUqgZ00ic96zO9qxfzzE3FreVoqK6DEKvyhXRS5PTpr102F/83QZ148h2UvR3UyMJ6wc5BwYhu58GWHTYZzn5leyZKsDssyghrA+FhmGTLEjF2zyR6kzcvaZPew53LdVF2gdaKcLcIbL4tOVwz7F9X9NUor/pZvJYxZU8Tn2iydeB4soT8kSr84J4Z5sWX1qak9uAwG6qEzUj4ieW/QOHaSyuyph+dkCvD9g8reW2g4mERhZXAX3sOHy4oJvKtNpWgfxKBOpC44xS8BqNCppwvRbK5p1T/DTDTxxZ16OqSPVghm4DxVNpyv00w8QoYYnbqz/8+vsJXT/tvULP52j9oy55MTVfsWnhxFDfyckyg3MGvd6jNjspxJyFkyUx6TayWqgsdgtoTVhOb4dIw9ULvzAkJ09zfSAUVhzm9kLz7ZaOvtB0U6Eul88P8niZwexqVNMTPjihyzTNQo9Nv6Sfa3QbR8ObvlTsPpCBXvk60s4U7czST4T23Hy1InQG98oxeRE5/50NL/+NlWRt7OV+aE407Vlg/mDL9g9WEMU9r59H4kS0G/UKYm3QRy2W/NfiQuULCGUk5j3qvRb/YsLkuebwyBOLQPvM4g7gqgg3AJrK52w7nUx4oHirEm08vYcKissD759d82o/Y7ub4K8ndPPI/MGW3PU443n9Ty4xNWy+4okTz/zswOG4BKC98Hztw+f84OUF3cHR/WDOZKMINqT9JXI9V/iTwHEWsFvD9IWmOVHohwd8b+haw/wzJzSoKaNRgGmEavnmlydUH7SUn2RkG0Xxgy4NgBn3+yFodfqqxx163IutWDZnlt2jJcf7kcvf9BRvhNnTzR37+5bZ855yfUjug/LEYjYgLmXTZzXF65rymUev99JYlzlxktPfmUow7dVekJB37tHBUIVk9xudwX3aEQ9bePoSvCccj2KFf7KS1+osandEd7daqn/e9VNrRPb7Pf/hf/gf8j/8D/8D/+V/+V+OX99sNvyP/+P/yN/4G3+DP/fn/hwAf/2v/3W+9rWv8Q//4T/kV37lV37s54hNg87zVByQCrd+5ILrxVwmDk9TtLbScO+CUDqx/P3fXaosUTNDf/905OjHKIJjrEYVwqOORuHOVyNlKzpDN3PiWuGULPom0Ro8hB9oTD2InuXP5JXwdG++XKQNwI7FfXFiMU0cnWuCFcF6fSp0A7e/9bcPLhUe92R6UFxBN490y4Dda+yN4uK39zSnOTdfySS8ZxKFm/kmI7+JKWxPYEd7kDCiaBXZTviHx0spHprzHrsTiLV62KNnHXGToRpFdiW0jsN7PaoTbqi9fyTLetoXM3SrZaMqBY0IFw13TnZUv1liqsj664GYxTFzwG8ywiKIUN8FdKMxjR5hUUjOF0be19nTdPBvsuRqIeIzyT5JfPtu0O+oxBWH5lSEtJMXEbeLTD8TahzIxgmJG54KwHZpiH/mPVSIzJ72AmGqWwj4+V+4Q3EdmD9p6EtLu7D0k+XIyyVxwZWXPIj63oRuZiiuOnQbMLVMJ6ovnOH2nTQNr64geLqvvzdO3YerP5/DxRy7qYUC8N4ctyjIUqON1vjllJgbzNsbKSRyQ9AlWl2kNzIS6v2Pve5+ktfPYp8AoGlxz0WEGytxDVJZJsVD36O18OLNYoE6WQqn+/U1NClBOQThfGstX1stZbL5/BVhfyADmRydrYg2pWh74XS351O0D7hnt5PkMC3AarInN2Qh0HxwPtpN617sb2cvevKrhnaVj65MuovkNz3VSc7+PcRC+AiLz2Ti0E716Pyye2jY350KhWAvGq9BIK98JDsIhbObOWlCnEoFtKK+HyBoVFTMPhOK2M03M/rOMD3InoML1Hd72hMtyEZQFC8sphXN2iAaL95ourqkuB4aLUXfW9ZxRvHUUb6KHB5Ic2CPCtXfNmTRyTRWd9IM2ajQTzKKa8Xyo479fRHdC/1MUZ8Lf9zUCtNo4jqXaekyJscueW+iksdGif6lPpVBxyDgz7byO4f8NhPEakY0qS8Ub345H3OciqtIvg3j4MgdJdi0nYmDYnNiKF93mC5w/ZVCeOu12Cbn16lRDRFfSjhltKInXH7c3IaxpiC9kCh/Zlbip+KM1qxEbJ5tevKrgGkECdG1hBSGxWQcXui2E63I/Ut5M9oOWzVY74mHI9EHJh+vhe713n2oO+yzK0FSBgTx1oDvZ3b9zPYKIC5m+JMJ9tUG9kdhVoQIVQ3Xa+a/0wkH/10650D53OwxPpAFMOu9ZC2sLvGJ6q3bZDSQOcJyIjlQMVJdFkStKKy44s0/qcTopPOiLwImr6Vhru5NU7hpTyichDCG1OAeBBUNVqFq0ZxI1gWsv6wl76cQdKKbKbJtxFWR+lz0J+XvlbiDUILKFzX61TWz53NU0IK0ApMXoBvD1s3IUiaIirLuiteZND31LSuin8FmaoQ2nS51NPBmivVydkYr9M5mqWgXiuPdJFaIkK015mXO4Rs12f2G7XyKbjQ6JalHBc1nM777dEa0Ed0oimtx4tu+nqEKj3WebCMJ6MdHgI4cjyKoPl5qymeaH169h+kUtpeGT7fSGLQLQXva0x5V9qibDNVLuGBfQnfIcK8c0yup05oTS7aR/Xb9oWNw7DMNTH6QjYwStxto/MmZte25+fqCbq7INh1RK17/W3ewx8jkTU+2iyw+UqO7YXWRjY1LszTEL56Jc9cxsHlfUPHJS6Ht1xcZpgrY2qNKJ1okLWhSdlVLAOedhdCI+0CY5RDAbA7yfc6ijJJ9oevE4noxAxw6hJGhpGK81bL+mNdPbQz6F//iX+Tf+/f+Pf6df+ff+dzXf+u3fouu6z739a9+9as8fvyYX//1X/9nPlbTNGy328/9AWRCmWVCs9JakpFjlEAxY8YwJr/Zyp/1WjaPd4V5w5ullHDvi4z2JKddudGuUQRit/Z4UStCkUk3mWz2ghOkY4DeTSvWrPYYmLwJZPswJpxGpQRi3zRpoUqj0c2F/lSfJss3dxvE15fSYESTBF2N8LbdIU3rZ4GQy83uc4ilHy17zcsb3L6Xx1hG2nOP8gq319ij2OqFfBC6S6Gu+lvBeDePtMuIO2nwE7HIdKuae+cbog1jwBmAXbWwagnLnodnax6t1uhao1tFmAT6qcC25bRhVVSSI7CPxJnHzDts0QuSU2miS9MVG4lOCpXBWvjWklDEbvkmUqwj+TqJ6p28dlszikhv7YQBLRBruwoSvKjk68X1reuOrQPZzqOHnCot1smHuyIay9ZJ9JlMB3we2T+K1CfJ9lNDX2jqEzNa+EWTRMqRBKNqCZyKpKm5TCzblaWbOWLpoGuJVU03s3RTe3v/hkgojIQgVg36WEv2w8JKIV0WYriQm9EiOCbr2ugMYVLIn2nJj9jZ/oyun+Q+Af+cvaL3gnrupDAgBOG+ewlxUnUje0MpoaihdAI/DyLzEIW2kiw4Y+YIyXEkNg3h+gaOFaGQz0elQlCFgC+1mFAM1ocaYm7whZXC73otj5P2BwkLhWzdYa72YyDicGiYqgctA4V+Joe8bP5xnIRqD+0cqksSVUAsN90x3oZ7tUPGhQSeBicHmEli0Ghkndk6ZQC0htjpW9vYqFATTzxrKc4r9KrFHsXCV7jo8twu6b0kXV4stu1BoQ6GbAvFWmgUfubRjRotbQea2kBlkjUC2VaKCbeTvcLnsj/2U2ju9HSrgGkQOsiN2JoPe8YwCIpWfc7C0+fyfrYrMcwY0onDYH/6ztxK9/Le1OeRfgIEed/ytdAnihuP23ns4TYTQJBvsdbsJ7Lfh4RC6sZjDh1m3ySuthcHoxBxb47YXSsZI0DU0oREjUzNh70nE2TIHjrc1QFztcOkqedAFcJqsd5NFM8wy8Xa3ge5d6/XgrJ4D2/X6O1R6EXOEg+HWyvwweThZ3z9LGqKwS495mn/LTJUCpaVRkwRD0f6T5/g37wlJEMcQMwrMif2yMcKvTtK49J2hFQ/oEUIrY41KogNa9RiANAXohsbkE97tUdvK9SxSXa9Ebf3gsothNYdtSJkYowBgv7bSu47MT2Q9Tue5ctAvxIWQbSCmKiY1lc6l6YvIrNnnsnTI/ZqT2yFDmhqoS23M2F0ZFswW4MKaqRRq160GcUbeYzyjXyfUCVlnUcta1l3CrdVSduR6rAIvhTzCe7XhIsWP/foDoq3EZt57i53uJOasOykRjDyJ1trJs81bq1xO8kzMjXogyEeLV3lsEf5WlTyfL6SzbCbyZB3/jEUr0Vrmm3EsMZn8u/NWYBcagWdBOm+TO9hbcjXisnLgC+gORls/qFdCk20upDPQBqkpEfrPLrqsZsGe7XHvN5Ig2AZKVKH+4rqXD5vWwUmb7xkxuhEx89Von2KmyIIFawvoZvIPq+9aBZDpvG5oHXdzNFPhOatj4245CVX2Kik4cAoOR+bTmzsfZQGI0TRVFor1PEsk7qiT8Gofc8fxsL3p4KI/M2/+Tf57d/+bX7jN37jR/7t5cuXZFnGarX63NcvLy95+fLlP/Px/qv/6r/ir/7Vv/ojXxcNSCEbRXYLbxOWsmGUOTiLtVayFvoetT9i6kY2lhihakT4e/cMvTuiDhWT33suj6PTxqEUYTbBL3LcdXWbLpmsy3TbM/l0Q3N3Tn1mxWVp6PGiFPT1ylCfywFaXkszFDKTppSp8K3kQKtXmnaWgr+idOXFVVrQmVCMmlNQveLh363JN5ZmaYlGAnkgSm5KkCbi2f/jcQo0ZMzDcLtBlCV/V60i2yqmzwPNUuNLlTy4k1vNxHPnZMeLVyWTF5GbswnPKsfy9wSGrM5loqEAto5so3nx0UP5nJZSuBQvDfWFR7+/52RaceyysSjKnjn6mSWcdOjK4HYa91JctdxREt2P9yLNecBdVPTPJ+RXmsUfiItGOxPKxO5Dj91r3EaNxUuxDnSlYvvFoQiJY7M1eS7PISn2EfeOe+vxwuIzEdmrKIGOpobpK1lg3VISavtcMXt2S3vLN9K5dDPRpAwbvM/UGH40eQX27Y7J84psLbZ58dxhmnzk+mebFvPyRgIKraV8cZBGJkZ008HBY1+1ye++BmuZf5Sw6jyDqoGqRvk55IgOouvRm6OIWttOBG6ZE8Hkz/j6Se8T8H+8V1DXxPvn4orTdBLm1vXEDx7IOn6SHtNaVNOiN5FwOIoGLaWsx9P5LcUK0LsaHtxFxwhXa7H+/vQlajYlzCZj8ZfdtMKNzhx+mtFcFLhNh9011H/8sVAwth1GKaoLR/m2Y/G7a2LhCIsSu26wRtEtZALfLTJW3284/bZn935JO1M0C9FumC6SHUT4vH1sxYK7lWLEHjzBaZqVHoXS9YmhmyqqO1IgLT6VvJvJZ1ZsaBvYfEEc5dwTCeC7+abHrQ2Lf5pR3Y30i0D/PEdHODwSZDXbyv6SbRndsNZ/okU1hot/pGnnimA19WmkWWlCFlDt0EXJOh0ont0cmhNJTVYR2Cj2jxTrrxS4nQjbu2nKIFg1dAdH+Trp6HLF5KXsA5svR/rTwNUKdK3J1pJwvvmiFCfZLpl5tFHC3LjNEhhyDFQQO8/ybWD1UaQ6NRwvVaKmmbG56ea3ydMS+hoJRhPmWbInB92IYLY+K8i2HnvoMVUHSlHdnaBzyQoKucUXBreOqLohfyZ5WWGS4TY12esDPumHzJsNcSd205QF/Z2FNDiv1oLYGZ0cmgL6s9eoIsffWaImBWoxk3tdg95LAW1+94fo81PaP/4F7LpGb4+f00/8rK6fVU0RFzPohD6XrRsJi60qOdeMQa2W4hq02Y4DobDbo/Oc7b/7PrqLzP7X74pmtWpkIHS6RLe9/Kk6ScK+dyr7eN1JRlBULL63w08dN18pyWeGWR+wr7fEzZb48ET0osmAos9lAOqzjHwjYvHDpUzelz840i0yjheJshnF1CHbeS5+0+AzoWGZYcBQKqozMWVQPhnbXGi2789xuxn59oIX/wYUD3Z0P5zj9goQmtTkhU5FugSeYiLbieg9y5dmFHU3pxFz70izLlCNxhw1vgg03zzidw6zN+RvDapXNCdCz+Q6IzphSRze7zk+VNAaPn5+jnmek7cy1Ag5+CKOuT39JBJdoJtLKGGceAiiPx3onarT0EnjMrpZJRpTSG6b5bWnOjVc/1IgFh5dePIfluTXUNxEGTTXgXplUL3B7VK91kPolZjstMK2GPJD9g8V1UViaxwj3SJLGVIeP52DER2MPUSaswLdRS5/oxNTi927Lnma6DTZXpBUt5NsMpUc2KLRFNeWqCC/6bH7FrM+EuYFfpKhOy96sfRY7b0F7u2R/De/Dw8u8csS++xaqOFlIcOIwqE6j73pUHmGuTiD06UwkGBEQAQcSIVd+FHm0T/r+omPQZ88ecJf/st/mf/pf/qfKIriX/wDP8b1V/7KX2Gz2Yx/njx5Iv9gzO20AkYqCulrUetbKzOXLEy9H12zxsmy1sQ85TEUObGRDBKZXkSom7H4GLIZVJ/sPpOd5ueuJHyUYCJpNIYp4qBZEGtPk6YVMkkQbnD6uUFkHm5pWDFNS00zfE8cv8d0qalQMVl9yiJQQVFdRJkwIJNObBwRD9LBqXt1+zxmoHwlgacCArTejHaZplKovcWmrn9AX3wnm4zbKRHXH1JB0UtRoVtF11per2c8v1qm9ymJzwe6XEJkVf/Oz422vBHnPNHKVNLUctAPmpFoohTuUbiw7TxNPjX084CfetncAkmgL88hvPxkDVwMbkNiUzgEUw6/hwQbCoIx2CG7Y5CgtyaOKIlPzZ/ygjpFxejTrjvZMFTnk5UespCH52olS4S+F8rgfCbfW/eopufdVN+hCVHWoqsOVSdhUIyCBDQduhrEQklbkhpsCcDrUX/IAKJ/2eunsU/AP2evAFnPxoiw3FopzIbw0hQ8NtI8Y0TlGbosxr/HFDj27hUKS8iTn3qMxKq+nUB/zg5Rvjbww1UE+kBfauH0171MwtM6Uk1LNEZcsgpLyC39xOBLIxaMSiZmQyJ6GIJF+1v0QHv5MwQLir12vA1gTYF5Pk8IaMt4b4/oRbIhH9a87kHNeqJNDjG1QteSvWNqRcwDIbulofalFArBgS7ExU4CW+NoAR7yiOqleLmlnKbfoZXv8eUtTWPIQumXXp5r2C8C9K2BTt6fIevD1EJ1M7VCNeJWSKJZDU2S7qXpejf0cEBBJAMhoSgDOqKSXWr6+T5XdDN57GikMewmgmDpFEiGksewx6E5kdfhU9q0DKdsCitT9KWmOc3ppzaFserbAVo/GCCICYLug6D7aVqJMSNSK7/EO1SJGGX/aGQKKoGIWgYSuXDRCUHoF1UlQ7c/wutnWlOAvD+duNzJ+6Nvgwq1TnWH2H8rJValZG5ENCXA0Iz8+zDNCZnsNXj5nILVssc0fpw+q5Cs/QfULsUKoIUOHswtRVgnxA6VWBPZ7eBTWBry336ihHZYpDolrW97iIJ8DtLDNPyyycxmoHK1C8X+nuR5hCCWtL6ItEtZ09lGvj9k0oTIPS7/1Z7Rth4FxrxD1UmIKgA2jnuGChCzSMxkoKE6GZCQe5h3xNYQDzY9thrDCYczfrQmdxE/98Qsoo4GfTTCsrAp1TwPYOQ9GNZxcCkkNRmFjGgoQK8JjUkxBHH8vcSKN2UHDUdsm2qvtCeN5hRNCnnN47g3NytLN7fjYLovrbiRHeNoVGSaIAHIIAN2o/GFpS+tBEQqJbSuRO0aLKAl6T5ikuujOtaoxsu/92FkYKjuHXqhVsRh7+g6YtOKvtSleIzhfEza1LHezjNBRlLNHY2+Der8Ma6fOCLyW7/1W7x+/Zo/+Sf/5Pg17z1/7+/9Pf7b//a/5W//7b9N27as1+vPTTBevXrF3bt3/5mPmec5+T/DclPlYr1L3YiFaZ59zmqQSYFqko3vaklczlDbg6AjRcpYmBSjMKe5nBHcnPJJDl1Pe7mQAuHpG6KzhNxwvFcQjWL1D3byIZ3N8YWlm1lCLod9vu5QXaC+k49rLd8IPasvNT5XHO/lmDYy/7Qm5Ib6zNHniupM0U+lqBCrNkFBmhPF/n3P+W9qTr+z4+0vzeinit3DfORdmlpctdqlFMDTZ7KZbL4qCeL2WhHySHlaoX8gMGU3kULEHuR7D/c11WXAL71MhnqFOWrsxvK2OcVV4liTbcBtDc2J/JwvEsrwImf6TFG+Day/rOnLSPH2Fjqcfaaxv18KdaOPtDOBDwefbZ2J9aDPFOGMhCip5L8dcRtDs11gY3LXmapR2Ks7mHxmxxyDw3s95IHF72aEDC4/fMv1dkr8eErxWgIW6ws1CgDFdSvgNprytU7ZKTGlQ0fOvtMRnKJeGco3nvzJDdl6IhPL3NBPDIe7QsHSnZMizMHJ93vcvqc6z3B7z+Q7L6U51ho/yehmlunTI4RAyCzKByky2x7KgvbBCb40ZG8q9KGGl29Qpyv6O0uMNaiywC+nYJQECvVBaBRVLaGenzzHaCUc5iInnM1vz4DXG+LrK0L48dwtflLXT2OfgH/OXjGZoJpuTC0H5H2uurHpQCkZRKSN13/xAVEp3NMrONaYPIOmJWx3qHt3CMuJDAeGtOphWDEtaS4nZNc1uunxiwnBKmxuUG2gfLqHFJSp25T38eQ1ej6FxwXd3KAfn0vOxkTLWsgQ++1GKAr7ewafF++MksRwIVv3tDPD4VIsHO1BcjPEStKg/S0lq12kAkXBvV+v0Y2nuluMOSXBAE5x8j2PaQNXX3f0M7DO0xdBXmcL2Y3GtOn703otX0XZsx5F/DQQXURtMsxRxJ19cfuaB93FgM76IhlK7BXlVaBdaXwZcRstlrg/8FSnmm4mCEQ/TWjyXuH2hexjDyQLZPI6jMGki49Uei/tmJuUr+UPUShrN99IGQ4fCW013wTaFVQftMRPMtlf51JwBqfHoc/xruJ433DyB4BSXH8D3E5z+vtCqzONx2dCwTn5bpWaRz1Ot2XQ4dm9N6EvBodFceaZvIrMP+vpFjm6dOhGnNj0mzVxWtJdLpI+URPmU7Qx+OUUFSP29VYKiNWckFkwSlCTthXqpta3g4vxVoqE12+JXS/nZlXh/ulHkgtQ5D+Svv7Tvn6mNUVVE9eVuP7kwqhQJ0vizYbYtSNDT03K9D+KeOcEn1uW375BHWv63Q57fsr+axcpTyyK61qEk500f7ru0YcadajoH53TLbJEnVG3Ay8gLEpUKUYSwck5NJgdDFc/0bQLw/RFi4pwvF/gnRTM+8fgvrhjy4LyrWL9ZXnsk+8kR6mHmukz0Tt2M00wivJKKI+z53D9Vcf2my2r38mYvpzw5peV0Lset9hPCu78dk03K6keCKKpO8ivNdkazn6/pl1ajmcGu1fUVyXZlaAe/SxgK4X71oT6TkBf1jQmQ9eaWAiCoTvRfQWvCPMek3t4mWMaaE8C0URUVCPNSnmDqYcJRMTOOuLzgst/DM086WwvIt08cv/9t+zqnPbNyTiMbJdC/85v5FPevieD15Nv6XEw2c1lb6mb23w20yQaV1oW5ZtwS/nMFPW5SpEIMjAdEA8CvPkTiuKt5fIftWNm2uSF6AtvvjbBJzt120TcwY2W7O1cJe2KUMqKN6lxTXl1USsWHx3lPrvaSoNRfF6EToyoupOmZd/gTybU/+ZXpO7pAk4pMBq/moBW6Lonlg7vcqzWMtBvO9CasJqhKjF9GtdS00H7R+Sa9ef//J/nW9/61ue+9h/9R/8RX/3qV/kv/ov/gkePHuGc4+/8nb/Dr/3arwHw3e9+l88++4xf/dVf/cM9WYyEeSlCmRDAByK30+DBpYYQpEtzRvQjILy3zOEXxTgd1q0XIfMkA+8wtQjF4mxCLB19YXCHMFogKiMZAiHTdLPbDjBqhTKSG6IiMn1Ptr+6NSP/d5jG+VxTr8TZoHgVqHpJAG/nMu3op7JQVt/R5NuAL6w4SpCCDnOFT8W4Rzpye0y8aAXlCyMC2J3QIOpjxjK5UtSDJW4l9KTmLE0zUi7IEJQGoBsJOKovItmNUD6qSzm4s00SdRYxOVlogWq1HNTRihNPNxf0Jb+ShXm8p5JoSyau3VaKFd3JZhUNKK+IOo4ie5te11C4RCt8eN3fpi37XOgXISZKmoKXH5+JE1gS0mX7QD8xqOQwpgKYWuOS1aDP5XfPEtIhYWpR9D5W0Z/PCblQMLQXDm1xLVCvWBCm962LqDaMbjhDExKtTDdViGIL7EXwF0pLc1aMThvRKNEJpGCywXJat14cV0JgCCYcOZxaQ1mgrRUOc9I4xMzJ79EF9D5Z+2ZOqFo/w+tnuk+ATG2aFtWqd5BQJdPeEIhNi8oz2axh1IVgZTMGiLkI/NSklCn0vhZ0JQn1lMtQ8ym+dOg2LW6lZCKlRWdm+oDeHqWAMZKe7XNN/+E9UIryTSeD/zT9jFrWaWghv5YC2OekMLq0NgdKgY1EZeX+L4R6YZKLVjQSXmoa0VINDlumjaAV7dKie0M/UDIVYCBoOZCDM+w/EG2KflmSbXUSbctAQKVQssHMwh2C7EuloNTBR+GG60i7EEOMbhFHu8q+uN1nopamYpgy6hZ0I3uAoJZSVPh5D0rLZDR9pM1FKlA6hal00sTIXtwuZI/KtjHZlCc6RtpDg4MsFSE+I4nADd0sgheEN9tGujT8CEbeI0CE7wwoTCC/tiKy9xF37IXWNM2ITqfPXj5j3SdxsZN0ZEFjIUuGGW6vUi6BoClBaUKWofuAq6RAsNtatAbOoA+VePmfTIlByYQyRikYMktwBj24wqVLHyoZzGU2TUwDTEpU3zOGpw5GDb2/XT8/o+tnXVOo6URQzVYoKNGJlix6j5qlIMO6FnRKG1TbowdOfZljTk+I1oz5MINGK2qoH8wFAe9kz9bWJK5+crZ6pwnxhRGkIwoqF1XKkkCaVp9JErdpwuj8JjpPESAEKxqp+pMZ0yqxM1L/InkeiVpmwRditOOd0EMHpKSbITRvJeuhuFaY1lAlCt/2vUJomxtpAoagYF/C+ou5xAtMoJ8EcIH2MkAQZFJ1KiGRiv5owUiiuWoMKlGnVUz/Hi19p8lTKHLM5HHsWlDIYBJgaqOY3tiI7zUaaKeK5kzyzCJyzj+ar7lyU56qk/Gj172CdgiTTFoSLUYWg0mO6sEwDCJk74tKaKjeSe03NBv5NgVXW2kmhKYp+76KUhtFNaDCt9qO4TMaahLdSw2hW7EDbxdSO7m9WJa7Y0KZE+LZnOR0E8X0ORijie5EkI+DoPXKB8m08n5001Re9B+mDbf3Z0JOza4eIyxiQoOjUp9jD+CjnKO9R2XvIK8/5vUTb0Tm8znf+MY3Pve16XTK2dnZ+PX/+D/+j/nP//P/nNPTUxaLBX/pL/0lfvVXf/UP7W4Ru47ubELWB3jL5yY1yllxuxkpVYZQWHTamNX+SJxNaE6X8mG3gezqiDrUNI9PiRrK774Sz/DLJd0io59q5t/byCTqZJE+HAn3qU/0uIn4TCgc3VRu4OJKRIrm0DAw8UPhUiieoVkadu/Dnd+OzH7jU7Iv3qO+yHn7TUM3j/jTjpPfdFz8v34d9ae/wf79qYScVYr9fSMLfSqQaSgDy+9YJm8C2/c1qoc7v92O9A1fOg4uo7gOZJue6kxeUbaOHB5CfFyhnpSUrxT5lSyWzZcEjdCdojvrmZ4fCb+zRO+h/PKavjfk/8uCfiaalOp+4GgjqtVC3eihKyE8rplOa+7M9/zgh3ex15bsSxt8bzD/2wy1AbCCjgRoLgN62hH3hYi3zhvCdYZ9az6/YedQP+wwW8Ps6ZA+j4QdGU1fiGj90d+GeqXYvSf6m+KqF/i6EKMAOsivFNPnkdX3D2w+nNCsNOXLBlP3HB5P0W1k8qKiOcvZfHEiNKs+Ur5qyI4t+esDzd0Zm/fdmHuiuzQBayUzJCwmt/dpoo+0S3HQcZuW5sRx82WLqeQAO/lejb2qRsvpcH6C8l4K2kFcmmgetMIxj4UjzAuiM5iN0Ctingm9Qyv07oj/wceY8zPUYo6qSFaJP5vrZ7lPACIuf72RfJWuxSwWUBaymfaefr2WEKZ5gTm0Iv7PHTGkROpMSSJ2kaEnhfimv71G3b24TaBdzDh8eIqtPHYve1F0BvtmB1rT3Z0LQvv6rQjf8wx3naFOSl7861PyTeTy//0pcTGlvZwDsg4mrxp045m+sDSnjs0HBreXg6ibCqLZzqVQ9VlEe4XqpLkv1oFaiyZj++UeuzW43xPb6mzT47OMFth8IEjiu3SNMUX4T2z48PyKry1e8uuvP6D+G3cBQRCaU0W3kOfULRSvRcha3KSwrCgWuyFTNKdC26ruemIZyBYNXM0o3wQ2H2r6qRxcpobJi2SX20XcXor2fhbprNiT12eRxd0d26spKji6ZSQUgf/LN39AHzS/8+kjwnVJft1R3cnoZor940C0keJ3NLqLkgTtBDGqz8UQ484/lubh5kuG5ixgHh3p9xlqb5k9l8yGzQeOXglKJQ5EqUBpxdUs2/ac/+4tzdK9PRI/eYq7vCDMS5rLKcEMe0Nk8rKlunAcz83IT8/WPZlWuEqyHkCoIlhFuzCoAKVWuOsKfvAZdj6DsiC8ekPsetSdkxRy6GTf2B1Q04KYaeK0GDWVqmoIr96g75zj5wX2zVaQ1ItT6D3x5Rv0dEI8W8GhEuqh/YmXDf/c62e6VyhFuDwVC/S317CcEfOkMe16ed8qj19vZPBQ5Ki3a3SR03x4R5qO3KHbnvzJDWFREgpHWXv60nD1jRzdwuyFx7QSTFqdS6r2/DPZM8xUFmA3T4Y1g321SoGdFRSNp58YqlPNyQ9a3Msd1QcnBKfIrzt8aQhWcfK9gP0nnvrM0s6UUKqjaKpiGhL6XFGl0N1+ojj+G3vKQgT4zbMF00/EGepwT7P6SM7Ma2/p5pHXv+opXlmmT9Wokdg/EOSh+lMVvtPEo0VNe/Ki408/fIJWgf/t218mNsJ/dAeFik6s94se80khyAYyhHAH6HdSZ+k26ccmPWHnWHwsDZLUQEkrMunRNuC3GVHD4aGier/l/oNrXv7+HUyj+JXVRzxrTniiHo0fvT0CxzSg0KIFq08Vxy83mLcZ5Ws1Bjl3c6GPdisP2hA2aYCBDEVVlIBJosQ6EEg1hzQjkH6PVMO0C4s7eLJtcmLN9FgHZfuArcTGef0lx/5x4OK3YPqyJf/ojdyzq9n4e+zvGo73Iio4TGtp5pry2jP7Ti2ubXWP3h/BB/yDU3HgqzpU5yUHB6QR90GE509foqcTwt2zf/aaiVEiMOqWUNeSa/aH1Jz+bHeUdP03/81/g9aaX/u1X6NpGv7CX/gL/Hf/3X/3h34clXy3wzRH37uTJhQKVUseCL1wOvX5KVFr9D7x3UwqBPMs0W/ENlUdatT+iAon4kRxviTmhvq8EPHa1svmvpqj6hZ1DOgrj9lO0e2cfmboC43bdejWk6c8kcNdhztasq3FrWv0sSUsS3wpTUg3EX51O9M0X31APzXSCL2O5DeK+DRDhcj2//krI3exuyu+/d0U4V8ONnY2pYvObvnWzYnAwtEw0rgG9698LeFhYhcH4XcnI1TpS6FQ9BeSchY3Fpw8qO5EbHV1NUWZSDxPvG5kgqGOt9Dl7gMJEopvc7Zbx/btFLORhuP4ZgoqEh4LQqQAvZUFbw4aHx26VXgTyYuWY2aJxqAr0YeETBqd4pkU8sc7jLCorRh/76jh6us25SgETAftyiYnK4GxTQMO+d7de5JUbZrI8b7wkutVKrLeIg4mVUh82ihNZZDHsLuO+RNFP9VjQnbMBQlrC0uzWpLf9GRvDyOlS70zPcivOs5/N45TXgKEWYYqbEL6PH5W0s0W5G8r1L5ChUDsIU5y8FF0JEF+lq4XmNSH9P4CdYOez0Vjcn1ziyT+K3T9pPYJANV2UvxnGeiZ/NcYKay8R89moA3m5pCEwMX4Xo9TYdLk6FgLdWO1FFQrmVbgrEytM43ujIgGQ6R9sBIKztTQTSzu5MuYo3wmMbPg5YCKGq7+7ccUa0/xuhbuMArVJS5vLkWpqRKnOUH5wUF+I65a7VKQSrcTHcKAlkQD5XMrAXz3Fd1aCpzDpaZdyiADlcSfLr6TtaM4Pp3zrU3JJ6cn7G4mnCf3qX6SrL5dICqdxJ5QFYrjpRMb35qRvpRtJLxMv3fAmIDWkd6KfbgvROyarWWg086Fn76zEnQWckE5AI4PZGPZf7LEVVJcgfw+v/viPgBh5whZ5ObLQuUwDYSTjmLWsn87H7nhPhf9ia0V6qDYPZL9olsk1OTJhDJRwuqTSH3iqM8T+nME3QpS0qfwV5D9uTkxibYH6uGcvPyA3YMJ3VRE9LqHbOtTVosZp9P5enAxFFvxbNOP+8DhXkY/gfkTyRcYhhNqPiOcn9CvCrK2I+72qF1FzB2hyFBRzo8YZCCmWlnr/arEWI3aCBXZ3BzkXrdWKMzeE0MQlzkfiMEnZPUnLi39l75+YnuF1qi2JzqLPjuR33dfE4yRY6XrQWsZ4Mxn4jj46oq422H3K6HpTh1+6kBNsJsKu63o7i8JmaZ8E8ZzkSBDqmwXklZLE604Z2a7SPm6xxdC9c3XHQTYflAIcn/ocFZT5HK+YA3F8x0xsxwfTqiXhv1DGarND55sG7C1OOSF5JRlD5HsleSI+FJsfNUh0q0LulBQvLLYIo7W/rqD+soknSu4rcLuZU/pJ0JZCi6mME8IzwviNGAWHX7r6N9k/P3rL4OKmK2UnscH6Qz1CnNjidYy+cYNWgeu386hMZi9vs0t24tbVfH7Ev56uC/idD8LRBfARlbLI856+lnFsc6opgX5vBH5zrwnOsNf//6v0ntNuxrO8NtbICSEV3thgJAygnQnv2fIJYctuoDKAh1wvGtGLcywvpuloFn5taAhfSm09m4emT4loSyyuLuJoj5x9EXG/FmPrQL1qbhy7R8a8o1h9lyPgYyoSF8Y9INToWpuK8kDmedk+wivFNlOTAzyGzDHz5/vsRSEc/9Y0L/JSzGxUH3ATx3Bacq3G6F2Zw7yLJkredSuvtWoAliDnxfoPBOactuJC1/fE/yP5/P9M2lE/u7f/buf+3tRFPy1v/bX+Gt/7a/9Sz1uTDxNnxvi+ZzgpNiz6wbddKibrfiuz6dCpTjWAkFbB0GmlUKX8uijTEHjsUr+ytCdFvhcXGbydcCuW7E9nRWY5Kbhr67RmxlF29E+PCGcO8yhQx8b3C6HuWF/z9AXkWAtdifwdsi0pKwvRTNia7Gg3D3KR+u9yduQPO17Nl/IePlvBspnluIqcrwX6cvk0tBJeF+0oBLFoEuWsCC+3MP/D3ShgRqQ7QIqaOpzaUqmLz31SlCWdq7o5rA4OdL1hqqZSNMRubUFXFt8GWhXtzemblVaLCJi0w+P9I0l/+id0zotWndtxJXrQY1vDHpjcVEaAHOUVa0Tw67IOo5ZENeLkIoLJ5ve5KUs9OqO8M5NPVgRi+NWP4XjFzrKTx2Xv1FRX+QSrpTJ69CtTEJNK5vC8TJZG7dwPNejkE1oM6IfMfUtHCqmBfK7mUNDeWjws1y8430Q+8ZEK6nT9Cl7K7Q+odGASh+SvanIvn8jlMBJjp8XY6K26gK28/QTx+FeJtSPPkjzgdhBqi5IgaKlOVW9F/eLrpMpR12jjEZNSuJuTzgeiX+EgYbD9dPaJwDZHJP97jitiRH2e8kUKQqham33sFoQ5m70U1fh1hZX9UEmxrMJschvBcJGRO/Biq4qOI0OEYyiPnej+1JYKPaZpbwO5DedpNz7ODq0XH1TsfyBZfJJi/JFMm0Io8OJ8oz88CHfIlrIN6LY9oXk4JRXAzVsMHGQwYYvFIcHkWAUymuasyh862kKrjsaYhZwiwbfTcg2ivKlJlxlHDYWV6vRjaqbgs9iogVKs+bzSD+L2PtH2ucSVDbY7tq9NDD3Tzf4oNlUBa1NNBEnDY2ph8msULdYtTJYCApuxBXIXFZ0m5zZD26PL0FyFLsXU6KNmL2gC/vHMHsiBf50WfP45Ibfv19iN4bijWjmukWgfGGwR3H9GoSz9iBasfw6ku8C6w8N3SLSTwO6lj1Xd0KniedSNAzakWYxIB4QjKWbTdk9lH3VHWSIk23lNftcJVMTyNce0wTapRVXnnU38r6blaJdwekf9LjXeznfjIFJSb8qqC9y3NVUKBeHI8rnMCsIWEH+ApJZkXJE+pmsAzvQN4fwVGuI682oeQpNQ9xuBQHIHJTlv/R6/Je9fmo1hdbSbDhLmOTozUGcB5USJKjrxJHsZEl/MqVb5RRvrgn7g7y3StEuM9Hr5Ap3dYA3V4RHglaUV17oOrlCexmC2oOXYVuhU2ih0BLdukbNMnFkerGFEFCPL1Ehoo/ipJdlGtIgTL28EmTm63OqC8n6cgdLfC4ueihoZzpRlxW2ikyf1vgvlDQrsZXVHdi1wR4V57/nuf6qgfePdEeHqgztwoxWwLqTZqZdKqFjf3BgOa3ZfPdU1s5GcbwLk3s1xxc55WuNqWVg0S2gXUTM3SPdPkNvLfmNFNr//v/td7l0G/5m/mfY1jn7Y47vDaHT+OBQQXH6vUC7UFz/ckAtWpaLCh8VCjifHShtx8w2rNuSZ9mS3Mm9bCc9vYLjd1dibHPWyZp9h0Vkck/0iropRLuV4geUT5bp84g7r3DO07aGXkfaYWgYQbea2IiOw9SCSgcrZ3+7jHSrwPTpO5loUQxyqjuK5jyQ7UWbMrxH/qyjf+2wR50MehJNNVfUd3Lc1lK8vJFaYWLFNKdV2IPHHjvM9eFHaFIypLAcL8SOPdsaTKtQWtEuLD7XlE72DeWcuGZZjdo3qPVOtGI28VK1pp9nMtRoJvD2Bn8j9IoQO36c648EEflJXepmS2ZkmqO6njAtxf3KamK0MsFoO/RmP/LyAdmQ90eZepSW6DTtxRSXO1S1kGKv8tRnAp3OP6nxhaE5y8mvG1Tj6R6fo3zA5jnhYsXmS3PJ9dh5/CwjlBZ7lEPFJZF6N1H0sywVpsKBLG5EO2APnn4qiMrgtpCvJdxu+zijLxXFK0vIhULVT0Xkevot4Uuvv9EnTqFQBkIniEDUUF2oUT+hPJijSt7UlunLkOgfYi139a979I3GHhXRCN1rogP7umDyxCK3TCHTkVONvn9AA+5b01GvMVhYNheemAXUm1IE7wcRhLVnAufaCuoHParwxKOgNmHqaZcKlSymVK/oS3Go2H77DGNEqNYubzUiMjmUxkcEbvIxdzMgiijdtBA/dvgcPv6/T7AH2eyLtxHTRnHXsrJJDxMfnZzFJnWkL0ToV19Ern85p3xmmD6TICjdC8fbVAr3+tZasznNaZaa8q0S7mUbEzVPPv/9h0tMG8i2nuyqQjV+5Gv3j+9gbg6oV9fYaia0qtyIc9bmgMss2dLiro6oV1citnYWFhOBaucTyQ+xGjXN0X1A3+zFISvPhGpwrEQbVRTEwvyRhJT9rK54OBC6Iypzo8uN0nKIE5KDUFnAck4sEm3l2Ai6Omh5mg6/KOjvzXHbVoYXB3kP/fmCaBSTF+lzbLrRIWvxu7L/9KsJvrS0SwlL7WaWou5RjcftbHK9M8yedajtgfKZJltn4ievFN7pkabhSwngE/pSSuM1Q+GrqE9EH2GayOJTybRp5hJkuPweDJMJt1WY2pBfy2PvPgyYgyX7yBGM0B26uWi1ijeCDJTXXprzTI1zBbeTiWm7hJhF+s4QVh37qUYfjGQFlKLf+OSjO6jkrheKyM0fS6hJrWlPIsFFwrJHHQ32WS4ZR0ZE8WioZ072hamgGT6PzD/WZNvI9IloOtrHLb7TqEbTX0ny+uHthI96DbnHT4QyYY8KezA0p5HqXhBzjlpsuiWHRDQcppEspX4ZmH4qVIt2Kbqd8loGS61SXH/VjoGIpoZ8KzCvOB4yuu7pHvLrBl9afO5YfFxhrw609xb4Qg54n2maszwJZRXFTSDfKLEBnhWYqiHmGf5kAkbhdj39yQQ9zdG7ehyMxNwQSovZN3Bsx3taJz7459bJpBAt1FR0UNxsUV2L3JpmXEu/qFec5IRyKvkdL95+Tg8TY4S6lrpi0JIBrBaYsqC+K/qP4ltPYLWgvb+QyXGeY49idHK467B1ZPakGoccwQ02bTI5X3zmcXv5XLJnN8RjRfPHHtEtzNjIHL50ivJRmplkxXr17344Jo2rCNm1FLTtwrD5QkY3i0yfyVM1J6JNDbaU/KB9pF5pQg79ogfEMMbUUL8qJQLJkzIzYP4k4DMZVg7OUv2bkpurktUPhJWx/ZqIPHYv5zD37GeB2UdyzlcftLhJy3JWc9WKBqW+EDfMv/m9P4XvNfHJhH7umV4eOFQOdbD4ZY+fKbbHFAb6ylAXhvdWN/zut96nfG74+HQJUTF9JmLu+v2Wk/MdD+drnn16hruWsjdaMFnAVwazsajkHDo4lw41lj0o2lWgftzj3jiKV5rp70yFrvavddBqsmuTEGQJSg5Z5HBfmobiCrqFoj6NZFtFcZWaOR/Jb+T5bBMprsAeNaYVfd2Q65b9MCPbCkWrPlN0s3hL7WzT0Py9C6GBrhv6shR924nFl5oy0a7oxFJaHRKrRSnu/q8tWE3IZI/oFg5TB9zeE/MMdbIUlDBE3MvNGOAZ90eIQQyj2o78SS867DyDB5eY+3fkbGwO8PxfvO5+rhuR2EqGgup6+a81qOjEHSTZkcYQoG1RzoFTUlAk2pZCoFGvFaFQ+MJKbEiIqC4QjEy87L4l2oIuFQEqRvqplfCgPMNPHO1Mo/uAPcRk82gwdQ9NxBw7OMnppgN1I6XnGpnC2yqQv62AUuBZhRzwURZENxfeom5veZBRR3SrKdaeqMyYSI6Xgnw4/IKFdhUkaTjxQ3UvSemUyTs/IQf9FN5/+JZPzRn9dSZCqizQ9pbQGAkH6hj51X0JLuvpOiNNjxKOJCY1JFNxulDXJbaSRR4NkAtViwC4gLFBxGoAuWxGA1VBAdHJRDVfKwkdKyKxiGADtBrVafpefq8hPV3FQTwmDyLFgQQL9Xda4ttMxGkMIrdbqpvubmldKqTpTwpB89PA9PJAXc3Jb9Rom+xdOvSdHcPqfCHOFre0HglbzELEZzL5Mq3ok3Qt9zBdD0WGnzrMzoh9b5+6Ip0m8sn219TyX3rh7apEJYqZJZQ22T8KUhaNQptkUzs05CaZNzgL+vMFyS/cNSAX3kuekBV+QkxfjzGK4DRRrVRkzFtADYI+oT91M4OptOSHpMsX0lyYXY1qetGnZU5Qls0OpRRWa5TPCE7sWgdzCxXFVQmgsEqml0Hsm3UKO4vOEHI96jh8fsvxtnUU5yWdHLESYmEaMERJ4U3TUNWLuNHnir4UJDa2UF4JPeTwQGFrRbaOdAtFl0EoJDDMHjX2kKwrFWMIqvJqtCAPmXwvvcZkAV12dOTEThNL0TKZG5dE6Ap/FsSWcyvNhZ8IxcLkHl/rkbYBQntEAX1CTcqILyMxD0Stk9mE/O7KBvnIu2Si4RT6YGhMPqLD0YCuRT92vB9h1aHeZONzDoOIMShSQ1QRtxOBaj+T1zPYrqsgQWbK39IxTMoKiVaMJHSnxgEKSNPoczFKYb1Fn8/oS3FIkrNKjcYFto63ehGn0ZkjFo5+IiYKppOQs5BbVH9bKMdkjEBI93S6dPO/s+4EohFbeWVEjDqEA38+O+QXd6+ITooyDTKoGZw4nUV5D0rW47CHCu3WjlpR7QPheo1xDtXNhCruJH/BNGEs2s2+EfGv1WMY6UDz1VXE1OlzqWrC9Zp++j71yjB73oFWNHOdxM8hZUpITtkQzAeJIp20oe1S8n7iS6EQDYnn7VJqHOVFYN4XQAoz9U6NhXhfRqKVkDyCNMVEES2T6hWdYAFbyflvFy19bdEbQ1j06LwnmKQBtQFrA9Z4tA2CiGZiqVtflehaU15LVorWAbzY+4d5QOWRbm7Ffj8hCjPXoCudKKqyF8yeeY6dob6v6byhjwa8DIAHlFipKOL5PtVBCfmIGvpZAMS9K9pAPm8Ir52ko7/u6Sea9VGE9boTOnm2laElSqUA6ojfS20Rioh5I8MNnYKyhYkhe4cMjhj3G9GIKMq3UYw7ujjqRlQkDWGTA+Iyw1Yec7yl/ontuNxjxIiKRuQKfaIbh4Bab1FFDpenhNISMoXbBQnNtYZY5MTcCjV4XzEa4cRuPE8JQbJ1ipy4kPysYDSm93K4/BjXz3UjghYrzmgMSmuZ9OyPqO1Oiov5TAqPpoXco7y4hURriIspxIheHzA+kHmfwt2suIeoyPRZDUrRL3N065l+JptHKKxQuhpPvNngup6zLozZIDqFyui6l3TlpiXTiTveyoSsPjGjvas9GqKe0i4MTXJ2iVpTnckB1s7l0O9LccPKr9Lij7B7IA3R6T9y9BNpDiQkEQ6PIv1Jz69+/Qf87qv7hH+4HCkmIJvF9gP5f4WiW3ieXy8B4VK6SYf3mu7bCzKguhvRjXT59T1PLD32hwvsQQqXdiXOFKaRpmBxcmReNNz83kSmIHdlYaq9FbcJA9lzEZTpQtwuYpSGKb+G471b3YlKEyO3V7itoZtLQ2YP8l7U93rMXjP/KLloWGjnIiTdO3nN0+eR+R7mn2YJtYnJKlTTl4yHRLSCprg9oBT7BxqfiUVe8dqivrckL+B4L5KvwR4Cmw8dwWoOd07kMbQUd/NnHfmrgxz4d2aoPuCuj3QXU46XuZzpCrrzCYRJ2jBA157uzgz/YMGQZ2MPvfA4JxnESPHyiF+WxJPHuOc30ozXLTGzsjHVHl17zK6RwnjIEqgb4nxK/94F+tih65b45LOf8mL9o730aomer6Sp817cw7SG9YboA+bsFBCUldVcNGKns1EfovqA2lfYNx2zm+O4mbcPT/GF5INIMJWTYrHtUF1PNJruyw+IRmEPHcoHildHuR9CkM+4tOSfXGGLDJ+vZCL+/h2aE0FCTScNUHWmyTeRs9++pjufUJ9myS1LDlbdweJJTzvXHO+YVGwo6pVN7nOAYtxXBm2JaSL7BwYUnH470qxg+8VItpawwOYyogpPthH3vZsvWqq7Affegf75lOKlIV+nxPZlJwfktZOmYgro1JzUMjQwLXSrwPzBlv5Q4I8Wd1FhbaDvDN3BYX9Y4B90vP+vP+fNYcr+mJN9f4ru4PAY1LJl9qhifTXDXFu6eRLaPuxRUZF9VKAbNboB7h8pijcK9SoTq3InLn7DMCIWnqLsYFdAgPpRh39jmbxk1HXMPgUwFNdRHMoS4rW/b8TFa7AR7xWzl8Lp94WWgNqForiJFDchUeoUL391RjuXxObqfMH8yZTyZU227bj6psPu4fIfbaQI6AP1/Tnd3ErTEqG7M8dPLPWpFc3ZTYO53qN6T3fvRGhs+yY1cEr2AKUkTA+wH70QjdjQmA8C9hAxz96KJbUPkqdzupLvDYF4Zw7rn9nS/aO/jIFkThNzl5yONKbqyF9sBfVQimwr69s8vEdYTvGFQS9LtDPoY0t2bDm/qVB1B2+viQ8vqe5OyNYt2aHBF3a08nca3Brico6ZlLQzYVRsPnAyTKgi7VxTnWuOdyy6E+QzGNEU+ExqhmGgd/rtRJ1MtMPFx0LfblYI+yBKA2FrcNcW3UrdgRK0s3+v5vGdG5ovGdre8HI7hecF5/9U7LWbC09+54i1nuu4ILjItGypojRodJrQabQX9OXu38o43C+4/hXNYlaxOF/z6ccX2Lei7RJBuOSLNI1DHSXkuJ5aYhbopzEFF0bMpOfpfoVf9ew+sPTnLdp5Xn4dYpDh7P7ljG9/skCdtXBWE3tD9Iqwc+Ai4UENTwthbaykEcjWsr5DHileG8xnYiASMvj03wfVwflviB357osSFtvNFNlWhOkgw+b6XLS+yx8izUIb2N8VfSoKaIWxkW8Cbt9LXlSumT2R7JH593f0y5zj3YzlRz2nvx9HIxx5PZrq1KCihZhjm4itxTRDNzL8CYWjP59ij50g+XWqB06XBKvxEyei9WHYMWQaLQqufmmCO0SWPzjKzx4b4sVKXCBfrQUQqGroe3TvhebZ98TDEd9VP9YS+/luRHyfgp360T0oJts9YpCNF4TfaYxwPEOQAD6b7MgmFtoeVd2iJNGKLoEe+ZBKi+nTJCoFGvpMp1CbAF0nYuBcbiCZwCfu5jSjXc7H6edgyaeCTDZHh6gkWveFZIigAHfLHVa9Sv7O6WfS1L+fAjFNBmAUZg7WbwQ49hnea7RJHMeJePTrTgl9SovDFSbi0wIdEjFjUKM1b7WUUYEKSGiRjiPFyReMgWooCDZSN44Io51d1DJ9MJX8fJ+J00wECRkEVGWEXuZgsLfTnbQh3TyiG5lc+DLSzz2mtrdT0yjhaQOtSkVAiaAdIt1MtCe2Aj9JYWvJIWOYaA7UCZDANrfzcJ6mX2Fw8YiwVClvIY5NoXy+Qy7C7bQ8lA5lJbRONSJ2jnpGO5Ugx2GqFJ3whJWXpkN0JRo9TEFz8WA3VSebRQjgJWQoJjQwGpl+6C6g+pjSVjtU2wlaY7QUHdbIY1stjbz72Ser/0yvhG5ErQTeGiaaZSmTziE8bFbKICIkgbpSCXUKsoeEIKiVMeKxPrH4TDRDkFDBafb/J+8/Ym3L0vxO7LfMdsdf9/wLHxnpyleRLBbZbDZJUWCLQguUAGmiiQaaaCoQ0KCpiQDNBYECCDQ1apBooCE1wCYlNdkiy7EMqzKzMiszIsO9iOfuu+7YbZfR4Fvn3Mgi0JUEmmxGaAMPgXjv3nPP3Wevtb7v//0NapSjd53sKV4szUIufrh68IRSPgufbBv3tNJoFV7r5BWvcZUSek+81TwdQhHTZM0Xt6ia2EbLXrFPDD6E8+lbkfl+fxCHmARg+D2Kn7J7tOjWzE4TG33IAhqm0rR3dXbYd1wpyKvJPSHsJ0qK0BlZ004d1jgR8ND1Ft8aVKcJY02MkRD0Ye9h0Ny0lYATRuiP0UB21KFNYLOtUI3QvvaTUN3LFCXbJE3OwUJb9gwVFNlahlw+v133qjW0q4IqrX9VJ572JN2r/X6KiOhjmrLCHnmUAkUNoLtbeocv1KH4kgOe5ITErS16v3+vimGWHULSTNpDlAvi4uYnX3gu03MQItk2yH6zD+xEPm8VIqpJiKTWtywBk0jxzoH36XzUQlXsBzG+GNLZ+cVsLq1vNVFf0Uu1Hq1TtlBZSmCylj3ycA+NOA9G8wUL03RFo6UJGYngdx8AF/M0VXVpymptmrzK5xm1ArOffsHecCWWMvXSTkLu9CBheHs7eV+kegGF2gVMEKMK5cWpDiX6g31ul2iSoD2VNT9M90J0ddgv3CiirdA/fS7rJnrFTV3hg8Y5je812bAP90PohjqQGc8ulwYht46GAt3daiyI8p7rOzK9GTpLn3lcGMS+NwWZRiNgRaw8ee4Y9gCqiigTCFMn+0RQhEFzsRmDFwtzZQI6hSf6oETwXouDZz/VeKsJThGdACMxxDT4luweyTSSOkUAi3AIhc12ad3nQfalQaaceJXy1KBHvl9Cj8EOor8tVv4wpQCSyc2t9fiBgTFIXWnSVNQthE3jc/n5pvP4Ys+qEZvmmLTyRAhpD+tnFj0YskzyYUIhJir7KTvJMRIrAYlCbQ+ptoi3z2N6f4cAxLYXFoWTxlxpJdbW1sraaKQJCV1HDD+dCc6XuhEJ2xpVboh1g1+vMYs5FIWMmoYBv1yiiwI1n6HGI8KoRG92kpQOhNmI7dszbB3Ir1vh5C83aKZizQvoaAmpeQh5IVMPq+hnmqzWZOp2xDBMM9oTMZdXAfK1ZXffsP4rO/h4zNkfBtyRwWcweeGwtceuOrq7Iy5/JvsJZHN/6GknIrJgbm38VJSDLWpYvQN+ElCLHvO0ZPqxFMraCwfU7jK+G15Ht5o8g+FRz2sPrrj4bx/IGPObNdYGdq/Gckj2GhqD7jUDOarXjF8G2iNNPfbC/Apa8hicJV+m6ctDKZSql4ruOG1wT8Y0gD+TrtymzcC0UD8O6KOOoZP7bAqPX+WMPrOEXPJJ9shIvhJKln5vS7fL0VcZs3dv+PbZC379D79OfmMoLgzBRnaPAvm1prqQzBGdy1TFFbA+DpitprxS1PcDnLWEnUW1hslnQlvR3Z7LHZl90pB9fkW3eES3EC2OaSPVpSerNcNSipRhLPz0kEnhYuvI6MLLSHxmaE7F5nf++y/E4x/o55b1O2B6TbaVgLJQGHb3JFm1tCoFoQWydQcxUj8eo7tIdr6Ww7Gw6HWD9l5cLcoU0BUjxasvBgslgeqolHTwshBb3zSxA+BoDtf/tlbq//BX2G7RjUPPpsSFuIUpH4j3TuULuoFwNGH1zpjR+UD+aid6M6XQlytpOs7m4CO6d/ipGBF0c8mRqS6GA9++eVCxvW84ej+neLkh++wS8oz63dMDILF9aGlPFbNPAvnWs/rW4icKEIDmVDOMoVgjQZjPJfx0+9Ysef5LkJ4rxQkuasXVtw3ZFkYvb+kzttlTygQFbc9k2lFdROp7wjnWLmIalQ67yOJHitW7kfrNnsXvF1SXgWEkRXh315HdGEb/qqQ7gmGSMneyyGxa0/YZTZ6jeoWuM8pLoSBu3hKnGTDkNwZ9MaUS4JA2FrSFhKKpKIe/XRo2z89oHw1k057mjlCx/nc/+8/5L5/+Arv/8h7DWAqq0Usp1OxOp1ThwO6BZvemY/KxpXoVuforLdW4p/+9uQQaHjncTKEGzfipJl9ndEdAhKMfiKX3+i25V/laGg2fQ/3YozvF5NNbZ0I3FpH+6Kkm38SDo1lzrJk+c4w/3bB5d0Z7pGmPU/DtjTjwaQf5Tqg7N+/l+EI4+LYJuGmBDWCaTrJ/+lvqL0B+02KeXxHOFgzHI8K9aXJj8uhtD+eXQq0qchFZZ5IVAkiuUGoyVPo3rpeSqVOWqLIkzicC7H0hqEy/uvnvfX3++3Lp6xVm3Ukq+oNT6F1y3wRcwFxuiKMSdzYllBmhsNhVezCg8YWhPc0P61il0Lj2jSN8rsmXPdoV6JHswdlqkOlrVYhmI/tCYQq4aYEvDaNXPWoIMvlWCr+Y0J+UNPEWQBoqjRkiJ9/b0h8VLN/NRcfwQDF6KSYJ2kWaM82b//HHuCCN/vn5AnUtYaWhiLz2tXOu64rWLXCzgDnq0C9K+o9Ksi2UA4y7SLYTJ9FsbbBbTdfJe9G9FOVn4x03NxPGLzTlheRvrV831A8if/0v/wEfb094/7uvsastdVVgRg5GjnBVELPIO+++INPyrP5oVeE3GvJAMRp4dLxk1ZZcfH6EuskZXhRkaS8ZeoMbNPYqI0s5JfsrP8+IJhNpW+qnTSdNR/3YM9xrmP5ORXmd9vIzTfOWo1w0PJyv+PS3HjN5CvY8F3A02SAXVxK6OswC7t0WrQP2+xOqV5GzP9ymhkGzfa2kXWjyrUxB+tntZx2tGC9l6x7lI240op1rrn6mwLTiaqq8JhqLS4A3UR8AjT144XOJjtg9kEa0vLKYVj4v3QXsZv/1gXh5gz6a03x9TlYHius+5ZMFQikBqJOXnnzlMC+uiZstbr2WJtpmxG+/S8w05iYTplFuUXVLaP/NBKdf6kZEz9OnWBSY0xNBag78b3XLh3UyMVFGE0clTEYHRLJ8JSmWB6TJWnEUyBNSmRtcZcjWA3bZ0n59TnuksU1qDt5+SLQaN5aAn6xOr4UknhJAfTTG7hT1mYiUTC8jOt35A+8/28SDUOqAYJJQtVxQkr0NrTizCFrhFtJx6pfCfd49VEyfgF0HXCU8arPTBxF3bA3XdUXIBRnttgW9EZFmNIDSmJ1oPoYgaKMr5WeapU33JKKOe/LCsWsmMpk5GdAbi3KyIMMoQHLAYTYQd5biUglisIjYjSZuK5h7yAPGBMLI0Z5p2Rg6CWNSQdLOQxmhzogJAb15Puc3lmPsVoSjB3vicaBT4kqinAjzwxQUEdNII6S8UNyGmxyM3PfxC0GdmzNxpvBa0dwr8eVdseD14rwTFWwei17GdvHgcBaN7IJ7hMgX6oCiBqMIlaJ9+wzTOOyykbT2RpBNXxjspke5QL5JcvZM0LZoIqYxaBcSuiZBnfsgolhmoHL8OJdgxe4WgdDtIGPUsoCxIP3EKCJsb4jBipWn81KEfIUvlVn0aCz7wrY+BEHuEUliRNc9k88NZpdoVZmRwLpcQgvN5VpeLEZM12OMIdi52HAfWWwbKC4cdusZvVLSQPYDcVyBNRRXLb60DNOM6ipQrMTCVflIWAg1yrb7QC2F3SUheqZQY4PpJICzmyd+eBcpL6UJ6Ob6Nhi053Z0H/d7UkAnHrQEZMp6KW5ketCdRGIm9pTKy7qzO0U4z4lGGhCZ2CJ2mgbqe0nM2Sh0J3vT9bOFoJYgrjQa2lNujSWcTCElbDFx18eRWHlUFkTrBigTcFkGGPTO4JqKqpGD9V8u3yJExc23AroTqtfuvhKaVbp37YlMHbIbmWz4AuJNzm6XMXEQCrDTAbfMyVeSWWIbsQ1GcygI9SBWvv1cJkYgEyLbSMPmKhHEmlYdLE4PGpS0j7tSMxxXDCMpGkYv462GzYC34FOKtPD1FeXlkBoym6YbQv/ZT0cPl9ZiHZ3og8NM0pftTpMBpipR4xH+ZIrqJaB3rwuJi6nozVI6crQGjhdy/DSSAK5WW/k5X8gOic1PR7f4Ml5xOoZdGvMplfR4aU+NUWjepbhiydQ5yGQEg113mMyIZidEsTp1gVjlMp1WgZgJAq9cIOqAVhz2dtNI/lhmlYQSkhByHw+yHH8iIGk/zw+ul2JUoVKonQAhQ5WcGVfJlr6Rc6qbiYvdH/3o8WGSb28s2U40DcrBkw/viO5Lg+oVbpVjvSLk8RYMDQIAdAsrzpUD8Lyk1SX5WhPayPuf3Adg+7WebpGRrw3NvUBcDDQ+ox5yCR51mljn6PsNZdVTP6ugj7xYzZiUHaejHSb3uJEwKvrOcrkd0w2pHikDoURCEgOUixalIm1jiK0+aNdCJhPJqMQUh6DIlgZfRtwImA5Uo576YckwETATQG0su1DxSW8wTqiwRerFh1FigxQCkoTKo3qDd5ZqJ/ve9vURrlCHSbTpI0NKkDC93HOQiYurND6X3LTtA6HYFddpcuvFVKefmoPmbPRKQOdsJ1R3iWWQz7W8kv/mWwGatIdQaPrjivwyyDR0MiZmlmLlD8YJupN9QhtFjJHyVUAnzYgajzBFIcCGNbDaHQLBSc81MT27RYHWFuo/fd19uauPoxlse9RkJAnrr24Imy1qNBIv9CTIiQmFVs7hXruDm+T4UlKNix89h7IgTCsZkRYZfpzfUiZyzTDWlK8cPHlG+2eP2LwGiw+kcL/5xvTwdoq1J186TCvc8OU7JdrBvd/2bB8YNm8Kz7hcBrH47RyhytBe7DbztSdf9Qyz/LDgh7Fh/bq6DRmz0jm7ccRXgfKkob0pmf9YsX0M/t2a4XJEeSMHqK8CxbURyoCTImJzPSarpAAz1/agjUBqcbKNdN+6k4N9SKLM8pWWdPSF5617V7wxueY75QNC0JxOdnx2ecTQjHEzL0I1LUX10WLHzTBl+rmELA53BiY/yikvIjff0vhZxFpPPnMwa9l9NhNO5cce7SLtL3cUuaP9fCoTlVpRvbTYxtAeq5+wJLazHmYimjc/HlEsE33NK6rzWwSzuFZkG0NzJ6C8Yv7+mpgZmtNJshOF1RsG7Qw6cThHF576zHD99SgIakIt9SCH0YETAQwjTVanRPaZFEJX3yzIdjmzTy3BqIN9pxtpytahvae6yHCVYZhoyEBFha0lHwfkYKLrpUlBaEC+FCcmlGQ17AuhvB1Q2xr/+A5ukqE7L1OBbZ0EqJlMSpwjnt0GIn0lL2OJx3PUeke4vB39qGEQ4KIqUcsN9tOnqMkYNR6hYk5U4lCkty3ukycoY1BFQew6oveU5l2GszHXXy+xtaa4gPyqpXzhJIvBOYY37gKQfXqOPpoxTOdMPl6jz68JdyREMZpcioLaE42ADOVSPsh+Knk0pjP0U0N7oigvobjxFDeOYBUvf1V0T/MP4y39CuRAWgVsHdJI32BbgytFrD595rB14MWfy/GVpJ7v08yLpTi5dEfSiIRcuBv5jaY7DdjXa8InY4qlTGiFZ25x4+SAk0UwAXu/xdpA/flUGqsyoHuNrUUkbh/ISaVUpMgd1niqzHFVjmlNSfEiI1+T8o0Uv//kNU4XW/7Gr36Hf/HsLbafz+jvedCR7DwnWLEM9y9HzH4s1tv9VFG9SNPXVmied47XvLg5ozpX5OsgtLReDv+9Zsw0iua1gdndLZvliFgbxp9Zso1wut3I0B9FeY3lT3K391c/UQSbC6VLw9H7W6JS3Hx9hKskjG2fKSBp7IHy2ZowKVm/PhGef1rTuv9JoXiwGjUZiajXBfqpUHzzXFwAq+mY4e6c9RslowvRkeiV3O/h7kw0Devu8HrD6UisOz9bodY73PMX6MkEfXp8+0N3X12xujsekTWbw/8fjHC6XvQxbYuejFJWkFj/ozWRgDlfgtHoxQTVDqj1lnC2kJDUzqN78COxV6cf0DGKu2c3CDDyxcsm2osL6D29y2iaB2NcKRSjYhUYvezoZxmhkGm9LxTLt6WsMz2MX3nGn24ZFiVuZNg+kMb87r8wydZ+3/xGNoU0GCd/KDbTq3cFLCiuLcNYCm1plvfofaKSF0KxHr1QmF6AEZRi9DJn+W3H//zP/B6//epNLlYTTiYNo2zgvJ1yXVdol5gSHfQPIyfjmr4+Qg+KXTWmP7KcjnaUVc9ubqDThCFjOdxSOPV4YDJt2awqQmd48/SKXHv+qMnwuwztDG4aYOKInUwSTh+saPqMfjXDTQL2tGEx6hjlA9fvKJptgekKVITyUhNWGcFmaf+C8YtIMDJt8pVEKex1tcNNgV0bihv5muuvi5OfW3imH1hG54HtI3kfk6e34nKfy0S6n0jTsnkzYBrF3d8Lwq4YK9ozRT+LgMQUVFcK04gF9DA1DNW+ToD5p8OBIh6sUPWGkaabGbJNhmoHwvEUlKJ8ucOPMrH0TgGFaFAt6JvEwCjzA6DZL0pQkP3u+0Tn0I8fCOWwDwL8A3oyJlq++o2IalpAw+AkZRpQVYmaiOg3LFfoqkSdHAmv2zl0PZCFSPGik5CmyUgyRi6WxOmYOKkkIKa/RY6Kc4Vue9TpMUfvN0yfyQYRMo3PDbaNlFeDIN+5Jmpx0Sg2kgOSbR3ljYQJ5Rs58KLVeJuzfa0SSlaiXvUzQz+Rw1M7OQy1E/1FTH9CJgiJaTTd8zG2kQd3L+zevB1o7gnFwW4ljVQPcgBrp/DAMPO4ceJtqwg2olpDtjL4UaSpZGSpvBzKIQM3EZGmGhTrtuSZnnPz8bEktb5m6JcF00vFcASLWc2VmxBbw83TOabRrN7SNA88i5Mty69NqO9LmrMaNG2TE4MidkbQjJMIyOSh+EMrQUKPenEOyjTZTn6vfCMo7vat/WSoJJ70nJxsWZZiY+eOHOhI6zLytaI6FwTEl4qjH8rk5PxXha7hCzANVEspytwIMifc0+192cRP/1BcRHb3Rbyb96nQ04I2qxCTPuPW5caXIjY2vbiwjX0gT6FOKkIsLQyK7KbBrjRFYRgmGW5ssKsO3fZklREtQpETqwI/KTC7HntTU7yUwmM4HqF7j72p5ZkvclQ3yEJ3ATS41+9I2vqzc7GxtfZfc8/5yl0xStMFibrpiDEKImQlfJA8Q5+d4I+muHlBdllj1nXS4gTM6SnMJ7izGdnnl/iLS1TbY2808480ZgiYbSfhlqVFqQkqCpULpXCPz3DTnG5hyLYlWT3GT4pbB74uUp7X9CcV7SKjvPHY2lMs5blylU588HQp2D4Q+kW+kjWe7wL9WB+ac2KaqBRC5/GFNDWC9kfauUFNTXJrEbTPVeBHkWwlYX37TB43kn/3I+FFD+cVWdoffJ5c8bSYSDBz2Fc55YVi98jQjR3ZTsAbe6fG+ZEkGSsYlT3rTxaYRrE+deDVIV+IUcAXMpHY6yr8NmOdl+x8jtWBWAbMjQhs0ek9uL2bjUw6VJBmyufQL6SYOL+eYXZSECzfk8YsXya9jZOfNcxEP7c+n6AbWe/tSUyUjBQ8ey50TFRCRxM/P2r5+WaQ3KVsezvtipk+AB4h2783TXkjdu8yqXCMLrzocY4ysp2/bUSUOGdFoySFuXHo1lEsHVmtpaFVUL93CgFGF+4QaqYGcWUz21544IU55GjlMcokMGVp2IcPiOOK4WSMvalR6x2x6/iqXtn5SlgMu0ZyxXY7oaaBTJ0qCbe1G3GvctNCNHsOwsmMnwhBLXKhyfWe9lQKt+rZVmqTWSUJ1+ua7rVjhsmebaCEurMJTD5v6BcF/VSyzACOftSSx0hWZ/hCs3m9xPS3FvIoqC7k+WxPFHowRDWVDJuxGLDcTvLTL61kzeQrWR+rd+VZtrVKjnWyJgLqYIQTLAyLyHDmwCnUIPuL3Slmn3qZ5k00utGsXcnz8wX2WcHlI0teDhgzJgRNeL2h2WboncEExcVm8hPhgkOd8cGLO9jMM5q19D+akW2lTlLI1HYYG9bzDIqAKj0/+uwe0WnMjUWVkfB6k6hYCh+BoLhejgmNpdopdGfw2zF8s+Nbxy/4vDjiopywWeTCoHCAlfqq/UZDUQ1cPp0QdWTy2ppuU6Kfl6gbi19Z8p1obuq7YgCw+DDIvpWbpOtTP0HB9ZlQqcqbQHnj6eYWX3Cgi3dznTQqkK1v9W/aJdc0LaHVeohMXrqD+xpIXdnPzMH9M98IIKW6AYxmOKqE7dI4dOcoV21qvAdYpoZ8XInGcr0VUyhjsFbjxxnxm2+hugH16uaWUaQ0OlE7MT9dXfGlbkRiPxB1fghrU0oJWlnm4DzRe9CKMK4kn2EQ0a4KAS6uRXB6eiRfu6thNjmkR+7drpTzhwCzMB+TP7shHxz+7gI/yemOjPDvLmrcUcVQ6NtguzaNxHpPtjMUN1osGEM8HEbNsU4ioZjoPKJFCFkSPUZkY1QITzVtGtoDThoN5ZPoNAm01J0WFxTms1JoEwnhtG0aA0bEQnd/I3VE20CsDXYrdIkwCqilRrMPMIv4cYAkDK+7DKVGlK+k4amPC8zWkG3kVSdFx40d4aMhvxLaSXs3oI97Tic7tA40i5z2xRg1KEJvYFDo2oiQfeppMdhGcfzHgW6q6N4KYCNeCTqkPeg+onIlE5jOkL+wtDPNrGy5zsTaTo+cpDhPLKYRG8yQSVE1eeZQPvL5X81EYLcUpDbfCLoYbLrnRvQfxU1k/lHN6p0RzR0Ok6svFghi0+uTyFVCD91gaOc6fRYe3TnsSuHHedIfGbRS6JutBOHFSFQLEZjVHWrXYNqxPDt5RigyfGmlOLhZS0hhlqNmpTTRy82BZihheOLiEwtDd1xQdp642WCmU6Fd/ElE7qt2RaG07ZOj8R58FIqbNeB7WbdFjp/l9AtLfp6C4ZLZhZqM8EcTmnsldjVGrdbizV53lC/ibbOjC7FOHqVMoG4QOsVxhRtpmUaMDLbKJUci1wcBql7V6FmRQjsjpnGYZpBG5NE40XRuqU79TEJHi2spuE0b0OVPigxDsm92KY9ib4ahojTx0aiDuUOwQjMYFh7lhQaZ7YSCFZKwcu/Ala10Kr7jraDbJSfAckB1OeMXgWGiGaLF9ApXRuaTlsuixAyaqCNlPtAuNflKzDxMp5h8Bu2Jpi1jsgRW+ImX991qujZjlyxqVe4xjdBL+nk6gDtDtqdSpYmmWB4rupEAKmErHPJgoLvnqI4b3I+n2J3CuIT6joI0NK09CPOHI58QaENWC/3lkKpsZX8+BGB6KRikaEiPopYskGhgn8PiS/kc7ItItkkNswvk64F+mjHMhK6qk/Y8KiVZAkYamHwI0A5kGwlA1IPHV5btmaVYBcqntXx2StYCPqB7d7B+xQdi04orXwoqi9bAuMKPc4ZZLpOTXkJRv6pXXG2gmhKdh64mNC3Rpc/DZqjJGADTDIk5ocUml2RSEeIhQC5mwsqILhAKMSXR65poDX46E+OSrmeYWOo7Jgm5ob6vqF4ZRi8Nw1jTzTT1HVnMp99xUvhFaO4WtMea8lrMCoKVAjffJpC0EiqP8pr6oQRxzn9kpJlItGHtOYAb2SaiK0XzmkM5TfnCHKhMBNDx1gTG52Jv++DxFdebMe02ZxikSMl2Inh2hdAVV0OFusmpzhWbaUbnNKiILTxnRxtWeUVb5ISoaOqcPK0lFRWx1wx9gTltmI9qbpo5+TJRl71QUSX/wzDckSiA8LLEJnp3l3tOF1t2XU7XZgQjTIKws+hGABjTihunD5oHxQoXjFA/R8cQRSDugWgjD+8seW/xin9pXgfgV+59znfMAzafl5hWH2otFcW1U3nF6GV/ACTr+wXdPJld7CmcRvZhlmAbR9SZABwX8bDHH2h0tThiQToHXCTmiqFSlH0kWwsjhxAY5iVkArDoAQlIbRx22UqzrDVulLTQfRAwYrlh764ZlivQCjNJPLKmPdSMajGF0tLeKTFNTvH5ufx9EUErAfsye9BE/mnXl7oRoW35YvscH90TlPjj58S6QeeZFBBdLyLhfUJqWdD9zOsS0vJiTRhXhLMZZtNiX63oH5/I6LWTos5scrr7M3b3M0bnFdl2wKxbVOeZgNCslhusBmKJmwhPd2/72JxW6AGKjcfnmn5qyLYO5SLVdcCV6iBytk2ywQzCWw4ZNPdkZF9cRfRM4UpFeSX88f20wpeSBOxelPhKkG+tgQCLD+VE9rmieqXRgxzgUYsjhmlh+imHh3V3T9MvDO1jGc8VTzNMq7CNEe/+MuJ+NGMzKGKyl88/ESGb6SLlS8un3MWupRhwU+FOjk5risxRDxnrzQi3yRg/M0QFzZHwZKPTCUXSjJ4r8k1k8yg5A73K8VNPftTSz8bYWrF9HAlFwH5ckZP0K53hySuhErhRxDwtiSS94SRy9W114IUv38mkcGoiwSu6I6GN+HzvNHLLOy9u5J7vHlVoF5l+BtnOJ/qamBgc8k8iFNcD2XZADQGjU+L9SNHdGdFPDd1MM/usJ1t1tHfkNauXN2KH1w+os5lkEJQZanDYbS9pqO+kMKtB0EtVlXCyICpF/nwpTe5CRq6o5MoVQG92xD6HOyP8JCd7+w1BTkJAfYV53wBkGf7FuVCr9rkAWY6q21v6ptGosiTfNWTPrYAQo0pomwF03aJXNZNmkLCmshTQI5eU2pgZfDVJouLEw1dALhuy6Tym8xQ3gmY3j6e4SsuztfToIeDuzKSw3Ea2Dy3+rYzZp2JsUVwPFEsYvdTJQS+w+IiDDaRy0ojYRktA2bHkBU2eS3PcnBpZBAG6I0V7EslXIiTv54LW5xtFca0oL6xozCaS8Ls/kG0N4xfQzRXtaZTwVBsprmWv695piV6hXlUUXtEeSwqwcikYUcPVkyPsRrO7r4iVFHnBClIYRh7OHHyzxnhDPhi6ZYmuDfm16MGiAe8Kfq9/UxqACP5tSVauvlORr6FYWTaPFNe/PKAakwSpoo2ZPIFhptm+7RnuDbhHAWpL82rE4ps3NF2G/ldTaSiyKFMWB5D0ZSsje+Uge293LLQs20C+lKZn8tFWgm1fLw55IraW5kK4/ClTaBPIN4FhJHuO3YlmyJ1O0EMge7WFMMGXogHbhx2KTikctAj7UN78qkH1jjDK0X1g/NJJ+OaqZrg/Y5jYA9gmmRUD6vmlvKZWAuq5NEkNookwXc/ockNcrQnrLebhXfjk3+nq/Xd33T0l2pJ97pBpewiBMB0LgPniQiYjeYbtHWal0bUIc7s7pygfMX/C9EPFSPWyJabg02C1fI6hQMUp2kWxbt2J5mTxsVjebl4rJPhyHdBeJmjnf2aKbSLTz/oUeBcZP+/JX225/DMnDCNB1k0XmX4ioZ/NmSIijpNirqLYvGnojj3lgy3dZxNGLzWn3xvQfWCYiK38+EWkS5b8dieZQ9lapiXdseiQzq9n+F2GalJi+jhy/meyg0OWaeEPfv097AD9EVTPDSgjFrkmcn5Roo47jo63XF/MULWhPw7C+Njd0oxHjzr+/J1P+P3/wNM6y88fveKinfDDz+8RlznFpWHwCqUD5n5DjIquN8TWcPX9MwlTLYNoQm1gcnfLblOin1SAADDbj+f8329+FWUi0Wmsk73LJ7DRdIrn37/LU3uXOBugM/z+v/hZooKs4JDtkW3TtGIr33f9jeLwLOyd/wRElfUfMkXINO2xpr4j7yffQHUp+WD9VKYdtoVsF7BtYBgbgoFhKtrBxY8bhnnG5rWCcilh2rYeMJ3GldIcli+2qEZohu7uglBYyhc1yictk9X4+8fo5U6Az7tnUkMMTs64tx8LM6jpiEjdm11spX6YT6HrRT92ekyYjsR9z/10ovUvdyOi1QHdjIMT3nwKb4FEwbD2VrRujNAxYsRVBuVT0rXVuEmO2fUyHTHyYOg+CLKZ20MAWbRSOOwRVlM7+RBHpdgb7oXvUSU6lUohZBHTiLONz8RBYW+hqTwy9QjyAEeV0LJUAPtSNpE9ZUDQU3FIcIkTeBj1BYXutUxH0hTlizxBaXTEwi9asXrTvUqHWnqp/fvKE8KQZ4KG7Pu+VMzsk1b3rX3IxGmGAHYtY1qAYeEPItTBG3yrcbVF10K9ihrioOXAzwJq0DLtaaX7rwvhYe7viVIRn4tjhZ9IWrO5sgfrQdUr/CrHBHl/plXJ6jAeqG2hluKtn8nf60FJuNFEfhftOAgEg91/NqTwwkSvUHJP1f7Z0H9CJFxoQnIFC+bWHlE2HhHthiw9T3vkKdloRi0hZMEgz5w1h2AyX+gUbuSJxhAzS6iE28lyQFlzcNBS+wBPn+gezmMb2XjIM2I//MQo/Kt6qX2IYwiyB4DsH3v+dd9LcrS1IkiNgbiY3eYUpZuknJcGJURUnsl0KhdzjKgFnTbIo2NadxCz7heoGkQfNhyX+Ik5HHK6DxKGtnfqGsQMw5VierGfjqDABNLEDOx2EGpmJc9/yHWaeiRLR8tBNO1Lec5M+4WAvi/8OdwrJ+JHXyh8kYLWPAcUTw+iL/NVvH39VDCUo56uzaSIQNYoJEpoLgifTuGmvkBCSeHgGAigdeRsvGM75GxUQRckzEy5FNCmxRGPpSWUAYpAVfUoFYkxgT5LT31HowpPDAqfPp+QSdKx7LlSuOTlQNcYVNBk1uOClgGHF7RV/ifeGn6k96l8osratKaHZETSRjncg4SWRZXCy5yXIDMjn89+CpavnPDYSwnEAw5mKdqnTCq3P1dkmq5Q4paXzps9UhmVOhwFavBkq4hphsP3+VxjM02AQ7OMcyI+LQvZJxKaf2tf7aBuRNxqNMF+ucuG/85rD9yYtDeEKPVFYYjBYMYj+Xvv5X6A3C/zhQW0tze2Ju3dGl3LKMsdVWkapsQC2GrRgTgBsTSa4qplmOZ0M/0TlBqfK+q3BeEev0gWsI5b+m+RqIH2lk51CL87/H4kWp9Y7BaZo81iOuOkqd1P/vahh74SQM5HSLm9B8t7v85RnRjMgOwFwyRATBOLnaK8kkwSX0ayXtaT7hHBtZO9clZ2rEqHdwqURg2JEpUYIIM3LIcRX5u/IlOBx+U1U7vgyeSIbWslnT4q/GCoxj1aB0Kp2fmKbCNjSq+FNRK9wqiINvFwtou+TeF0JmDIF+5XzOR3lcYiZYOMVTKVkCyyppDfS/k9hVTWd9Tg8lS77V82cDDYObirefATsUbPNogH8P4tRHkGslpo/VIrRgHV497xcGCYZl8wE4iEwqQg1IBpfTKrcLLG06X3+qQYwea3YZ4hiIZUa6mJM4ubF1gNOrEnVAgCyMVIrAqUt+wDk2OmUX08nK9/2vXl3lFOTwhHC8z1lnh+Aa+uyVY54dFdSdfcOwINTtwwjmYyWgaKa+G5xjw7WPWGUY5S00OOQ/7ZJTGz+OMJxaua8vNB3EScJ87GgkZ3A92dMct35kxeeKrz9kDTUVFj2sjoRXfQnYTSEqymvl9IunEptIjqKhw2jO4IhrnkXwSTEj6Dpt9K8QoyyhuUZveafJOpFcMswFmHOi/IVkYyQ8aR1Rv2kJ+R7SLZNnL5c6KdsEtLvwic/xUHg0K1+3ZdmgMfQT1sGRpLdmklJKkIHL93xSzvePrfvEbUirv/4TMAmiFj9fEJ1TNDvpFFObzX4ztD/M6croq4SaC6MIdgMRSMPs7pjiL5mxvaXU7YWXxh8SnNvZ/DOz/7lGerOfXnU+LU4xZRBGvh1us75pH80lB9qKnvReGzdwnZmAR0p8g2QikZpor2jifmkepzi/GKuBW3jNkHGy7+zIz6fjy44ZhOOJ/FOrB8x7J5IzD/saW8CpTXjmgV3VycO/QgoZXdPNEclHyv6SKmDYx2nvGzSHua0705ZvJZg26dWMQCxEi/D6wrJSSveTQmasg2TqgqpUbPcmImvvbKBUHolRKh2SDPPqstDD3M5fm3v/0DsbUej4h9Txwc8cEXxKhfxcto9BuPRXS6a+R+aUGACAEuLm+tv1cb/GqN/5nXaY8zZj9ayrqPUegqeQbpPvd3xkStyC9rjBOEul8UdHdzFt+7hhcX6PmUOK7ojwqy1mNeXoE9w5eaYSSHhe6FV+2mNiGdgfEr8Dcydve5wbQWX2rqM4v2cjhNPm8xqw5fGNzEsHlkDiF5updpRzQKV2q6Izl08yjTvdG5uET5Qvjhex4yEbwTW9/hyLP4ntB7to+0vPaRpr3veOPtcz57eQw3OTGDYCJWRUJnmLwUJ676NU95brEbmcjuffkhEhwoE9Eq4o4doTBk15Z4Y/nw1SPCxFHMOqrPLeMXkdXXRBQKIiKvzjX1A7DHLcNgCF4T7gXcROMLiwow/U55cLJa/2pDMe64mUzRnSa/NkRlCDpH3e8ojltuvn9KtlXkNSkp2YgmZBaZfyhNxsv/yIHTVBeWmECkbiEo8eIDQbZ3b85wlaafCqgVbCRXEHxkOMslcyllQgCUz2t03eFOxoTCHPKmopmJO9LKybkSIsMsk4aw8ylJ3WDWPdmupXu8wFVjiusOs+1Qn5+j5lP86SwFlgVx6Bs8MbcSznv/jP54RH+Uk9/0mNbhSytap1xjNwPZywjHc6F6Xl3+D7OG/11c55fo0UxoJXkmbArnMW1PHJWsf+UR+cpRvv/i8C3u8Sm+suQ3ndCmaqFyu6MRIZf1XX5wAzHSvjMXBH0r+UKq6TFtga8Mz/8Dmfg9/Ocl+Xrg+Dtb+rMx/cJSnvfETHP5CwW+BF/JGWa7yOb1gvBWSbfYg2GSkdWeRapXMP/Ic/mzWgTnhdQAJ9+LoDTBLJjPNW4MN+/koPJD3VB/o6cYDRyPWnLj8VFx8cdnYvNdipB69r496FcBATxyleidgWJpWHw4sHlk6Y4SAJoAxZBF/MJxNK95OF7xa2cfE6LiH/63f/5guuImEXcyUP94wW9854hf+Gs/5JfnT/h/PPs5lk0pU43S4d906PMCe1nSvx2YTxveXLzih+ou7kkudKmNJl9Kg7RkCjawe92TLTXVeQIWy8DZwyVaRS5XZwTAV4HpJ5rjH3as3sppThVm5FAjx/I90fj6qad4ZShuYPXtgWzWMWxz9MYy/URTLCPVpWi0olas3pSYgs0De7hv+1wX5aTbW70hRkZ6EGOMyZMd7Z2Kfm7ItoG892RLqWNDIWdCsQ6MPlmhVlue/a03CBnc+60d2gXc0QizNai6w54v5fumY8h1kiEkd6zVFn95iR6NhG1x95ThqKK+mzMC8vWeYxqJbStNTFUIiDqqYNdg65ZY5qg4/FTL7svdiBgNCQ1QmYUgKeqqd5AZuUFGE7V0dlEpQZycRzdDylRIDhNNsjaMET2kDX4ucJ4aQtqUS3RupeBLnZ7qHLbx5Ntk21pJdx4yaTJMJyiWClFG5pMcN8nSVEWcLSAtXkvyiJeCwXSgUmEQraD3e/R6mNyi6NFEwhRZ3OuMYidZHXu73+4I8rWiXAoNzJUySTAThzsQyTlAnsorYoBs3FMUjr63eBMZTIRBMkQ2TSnhRiOZvFxsxHXJe020MY1e91ZyCqXjwXkjVkFoa0qcePZobDSRdlvAzh60L5CC3Dw8GK9Y9wW7bAxZQGVBklOdRm1EeB8rT9Qa0woSFA2HcDXVy2YzTCVrxDSQbcRSM9/IvQq5oGCx2FMgJLVdDYJCRQXb+yYJx+QzDCmIMGp14O+rIJOnmCdHHBfJtx7dS8jgHtXQg0xp3Nhico3aa020IHMiABbOv63lhujOgxGeudn26G2XbHyV6J60EiRDSWHMqISQxsMJycMYMWqoNVF1qParK0AFZC/YJ8unJgRjDuilnk5lP9n/eybuNqaP+HGONgq9bQ+IqZ+VhNKk8LmkD/ER3TqUE9vZMMoxixmxzAWAyCUc1R7NpNBT6iAs3E/LDhaMKajqoAnZf52PyZlGMYzB9AW2znBV0p5UiRZ4ow9T1mBjmgbIrXBjEbdndRSheSEiVeAg7I4m0Tang2irUpAowDCSe7ZqSoLTEg48l+fWfT4la5RMSgHdyfuIWoTfUacw1ZR6PqjI3dGGV5MZDpn+Kb8PP1NoHRmmkbYXi2ADuLs93lrCzojJhhJxevCKWESck0mxTD+h3EnGSGgNQ27E+cdJM+MmAowADINJ/PdIc1f+vViKaBc4BMmapZXAsv1S9Ym6paQARGmx8faRfHsbPDdEfUCvQb7W9LfUqjCrGGY5vpTGUQXIsltE0UaZYuzPDkAmU4XBmDSl9/InFAYVcuxiJlqF1CSLjkeCySQQEQHUokzl9lMXkyxsY2HQzRfsbDXEJNj+Sl5KpSmxTKJiVcDEivYrs5heXBIJAcqCmGe4USagUOfRLgUfapUiAdLEscxlstWnRrpLwXFGH86B4krdTi+S3mz/vJjdABrsrjxMQfZTeOXBhKR7zG6pmqaRvSlkCtMqwk4f7Lmna4evNMNcM8yEmulGMoWwO0H728rSBkUIirIYMDrgx0HYHEbqBJ8CgSXEWP570KFOBvq5ZnfXHjQd7Z1AKIS1gAJVG5oup/WWD7Z3aH1GGAU6G4VKtZ8YJNrTRTvh4/yMZVNK4rqKhMFAv6dSgTayMD/fLPBe095zEqqYQlqjhuqowZjAdhjjC7kvbhbI5h2DMwxe6JckJoUbSfaXz+UNhesCVDpqHeillr3TgVkbhlhAsi/fB8M2p/YgIheDAdlr3UjR3El10D5IWifd2KAoVmLhHK0+sGYkjNlgGrHk309QTRsEhC/yQy0Sc52Cb43sC7MSu25RLuCnhdS8Vh8mgWpUYuYzAebyHD9KYOcXL6PEqa+q2Ju5sLfC11p0l/vn+Ke4vtyNiFKY1S65AxXQdbKJXC7R1kAlHG4/r6TJ6DyxbqBp0SlTpL87wW4HcctAij4DhNKyfXuOrT3VR1f0j47YPE583yEy/myH3nWo9Zas6znajOjujGlPslRQKLoj4SWPCyNOBW1Pd7KgvmPIN+KSY1opyuu7WgLHJtIB242iupBxbHNXEAg3jdiVCLj7I+FY6kGmJupug3peMvvEHrIt+kFcn9rHAzzLKL83cPO1nO3rYE8bjmc1HMFyW+E/nhw2QT1IUfTez7/itdENv/n8TUZFz7ePX/AvnryD/3BC+/GUxkK4Jy436o/mtxSf13uOvn3D1c1EROi9RttA8bU1mfEUmeNqPKFtLabwQokCwiaj/KQQl55WdBsqQLESB6t3R69ofMbl4tYyOcsdQ2/JnmS4MVSLhu5Vhhk4cLxVKiDypaY/DpSvbfCrOePzIE4+GkaXDlcIAoiC7kQKd9Mqfu3nPqD1llf/7C2aY8P1nx0YfZRz+keRfkzKcRCxoR5IKIZsFq5SlNeBrA5MPrgBwM8r4QkXBlt7TAvbhzkqwvwjQRv29tGmj2mMryk+X8ozWt6GWKlnr/DXN+JuUxXEIofk2qRDQAHu/hGhMOSfXhKdRxUFajGje7Qgu2nRqx3h+ef/Fhbovz9XdB7W21uDhqQT0XVP1Boe3JFp6XoL1qIXc9S6lUnU/QrTlVQf3jZr9cOS+kxz9EGP3Q2JquhRdYsdZejB0twboU8rTOcJmaafiBV4vzg6vI7pU05AlJG2L6ShONgwRvGBN12QQqeX4Lvl2wXbR9DcMShnKK+k8XXjSHmpWHw40M0Nw1hQyD1KKbowea6zraObW9DQH0mW0OSpFO/9XOGPHO/df8UHN49wpWH6WcosOQZda5ZPFoniBuPXVrRNzv3/vGAYaa6/JQVPcSG/hy+hfHdF12aM//lIJrN1oP45+MsnH7DqKy5HAvw0bYa7qFBZoMgcvLOhec0y+v0RUSuOfuGaVVOyCTNiJc256wwMGoqAB9zI4CaR4chRXllGLweyy5xu0JQ3Yhea7aA7jdx/54LnL44IVwWMAq4I3H18w/mLBcUf5JTXEfWKBDrA4oe3Tc6etmZ3KcPhjoKgOH5fbJGry4H6Tp7CKaUwnLzwkCuaM40eNGbd0T6a0pwYholYeA4T2UuKm9tGZHwuOp2Q3zZBIdMME4PpMlSbY7c9uje0ZwXMLfqoIF/2ZC+X6FGGL41MSvsBnajMobDoehDHHDhoIWLfC5OnKmE6AedRnaK7O4Ef/fe8QP89udS4Ii6bwz7hH71Fe6egWA6oPsjkqhX00C8m9GcV/cwki+WcLNPoXSH0ytYRMgOZJhxNwAWKmx5CosuBTJiCGBQ8+qeNBI/O8p98UxHMzQa6nvHTGSAFZ7AGVygmL0VDdvXtQqxoGwk1nT0JDJWiPdYUK6FJbd8IhFxRXrZs3hixeheGez3T4x27bUlYZ9z7dSk62ytLP7UMs5zNOBBzASbULOJ7g8s0ITMHyqKbiDa1eiZucnfvrLipRlwuKqpnlmwLx1+/4sFkzR999oC4zBl/bthmFS+nM559eorZGGbvLrk/W/MXTj/it67e4ofvP8KXoqV4cnHEy/WU3Sa5l+WOeF0wfqbpFjLJmeYOHxRXH5+ijnp+7ec/4PefPmZ4OqafiY70f/XOdxmi4b/Y/CI+KBqjmT9e8Y3Tc37n4zeIy5xqI7lJceyo76vDmUyAxfelTmhPZE2OzgM+ufotfqjwRcbqPXFNDTnUC0U/Cwd2xdH7Ao64QtGcKd75c094/9ldzGelrG0lrBeTdCHKwTAT3Va2DSzfygg5RJ2LkyZgmkC+GvDzEndUUSwDwSra4/yQRydZUIrJ8wJbe3wCPEwXkh11gLM56khqrGA1/Vxyc2z6GhDwIuQGTufo3t2K3EHqkFGBavoDvf1Pu77cjUg/QOOl4ZgfH1AM1XbCVUsWhMFqlFaozKDtqdiYtmKz2c9SpkMYS7L6thZ+bBAKjArgT6cHd4FDh+6CoFH3TgTNyiVNPdt43MjgzW0xbRqh0rg7M9EUuFQYJPeZYSTCT7tTjJ8qTNJ0rN8UrUh5KV/ry73WY19cy5sxnSI8E0/u7iRSXCctSC6LDi+TgH5uBfFXkaHOuQya0Btil8KvGllU9YNAOBlwQfNZfcTy1ZSliry6nuEai5oEYpGEX1uhQAxT4bnqDmzpOB3tuPz4mGyrGU4dpnTcn6+53I65uJpyfLRjctbx+atjQlDcO11xZce4lcWXcgh3J6CConwlnf0/ev4tLm6mxGeVOOgUAbfOBUGdSGDRbllhVRLoJath0wFRUB/TKoYfzCh20C6kUUDDzsjmqdzt1El5mVj95h+/A1FxlpqN6R/nDBN49Usq3WtBPPYc0XwD5ZW7DRdSEmrWvL64XewJYLD1ACES3vhCGu/gydoBFQpUNJh6EEeLFDwWTCmBQ3VLeHQX3n4IlxtU06E2O0HqTqYHapbe9ihnGR6doNsB/ePPhW7QuIOHvSoL+DcLQ/1yXSGCG4Tv7T1knUxEsuPEaTVSgEGaGiXaBFBcC2qJMcQyw08KWes7ZBKmcpjnaUMXxLq8GugXln5kyFIo9R54yFepCFHQL4R+t3m9SqJVn6YPYvWskqZAhUgoDa404tTXw/wj0WAEKw2L9iI+V05oga5S+EIdbL/tTv5NhJABW3v0YCUz5EoO1uaMw3TG3Fg+yO6SLVNo4AMltI3TAVUbsqWmP/OYWU/XZbjBcPGzNjnMBaEiOkV/HPCjANcjiHDzc5780jD9VBMayz+9/DofP7mD3lhCnlBQK3qSus0ZmozYaeqHQaaH6wneaWIR0HtrLICgMLtkEPJmDzqiTGT72OLKguIaiitLkfJZohbe98uLOdW0wywads+n6MZw/uQYu5LJ5zAV5Ld6FTG9oju+Xde6v7U2joaUdSKWm8FKI7hHRUevAvk2HNDs8ko0cH4u4uh8GzC9TMKy3a3rmXYcig2fcq3kNUvszjP+ZEt3d8T2ZxdMPu8w257RZ46YaSlqFcRRie4c+XUQd6cqQ29aQTazW09o5f2/Xjz4IGdpmUsa+LbnK3v5xI1Pl101jFyQaejgRB+WOPZ621DESH4jhitqkIDUOCoIpcVXFlcZ0SU966HrCeVMpge5kcDZpsfskFriWGh5Idf4YDFjeS5sE+gfnwCSQSZFqjnoAeozCRerLhTh2hwml+2xUCmHaaS6kLM5v5aD58VfmBJMCkBtc7pnGaoE61NIX5VyLFpFtla4+47jkw3L1RjfWejldcLUo9ZiBpEv099lqe4A+jajuDC4sbAkhqbgiTuSKUYR2L4ZwUSevzyiPGnI7jnaLuN8M+VyPsHqQLZocRcV2UYxMGJbBvLjlqG1qB+PYRHofmHHZNxS5QPrpqTvcvRJz3jcolXg9ZMbrkcdly9n4DQfbO9Qu5y4tWQrQ3GtWI6nfD8qQm1RUaY3elAUn+fYWqzMXcUhpylk0J4FfKGwdXKx00J3jVaAz6ijNEjTgDrqherlNP6TnHwbKNaB8krx/rO7ZB+XzD6C+r78nOo8ktVC55bPXKj+uk/PmRbWjc+0ZEtdR8bnYnQQjHxfVosGTWIlNPkOYi3PlOnlTzAKNxHHU9FJp6BfpBYpm+EWsGh/kmol+0WQQGSlhLps9EGPoob/P6Bmqa4nbBrUdEx/J9GoQiQ/36DaHpoWYiGNQqJShYUg3dUTEfr2Ey3NQSgxNzvCrkbNJqgQyLYDoTB0JwWu2vOH0g9PjUh7b/SFotKTreVDlwAyOWjMrsdPCrqj/CBi8jkQFWaQEX136siXlvmTAd0FfGm4+vMeguL0NzI53Mdi1enGEmYjdn8p2OZGkMrujsPWFtMKUh8yEjUipmA0+R3U1hAag9nowyTEtnLYbt4NvPP4FUMwXOwm5OcWPSggJ8wDYeHIxyIODa8yiDDcHQidJvOGatRxv1rz8bWhvITVkcLYwBuTay63Y7goOHt0zl84+Yj/7NWfJzrN2/NLMh14MqsO91iNnaBBTYmK8OKjM+xaM36paO4ZhjnkKTm5P0mHw0qySdrTeGjY9jQ1Pw0UF4bjH3iaE013JJtJ1BJ4ph3YlIa6p0WZDubfE4Sqn4vF4dkfdjz9yzmv/dIznnznAeWFFu1OmohkO8hXPb6UYiQqQaU3jy22iYyfJzvIlOatBk/IJgfLVT0E9KbGKgUqR9dJm9T1Ip7OtIjM6obm62ds71vu/HYH6w3+6hoznaImI2kyhkHcsoaCzZsnmD5n8pFKmTq9rJNhQBVfYboFQAzE3onl95AKKaUwR3MoxPHqkKXiA7Hv0U2H8oHMi9gYa/CjnH6WJdpNkAlGpQ85Gqa3FDcD2UVNezKnnwg3QydHq3w1kL1YHt6WG58yjC3bxxq7g/HTVrjfucFuhWban43xucaVhn5u2N3XTJ4Gpk9qtq+N6KZfmJ4sherXLfQhd2N/mUayLGafCZ3UtA7T5+hBUe3EtWr7WCay+UoKC98UFEv53TZve5g4Zoua9TAlXyn6h4Gzow3nr+ZEp3E/syV4Q9hZgrMyXT4ZGM9aug9n+CLyi7/4Id979oBuNUE1mj9+cZfq45x8DcNU6J79mYOoGDoLG7H+tY93WBvYXY2EQlp6lPnJ0X+21gyTyDtvnLPtc67XY4ZHiv7UcPL7huo6YDr53JojTbZR+Jclxz+z4t3FBf/fl9/A1prRM3uYgHSLiDtyZNsMiHTH8ZC6bpVKjYgARdVLoVt1M6G81A882UpTLBXVxUBxUdOdjUQXdynnVT/P0H0gX6WIZSUTUVdp2iNxSMuaBEJlMlnxmcIVimkXUR98invz29y8pymvLdnlFl68QlUV4Wv3RaQ+zjFbsd/tHx+JU9uqTtQdvT/CpBn/k3SKGIj7gsJq9PVX2GHPB1T+hYnEzRpzHYl1Q4xiCqCsRZUFalsLcNl2IlwfVVCVDPcXuJFlmAolKSpQu4a43aFOp0IJzwxq199+PxDuznBVAgujloYxgqkd28clPlfMPuuIWlHfuRUmN6dyvsw/CYdnz40U3RF0R4FwNJCvCrJNFOH4DHa/UhMuSuY/1hTLQFZHVm8aMccYSy0xenvF9smc0QuFnjf82Xuf8U9uvgmtRneaUAWyaYerR2LzvQVCOnuL1OzXluqVYvVuwN6taeucxhfQa9TIcf/Okhcvj7Avc978sy/4xaPP+c+/9yusOsvL0xmayL2jDU8vKrKtEpvdQlM86Fk1GYsP4NWvRv433/4t5kay5P4vP/wP6TvLnZM1s1zu7c8ePePorOYful9ks674dHXMrs3J1tKETJ4F3ChjE6eoTuyF1d0Wf1Mw/0CnPKBIe5xoXCMxxtFnLX2W069vtR7tWSDayPQTCY3cve4wi557x2vGWU8fDKvigYj5147qyrD9rGT+IRz90ZrmbI5bREYXgWybHE9LzTBK9L8hHGokVyn6qWL7lsMXEvI8TITmP33qsTtPdtPixxmuKjC1l9+l85J1Vg+EUUZ7mmG3HrX7STRSOU+8ukFpha0qMbj5QqOuBn8Qsx9COHsnwEU/yH9/iutL3YjE9EuquiV/tRNkRyOFRJ7h7i9kRNoHzK5H1d2B1qJu1hjguO4Ik4JhXuKPJ+iqwE8LhknG1bcLscH73GOblKKd3KV278wgQr5yyfUi0B0X9Hdzsq1QcbYPU2Bd73DjMZvHhnwdyXaB9lg8uqubwOgyYP7QJAvPSHdkcZWm+tjK2L8N7B5oNu8NqLQJVK/kIKzvCae5vSMoZrY09PNIvyBx9gArNsA+Ez6z3QmP2eeR8KhF6UhwGlRBcQWjzyyfrh4J8pkF4h0HJmJKj35aMv1OTj/LceMIb0pxMGwK1MTBUceiatn5nP71jmGWUX1uGVYTvj+5x+rpnMUHig+71/nh0SP29pu/8fvfIOZBktGfVoxeKHYPDKEK8nMQOshw4ii/sUX3FusMfiHPQpF5YgQ3WHxtCY2GxYC2gfB8JOjnSUObF9y424VkepmC5Gsp4PqpopsrXGUOjYGvpDkpruV+rl/PyXaKJ999wPRjTbEONKeiaRm/9KgA9YNKUIlewi73Vpt7HqXyYtUYM0PMDLNPRezeL3LCWYEvptIwhoirpphuTHYt/t9m20kDAeTLnokCdb0iNC320UNikaV14CVfBFA+MP/upXA4T4/FpCG34vYSo1gGf4UvVRbE9RJVVejjhVA0B7HhVT4kiZQSEKIRK1/yjDAp2bw7R7vI5EfX2HWLdhI2h480r00lifrVIJa6nZcAQziETU0/3gofd1LIFOThEdEKgtYtLMHC2Xd6lIv4kT1QO/v5SNDxbbL2HcvUTg9II70YH5ybNm/KUiqvVPLGT5Q+ODjk+SriK4XpLO1ZRnMnYHdCU8rXKhkqSNMRMgE83CTQn0WZLjQGtczYrGfkGyld8xcZ55szyodblIr0P56RtYqqRkSsGtR1xq42WGQdfe/pQ4ZVgRkBGlxvmb8Q9K79azcs8kFsQZc5+WUmKGQRGFdSVDQb0XmgI37uMNMetbOYWuNLoUh9+PE9cArdasoryQa6+XbgqpSAwmylWfw4UasivPyju5zHu4xuhKfvSw4TCQXo2hBycChCJpOZmMn9ynYRN05BsVNgp1j8uGeYGPRgEtU00p5mDNMZ1XlLHDTtUUE/0fRzlUIjI7PP3a0WbIiUyyAC89rTHWf0Y6Hu6SEy/0SE5bz7OvnScfYdcVELZY5+cFfE6duevaNbtBpFhm7FcjyO9+F83eFrVNOL2Np7VFUSH5wRg4B+qm4xyw2Rnw7l/FJeuQWHUDetOQQhh65DKYU+lckE/nYS5997LGL1ZytxJXy1Jt5fsLuvmX3Wkr3a4o+mcDpDf3Ga5Lw4lS2mhDLn5msSenj0fkvINc2dW9tX7cTYoL6Ty5RurFKyORQ3ae0c6YNzlvJQ3IDymr6X72lPxbIbHdGfVhQbhe4j3VzTnHKwlXUjMZ7Y3IzIGlkEu+dT/pv2PezzAlOLCcYwVfQ2R6nIMInJsQtm37wiBM3LJyfYlWGYQCw9ReF4/UzoyZ+cn+A7w/NPThnf3fHNdz5lOxT8xqu3ibVFdZrf+72vYe7V/I/f+SGTb3dcvDlh1+aEoOidYTxvGP4XW46Af/jJL2K01An1+hZUu2krni7ntE1OaKyEL3rF5c0JplOU11K0L98RA45s3hGeSmPlTIHqFfXdpMfV8nsftGGDwr8qsW3KTmpknU8GfWBXmAijzy1tr1mWA883C2JtmeWK3R3D7o6hXyjcONDNNd2diulTmZKs3hKrY9MkmrmFfqKwjWV0IXXoMBKql/2eYXThGT9rGCZCwfQpxFbFgmFsaY411TXY3UB7LJPS2R/eoHeWfJFh2tT0nExwo4zifHubL2bMQRMVM4u52mCcl1oDBPRMuhDVDdAPhNUa3+1+qmX3pW5EAKFVOIeuW2KREY2MhmJmcJMM5SK2lhGoWm9RvfA34yA0DboeHY7Qk5yQmYMLiS/FLcXWiulTeah0n/IBlKKfyCSguAqHgLpoSvqxIAPK3QqV8OFgbZttxZJxLyQnCj+vvE7CdoS25XMorveiNJmg5POOPpSoFhFu9ulnGDk0VbLiHWaBUAbsxhysO6MR+86YxFXKgcpgPGnJrafuMtoyJ2QpTblT1NbixwE9HshLx8l0x/mzkuoioLyISmfzHYXxPFmW6FzcKjLjaV3GZFGz1RXZkxIVFdfrMXalKW8iUWuGlaW+L/6C1QtDf6Qpzmr6UMmYsIeYggf304lQeH7+7jM+Xp2yrCuMTrxEICZxa+sU9JqiGsgzhyukESnLgRA0/dxierlXysnr5lvha4bjVLSVeyHxrX2v8nIvXaUwDYyeSRKybSPDSGxO87XwLruZwQz7IDMvjXA3SLr1tBARoo9gxcqxuOkImaG+lzOMpDixjVDJUJLUbNpMLJTX/YGPaeqBzGh5nmMkTipZA1+4og8oHLy8EMenu6fSAFnNwV4v/pRkzi/rlVmi9+i9s0eyPI3DkHjwsi+QZwd735jZw9TUdlH2ixCkINlKcr1+MCFkEVuLK95e2BsTAGK1wlzLhh5ziy8tw0TswCV3JjW55zui1rT3hb6kIiJALxTZLrlM7al+MRULmSJfSbM6zKW49NsEXiQf//3aD1nEFxGCGF20p5H8jS3d0wlqqQ+TU91z2LeCFY2VnfUoHfC7UeI4S1gYStz6lIfiDUdmPXErmUe2jiK6rkiJ58luNMCwkgNeLLmlcbBNxHSRb56eU5mBq/WY4BR2p3BVFH66jvigbsXsXoHTBC9C1P3kEwV6K9x100K+lvezO+k4O97ig+L6xRx+bNNnJQ2cTWdmtPvwQ5kkgxQdYo+cpsw2Ev3tHr5/nWClActvOvSQkx8Jrc30sr+4QlGdy732mcJXEsJoSrmn/lyL4FTJ3m+aiG09ph7gODu4E2kP+XUj9OKTCtN6xp8nTo5RYucdEJ1Cbom5kaLERwkyNKIjUy6gdx0xt5Cn7ByXAD5rGeYVygVsjFC3hO2OmP8J4epX6fqC3Wg0WuyblRJr77Q/iDGFT6J0Tb8oGCaa7CKT/WFwKbQ4icwvrglfeyQ6vbo/6MHQiphn+GmJm+QMM3mu9SCaMlfdmp8INS/ST3TSIoghRLCydoqlZ/tA4yay1u1OcslCsg7fu2n5qUc5Rfnq1tDFVUmP0HOYAqKARly8fJ5AQF1QJSMc3Seb4F5sc6ON+BSG+vr8hptuxHZ9JNqRClQRKDPHUSFTi6fZAt9asqXB3A/8yuJT/vnl11g10kRoB8Wlph4XTEzHW5Mr7ldrbvqK3VDw6eUxk1HLX3/0I3778k0+fXKGstJkMYiYvu0zemdotgXqOqdcatxY9pxspUXP2YNbQHtXmpCq6tlmVQIxhHXiJqnOshGV9GXRIhrdVhguIQPqPVXz1qBCeShaASr63sA6I19rogU3lgbGjQAlVHo3Fkcs0yk2bwrTwm7VLRMH+Z7qOmCaQLAWM0CxjpRXvYRphhHaZfgiS1EN0pTsJ+TRqNt097ZD9QOmTeYJ1uBLixsbcnNrBY42xETNjEYa9Ni2h/DT/Z7B4GRtJHAzdj+dCc6XuhEJ90+x52tUlhDutAGsv30i3d53L+TGzivp1qryFh16dJeYW4ZpTrbuyD+9FB454O/MyX3k3u8Klcrne56vZpjKjZ9+mkKMTnN0H8l2Dj1ERlf+wK87+16PHgJhPiIqRbZJqPtYC7qOdLTNqWH9DUf50jJ6EakuA+W1pPe2c8PVzylMGyl+Z0Kh5MCLFrqRwj1qYZ1x+vua3QNF/fogbTgQckHp7Y3FF5HlLwyYm0y4lvNAHHuMDnTOUF+PMF4sKIeZhBaaWmEag98Y+vstf+Vr7/NfbEcsdzPa+w4zHbjZjOh2uegmZnD50HIzGpMXA3fnGxZVy4t79yQV+I8n2AaaE4WK4p6DjsQ8MEy1BDECvF5z/cBQjnrwmvK3JqJ5yRRtX/LrzdchDygdyfb8zZ0gQf2dgHUKNUA3ycjnjulffEXTZ6xfTMmWhtHzL1DcWgku3KNM7d2AqSXwsDuJKfBRXH6GqSJfRY5/lBaXgvpOJsGETyT9ev16JtSWnUw/ooL1GyVRV6IRSBSMfpQzjA2jFx12Lc9SNBJqFL7glAMydbM7J1qS3OLvzgSZbzv0akfW9MSHd0QwvdpKjsi4IiwmxOMZeteKAwvI89/1KHIopfCITYsaj2D5b2GR/vtyhYA5OT7sFWpcyZRks5FGrekOWQD+dEp3VFBetui65/RfXoj/etMKKlQI5x44BEsO0wy7U+jlLmlPLMVlI5QupYhVIa4lyX0k24od62TXE63m5ttzyfnpIvnGk133mM7gczFQ8GMrYveJojuW0KzyWprfqKF6LpRE08khDrIe3DiBFp0U9ftpR3mhiFczxgO3mR4JpAhpemJ60DeG/JMRykNzPyTutyJYcZIZjjx6MjCzHh8U7VlIrlsCLoxeRtzP7/i5B8/57m+/i92KLaefBPS9LaPkcLN6WwJRf+sP3hPtR+mII0/9GCaP1pxNdnz843uooHj0sy8prPySn5yfEM5LiqVMPWafSn7I7H/2ks9fHZH9qGL7mrj9qGXORb3gG197RnOc057MpHDLY8oTUgeNx/ipFA/NGamIiwe3quLBjhAU/umIYRJZvQMQUUFRXUpA7OprYxGHThX5i8D4aUtzV4T8N+9JUrEZIqOXkcnTKIGGpZwHwVqyOvxrWo3JxxsmMdI8nByeaTctWb2Vs/iwI3tyI4UyEDc7iAGVZYS37nH99YqjD1v0s1pioEpLezYiv+nhjz7DnJ4QTsThjUyoRzETIwPtgtBCAVWWqD+hpf4qXXGzg3IidKntDo7mhKMJw3sPAMhfrEWrB8TZGD8tJXhyI3lNcVyyfXNKtvGcfHeFmxb0v/gmdjNgdgP9nQlubNjdsaIPuB7oZxZfaMorMZlpT8vDGVBdDOSXNcNxJUGnK4fPNe2JwbbxoEnt5oZhKs9pvhIwwHSRUSONfn0mlKLRZ4mlEdL+MFKEQpoX2DdCQFTYtWE4cWTv1ejBEJ2hO5amXw+Ii9faJA2TvN+4hT/67XdEz3qvQ9sAOvDu2TV3R2t+4199Q3RcjxthYuSR3Udz/m8f/zW+9Uuf8rfe/A6/PnmHV9sJq2KOajX/4Dd/FVNrlIPJt6+ZVy39Tcn1dck/uPlluMmpXmn6b9U8Ol3ycjml2xZ0v3vMMI+M3lmzGzSDt8llTEmobA7rrzkev33B/+Ht/5p/svoZfrS6y8/9pR+ycwX/+Dd+Ad2Ls6fuFXbzBTfOb26YVB3L1RhXW8zaoHuN7mVCapLbmW0j0yctIRtRv5OesSREFzOKSL6E2ScSMdDNNN1cmobJ5wIcRXtLldxPwXZ3bQq2bPGlYfMoR/kM3Y0PUoLqXJre/ign2wVOX3Zcfbvi4pdy7v+GZ/TpWp7zPCNbtvhRTv3mAtMF8uWAqjsJAgeYT9h841ioXpuB4Wv3QEH5ydVhb8A5WQOjEiYjdNehtYf6T193X+pGRCV0EhCE2GZgDdqnEK7NDrIMVeZSEORZsvOVkKFgpeiLdq//SNSZIAVGvh7wmcaNzcFK9ovhb9GKE45tItkmTR0yQTqVh+yyF2rNOEPFSLGKhwnFXpAekl2vvOAXXj9NOKRwiILMwO2EI/338H17BDQqVJtsGY1sLtlm39nLItIOyZnQkV1T4J1J3yNi1JAlm82NTvZyAa0jmfJY6+lyuUe+M+J45W9dXLCB4BV9bxm8kUTzNHXQvfzcfi4OHnvBfYwS2hgzuSdZ7jA2yN97QQ8OiaQOzEYEfRiZWNk2cTYrCFUkDqC1IraGrS7JjzwhKuzGYGslY24nyG4owEUoVoI6KZ/EoQOHoMmo5TOISiWbS0/IzcGmOeQckLR9YdiPFflOpl3DOCHOiOVu1NmBthKTDZ6Ey6UJTRChblZHeba2Dl0Ph+mJjLW06EWqgpCoWMpHEY0Bqh+Ey6nTe9MaRpLaqpwnaodu9O3o9acMHvrSXj5Ig7CfFvlkwbn//3Ar0JPgSCU6sH44pK/LP6aCw2pBmJOlbsi0BEiVhXxOKcRMDZKOizXpmVES5BWEnyuvK7x/se0W61aTKFogz36w6oBU6v52ve9F09lG/nvYQ/ZTDRPRyHNrEv03fuHrTCvP/X597SesIU/oXpMsRfXtVEDF2wmLGjnywtEOVtZq6YlRyT6QLCWD17Q+w5dpMSlAie1ubj3WBFYjsQPd72nRy568P4QHb6QYGRQX6wllPjAuenxtybfqsE5dKcBRiIroEnqpgSIQkZ9dD0nzNZPfY2/TGTJR6asAZrhl38g0NiHQGmJQuMGQbdN71NKEKL8Xqyd7zb31uiJNH+Xn+CK9Zp+osm08WCyriExArUpc7iAi6BAPfGzTfvEQ2p8TQvk8PKdaQdASTOaD5JXsH2ErSL4exDr4EM7nvvC9qYHGR1kbzt++9hfD+75qV/CH/8auk6lF2iPUFy3Ajdj0RiO8fdPCIUh5z55Y1+hczirdS3LfPnAU9ueK3EvtIuXNnr67n4IooYEO/mC9vJ+W6kGoe3qI6XVE47i3qwc5W/YOjvLGhD5ETJPDyAGYAAEfQNY8+rYWsSYw9EkzNRGraXthpL7YV5D796ZkKhKLQF6k3IwIq67ERY3ZaWytaHeZTDSRGkAFCFGRKc846xgVOcsi3H5NEBrk4A0+aFQn2tZQaHQUYFYBSkWmo47gNabL8b1ECsjGJfdGRaFb+wLUxLEoG6a6IURF5y2lHnBa1qu4DAb0YNBdEuJnYhe+awrCNkP1SgIfS+gOn4W61ecpYbsMNyW21pheHdaizxXWyznvylQ/FkKjZ1+rOQ6f/T4c9cCEScHKe6etkIwnDuGJaS8xXcBsWmxdYRolocb9gJqMxdDpC6Hdhw8tz5LJixemwH7Z7yft6vaZp8gP2koJ+FRoa1E/Zfjpl7sReXpOLMYol3icJ1P8JGfy/QvUtsa9ukTnGcY54mKKPxoxTDKiUVSfraRQiFKcubuLW+69TptOH7B9wO6cNC6ZPgSP7R6W9BPF7r5i9DIy/bBl92DO5jV9GM/ZWsa5zYlhdOE4+v0L2tcWdEeJEpCSk/N15PR3DMXak68c9d2MdmHJt6JJyG80bhLZfLNHtQbdKsZPxbdav8pRTlHfl4VWvrSUl/Lzr37ZEaM4cQUL3TI/8BjbMyXF/LOxTBAiuDLSH3tMo8k2mpM/liLK/VLNnfmW728esNuW5L3i+DsG0xsu/3LAjBzN3YzhxPHW4wteLGc0m4KX1zN8Zzj7UATYw1jeZ/u4p/w8J1+KTbF3mni3I8vEyrdrc1xnsBc5poPta0Lf0oNKojjxRTe9oLftSeSv/fU/YGw7XnVTXtQzLnZjNj84ofwgYzsRAfxoQ8oRkfFytoms3o1EG3n0T8WhwlVif2xrmYT4UrF7FMCSBPswzDO29y31XXHM0kMSoteRo/cb1m9WXP1c5OwPYPrjHcN4KptBH+kniutvik3q4sNe7u+iwJWygcye9HJ49AF7U6NWWzn8tCbubYv7AfIMd3fB7vGIbqY5+d4a1fT0D48kW+Sjz1GZRee5NCx5Rvd4gfKR4scvYbuTZiWzMil0X2HeNxB3OyhvbZ/DckXY1dj7d2Va2vXEtKnaZY2KEfPqhrjZwtEc9BcEem1POJ7gx8K3V0Ng97AUa97Z/PB10+/XcHEFd04JVcYwkyT1kCnyJehNTfvGMf3CinsboPPIMNFsXivIV2J2ARDSON20kcW58In7+W3zO/tMTp7mSBr3/RQXkqhyUIxWUuSEXNGeQnvPcfyHhskLzxZzELj6KuLmjuppRvUqcv1LjmzWU/zhGD2Iq077IHD3rUv65Lm/eTWBoETjhTjDuHGkO1bYD0a8//QNxu+uUCqyuZiAV3TnI/JHa16fX/OH5TEqws//zMfULuf9jx6gOo1uNNt+xlbPKDYau4WTXy9pF2Ou3tFMNyLAr+9Ds4hs3xU/3fVHZ5QvLeMXAV9q2sIwfrAht44nz04kcue9mnBeMnqu6WcxhcVKU+HzW6F/vhSEefu6TFb0sxH5SnP0oyDUikoxjKQYsl08pCuDvDdXKVZvFofDWw+3xaLQbCSfyPSiH1Qe+qkmqwPV092haAmlJZpcsrAS4potW45+JOF4/u5CnLC8Jzw4Q3mPfnWDPV9x0gzgI7Es6E9GqBip3j+X5/7oCKw96M6IUSgbIWA6j24dsZGpanSOOLldR1/Za3CEusY6jwqB/IdPBZQoC7BWJkeAaQZ0ihCIZY7uBibf3RzoW+bjDcYH1GJGHJX4XJyPTv5ogy8tfmQpX3WYZkC9uEQpRbh3gh9lDNOMqJQEI1rJqepOU+5ZL+BBcyfDJWe80QvRgrbHQAW9k/PJtjBMZF1Xr2S/GKZC3SpWgd19Q3ui6N9pKKqBZlNAZ8huDGZt2bTzlMkVufv2Fdu2oPqDGf1csf6aw9SiiTC9AIr/yV/8XawO/L8/+zqrmzHmZc6qmbAZgLlY7I4+zlJ+VmQ4cUzOdjQu4zev32bdlfTOonLPycmWv/H4B/xXn/4My+czZiqy7XKyrVA2795bUh9n1HcKtA6cr6b8R6//mOVxxe99+A0xrrmq0I1MK0Cai923WmzumVQ9L7dT/tOP/xNeLGe0dc4/uJ4TQ6JiTj2Tu1uaekZ1CVe/4MlPWsrfm1AsIyfriCsV3UKx+rrj7PUbVtsKNxhCb9BLi4olWR158M8U3Tw5bCJ7xO5xJFsrslodNH0AKOiO5PMbv/Bi8z5Ehlo0Yvv9Y/ewQLvI6MJBjPjKkF/3aBfYPR7JOaDErl21A6e/+YLT34jEUUmYlrTvHBNyAb+ybSBf9oTc4EeWfiH1QvlyLLbMLzu0C+jWYVfNISyczDLcP8KuGuLnK7QVBy2sRVUVrP/05falbkSIARazg0JfuYDqgzhR1A16PBIrPiMJ6GYl3xYyw3A6QfmAWXeCGmstyHKVpVAodzspAbwRJNMlm7IDt3slyNZwXBHN3vdZQsdUhIgUE8oJ/04lFKI50alTjQn9IHW0OvH6FLupuGG4sUxSzNKSbYWCYFppUlRQSYCeunXHAR1UrRS3Ppc8ke44ol8JrzwUATseAElL949ajPWUJtKuCoK1rN4QmMENliFo7pVrjBFP636e0MuoCL0h6xRhY/js1TF+0OAVvhPxyvW3I3anqc4FdTSVxyUEtD/zkAXYZQRrCEETgwQg+iK5FSWedtTgpoHh1GNWFpOC03wR+e2Xr1NmDgWs24J6VxLGgQZxxlFRJjFRCw3LtKmp2cjiX71JKtLknoZMxuSmVxQ3stGGAoaAoCMOqot4iwwkRMKXJiGh8oyESmgWyidnpQijl/K5d0dW7PhcJKsFPfKZPoRlxsxIYmmeETNDe3+CHgLF05VQtEYZtg1JvxLFNi9Z76nxSFA7awiTEbEwmDZpmerkerN3v3COGL7ajQh5kX7PKHkfRY7ZozU+iC7EWmnaQPJFqkKCUn1ACPdadCN7w4s+SIBpLhMvcUzzaXqhCLMKzYk0OkF83pXTHHxE8pSQPUSynTQJ+VbCCuXZk8Onnwg6Vy5DcnjT+FKerz0Vq13oA9I5jBXd0e04/+DzP5LnKpg9FUMOO2ISwSeHuf3kpZ+l9RcUQ52hZvFA41KD4uVnx5iJw2YOsxYBeZjI2gXwoyBUjkHylJyTCapqpSjQvWJ9OeYHgyVUgb6EPlhy4zm9v2K1LRlWBSRdyL4gb44t/Uymt9Ek55h5IIyC2P4OivxGLI5d0sWpQbF7OmXH7XTDjcUtaphG4YHnETYalUeGqfy88lKKPF8kO86NWHLqXn5uTGCrdnIcDSOVLLy/OF1L9zwX8Mm0ok/ah6MBBy1AyBRk0B5phpHCtBPszomDWudRePrjJDJft+ACpk6CdKPk2YwWrD5MMOKopLs7Jlt26HpIrjuCdMYU4EmMh6IiWoMqpNDWq1qmeiDmF33/lQ4/VaORFFDjESalqwMopYS6aa1MhNL0SQ38xJQkatlfYlEQpiV626E62UtCbtFDSGYIlmGaMUy0oM5aYU+PCEbRn1TCyLjppCGZ3GqZfFqbEs4sNqzDyKSMmoSSW3kW99MVIE0GBWjYT/33rArlhHoUb3KaXYbZmNuJq5HpRgRQkev1iKHJyEZp/6n1ga3hKnHL+r3L19EqsmtyYn87WYhaKJnRyEblR4Hy/o7QW7Y3I5pamolhncubSxljmsjD+YoQFcfjmsEbVuNIGHkeTFZ8cnOCX+diFqEj/2r8CID+1MvvryPxpIfc4V+ORE+WCbV7u6qobWRlK/pdDr3m9M6SEBWrH4zxhaKeFMQqsnldQRbxzjDMZCxg23hrEOAUq21F8LIX65Ul2yZ9TibThmGskr5PPpf8Rmhue3c85cDWHCiiut9rhOVMUVEmqP1ULHptm3LnGpeyyYQ1Eb2cK3vjE4BYZoSsTFM8dwi79LnGZwq7t4EfAgxgGgE4lPfgJUxWtNc5dhNRfj/WCdhVI0BGWRKdO8QIYH86N84vdyOiDf2DGXbTY663qMFj1y1huSL6gHl47yCSjLuaeL7DHi2IszFXv3yCbSOL37xgL0Ib7i/o5xnVZxvZbMuCg69hKVZ8/VRQTRBUovrUE3LF5pE4XBTLSHXlDuNzBRQ3Dj0E/KyUQ8tHdo+kGJh/8AVOd6aIk+R8UcHmXQeFIJ3mKmPymaa8ChSrQD8VOgdRxKCjiyBiyEoOM1dJwyGJxtKElG+vcds5WR1RE8ed4zUXTyqGhefv/PI/4tpN+LC5wx9cPOJqOaE+gxAUYZOxHRX8yuQT/mn5NaKD3WNPnIq9rqot+QrsTuNWI+JMkEMGoPT8L//qb/IHN4959l+9gS+gGnVsjyy+0rzx9jk+aM5/7x7RGIaFhtJjC49f9HinD1klIM5Xf/XtDw7vESD2huZfnlJnIjrTrRYE4PWGyWst/e8cowK0j/qDfmYYNDjF8XfF1eb6f9QSA+QfVUnwuqdGRCafCTpa3xff7pArJs89o2ct9YOSYbSn9kF3lHJQnBQv/VFOcdmTW831NwpsA2d/sKN+ULJ9aCiWYgNbPm1QITC8Pr8drasCXWUMM9GTrN8w2F3kzlVOqJKg7KYXW06EcmF2yQrybHFYJv2ppMeOnqxQ6x1uuURPJuijE+JmR2xqYvxqu2YxGRFfCRIRAX3nVLisy82tNWme4U6nmF2P3rYp90eTP7mUKVRZEMuM4XiE3faYXUdzrxQHm1zG38XzLX5W0M9z2jsj1NmI4rxGeU9x3eFLi/LCvfeTAt0Hsg1UWiiD2cbhS8MwTuncMVLfkfyao/cb2tOcq2/d0rayrRw420fyF+W1rHXe3TG8qg4ZICpAt+Agvg6ZFOf1Q09zVzH7SH5eHqWgHYB4ryW85tHPRpiloX8woKwsRPu84OiPLKuvWfq7PaNL4XBvTw0qS4t1NjDMIP+0wNaKus6ERraW9WkayFc5weborzfMZzU3bcVZteN//ebv8Aeb1/jO+UPW64qwy6Q40rB6F9w4EM569gwEm3mMigzbHN0YqpdSAHSLROlsFUc/EgOI3QPZY4exBEB29xxm7CQ5eqhAibtQeaE4+mBg9WZGcy8y+1joktsHmmDFNnVP49SDNGntifzd6Xd70IphYhgqcUgbkji1TLocV942IvsiBOS1d48kedlXOeOXhvFnHruuoR/ovrWQfKmXGjUMqF0vBXNm8bMi2Xv7A3N3OB5x827O4kMo60HC9BLlan/Fvdi0zImF/FFdT3zxSgrvopBpSNcRrr+6oEU4nhF7BdlIBPwgTUaWoYzYkx5orM4Dt7kisbj9+uHOlO1rJeX1iGxze7+yrcMXhu40p5sZ+pkUmFlt4Ew0qd1MMz53FO8/J3ztPu2xpVhLvkvIJFOMAsplpLzs2d2t6BeJ+qxE86Rc0jv5/c+VSd/mTZm4TT8VOrDP5XnNN2B6AS7zhPLX9yOhlBwPgBg04emIvFO0xyS7cE3IZBLj5gIqvviO6Afc1As4kUCPUIA9bimrnu4o47WTJf/7N/5f/Kfv/0/Z/vAMkCZp8TziKrj5pYAPiq0v+JWjJ/zFkw950p7wqp3w8mzOdNzyy4vP+Oj6lOrZbbN2sbqDH3vuvnFN02dsliN+9vVn/M073+X/1P8NeFlgM493GvtCnAxdHrFpYvKX7n6IVpF/9uMzfK64HBeos46zt1e8uJjjNxn+0UDXavRgCYVYfJtW456PCBNpgKaf6wNlz42kAekXUejvU4dqDfd+XfaF1TsSXlpcR4pl+AkJgHzmMqUtl4FsF9jdNXI/OwEyzbonzgtCLmZLII2EHgS0AvDTkuZuQbvQHP/xDrPpUiOSQOzUsJjWoXqHXiaTlWTkohpwd2Z0p8lWGsRhr++Jn6+E+r2YwsUVbrnCvPsW4Qvhy/9d15e7EYmR/HwrQtOt0CliJqnIgGymg5Ni6/4J/bceS4hblBG4dhF/50hey2rsTY09H4iTirAYi0WnutWQ6EHcKQBMK8Fl7YlFe6gub/2SbeOTNavGVYb6jj3wMatLR3E1MP3EEC2MXzkJuzvV2EaKEdMDm8j0xxafW5keRGhPJNCqn8nITgVE8B1h80gfeIS+JLkxJO6yg2yjqJ9N0JPI5c8p7t9ZclbtuAyQXRv+z9/766g9MNZZSURHXk8Niu35hP9j8zeJL0pGg+R3+Ebj5p5Yeto/1+C9xreWhw+ueW/xin/+0bv4neW//uyb1G2Ovx9RDxt+4d5TfmP9DnptOF9NMSbQn3oJH6w1wStcr1FFQNmQnKPAHTlib/lnn7xLfzHCbjRumg6BPcprIqEIoDTxpmB1XTDbJopoY4Q+0oj4XPewfS1ZG+/EMtA0t43h/sq38jN8IfqjbCsb9eqdEW4kr734WIIJm7MscfolDb7uLdlY7qVOtX79UBrS8cuQdCmR9tEU03lGn63x45z2TkWYi7gu33iyjaO4lpA7ca5IwurKSk6O1WgXxHQBRKvgBdEokk1wGOWo3GIzK0VIPxw40aoawU/ntPelvFQIqPt3ULuGsN4c/j6OylRoWGKImJsdcVTg7s5l3e85sNbijyegFHY3EHJDLC2Tj2Xu3N6fSOjgJD9oI7LayYQ28e9Vs4NZxTAR5ywmVialas8nVughCGreJyRd60MAXn1PxM7KQ9aIE9Re11G9kklKfT/KwXJRYXcyjThk5RwJ7XL8dE/BEkRTD0IX8IUcSspD9STDja2gnFUgjGXSEHtZJ8FG1u8qfBWIrWGYJFpbJei536QDKMo0xDQQB002Hsi+saapc+J1DvOBvBqI5yPW5wXrex0v45zvvv9a+uAgm3aM7nZsEeDh7PENWkUGr+mdZRgMfZMRO4NZyZG2/prH7CS/Q+xzFduHHIpIX0aGo4Bda6pXGcPUijvQ7SAJNxLK5ZCYSKLtSFqQpPVgENei5kyaGmkMob4rTZdP2ptgZVKuAozP5eyok+W3SQUkiFU7wORznSYrYhsfM4M/GkOQr4la4eYFurPoZAF+CCYMsHtYYduC0eBBQ3ktrjhhkh8su9XdYwkv817O0CYlq6dpCTGiJ2OZrOYZKs/R8xlDt/vKhp+KHiRpw/pBJqRWwyC0NKV1cuVM9r5ayz4K1K/NUCEy+vCa7Lpmse3pjyu6o5xs6w41AYDd+pRVpShuPFktiHY0Suz/15IZ5ZMOMWqZgBRreT70EGmPDC//rGTSmEaajqjEyU6nCej6QWS4N5A/zbE1BydIN5JGvL6XXDKbiJ+KPqG5AyEPhJGcDcOqwCQXOj9KIGPpoTEUl+bWya3WxEJRvLum7yz2s5HQ1FtFe9+j5j1hVeAuS3Sn+KSz/NPjbwLQ3HfoTp759o58BPmLjJvdMf/P7c8yNBkMil/99oe8Ob7i/dEdjIp8b/MQrSLNfUf5ymIaGN5rmYw6rpYTAZ2ywEfXJ/xnzZ9nMmvoCof7ZHKYICkP+UrjC9HH/qMn36LIHJe/Fok2YBc9rrE8//EZ5f0ds5MNrz4+QQ2K9c/0B+0XXiUnP4Vy6tZ5zwioWV1IPsu+CTG1pj2WuuDoR+BTQ9enSene3TTfSkK6Gyl2laTTmjaSpcwzV2m2b09E+9pH6rsZrsyxjew3KnLQf9k6UCgYJhmhMFTnPdEqhomVgNveyxSlynCzUwBM3aObAXW9InMeuyxvwz33Ou0iR1kr8pHFHDuZQNOh658O4PxyNyLew9VSkJq2Q+WZ3JRRJSKezEoj0ra4o4rVW4Iu2dpjaxmRusWtV3fx4hr3/CXqF7+BH2fY9OHtN3jlIrZzQum6qYlVTn1vhnaRfNkfxK6QRvIZEpx1dpvEWy7F233yXKyC8/VAPJJ0ZT1IUaKdNBDFKiQNhCSkdidiA+xGokvRg2xAvpAQIZMsLKWokDGpGuTwNC0Ul4bujkefNDyeLqmMbKDZVhF+MMUX4pYV83hINt7/sStD/mQk/OYgSKxpxX5STTz/k3e+z0U/4cfLM/7Ggx/wV6ff53dfvMZ2nXHzdC6TpZOBxycrfn76lN/K3kI5RbvLMVnAzHr8LkPvLARFHBQhD2gjv2e0oEtHaC3DVU55pcl20ERBEEnirf37jlnErkQYZxuhY0nzocjXUhjpAZZvOIp5i38xxiZrwn1DJx+kHPzKQ7Heo0ee3R1Le7afSEF+1UCQAkSSrKVZ6efJwtRzEM62R5piFSkvBwk9zBTtsSGrFfn3LjCnx/jXRgyVILf5xmMbT7EOSVisRVimFL7UeGQka9pAthOLCpUs9hgGVNOijGF4/Yw4ztClxWw61NUy0QI0qvwKW+EAxEg4msiAc725bTBy0YzF3Mpme7UhzCqGeX5r1w3ivjfJRZi66fDHI9zIkP3oc+J2R6HfljTl0oqtJaCbZDKQfr7a1uhcCtR9CGK+EYFqSAJ2GYXrQ6L63ts/KMkJCJkcnHYXqW4CzbEm5IrRZaCfwPrrHt1psht9oGSFXFDSOPEEpyiW4CtFF2UNmFYdXLN8LgYQo3OhJw1jRfOGw44c/qZAdZIi7CYRd6cTz/9BrHiDhVE50HeWMOjD3rG3r8VpjA382QdPeNHM+Dg/4fWTGx6Nl/z6hz9DeanYVBmm1py8r2iPxYUrO/bcm2145jWZ9fyt177DtRvzR8sHrLqSrSroViW6NhJQOIpUjzZsL8ZkmwzbyoG+eSuIiPbKSLDr2GEuCiafB7ojcRXqjuJBzC9FmdC4QJBJH+Rwj5GDSNT0kWEC/Zkn24h9crf4gqD7ML0SUWpx2RMzTbsohM7XhIM1s20FmNBeqDW6i2gfE/1PzirTBlCKYWQxVmOBaGRPUL28ufZIY3pNcVUKxezGHyhBck5JI4MXwboJUVzh9lcCMSgLSUvOM6GJAurmpwsp+1JeqahWTqz9JQ5AycSoH4SaRQa5SlRNIzWHEvdL7SIjpVDrHXG1Rk/fYZhk2FqsUEMma9s2CQCKhnw9SGhtJQ+abhxqkJA4oWqn9xQi2dbL89F5dvcqNu84qmeWItHO5RlKNK4S/OOW//i9P+YftT+HfmHF3SrcApXD3KM+t2RbOWNdFQkPW7SOMmHcZeiNpbjU2BbW70b0dODOyZqr5YSwHB2eb9MrvIKfvfuci3bC0/fHmEaoRs0bgbunay5e3iFfCx2p0Tk/WN0nRkV21EmzEeDs/opNXZL99hRbK/pmxORSkW8i9ddzHhY3VPmA85qnmwUA2VFHuDJkTnH3ZMVR2fCDy0egI9m4Z7us2J5PeP2tV4zmK57+7gTlYPeapKfbWu5JNLB+PoUi8M63nqOJbIec509OGD01FG/0fOv4JZc/OEMFeO31C3zQLJuSpi5wrUXtDLqTpm5f99kWipUApGbkYCmh08NEpiCzT1p2Dwrqu+nzTloy08UDjc5X4MrEpPlQGhSfiyX4cKwpl4GycbQLTb+A8kpqE9vFwx5mOn/QkvjSMP5EHhzdlQKWDT5ZfWuaOzlRw+glYpRRN1A3xMuIKktpxPe5aFl2yBGJ40oyi55fEnbLn2rZ/VtpRJ49e8bf/tt/m3/8j/8xdV3zzjvv8Pf//t/nl3/5l+WNxsjf+Tt/h7/39/4ey+WSX/u1X+Pv/t2/y7vvvvtv9oPyQrib1qIqRWxbuVkgCE6RHyYk2Ys1ZzeNcOkhOSBFsR7LLGGUE6cjzFuv4QoriNNUNt5o9q41YqUJ0L45QgWYJPu03aOS6nJIKZY5IdOCoA+R6WeB7SPN9i3PMDZk35qTrWUcH3XafHpBMptjxe6hbCKTz8W1apDQeIprTT+PDAsHWMzeRTbIJqB7OfSbu4Ewc4w+zgVhOJUGI8wc5bzjeLrjdz54EzpD/s6OdjCoF6VoVXqFPx4YTVua5xNiFvnf/uV/xot+zv/n0/fYbUpYW4orIw1CFbAm8Fuv3uThZMXffPh9vr95wD958U2augAdKc6tuGNpeLa5y//11V8idAaOHNpEfG8oPi1Qo0h43OK3Fl0b6Ayhk8lRtlacfLdg/Yam/5maZpzR1YajH0iA2+rttOh7TfncMv1MUMphAle/4kBH7FVGtNDcCYSxR1UenKa7qlh8INOGYCK2hWwXDgm1V9/MUAHKy8Tb7wL5NhC1ZvpMrHW3b0yk0bzxQm0Za/K1oKCuVHgDINae40svQsOzjN0DzTCC0+87iqseTo/BGsZPG/Z20m6S48aS2B2son5QSt6NgfGLnuy6lsmd1oQ3H6B6h9o0hPmEMMkxn7wkXF6R2eSF33aQZcT5VByhWnGH+Xd9/TvbJ5AJke4G4U1XJXG7g10jCfRKyQY7n9J8+xHFZcPoBy8IJzOZbmSWWGT4wkih1/XoLkdnt/db1x3Ke0IxOmSKhMzg56UUkUYR3lpIWvZcY9soY/UhHhxxolEMs5x+amgXEpSZ1YFJIwBEc2QII0V/FBm/jEw+3lCfzennUN7IoTX5xIoj214/0kO/d8hpRMfRHYluIr8xDHOZRupG0EjlFYOJh3E+QPEsB3LhCNtELag8WeZlIug0PiG9bZOjdSA7a+jXBWZl6GdJnxJFOPrPn3wbPwlM72346OUZHzT3sAaaO5HqTk3fZWzrkv7EU93b0mxKPnw1pnpm6TL4h1rCyzpn8F7//7j701hr1/SuE/vdwzOsZ0173u98znuGqlODy1V2ebbD0KZRkEUTJSAiFLkjRSh8CAKDEEZBChYyEhISQkgQk6T50KQ73SF06HQzGhuMh7Kxy3aNp+rM77jnvcZnuod8uO619imGdrkpH3A90quq9+zxXeu57+e+ruv///0JQfN+1K1uFasnY+xafqflgwDTnmzQC+3qbUsewS0L8vmNh86VIo/Y6OP7MdT3HHZmyJayl7gqmT87GD2J9ENY3BcJxuCxxa5uKGSbS74uUp1GBmcd/SSjH2qavVSwekN5HimvZfKpYiTkWQpa7emmGevDnPLKk60cg0dzkXvsVvSTnKsPD5m821K8d0mYVITcsPvlWiZtmcGsO7Jn17ijCa6yDF4/FWzn3lQMq8cDCsA2LaHIiYVBAzFJt9S6ITw9Eb+UtcT+6+BxfoOvD2qvME8uwCuiNihrUOsGtYawlHGx2tshDgf0exW6dTeNiq7n4OdOt94RjJbDWpRnhmmlsOszhXGR7Nk1ejpE+wI3tMRxJl1rrXBHBXbpKU5v9P127bGLjlAI3aifZpSXgeOf0/SVTENdJV308aMg0qpjRfbmgH/4/FOUc2ncHf2K/L6Le0ayjE4tvoD1reRtulbE+QASKdKW4IeB+q5Iw3SjiT7nKq/o1xllp+jHAT/yZJOOQeF4d7HL1bKSwORMvJlm2KNVJN5uaI4UO7srxplj3eesmpx+lfE9H3mTT0/fpQkZp/2Ynx28xCDruTWc80tfeInqnYynywn/Ur/CxaU8b5msWaxKwlVBvN3TPwiE9YB1m3N894p1l7GcD7b0rdYbSqtYfLSTdPdw4+HaYnJtRGWBus9YtTnXJ2OwkfXHGpr5kJ++fpXqVJqWp7O79KNIv+fRa02W8pUisubtWlE+k2aqzxX5laKLA6qngvkt5h6fKS4/WrK8D93dlp1fLhicBy4+Lo3T8eNAsJpmL1KdKIpLCadc35aww3whkQK+1HQTgY+oJ4mEmJoldh2w1zVuKsAEn4sEt74/wbRyb20AGPZ8AW1HxRG+kGLDTQfEb3+F7KpBXy2I64a4WhPaFj0oCQ/vyfN1vhKpYmaJTUOovz4/2Tecw3d1dcX3fd/3kWUZ/+Af/AO++MUv8lf+yl9hd3d3+zl/+S//Zf7aX/tr/M2/+Tf5zGc+w3A45Pf+3t9L0/zm5r0qF+O4UkqMpiHeaF1BxstaEUcDVNejT68kNbl36OUaNV+haiFlqdYTTcJvRjkcxE3xkf53G0KWJdNRqYSa4SOulMPGJjtik8qtguQC6C51yYeRbkdSSH3qmPuBEKCiTX+vRA7hBjd8fxVJo8QIuaSNu2G8QXq2CQeZJhZEtTWloSHmUWQRmcMHjbnIKE4NVdkxGjX4kReUpZdR5niQTPwm8q2D9/jk8D1uTRcUw45YhISbBDvsyXLH2dWY56sJAcV7i10eP9vDJ6PaBokpExxFnOeyMZiIzTyoSH4lie86BRSKAfvGoKodDJ932DWUgw5dOcLAp3+j5H2EPKIboYll640WPqIrhy4k8Xzz/VQRGI4bCS6q9dcY+zYyui3qr5RDikyqIqGQAjGrI9msw85qISYNNXbtydaBbCUHQ+XFE7T5/tpF8oWkcG+CK+XQKJ3JWFgZ5a47zKzGXC7lYRciug9oHyUILduMlSOqEea3bjrpyBdJemUUwYoZMvZONo+6kYI9hK28QP0HwHF+kPsEIFOftNFukYJOSCOEsH1N/MBACITrGartUT6IlOV9X48xW1OfLy1+VGyRprpLGNSEMAy5liyQQktAYam2pmUgIXZVAmRIAFnIhNa2ya3QbcA0qROvROYTtQInwXcbOpZ2kM3jFtEphcX7XgMnG0k3lq8R/TJgBJ0dEjIyapEuhUwWgK0FD2xaMWRupBghqpupaR4gD/jWiPbaetE5KcF5ukFE9ZJ0ns+EhhWCxq8s9jJLmMzIsOwoyg43gFh6yrwndhq7MGRL+T3mywGLdUHXWbo2o2ssyumt7ES7ZKJN06A4dAynNZOh6NNVlP0yn8meFPKb15Ag05OtrKH0sue+r9DZfK4EyqokgYVslda6DBy2nWJ5HqS12gvFyw1kuhXyRNFRyWeyQUinxoDq5Q2M6b4IVpDbqhU4S9xIxEAmGk5wvfa6wc6bLfZX1a3sQVoRm5a4EmoeSfa3ucc3JwKZxqXwshAJdUPs+pvgsg/w+iD3irBcpkC2DaossMV8J4zvZl1vJNtxI9G6vIbr+U2X2Bq0k+C5TVNJEM3SAN1geeX1Z7tX9AONH5itR0WC9wTjDDJV6St5BpUXftuQlEm83EcSgChhnsMnArhRAfJZTz7rsU165rQSWNhN5PlkWiiuJZU9v1boVs4c0YpSYtOsbBcFamXErA9gI8YGtA5cLoa0TSbrfhhx00BZ9lRZTznoKIcdh0MJQr5YVXSdQHHuDq75aPmEUveMTMvDnQs+vHPKJyZPsOMeP4jUXcZ5PSL0hug0bW+JqcjIRh07u5Lx03vDuGgFYJP2IYB1m7Puc0Z7a4r9GoaOMHK4HZ8ykth+7qrNWTe5NEUjZIXDLzLUaSFyzzYyOIvSvGhFfZHN075u0zlQbc4ScbvnZnOZ7mykmmFz7htEdCZ7fb7w29gAn2AooZSCpliEbUDlxvhul52850lRY1oBGdj03FA+yrm3D1s/GzGmZ5IBf7P3bIhvunVCzUvFtqsMvsqIZSFnBq2Ifco3K62sB+dkvfj34b6/jkvF+D490Tfg+rN/9s/ysz/7s/zMz/zMv/XjMUbu3LnDn/pTf4o//af/NACz2Yzj42P+9t/+2/zhP/yHf8OfMZ/PmU6n/O5v+TPkK58wYr2Qb5TC3z8CQL/1BPZ3WX50n+rxGvP4DH/vkJAbzOfeAkDdvy0VnH/fE1spyCzd0QhfaPqR2aYgZ2sJpVOb0XkXcENDvWeT/6MhDCzB6O0NDdDuWJq9G7mC9skAfazI57D7lY7Tb8vpvmVN/vmK8iLS7MkBfnAWaXcU6zvhhh89digTiJ3BXlj2P3ejB+wHwrS+/rjcCLu/rqmPFOqTM9ZnQ/ILQ3kuhcr8w6LdfOX2GV99csTgSyX9J1Z89M5z3rrao+8tWZaSdpGx5eCJkLZcFfkjv+dneFzv8st/5xOETKQN4nWB1QMPI4ctBCPsnaasOvZGa568t49ZGD7+6beZdSXN/+M2Plcs798wsrsDT8wCg0cZdi3hP4sXFNknrlmejLBzg9vvyUcd3/XgHT77/B7F/zilPlA0R4EwdqBg/xcydCddn2wF1YlnfWxod5ExdQ7Vpy5Yrgvyz462hKzho8jgUsAA2kV2Pn9NfXfMyXdmDB9HJo/6lBGgmN+32BoOfumCUOW0BwOaXaGZFLMguTERsqWneHRNd3fK4l7B+HGLvW632mHd3BgbVeskSC+l+HZ3d8WboIXO5SpNPvdC1Vm0knthFKruJEW9KGQquFwSe4fe2xWzZZ5t73nV9tD3uNDxT0/+FrPZjMlk8vUs9X+v64PYJ+Bmr/jBh/8nrC7YZAXF4YCQWzkMbDTymSUOS/R8TVysUMOBFGvZpnDx+J1KOsiXHWaRTJyZoblVkc0d2RffxX3oPrNXKwbnDrv20kjoA9nlmn6vYv5wsL3HJT1ZOlqqFw15s5+xOjYU14GslsITJQ+TdqpZvCiHhOJaHm4qQHXmU4qxotnTrO5K0W86WZO+EFJeLALFboN7d8T0q9IM8TnUt4JM9M6EEOcqydpRLnkY0joJGfSj92mPNyja15Zkmaf56lRkTbk0UyhES64bTfVc40own5zRtZb+qkB3kg0SMzHGvg/8nIwAAQAASURBVPDSKbO6ZPHVHbap8HkADbrWRBOxhw0282TWs3g8YfDkhka4Yf03hxE39phpT+g1McIPfvTLFNrxD/7lpyhPNdO3AvW+pjlEcMo9LF4OKKc4+NVIfaCZf9hjF0LeG78rD/bVsSHkchAImchgy0tFtozvSy5m23zRvfj+spXkedT7UpD2Y9hkBYwfBQan/Q2OVUso6uidVSoSFIsHJf1IMbgImCZs762QabLrVqAVvds20jYkrDgoCJMBoczkc88FnhAqkWMqH6WwabqtN8Qf7oBGSF1dL8b1tBZ64/lnn/vL31R7xfZMUf1h8lt3tx66OB4Sy4y42Ssen6AGA/zxjhStMeJGOTHT4j/tPXpey77ddiLlsobu7i6+sriBxq485TuX9Ld3WN8uGD6uMcuW2Ud3cIXCpHwQ20iGlFn1UoRYzfJBRTfSrG8rgVxcBLqRwGn61GDYFOQqCDynuA4s75mtssJ0MHwaWN3SLF/tyaYtw0FH9wt7DM6iNByiEPOW9xTrBxK2bNewetGDUxz8ityj/VjRTWRPyOcbOh/0k8D05SuKzFFax7fuPeFBccl/9c6nubgcCcBipSgvI5cfjzz82FN6b2ic5ez5FLxCV47RqOHlvXO+8Ow2/fkAvSuYf2MCXWfo5wX5tOXO3oxcC2Vr2RV03rCsC4rMcTBa8d75Lt1VKcoMG/iOj73FUbFkaFtpqAD//Rsfp38yTB5TtljiUARphMwlCNE2cSu31z1000h3t2fwZs7oSeTsB3qqnZrw61OZhBRQnsP4iafeFZVFdSro74tPSLM1WyrK80h1Fhicdujec/mRIW4ok9h+FOn2PZMvWybveYIVee/VR8CuFTtfCeRLj115Tj5d0hxE7v1UT7Z0LO+V5EvP4PFSmmQhEEqZfDYHZUL0rreFSHtU0Y8MxVWPXfbod56jrCHuTghFRiit4KY7B8/OwFrcK3eE4vfoGWo8IlYlat3Qd2t+8vT/9hvuFd/wVujf//t/n09/+tP8wT/4Bzk6OuJTn/oUf+tv/a3tx99++22eP3/OD/7gD27/23Q65bu+67v4+Z//+X/r92zblvl8/jV/QAw40SaSRVnAeEicjhNONYihpnfiB2mcJCh3qSrc30Uf7BGGBbGwsnED2/A3pbapydkqbAMIN5fuA8rFbXhhsfCYVkarwaY05DLh1JR0yiQ8TB7cbrA5hCCa8aER49E833Yx85l4MdxAbR96uktVd6cl9MuGbYhRNAlXqWEbfqOTTCDA+npwI8FIRqiYB2zmab0VZG4JMSoW/Y13Zr0uaJpkPk3FVXvgUXcazroxJ804TXjkT9TpexeBYthxZ3/GZLwmri2uN2gVIRP/y3uzHZ5fT0S+VLI1nYu/RcIZfSESiGZP0U8Co7IFHbdkiRjhZD3BOUOzJ6bRaCOqNailaDFtwiRHvdHnp85y8nMAaB1vtLPjQDdVNDtaWP9GiXzPiAQuZFJc+lImZjpt/ihFyIV65Eq1xfRtJjfBKvqjMa4yN/ccbM2mMbeEMsOPkwazd9vDQcykuM2WPdnKYevUebfyM2NhJGgvz1C7U2HeKyVpyFW1lV/FzCTUb7rRjCFuUHwf0PVbsU/Av3uv2IS2xcwSpkPBX3YO1XZyWMszmXq0Ughu8KVbROEm4O19gU9ygHPoxgkq0Sg42getKGZ+azLfhB4SRaJRXsvUzCTiiSBxRbPrBuId2+QEdEPRDG9yJmwTxcvUsg3P9LmirzSuknuRmELJlOwzm8OJXWn02uB6WRP5Mm5JVDJqkX9byBLSdiAIbZfWtavk79vJa0pXDjkEr/Fe40YeN/ZCjsmCvGx9Yving/nqekA/z9GNkLY2017lFC5suszSAQzDVMh5RZg4kVjlTtZqVCIVGwplx1VSgDSHUQg+pVRLsddQG754dcwXrm8RM8H11geafpKKps1kci0ZRd1YbZGcm7wDX8hUgjSV6ifyfXwpXWWfaIWbwMINTnk7zdYKnylJT89kumNr2Jja/UDLobKSaavuI26cE0q5J8SMKiGpm70kaoXu3udltNK5j5kV30jfy55UZtKddVLUoZQcrHufOqCB9wcWKu9vJoAAPqB6J+qB7oOdinyQZwogdXS/dj9UiSSkMqFm6boXKUrvZfKcaZlG51J4xDyTfKb0PpjWY+qvbXYqJyCCbppT3xsLRU1BPg/YOm4nj5s9SKZfaaK6uQcHajtNs+t0P8G/No2ThsIGwhIMNHtaQktrQz8ruL4cpgaEopuI4mPT5NCt3p5TtmGLXqYMvkzr4KBP0xi2gaujomN/sObucIYhMPMDjA4SVqzlcD17GWLlOZmPxWfRZZDw/9ErfNB0wWJMIBYeX1uaZb4ZOsm/McqZxUVNHwwuaHpnaOuMus3o/eaFjMTKoYeO56sJz5sxx9mcTHmeNVPZUwZByJo64ofJsJ+JT6O4luazL6C+LXI1NwQ3ilTTmn4aaacKlfY9orxH3Z6n3YVmqtOk+2aqvWnokKS5vrjJE8nqiKmFpmcatU2x36LWuxTGioAHfKETiEmKwqjlvjRdknjvlHJ/pmwc5aWprvtAGFj8IMMP5MCiuxQ5AULCGpSy9lPDPv5rz0PdpHNKZqXBWbeithjcnCP/p65vuEfkrbfe4m/8jb/Bj/zIj/Dn/tyf45d+6Zf443/8j5PnOT/8wz/M8+fPATg+Pv6arzs+Pt5+7F+//tJf+kv8hb/wF/7ND5xdEW/flgNcYXDDDJ9rqvfmQseJEa6uGXyuFcRY06KegR4OmH36NsEq8oUnvzboZSObRiaFjZAOvBADZmv6W1PC7eJrDo8iO9Bkc8fgjWvisMRXOa4yuIGmHctkYHDhtwZWlyRZ9a1IRDR/0cD1K4ZsAYc/b6iPhO9/+2drXGV4/J9kkqmRB4qnluoksuysHBb2eqKVoLxN9bx5uNulpJ+u7kZMrZh8LqfbgX4cUKcyIr5z/4LceN59uk8MivZ+hw6KR2e7xKiEgNMaVAGDvGdeetzI8Lu/7Yv8nt0v8H/+5f9MCDmvdQymDZ84OuGzX3xI9a5l52jBxw6f87/Y/Qr/+Pyj9D91wPqO5qrsyaseZwPNZ/bJGljdTQXAjhPDuYnkTzNMo6nvO7ABOs3gaM0n9p9yejGBC0t2lsFZxlvvDHETz8EPnLM6G5M9zynPRIcZtfD9JSQIli9EfOUhDzJe9oqrJ1OUU9ihTHri2LEYapZOUT432DWghjIZeVO6SeffCjuvG8orLwGIPbhJyepuydVrZrv5Z0uNigHTQLdrOP9ETj6TJN1mP4O9LMm4IqY1+IGm2TXsfNmh3puhpxNikdNNrHRCH51jhgP0/oiYa4LR+OENJi8YRXgwJpv32Ov3kXCuFwL3KCzGha1XhDyD1Qd7uPit2Cfg371XxKaTB8DBhNULI8ZfuCA+fgaAGpSEF26hXEAv6hTyWAg5Z3MIMIqYIBjZ4kYbrlY1xEgJdIdDnv/OA3Zf7xj91Jfxr71At1di5gK4CKMS1TlGXzjF741wY3lPfa5Y3bJfI/kpLyVorBuLWTBbR7KF36Yk54tAtvCcf6Kg3U2ZGI7kE4uMHwXmL2iaw5CADQK48LmmXpWMHom/aHVLumebiUKw0O0Gjj90xsX1iG6eo/pUHAwdNEZ8KMnY2u161NARVxkuM7z46gnDrGOUtXzp7Jj56YjySm9zjrSDo5/OhCh3HInZRiYmpJm6t4SoCJVneLDm48fP+MyXXsKeZUxfuGJvsGbV59S9ZVUXVIcrzK3Ael1AVLx29zml6Vn2Bc/mE+anI8zCYNaK60eCFY33Hd3tnvhST7/IsdeWbkeyFHZfl6nGxSdElqZ6hZt4VOlZdoVQCgE3hP5ux4a13YZCyDYjKe5G76XGUKXwXiVpjhxCmgMJS7316y31YcbsJU27o/C5pT6SQvLwsytCZrh+pZSgwzqSzz3VaUd2ugStWb46FSLi0gkVD0SunC7ViQQ55BndJJPueuNEytn1gqgflPiDCarpxTcyGYm/cp30PkWO6nrC1TWx64l9Ryw+WCnnB3qmMIZweS3gm1yom4RAfPxMxAyvvChF2lUqXLRGTUsoJEEdBaHMpTh5H843e3aNUYp+crj9UfZ8gb1Y8uj3H7N64Bm9qxicRUaff06YDlk9HMteXmYyKU85FL5Q5AsSyEYmo8U8Ys6EuLc+eJ/sr5LiWQKWASVTjNknOrLzjN3PK3QvePzZq5HFgUiwzEozei/5Ri41PpdiX7cK1QtIwlXitzx87Zz/5d0v8rfd999gdDVUWcftwZxXqlM+O7/P0+UUqwO70xXn9zUv3zvj7334v+V/9fof5Nk/vs/iwx3jvRWqklgAm3syI/vsoOjoKwvvDSR342FA64jKA94Znl1NZFKiA21ncb0lXha0RcbToPDOoIrAxx8+Yb9Y8c9/8aM8Gu7zg9/zJb6yfIlf/sJL2EnH+NaC1bJE6cgn7z9m2Re8dbqPfpIxeua5ftlQH0loo1aR//e/+jSDvZrf8+Lr/Fz5kLODKcYG6nVOlvx0Ry9fcL4/4mpaYtaSY2RaORtuwqZDJrSyxUNQPmf4NJFde0VWiyXA57K3+1waVcpHyTYych8or8mWhoNfW6P7wPJBhRtqBicd/dhy/XLJ5F1Nsayl4Zlp8ouakFuao2JbvA6eN5SXK8kdqXJmnzyUvefzT1FGYzYNuyTLwneY5xfiH9vbIZ5f4U9OMa88lLXwdVzf8EIkhMCnP/1pfvzHfxyAT33qU3z+85/nb/7Nv8kP//AP/8/6nj/6oz/Kj/zIj2z/Pp/PuX//Piq3sinESAyBrPdkWhB4DAeozMpBoutReZ6IF4DzVM9aoYz0AeWCmPxK6V4Q3qeXU0qMri5QXDns2qFCpD4uk8Y/Bc34iXxu6k4YHbB5SkOdakwP5bVHBY1z4K/lXS8vREvoBqIxztaBxQuGfhxZPChQEYpL2XzcIHVC3++3uMrIVrLRRC0a824neSb2e4EDnedoK91ZX0ql3+5oTKu4enefbNLx8r0zThYjFmcjQmeIWjPaEVPiYjbGry0nM+liouBzF7eZ9SXxtCRfSBfRDTM+e15B4Wm/pcNGxeuXR3zh7BaL5QCzH/EjOdhNhg1qFDk/koe7XapE+VGCvwtqayRTpScGRXZt6OoR//ji46hWJiWbKxpAw2xZQisdEDeEkMsIWzrHqfuZxa0hzdQZplGEViVzqGy+XaHJrg12JV+/6SoQ5f3NZxHxvgQpOnc1ykWy1YaAJrQQ00qujK09bmAwbWT4LCQNZ6SbSJhQThAJTMtW3x9yQzadbKVBG91vHFWEqiCUMlXRfSCmQlfIbh59IYVFzAwqBHDvu58zgx8X6GwfPV8L4GHTXvqArt+KfQL+3XsFfY8aVqjek1870Aq9MxUkZ0qCjVYTB8V2OqVjJGpBp6LEk6FhOx2JmYGhxOT6cUHIxZ8U7c1kxLQeX6b3zwdULt+73S/pxwa7DuhOutubzmbUst77EfTTSL+Uj9lGJm2rW3LPbPwQNpFpopZCO1so8nkkXyD7WerONXsyuRucSne9PsgS6ls8IoQ0vWgVz9/ZJ7syVAtFNxX/lV3m6fskL1mnMDsd9w+veHY1IXhN5w0gD5+6zjFzQ7sbhOJyIgfY1Z0ka3AKl8uURXcS1jXIHKugMQvDygz4kj7GnmcUV4pVk1NYhwuapsto5wXKRpQN29v3i+/cETBF7nBNhuqEHqb9ZlKK7CuNxi1LyCPusMOe5ehWiHbSlb6Z4LjGiJw30bdsLUn1vshTgFyaUnVgktld91G6tl6kT9qlLmgKDUNBs5/hC0W2hvJK8qFEeqm2TbWoNxOViBsa+pFB9RXKBfKZw+eadjcTGcWG0KbBVzlagc4kDDXa9yU3WyNUx0kFgKqT9Krr2dDkVJrCykEjoKoKVcpUkVx/oPjeD/JMoQ/20FqaELFpUiCylukyiNwKiGndg6gjTO23e7Cf5LKWks8UlGQxRAGdqABhWm29OdVJxHQGXyKTuP3xNn/BtAGzaOj3K7qJpT6QnzE4jwmMwLY56gZCUszWcRugufE9+iLtLykgj5Tv0exrkQWeO5o9GbV0DxucNXTjDQFSph6xlOkkQTEfKkytKS4051djvjS9BUFkit2ehyLwzvkel3XFxbjiC89u012VW98YKrLuM951kcNyyRsPHXjF4qrCpOy0fp3RZp7S9MSoJNNs4mVKucwINqDT2aBvLP3pAN0q4nGLSv5WANdaUY8EuKgrQlSUd1bEqPjb73wPy6ZAD3vcImN5IQfykAcWXYmLmrLsWe0EFncN7X7Ejz3/4tkrtM6QXVhqX/FLowecnUyxpxnayXvXjyV0se4y/NpSztMEOAi10CkBWQheNylBcgkrtPsZ7cRsp1I+S+9hIt41+zoFM8vZJFvJtBwgFLJfFdcpJLlISopVFKvBrSmmcVs6m06+ks2lWo/qHW5/RChNmt4HmXD4AOsWdzCSn7Hxnq7WkFlUkPBLXVUyQf06fSLf8ELk9u3bfPSjH/2a//aRj3yEv/t3/y4At27dAuDk5ITbt29vP+fk5IRPfvKT/9bvWRQFRfFvGfEU+Y2UAgSv5z3+1j5+ZAnFEFM77OkcyORz2g6cI3vzmZjPipwwqej2BmJAM5DN+u1YKlpNHOWo3lOcdujZCkKkf+mebBqF4HR9VoqEqwliLHNiQnKl4Her00B51qB8Qd+brYZz+LQjWk031vKGNwFXaeKthtnLA/IFDFPAT7sjqbwgpjKi6APtWgoYFcR0vb4XMbfW3Nld0DjL+WKP4KRL4suImXS0Bxq7VIxfz1jftvzhT/4j/oezb+Gzz8bgpKDaH67RKrJeTckWmvw6dQLHkbP3djmzOwyfaYrryOipSxIRw9Xva/k/fsvP8F989bs5fzJl9NWMvID65Q5TyuK4PZ5zWCz5TJuzuhpQfCFJYXrpFmykJULu6HFNxuBMioJiprl6zVDfSV18hZhlA/RXpRRLQDcVrWfU4s1xlSz0mEWwAW0D2VKRzSGk4qG8kMR3V2kGJ6LbfP+lIpguUJ0HqnPoxoZuqGgOQDJKrJjH1qTDYGDwdIVqe/wLO2QrT/WsS/I9Q70voVYmHcQ2h0btIiE3hL0xKvlGNvek2xsSCoOrDHbl0c4n/r1IL+y8Ib7zGH18iDuaoJr3T/ESgGFoCfsFVdsTT87gA+5y/lbsE/Dv3itiXcPuAarpyU9XoDVxZyyIzk1hoRV+mEt3OdPYLc7QihSrSfr7ZEKMuYF8QDSafiphZMVcUKzdvV1B/daO5rAkWAk8lINBRrNvaCea3Tc8dtkTikLyQRaObsey3jd0k0i/4+kWCWDQG9odxeqBvN+m0+gubs2ProL2IKKCeJrKS5mGtHtpHzoOZDPN9C1PX2nWR0YO51mUaUdU+E6RLTWj92w6HDvOPpHRT6TL7yrF8lta/NxSnhiO9+b8Z3d+jf8ufpJZXbJucxod6L2hX+QMrjTdx9ZMRjXtyT4oWL3o0Gs5xESbDjhzwd6O8pa6t+TXGtdmLNYTxs+l63u+ylklv1rb5JirTL7eRtgRnv/wCwUqCIFrc+7WnTzo+/1AzAOq09i1oTxTrB56bt++4vnsCOUVzaGEwRUXyfTbb7CeqdAPkfI6EpUUH5v93yQ5Sr6IW0lTiCp5RGQ9b7rZG0ldfZiaF/NI9bynOF0R7BQ3ULQ7NxhoMQhH1scmocA3VKUV7Fcs7mXYtSbrN1JLJWZno7CZJRYGnys2IK9oNeSW5rjCrj35kyuBWHQdOkRJW+/dFvyirEWNqpu1lEU4+Q0W+Dfw+iDPFP3xlGhL7PmSOJsL+SoDNRpJEbZcQ1kQpsPt16jeY5zIW0JuaHczyXlY9ISEVTbDAlzArh0x03R7pcAHMsX0rRrlA49/14huCs2xvNZRKVFkXMxpX5myOtbUtwK2Vozfk0yR4rKjOcjpRiLrA6jO5Lnn89RJzyTU2OfSpIgGKUSKSH0cmL4N5bvXjKb7gKH41ppuYOkvJf8MBex2jCc1XScyqRf2rvjye7eYvl7Q7RV8cXi8zc7YvTej94b1uxPOBiXX0wHqjSE7z+XjvoD6jmdel/xS8wJ3B9d87LVHfOH1e9jTHPNwKWqMhaUbWCqbij+nsTsdMSrUY6ERmmGP84ZYWyZvGcqLyOn3Wcy431KwYn1zzD2fjWh6yw88eJN3l3u88zMv0O15xvfn1E92qJ4o2n2ZGl3WFYV1TMqW9WHLIhbE3R6Te66+vIddaTkDLC1P1QHlc0t5Jr6dYODkP3FkVUfdZOi5pbxgC6fpK4F4tAeCWy8uNdHK2mp3FCDnAhUhW8Qt2U/0lTHln0X2f01RXnmq91aESrKf+qGY/6t3ZWq3fmECEcorRz80tNOC6RsOvUw6Pi1AlK3MqnPQO9w4wxea/LrHNCJfVp3EAbQf3qfZNWTXY3SIuPNzlDHy8SJHT+TZqsJ/oByR7/u+7+P111//mv/2la98hRdeeAGAhw8fcuvWLX7yJ39yu0nM53M+85nP8Mf+2B/7Tf2sMBoQg5V0x+Vqq+s0p1cYa4hFDtYQJpWY8dp+S/5Qo7SRdP2WTGIama5sKsps1oiOdt2K7GpUEI1Bec/4nRo3yljcywTP18Vt7kA/zohWSbfTqa0WsN0vRP/dBgYdoiHMNG6oWR8KoSRqGD0C9U6ZdOKweCCG9unbgXaiaKeKbBHJQ+qCaFjelYdUP47YpSK+NeT5QyXEiKgIeaQ5kCmKSunh0UgKc7SRv/6V34mPivKgpq0zYqd55700Rp56uN1yfHjFvCnwTc6tsUxLZu8cEzLF6siQryLVac/lo4r/bu9bBfXrRWvdTSMv3j/bIvEu60okFqscnKI+FsSw2mvpV7IAQhnARsZlzzpIIbW8r7j8JBTHC+6MVzz76iF2obHrtGm+z6y3vh2JA499JIVIcyRZK+W7luZA4yea6mkkX0We/W6PShuCaSXgyK5Fw9+PUpot4J3CZzfLppvK5lpcyt+bA/GQ2NSh0D4ye01MWoPTXjCOrRdkLFCdOgaXNzkz7a4cyLJlwJcGf3tEftWifNjKcuRedejWS0EytGlKFrAXSzCa8LGXcIWVjcRHoenkGYRA8c65HMS1ElnWKw9Q5+e/qbX373t9kPsEgLpzi7hYoiZjwrhEn86IyxVqMgKtMRcLmR4kAk5834RoG2xamO3kKFotBchY7oXytJaGwjQX3W3nsbMaeoeZ5IDe+gtAGPDZSnS4G1DB5jJNpLwOuGeGfmmZvhUk1HLpWDc57a6hvIwJFW23k0HTwOhtTb4QagpK1kE3TUX9wNNHWN5JssFe9grQ9MoSjXT7iIp8pljd1izvato9MZIvXhDzmbrMCINA+1pN3WX8988+gVKRcdnSeUPnDOdz2V/7acQvMq4ai50mrfWp5Hg0tz32oOZgsua03ceuNa9/+S4qKtSeFG26ExlrfSQHimsvoYbKBOz9Ff0qR60NwWmUiTT7KeTxVkNoLDpJL1WA/FLkM/5eg58qlhPBij/7yiGmFVqh7lTqWEI3EalVtlDb6aYKsLyrt4hk3UmnUYoN6U5uvWv/Wm3vk2ds56vyCc2OZDMMLjzd1NLs79AP1bZBpVygyjSqD2gXaHcNbrCprlL2TesZP3FoF3H7A+ly+kB2LUju/vaOGNSXnuxsjb5eEPbGRKuxKzFCx/lCCpG2Ja7EyC5pyqX8LOdThoasDbX4YJNPP8i9wl7X6LElDnLUgzvENBnq70u4W3Yyk+f5xtzf9Sw/dY92qpm802BnLfmzuYQeWo29TnCM5P9r94ptiJ6KEkDnC4MKmv0vOYkV8JIVFTLF8uEI9WCE7iKD88C1kQIlX6UudbpUlMloNLK+owa0hJ7aNUJ9U6kgKSJkERrJBFrcVzQ7h5hWsm5mX95JzTrxT268Kl1n6dY50Su+dDUABZc/0KHPcvwv7sJtj9/tuTofo5aG8dua+WuBH3z5K3x2epfzqzH67YGY1J8ZlvmQ6w9V/PNnr3D5xQOYOvxxR3g8REUIwwCN5efeehmtxW+6P5Z778ksSZGdJh/0VLsrZs0u/UijV2k/GPUyCek02aUhnynUmyNaM+Kf3NmVvLRjhx5Ko8/nETeU53e20Jw/m26nKrRarHSNSCCPP3bGfF0S/+UU00N2ZaQROkoy0wjm0uLnFtMoDLC6d5Pr1h5LkV8+lQyX6iSwPtY0zjB6GihmnqcvWaKBKkoDujpJmGEN06+A8orqVL7P6uFomylSLITU5qYDQqap901SZgTyuaO4SkTHnSFuKLlWMhFJDZQqh3yHZk9kw6YVEp8Gad6Xmuq9BYPnQueMgwKzsyMezBjBiR+b/OtLVYffgkLkT/7JP8n3fu/38uM//uP8oT/0h/jFX/xFfuInfoKf+ImfAEApxZ/4E3+Cv/gX/yKvvvoqDx8+5M//+T/PnTt3+AN/4A/8pn5WzDSxF4NOfF8YU3RODnqDElUNCKkbIU6fIH9S+Aq1YDs3EhdClAMHyHi1dajlmlgW+NIm06CRDat22AMr2uw+btGNIXUi8jagWgmsigr6Sm+JGJtDpXQsFG4knQKfR/a+FCkvHN1Euqb9WHjUxbWjHWe4CoqZPPREqy1Jya6K+JGnfCaEi+VBjsrFDRUKiLnHnFmKK0U3lYrcD+TAcv1kgpn2HO/POPMj+j7HXIlLNt5qON6f8b+7/wv88vJFPn95m6NqQYiKa3ssGsexwvRgV45snvP8akxs5BAgcjDP3eGMk3rMqs1pnaXzhtAbiKLDpvQMRy1rIMQMM+0oip4yczQ6Ixjop4H9F6+4PZ4zyRqeuyOypSKfpbcsGfmiRuRXhUf5TMz8WUStJUDIl5pQSlcpWwWq/TVtkxNsyQZjqDw3naWENt3QcpSP24TaYKG4lJF3fXyDTda9GM3qPcFiVs8TSnMzrlSSE0CI9JNMDkmVElrK2tEPLa4ymC5Dtz7lTaQ/vUe3npgPJCsgBZmpdUMcV7T75fbQC/LQi1ZyMOLltWwYIaBeuIvbKVHzr3/T+EZcH+Q+ARDGFVwsxYiqBGEaFgvMsJK/r2uRaBW5vI5ALHMBV7hkRM/e9xopkbq4SopcvWpBa2xhUAnzTCeHFd2HRN2TEXlUwnU3bWp8GCl8FBtZTMDWMvkzHZTnPXYlpvissti1kQNG7dG9STItkUsNLsRMrjaJe8kwvZEjhjLQTbUEkrZsAw1dp4hFhEEQ+aJV2/wLP/ZgAy6LqE6RLTTdMLK/t2Td5jy5nLI/WZEbkZ76oOk7ebSEPKJaDZ3kEcRGJo1xJ+InPYc7S14YX3Ey2CXWmvLU4vNIv+9QvUbVGjcORBtQTsM67c2jyOHOkuduSlwZMdor8Olzh8OOGoiNTpk7UYJbOwWZx5iIswF/XlCeGvxADlxb6UQmJtR+36G8HCZIL2k/SnI2LR1mPU8SmZQ/ItQqISMSbxZh1PLX6nkvTYdJjuki+bxnebfYUhVNEzHrHt26rVQKQPmbqQQJ+6pcIJt1hNLQV5a8T8+yzhNyQ7ebSYNi7dHLNXG+gL1xaoh5dNuLDMmlCUgr9zFVuZ2yQid+kiA6sdh8fdkA36jrg9wrVN2gBkOi1fhBJsGvvaOfiEndXtqb96TriasV3USLxOnd1E0+OZNJymQkMAznYWdMKORZjVJC3uwEyytTe0X1pBaZ9jgXj4eBfiwG5+k7Pdkqghc1hWlSEyPdXhsDuTdCsUIj0sJO5MMqKLY0OwsomfybRtHuRJp9mLwtzYzqRIAK7X64wfZGxHfRGFEtrDRu3/Ghh8948/QBo0eR+g4SfHpRkM2lIUKED1XP4QAeVzt84fRFdCvP63ZpOO/HXFyOGL+nmH0LFMMO3pZJld910CvirMAftoxHNXsDaYA+yYMY2oMiyzy3xgtm+xWNzjG1UPKyI8kNcl2OaWWqmi8S8c8ZkZy+XGMzL+ALI89y5UH1oFdGBhAJ6BGNvGax1Xx094SzasQ7arqVcKI3wB6ROmVL6UTYFXQ7Qr3Say0hpjsNMWjsG5Z8FhlceFwp8vt87snmDl8aYi7KCFsLda+vBLRTnXlsLZJAN7Q0U5moBAv5Uia3bmjxhXhLNqAC03j0uieUVvaMkYCa8pkUY1GJJDyWFleoLShlK0c2WiSGlxIKHPbGxDxDVwNi16PaVoqQsJE8f62i5N91fcMLke/4ju/g7/29v8eP/uiP8mM/9mM8fPiQv/pX/yp/5I/8ke3n/Jk/82dYrVb80T/6R7m+vub7v//7+Yf/8B9SluVv6mfpdY9e1cT2feMfrWUspLUgfRdL1Ok56u4t3PEUm8ZH7niKcgHzpEWtG/ITtkiz8t1riBF3OAarMV1PHGRyeM2FgtW9IImiIqeSMWy3k9EdJd2wAp9btAdbBxnhl6LRjgrWh7LJV2cuTVPkMJsvI/W+Znkn31Iodr4ssouTT+dCqDGRLhnh6yNFP47Euw2+NdBqmlsOFRTl40xyNF5bcjxd8Im9J/z884ecP5tiZka0070iegBNlju+/eAR/3j+GmqVuioqElYZT90uf2X5gzRPh1RPDU9uHRMGHjMS2RhAsw/LuxXdR2o+efcpv3LxMnaliS+vMVHxc5/9MCSm/6hoGWYd9W5GXeeE84JYihysbS1BZfznH/8Fvn/4Ff7SO7+PxbqkH4t59PzRDuf5BHRkeCITjPmrQTYKp4h7HQcHC5anE9Q8Y/4hL74LJ4ZYiBIEdKlpJ+BKjfvyBHK4/ohsnipCuwdElbjs0hVt9yLZq3O6NyZM3pT3TAUo5kFMwk8iza5hdVuTr6C46ji47sAoXGnwRYGKhWRF5JoiREztxHCqpBOTXdXw1mPMKw+o7w3pJhbtDINHC8GojvJEbOrITsUX1e9VkgA8HRGVojyVkENixJzOJDvgzgGxKtBKoXonG8d8RV63tDsVH+T1Qe4TAGa2hFuHEkb4zjPYmaCO9yW0rXdw3cpGW+ZC20tZDVErkYC6gGrWxDwjVmIeNavkz9EKtzdMGvDNlCon2GmiZYGtPdm8x5eGbmrppoZgDYNzv6Ueba5ohbZXXkqhcv1Knu4btsZGVym6qZWJqIHqpCcUmsvXJAgvWysWL0B35Ng5vibXgeuv7qECNMeeqAzZXIrqfhSJuz0ERflOQTQi2dgQ5XbvzMitp/mHgkWff8hjlob5vzqkvSX4z5PPHWM6AWEwcdy7fcnjN44Yv6lZ34m45A2TPKCAipru2DDOWz46fsZnBi/iRxrzcE10BnVVELUUQarV6M4Q9zq0jfhOo23gejUgLDOylaa3N5JL5TTd6xOUhVh+7WtrWrC/JFOVPEhYrBtFspms7/FjCSS9fvlmnGHXghltd+XBXD2P9JVi+YLo/ftW0Q+lsUOUcMOdNwPaJTJZ0vAPzkIipElBWl6JAd3OWuL9gn4E1TMJupy/PMT0kfxaph3KhW0zJFt47EoKFTcuqG8Vskd1EXtdQ9cz/9YjolFkS8F7Z08vZaoxKEFJx1Z1TmRaL97BnF7hnp9Alksx/r6JYByWuIMx2eML/LMT1NEULn/TS/B/9vVB7hUxNRvMxQJ1eo7e3SEOCsonS/mEEHCHY65frZi8N6Z454JsJY2G+laBG2VUdUssc/ykxCxsSmhXKVNMGkamlamp7jzmcgm9Y/Xx2yKp+eoF2bQi5MOt93F5Wyb++78qNCVbO3ym6XZyyYuoAyffnuOGcpawtQTwRiu+E7uOZCuRDAcLzUWe/I4psXsUIGiyOsCFUO7cSJLSIxF9Jof5vJE10B4LEef1d29hI6zuKvRux2S85qozuJ0An1zByYSf+K9+35ZMl720RN2LdJ+bYGvF3/nl78KeZdLc6zTtOkNNN426jS4M9neX/MCtN/mpJ68yX1SYa4kQGByIfPxsNeLVu6eUDxy/9sZ9TOn569/2/+RX6hf5L778PfQTy9XLmriUKajaqVEagtO4tYVOU52I/Pz6E45yv+Z77j7i7fkep796THxQ86n7j/mVX3uZweOMn2o/hnKKsYPl/chHv/Nt3jg7oD6vUN6SLRSTt6Toa/YUPv2uzSrH9ZqBDUBg+YqjOzeYPk3WL8Qj4gY5kzfFI7YhKM5eSpJ+Dy4VOT4FbAu+XZrhIMCaxX2L7uHoF2dEpfCjFLS9Wwr1NUTK80aeUSEQCosfWOzaYdY9+79cSxHbdBLouzfEzBsJLbRC5gtltgW6qOGAeLiLOr3AX1yi2hYfb+II/qeu35Jk9R/6oR/ih37oh/6dH1dK8WM/9mP82I/92L/Xz5FuQ4CQCDaZldFRks7ETsZEoW4wQQy9sbAy1tZKNHEJ24kP0kVMb4ryaTqiEA671dtAsWjUdkRu61RFZknqouQmQIHpY0J4woYX7woFpeAhN0XJhlizYc3X+0kvmJ4FWR0TPlM2EZKMh0hKL41sg8WSPClqkQuoqHBeoVTkVj5nv1oxG5e4dYXy4hmRgC9Fu8r5yvwI11uROG2+XwCcFn1oozG1dA6FEBK2OtLYyaFI68Ay4X+jBmsDsTeoVhFKhdUBreLX/AkGtA1UWSfPwACZ8mTKMe8K+s6iNhS+TkNQgidWyYReCHYv5pCXwi6n05i1lqCiiJjhg0ysgMQUj5JX1cj3c0PpJrAhLaYwRuWT1rxP53sTCVZTzIKggVPhbxqP6fW2yxW1wi5aolK0u0OZqPUp/2ETXqaU3JtKbe/B2HXozqG7kB5i0inffL78/mIMQ8v4n6BSNzagmngjL+qTHNHJ94ob0xlsQ/2U+y3ZCv4nrw9qnwCg6aAYbs23ZJY4yFDr1MRQOmFPjbwHG7QxbKcopPdH+XCD4122RK3FoOpFHid7iEg8gZt029anbmhMnSrxDIA8cDbyvM0VDUQk8NRtzlNK9gCfKVyhtwhqtVmn6XM2OSXYyLCQf+NyfdMVjTbSj9U2uDA6lRKl08/dyjIiSsXkd5B7KuqIcpLU7JaGXheUK4E9uKHMdTa0GxXT75KlyQiyB2506us+56pPmngTGRR9mmQomeKWHrUWsEbfGvxmmhjBOZNMwch+lQVibbY+s6jidh8TiaysY1OTQkYTDtVGVEgkmrSVbtY84Wb9KydbL2nasZFgBQsxUYp0d3N42r6Padqle/m5oUjPjlbQmdt1GuXj2kUJrIuAVoRcEUsxmGsvz5+olYSQhXjz+22yQ9h8Dgn564QYqRRKa4JOSHknPzsW4pVURYHahPOlfWQTzLlZB7H/4AMN4QPcKxKUgqYlrFZi0s8s2+S+5CWTKaOg0m0t+2owm7Vjks/MoDODcmb77aMCHcCsJRtE9V4KFefS3gyxKohWY+pATDLRfggoKeJNK0nbaLVFhL9fBqj7VHC3kd5KOOomXHdza+r3vY0bdHa0bLvgqHS/d4qopTDRCeiiNJDJc1+trYT+5iI06b3Blj1Z5tmvVlyYMXYNLiqiiYyrltw6zvOx/OylyIpDBqpXhNYQRwnZrSAGWcvOa7SSvWj7WtrI4XjFqstZ1gWjoqU0DpX2rD5a+mAJQaFNQOmAT8GNw3GD95r1ZQVeIDk3waMK1xsab/FBfMPGBMZZK79XAnUoqdIAsMpLiOvmdXl//yO9Ny7JR1GBEBQxKtBxO8lQqTAknTHtOm7f15iUGBsvms8VKuoUTrjBwCdVD2zlqCqCWrcoawiVWAaiVdDFr8FCK/g3fm89WwptFlBxANPBzWTECip8E+q5KUxibtFZhrIb9cDX5z394E8f38ArPDsh7hxs/652psThgNh2gt2rGyHX7O8BYK8bYm6JRYa9WIFW+KOdm/FmLzkj7mgCMZI9uSRWJfULO5jWywi8kHBD0+kbhv9Qs7xjGZ56Ro8a5i+KOXXy+oyYW64/NCRfBqrnLc+/u2L5QKQXdqGozoSAAzKK9YVicB4YXMj3jootISdbKtZ3POz0mK8UFLPA6q4E7eSPB/RjMWhvDtz9WDYf+7kR79wt+Xw1x0fNdNRwPivwRvPRj7/HyXJM89MH5G/mLP7H+/AdivyFJf7tkWRmlApd9Xz87jO+kh+yqIa8/JGnvDQ+5yff+DC+NZg84OcZ2dwSv1rx9lsPiMc9ftzjTyqijZT3V1Rly15V0zrLaTditSoJTqF3pJtyt5rxJgfYueH//vnv5e8MPk39+g7GpbTnMplbnYKgqD/cEiPYs1zoO4cN3UXJyVeHDBcKW0tYGArm9zV+kLwjqQDcyLjcMBKBwfN0KMxg8FywiD5TaB8YnHt8qVi/O8GMFe0e7H5FTKZn37FLyCBfyoOjPI+4QrG8VzD9cocKgfl92XSrUy/41XmXCkfF4n6Bz+QwVI4sVXhBvs/zlZCtnCeOqxQoJIm9IA+tUEiqqe4DnJyDNjAdoRKOeiM34slzMZRNxmzSxNVoKMX4m+99kEv3A7/CaoVe9/Jvv31IKGSjVMu1dIqnY+JwgNspsbN22wVCKfl4ZumPxph1h7la4fdG+EFG/tYJsesJH7orh7e6x7Y9dg7trRH9yGxxi/nFGtt7dO8JdkA/UNR7m5T2iE2KF+UCpoXZSxnNHpKC3Ekh7AcpQKuXAiYkOmKzn6FdZPzeTQGQLRXujYyn33ZIzAP778pDrB8Z1nciq++o8Y2BTjN8IydYsJ++YrUsse+U9DsRNXRcPp2iek12ByBiVvI796PI6F2NXSnmr0T6I8/uPdFIPr2aEkvP/BWFOmwZFD3d22OihovvduAUZql59NYhj57ugdNgIvP5gLDImLynWd0PVPdWNM93qJ4r4vOMUMDqbuL75x5MxOcwOl4yGTScffZYQsZ2AqEMqIFDXxQUV9BNoR9IAWaSPEQwpzGx/RUXH5FDYz4HlEr6ffm80VOPinD9kiFkMDjV24OIbuVwMn0rYGuZqrhS0Y1S/kcCgIQI/VCjO5i8JwVieyxNofIiNY8ClJceW3vy8zX1vRHz+5Z8ESmuI82exQwNo1WHva4Zny8JkwFulOOnA5SPDM46IejNmxsUb5ZBZgmlNOPoerQPsIZY5OiXHhB78ZiotpcCvO2QOw1i06LLAr/+YKVZH+SlnENfzYUCBMTFAvoO7hzLXgqYVc/+57zsoWVG+WRBCbidwc3hzko6unIZJoVeRKupDyzF3DP44uWNxCuzMBxg155ux/L4P92leh7Z/1fnhGGBG+XMHhaEHPK5I1jF4l5Odeao3rzi+lMHrG5pqucx5ZSF7X3ZDxXNgYAVVGA76ZQJmnhEsoWiuFSsjyHcTwV1H7cp4SiVJEci8d4UKvQau5B7WUUwj0pWVcGrn3hE4zK+8qV7MOrJftc5k8xRWEdhHPO2TAAIweT3mSYUso/E2vKh732HXDt+9Z372IVh/BZcDXf4af0qH947Q++f8rP1K4z21/xfXv77/PWnv5tfefMVHr035FEEBhHXGP7YP/lhaUrUCW3uob/Tk487qrxnvi4pnln6SUQfNdQ2p58b9j6rsXXJV48+RDcFf78DZ/iFRy8SdaQ5Cuy/esGqydHvTBg+VnyheQU3FGnr4EwkYJcfk4LVriGba+LrI/pbPdmkE+JfY6ieGuwKbBPwmRSDtpaJmStukO7KyzMgnwkhq9nVtEoxeirREPWeZIyYPjJ6t8Zer9lrhoRM097f2YZvby677FC9Z/HhHYgwOBUfanbV4Ec5/bTEPL8irpOhPURMJhk5YU+KyKglO0fFiN4d3zRBdsaYgXTOYmjh7d943f22LkRUVaGsJW5S0VXqKm/CVowRJvqwImq9NaVvDaeZEXNpHzCr/maDRrpLMZdE1WjYTlCUj5goHg75bzJqD0alEZfkSUh5Kd2VwYUnauh2MjEiz5Ugd2twRaq4m5g6C2obvNdO1XY05yolEigN0Sv6sTweBBUpZAWdFl1zEHETj1kZTJSDTHZt+NVnd/EpeCw/s+hOMW9Lml4kZKjUrbRRwn0CgrrMA1oHZl1JW2eYlayOQjv8MpPQwYEc9tu9IObOlaLrJAmZyoOKtOuMrrFcz4bkhUPrgF/K6Kc4XGFN4KwZ4XqDAWzmGRYdyyoQW3mQ4xSqNsQNBnBhUUFQhOiIX9ubELJKDhDNzk0gky8kYMisNKZR1EcicSvPkpyuYKuvjYndHTJ5zUOmZNqVus/Kg+kDqu7IV1ECDO1NYJFOqdOxMNALUQcSC7xUuKqkPG0xjcM2cRt6uA0SMoKIjYMCfLjJyxkYMbBawSyjFXaVoAvWyv0fonTTcksscul4bBCUSZZFCGLMtob3a9G/GS9lLaqQjo6qW3SMyf/hiSFsk5B1ncsBwwo8Ag16LZQqX2hMo+XzVq28ZkUumQObA0hx0/0kJLnMWhDhfphLBzvtQ9HcdNZDpm4y1DYT23SPBfk1ZESfy/qMaeq6xXPmcpDuB7InhfS9AfRaE/sbj8Nm+qJ1IC4K7ELRD2XqijPEIKFpulHQ5jfdOp/2TS9Fu094UJOoVKrXzGYVxaDneLrgqdO4tcHogFJxG7YWSieI8FZDHrCFx9UG3WlYGLJOCDHRQNtmCWkpD2lBDQfoFf3pQGiiZSBGReesHJaskiLEK9SVSFzbHSk4gJtg2ZAOY0u9XaubjqAvbrqU3TRK+KzX2EYAIlFLB1in/XfTYe4HCp8JVjuahMVMU9t8KQFizZ7FlTB/kGPbSLYO26m5K2XvGl4KqUZ1TshWC0MxFyJjP5KpXcxT7pVWyaDe4Ic5oVDY6zb5wrRg7PNcnm1p2h+RqUfUKhUnOaG0EvLZe/RC8nGwyZDqkr9SKei+eQuRmGcyMS0K9HgsgA+bfCE+SlyAUuJNTRMj1XQQAsZszh0aAuIB82F73oA0oeojse9FQ59nxKoUzX7CNZtGJmOxyGiOB6wPLa5KPjAXttO7kCvau1NplPUkOIrcgxu/Q9SSW5HPpbhwlZZnJZs1wHaqyka50QJK7vtsKV/bHAT8rkMXfhtSGnXEVQGjNFHFbXDnJG8YZS2PpruEXnP5bMrocMX+cM0b5weC05140BGdeZFg5lLtqwh3q2sK7fjS4BbN1LC+kxGzyKrJebzckUDkdEB/4nbF3zHweC3/LrWymFr8L5D2ul6J72Nh6YJCTVYYE/Bp8uNqOTdISKO8ft1UspJw8n3yzNEktcaqycUHtyN7ZT+R57dZGkIu/rpo5PXNFsn/OwAzt7hWS1Za3DRC5D3TqdgIWQrFTrjvkKltSDTIPp+tUpN5FVJwtuxFtkmeoyyBOVKEhOmS4byVgiRavZ26AdsJqW667b4RqxKdibSQPNv6QzaBpkpraWQE5L9t0N91K18zKOV88nVcv60LEY72oVdC+fjXP6aUpCNXA9zRBL3s0OsG1bDVffthwfpWJoF0VzVur6QbG4aP1ujW4XeH21CiYBUURgx+jSd/6wy0wh3vEAYW01psSk61tdCy/DDHrDqqX3tE+9odzr+lJFtGygsoFkLIqPelWi+vAq4UBJ/pZPEsHkr3orjU+EGkn6aTRWNY347ofTFCZUv5eluLgfWdH8rYu3/N5aMdtBdj67BV9LMJsYRYRPY/F7GN5/HLu8SgmEAKGYMw3uBiZSHlkxZjAo/PdlHPS6qnillT4iaG8kmGXUG7p+n3PEevnnP25QMJE5wZXFTcefmMWV3Svj7FLgXBu3oQ8DuO/FzC0fYfrglR8eblPmFlMcD93Ws+svOcf7IuqZcF6jLH1Apba/pJIJSR0dvSCZh9rIeoyM4k/LHfSWNSBf0kQ7eS09JPAscvXHLy3h7Z0uI/ssKryO3/q8UXhqc/YJP5TNGNpaMEadP2RuAAw4TVW4FZO1TdMnzc0E8ylncsvpRRej6TotQPLFopJu+2WxnG4n7O4gXFrc9YspM5g+eCfgSwazE5h2pEPylgUkjXofGE0tDspc+bZ2Ck6DCn19K5rwbbB18oLW6cYwHV57idUpCyX3znpnjPpFD5oHNEPuhLVQPY3YX5inB6LrkA1sq+ESLheoZqCqwP0oAo8puioncyERlbsmWfPrfBZBnuwRGhsNhZTTQGN71BgmoXMbOe/L1zYmZZfvwQuw4UT0VvHjJFvpCU7Hr/htS1yRGxTSTOBUQRjchApTC+IdlsDsCuFKlXfUsmBL4KFJcGu5T9AURSFezmkB/xvWH8jqY6CZz83p7BuGF9NYCgcDuOwaOM6llk/hL4QcQkHkgwSSpQScEGYGtZE/psQP3A8r/+yM/w/wrfztNz6YyFoCku5QHvTYTCE7xivL/i9njBm8/uUZxrygsh1yxeDMQs0M0KmHjqiceOepQO6N6gTgt2vqRYPIT+fkvXWvrewEFLiEq6+Kc543c0ixcD/b0WdSX7x+ZQpjsoriPZ6kZikc/lcNDuJVMv4F5oONxbsOiPKC8SECM9X00i5JkeiEI4jFayn0wr3cs+hc0Wb3Tks47L18Z0O5H5RzzFqWHn9RuiWrsjvr3dX1uh1vKC56crpqteQjRDQB2JmdoNM1xlaHcM09cX8OYjwre/Sj+yDL/4GGUN3Yck8NcoJdO/pkW37kZSYQx+XNJPcvqJRXdSLA02U9iEuGZxo+Xxy/W/52r8j/cKo4IYPZQ5ivHNB1wy9redNDBKCXqk6wUNHiK67SQOYGeEihE7+9qCTfmYaHlO4Bh7O4TpEDctcKWhS7kR48cSXNoeVZx9ImP9akf5Xk5xqbYEtcGFZn1ouXrVUlwJqruYeaJW1PtCV3NDKWqKK5i8Kz5E2xS4gfhGNjKtbirBe9lSDu/5Ih3CP7rCvVUxeScy/+6W3/3KV/nk+BHnbsR/+bnvRJmAmXj6eYFemiTjglvlnN1szfiVlp/+/Ie59dOG0++cEB8oil8eMXCgf+clWgcWq5LBuGFctjxhDzrNR4bPGOuGz+3coR+v4AU4nw9plgWPLgZyai48zhn+0eXHWPUFk6Mld6czRlnLr/zCqxSXWgqAEtrduJ0oVE/Ff8d9BIKTySRTn2bbPWB1R5oNxUszaDP0SYmedNzfueYLpyNMp6ifj4gm0j9w6HHPnYMZT984pHpX007ZeoLsUjF5z7M60iynMHyqsCvN7MMRPwh0OwFfKkAgOoNZoN7T+IGsz2AFjqF7OW9IMxSmb/fksw5dO7rDAf3IkC8D5VkHSuGmA5r9LGHjxTuiU2MD5+mPJ4RcU55JwyGUGapzqOsFNC0qBtxHX8SXluyq2crI1aqRfQTAGPQwlwJ0lkAwQJgvCKsV9t7dTaTUb3j9ti5E1GIFpoSyEM553aLWNSoZ8jaUG73sxE/SOwllCRCdpKZXz0Uu46YDQupgRasJOqM+LoV+MOu3uQ2ukm5Xtaq2uGDlInbt8YWhHwryDAX1cYHucvJpQbubpWwR+d31eQpNjIKCdAMZ828OG9HC6L0kE7ISsDV6x0h1nPwjmw7EJmwvZAqHoXqqmbf7DJYqSToi/UjIDdlcxrDtFJo9Q1yLnjAYEIwbmKuMpjVYC95G+qsSVXqG05rlJKM5tCzOJvzU+lWa25KCSikH25PnO1AGlg8haglZnNUlzhn6HU+/H2myQOw0qjGYWqEtXK4qcutEW56JZ+Srj45553wPpSJZ6XCHEdcafG2wCy1ZA2nqQR5Qa0t5LpIIN1RELYekbCW619VLQqs5ebQLEdoDT6xlA3r2PbkcTC7YZrxsoAObzJZ2R3Tr3ThSXoiEbn1ngD64gxvqLV1LQi2lA1peyX3hc9FzhlwyY2wbmb4lxWCsCikoFOmgmBGPp6AVuhMTmoriSQGRbWTzXohu61a04cYQh8kjFaMEkmnpiNhE2VJ9QLWe2HWSGjydyL24qlHDIXywVM4P9Ip1A/0lMQb5tw8GIoloWmLymIluJu0RMaJma+loJh/Z4HnCed+7TRiXElRoklZ/3aKMwVoZV/tCC9Wq84TpULrXCc2pup585qgyRbYQuc+GqAfQTQzLuyJ50H0kX8j9O38oRLbRO4ZsKWCLfiD7gU/abtMkfPTayIRzKHuKciSan9yfBEV04mVCQfY4pxlmUASUU5gmJfYeKEFTK0Wzn8AMlyL3MPstq66kH2na3UAsZFqhB46//dZ3cfl8Sn6t6aqMUHpsLkWMsZ7YWwkwOx+ynA1QRy3rqSFbCTEolh49dAyqjvXjEXal+c6Pf5W9fMU/evMjdMPA+paVIvx5gRsKLWtDzyIPRAvtNJnI2Wjh5a32uZADlXhGJaisiBSX0hiyqxuktutLzp8XDHop+DaFYCiQKUNU6GtBJquowEuBI7pt8QxKnpSQ8baFoZLAVO3SlMVIBoRpI+2tEbodYFY9blrQTS3ZIpmb+wB9SM8dthNavTMVDXuIhHtHMq3PtCB91w1+b4IfZum5kZ5dXY896zGrknyWTg0xEjMrTYr3eRzUcIhSCh27b9q9QiiZtXSA80z2UaC/swsxYt98Jp+XlBMkJDrey3nDGFTvCUWGH2aYVY/uHGGQic80Tbv1vnw/fbUgW7fYPCOasUzROpmihExIT+G9nOEjITzqPuALQ70v2ULlRQqzawM+qSs2eTbFdXqGaVgfGTg04gvLpTsfEwnKrhT5tcAa0IKZ9WUkLHLUOHDxCU1YWf75m6/y5uEBrTfEC8k9ChHUQcfkeMH12Qic5tcv77JT1EzymmLScv1qDgRWZxXZvvz73XVFbAz5uWVZReZDjxk6it2aJ+0utc95dLaLX2TYKyvEvTKkvDCFPcnprjJ+vn8JbQLGBJZdgQ8aXwVaoL6TKH9LWbMhg3ymMA1k+v1mCHktNhljxdGaUdFhjQSlrsaW2Bu+8uxI1BiAmnQQFNl7BX2vWIyKm4lKJXuJHwaCMfSVTKwGpzI9qQ/Fv6Y7yXLTXtQueqJAaYkLSBaLYFOYpILmQPbefC5nt24y2DakRk8CxVzu1fXtgm4oWVIqkoKw1RZDT2Zvpl/XK5nSjwdyXri1j/IeArhK7jHlvUznjkrKpwp9eY0aj4SW1fTb3CSM+Eb07o7sRXkG/Ac0q39QV1ytYGCIg5E4+t9c4s/PsXfvyIuwSaReN9K56HuUSdSQ3kEIFM8jflLQ7comvEk2jpmm3pNsjMHjJX02wKeuI0AxKqRDlcbipg70Q0u7I2N+gG5HOm3NrnTSTS/BNN6IqVXYzSL9cqnjaVOgYcgUk3e9cMFvG8rLwOStWpBspaEby+f44n0juxSQNHwaqE7UNl9AOylm+h1PcWmpTgPLe5p+DGalk2kbNone+bUiLg39SORO2bWhn8DgsKcZ93RBYc4z3GnO8JU5VTLDXlyNMI9K+qOe8ngl3VWnqWuRBplJx/HenI/vPeMn3/gwPC0xrbAG6lVOGCgmVYOygg3MHucQc8Ira8pBx3QkuQV1nWPOK8qzyOq+aNVNHggLGJzFpMu+6fCbFroJ3H1wwcnlBPvlivbIo/dawlUBHvwnF6yvSw5/zm6hBFLk3JjG2j2Fq2TaUlxZiuvA6paRQLP2phjcvObZKpJfdjRHAjsorkXf2+5oBheB8TuiVfFVLvecSnIwq/CDHLuWQDydgvTCTinklasOsxYfVFysCE2Dun1ETGm8ygXpZhqVNpIoevBOgjlD12OGFWE6Qq9qqBvU4N8SGPpNdMX1Gt8uJfF1PBK5WwpoEpe5aG1i36PyTJpjsyWxbeH2ERhN9vyaMB7Q3Z7Q7ma4UlFeSqdR1YI9FRmMBCKqeYdqe9ykFON6klKp3klGURDKFgrs1GyJJ91Isb4dGTwXH4PuZUqwfK3DnmfsfTlsEeBRSfczVEmO1ZHQ0UJ964eR4lKmKxt5E6QDePItRA3DJ+JdWN+TDmE2U/hBxO3B9HWRfSxfDqheMXlL0+7D4d6cE6AeZ6g8oHPPwc6S6+WA+Zf2KVcKu4J+x+CVPFRDLvAK5xI+dCENmr1PnjHMO06+ek8kUaWnGrbcnc54840JxYXi9x98ltfyE3768Sv0laU5VuRXmvJU0e3cEA2jiQQlhvxuRw4XClBO3Xg1Cpl66FamOf2tjuG0oXUT7FJRXN3ItMoLkahKCFmSS9iYpF6yf+ZzmYBt9tDyWkh9vkhSuSLS7CpCJhNq5WTyla3kudBXUvgMTnts7VneL9HOUl5o2p2Mek9TWkW20mTzbguuML3HpET1MB2lmx2aWzcUPBUhrmv6hwesjzMGFw67Sg+NLk348hydZzIpNIZY5iLPyIzAQQCKnDgoUOv5N3UhEpYr9LCSM0QqRJqDXIATrzs5fWstr0dmpaiz9sZT5jwMMnxlMXUvUthhnkJJBRDgd8eYqwXh4kp+rrVku4Mk/xTyXl8ailnEtDB60pMt5cwSs4xmV5OtI+WVmNdVgG6i8Zmsf9ukCICppZ0omgM5K4Csd1/ELda7uFJUJ1IAu4Hi+tt7lAJ9mRGmjvLBHP/2lOxpxrsLecaUV5tGCbR3PL/j3hv8U/9h1ouCJ+c7XFYDPnH0jP3JimcPc9R1RnZp6fcdmIi+zMnnmtGjSD+W5pz6RM3LBxc8qXc4a0aE84LBiWHyTmD+kqG+GzFVIHjF4Ew6KE0zoNvxZHsNyzanDxrKgC8Cd+5ecnI5QX+pwg0ioZC9UHsw7ytEBDYUt56y73/wFof5gp8/fyiSz5GhXxT48xzTy3oejhvaNqO8LFFRUx/msqaVyLlCFTCTDkeOGxh0B9VpYPZQ0+7Lz9apSIpGzjB9FGn3pikBKdtk5KEIZFWP6yryuaLdlSZ1N5Yoh4Nfq7d0vnpf0+wrhk9lT/K5IsuVNNnyTOScGzDObEkMHqUVYVrR7Q+2r4svtDTOeo8fFayOLPl1emZmllgVqLrbnqWxVhoYw4HsG3UnoJyv4/ptXYio6YTuwW1M4zCzGqYj7HAgG0HdEPv+xkDT9cSuw1hLrEr87lAKiPM5qu0wq0K6FpmRg5uP7Lwlo3E3LgR1dtGL5s4o+omMpKIRHrudtQyerShPNet7Ff1Aka3TgylAto4p7Er+my8NfXbTBfeljG5tq1jdFQzm8JmEaG0oO4sXB/SVVNXVqVTAUcvN21eK+Yua+pWW8ecKhs8Di/uaUAgRxucR1Ukya7OvKC8hm8sI1g897jBgTzNGj6RT6DMZ1YIUNMopFmuRWaihw2NRnWAyeydSJlNF+l1PdpYR38lRx544dOxO1syWJfbLI54dFFzfHhDOC7JGOqso0M9K6n3DSwcXTO821McZzz57i+JasZoV9POcemYFTdrKQ3t9B4oLCV9rDoV37nPodqC+7bErnQy+kiPw9PUjmcD0MHhi4EklRZqB1ahAdRKaOHsZjj55wvmbhxQnBruWw4VdC8pzcGLJVoLZ60eywQ+fhVRoiryu2VN0Y412Ba6UB7l2AbuG8lJhV/KAC1YTM806YZ9NG7FNIJs77LwRo3ojfoSsnxKqnOZ4QA7o8xlqOIDpSIpupVIHsyPO5tjeYa5KyQBwHpMeqvr4kE0wWRxVhIMJYbn8QNfuB33powPMYCwdTu9vtKt5hrIGNR4Si4wwLFIhF1CHu6AUflygWo8+vRCCDlCed+IDsDed0TAcsH442XbS40Yrvkpdo8nNdhsKSz+y5E4IXNkqEHLF6laOdhJYte2oW2k22PMM3cHiniQIDy7ctuj4N7WpgoI1HbhSgAtC9BMww8Yv4Sp5cC1fDITCoxvxnYFMGv0w0BwYCelqxd+282aL7gtO1TGxjDKNrALBaS5/9RDTKMpafm9XIQjvWqf8A+i/NMEfOV75yFOeXE2p5yWn5xO0iQy/5wrfW+LFgNVszJtfFTlnyOBH/4f/rYSQve/fGnJS4rDss+6wh04zejOjm0S6Y4cuhaRTXMra739gTrPOKV8vqU4jw+eOZ6OcFWCTlyxkUF5GJu+2PP+uktWHW8afLyguItlC3lufc+PRW0uAaXUiv1+2kByAZs+gu0h5JpMPn6ntNFsyXCLZUl5w1yjsWuh2wYp/0Ge55MNcBQnI7QN+8G8+trULqF5MyrbxElSYAjajUaiyIL+sMY0jez7bTv7ioEBN76Zg39QxjRF1ObvxlSU6X1ytYbFCvT9P55vsUungFJ0T74fRoDXVeyvpIh/sgdH4IpO/K4WpWwmDPNzBVxndjuDVbeNpDwbE40qaR42TCWlhqe8NyYcZWWqYCmVLdPvN4c37u1E8rI8z1KGlvJQAusGlmJvrfS17mZIpnOnkeRo11AeW6w8r3Cs1+Zcqisu0pkuR+4jHQNZWs6cpruX+GX2xELn4RaSvMvrxLuNW1pddWUIunpF8Lgb59fMBPzt+idw6GEP97pilLfjl3mKtZ7q7on53j9GjyMVhROee6llO1DB/BXwRCEUg6w1vX+7RthbXifezOfbU9yO6AbPUHL4wpzCeq8/eYUMJNLWmvyq5bi029wx3anaqmj/28J/z3w4+zRu//jJFLZOHdldM97M3j1GdYnipWN8J3HrtlJMvHDF8veSfP/0EbhQY3Z/TthnupCJbi++1vutQlaP/7C46wvwjParTZG9WhHsd1UfmhJ8/pPyKop9Uibwn/rtukvzAnZJzSCf+ETlbss0ma/YFm1w9Fy/Mqk8+ZZMxfCyo3npf4wvxtwYDq7sF5XlP8XzF6GmOaYxknuUyRY9aEQciwY5KEXLxNedHe9K0zCyq9xQnNx2GqHWieAbs1Zr9X3VSPIMgvacFOjcyFZnNUUZCxGOZ4DlA3BgVf4Prt3UhEq3FDa3IV+pWMLtVgb5aSj5A975qrO8FPei9jJ43GtkQZQNep33FJyNoiOi5I2YaN5aNRXcyDo9G4YapqgyCsoxGyWGlb+GuZIzolLKrovx/3afuhQt0u/lWpoVKuuNNFVxAGCSTW7yRCfWVkrFdAeEydd4TCjZqjRtHbt26Zv6VY0FTVhE3SMWPko0nFJE4DHBpMZ38bGwkH3a4Ik0DtHROdRr7u4QO7FqL0hGbeXot5Jx8JgtKBWiNAhvQrSW/hnZfDj+Fle5bNpffc22G2FqkaL6S3SS71tBrQlQMs5ZpUfPUHovsIR1i8itZeKZFDPnDyOBEQSfGdmcDwcoCjEWQ8LJNGzqI12ZzyNL9jck2ZECnUU60+W6353ccv8F/fbIDp0ZGmH6DzhOt/AYssHnPbHNDpVDesMGsuvImDHHThTBdwjobKUJCJptKMDcyOxWSKaxppaBGTGAqE2obWoyRMUkI2BglNz6DrgfWqL6X8EIQc6UxcrhwCRu5M8INBTjwzXzFoiBMK1Qt2UPEmPYBAwjUIpRWQsyadBispCscCoMON6ffuIED1D1+WkoXPs8IVUY70Vt6CSASr064r5uOVczED+QLRcjNlulOlImmyLFiMi2KtEd7SfhGSfZFtiDtDWJQ3aDDN9QlVJJnzDzLO5aQybRkgxIWSZISWpxRhGEyj87NdsIaTSTagB+YhJtODYfaUSwyyktDNwZfaZgCSrqrm4ejFGOyxhRJsuhFXtBPNceDBYu2wPWGfp7jFTy8d8llU/H46RC7EqLPBic8fksOXOs7cTuRCAZUcfPeKCNGersUSYLKAjrhPO1airv96YILW+EopcBbe0xj6VuTQghvPCC6C/gSJrtrYizI6khs2Br+t8jlSKIpxu3rHzfQAPe+aUmSUW1C0ORPwLQK0Cm0VN5zoRMpVJNCcDspRPpRkla8HxEaSYG6UQZ8616aEuNMvEfGoNYttu6koPBeCHKZJQwylNY3RYgPks0Vg8iPtQBgYtsRuw5G38TT0w3sBhLMIz1nF2vQmlhmRCPQkI2nyxgtUySrCbmhHxmylUhh49DiKk1+hUg4QSRzhcKXBjMuhXpotKBVjdy32knoKaRn6440HLUz4j1r5d4PVmTIIYNiJtSsjfk8ZLK+D3cXXNlKGhubQ2kK5zOtStLwzcRQsrFsG0UCPND0K70FNJhGfr/6OMmWO5F2Xc0rdidrBnlP2ypUq2iuS/JJy/7unMaLQoCQXrNaGgj9jpfsn0z+rV1n6de5eH8DxGFg52jB9fMx2ZWltI5h1nGd1umGeKc6TdTiSR0NG3bKmrv2isp2UkA10uRb3Y34icdeWmwjMq2oI7eHc07dMcWV7MP9yrDeE6Kn8mz/UHqKqie/lqZs/1qPn+Xk14r+QeTB5IrX20MGl9IE2jQdfPLmbbDItiadm2KKbUgTqg2qP4i0GwX9KIF6UORLmVxtprUmnb36SpEXGozC1J5ioVgf6GTUl9dK0NPyOXJjIQCVZDjXnUPVjTwTlQRhbtdE22MWayHSGp3M9BoKmxDi8jzdFOdbJPnXeaz4bV2IqFVN9eUT4mqNv56hHz4gjkpimQsPfXATZqRiRIcoxrLzS7KmIw4K+gcH2+TI7GKFvlzgD6aESogVwSbNMUCE4eM1et3R7O8QNVTPOvpxxuLjE4pFwK58ygaQRWqaQHHRUN+qmD3MkvwqMnrcUAC+EJRdyNKhNkZ2XpcRviuFxATJdLbwrIyhHShOPy0s5/JUS3jRZWT4SDGfHUtXLl3aicwiWjGcZueiUQ5Z6oo4MHNDPBtiA6xvgxtKurJdGaKB0YevWDc5/r0h/qBjerBg/m5FcaVY3/Uwcbx8/5QnV1PsW2PaQ0d7L2DPM3ieczmqCN7Q7knhcPhZxemnoX/QEmu5BbtjB0HxpS/fQ7fCLfcTz2rqqd4WH0e3K5ueSR7AjW7Sl5HvvPuIN4YHrCZH2BWM3shod+L79OEKWkmKdqOA2uuYjGvmb+2ITrvWqUMT0CvDf/NPv4/dr8LoqdtOrUDTV7C+Lb+DaTfITZmO+NywPpbNrTyXzRxkkwhW4fNCEnBdxAw0fW+391Yx99L9agPBKOqjglIrCSvcHRAzTXZZozrH+NdPCNMh9Wu3yC8a9LKW8E2lsOdLGZ1WA+lcZhYWS8nTeXBb7omLuRTkgKo7MiCcXn1D1+Z/dFcIqLqX6VDdoBoFWhMOpkIWaj2q9VjXbKeoITPEXEzkvsrw3/ICrjJ0I4P2AVun7mmmae9NcZVJXSpZ96but8QR5QLlWUsoDKsP7W9lnvMX85T3IF313S8tU5Ei1JNgFYw1tDA4D3RjzfLujexwM9HrJ7KWd970dENNfaiwTaA4WdPsjlEepm/WoBT9xDK/b1m+YBh97JIH02ve+bsvU14EKSwKob4ACAnPC5lu7Ggzw7PvG0kQ4iQyeVPS3J/9byJHBwuev5xBHjg4mnPx9i7jNwzru+DGHjcSUl31VDF4YviF9jWh7eUBPZTq53OffYhpFIOZojkMqJdXdMtcglqPJZDUrhQ6ijcjFAE/kqBT5RSD1+WQvHgoslJ1mREOA2XVY+vI4CIw+//cobsNk+89Y7YccD4rUI3Hzg2DE8lK8AO4/hBc/acQTgPqX+0yfR7IVoFmx2C6yOhxSz+xNLuGxX0t5Bwnpv35CyX5QkzCrpQGR3G9KSSksMvnSqaoCQkP4CrpeG8yA0ZPe+p9y+yh5fBXOvInV6w/fYuQKaqTflvcZhdr9NUSd3tXitvFCrQmL8SzEMscNVsSm4Z4/xZ+kKF7j2oc5uSaOB3RH0+wyw46B/m+SD/PL0WiNBpK5hDgL75594ru9g5VEyDLRGp1fik5ZLeOiJlFX8leGvteaJxVSX9nj2gU+dNrKeTjBF2LSsOeLaThURXEImN1v8KuPJNfPSVMK/qdMnk7NrRFhSsUg7Vn+HaaXMXI7JOHNHua61dSYOZbnvLKM3weePr9Bc2DjtEjS96Kh0SnQsL8sqF94wh1BMv7cPDrkb6GxWseNbPkcylC3ACaT9VoE6h+ZgQKFvet+C2rDaxF7kkQzL0KUB+KFN0/GeCGDQejFdcPavp5zuDdjPoFuHNvxrv3D7lWGfZKEWdWCoIkX5LjV2R/Z8kkbyluOc7WQ84/d0QIUBUd10YK+XceHUKEo6vI+ljxbd/9VZ4sp5xcTPGLDOaWeT5guSr533/5/4BZGAYRXClNweEr1zzcveQLv/ASBJE22ZXmlz//EmoQOP+UYufhJToqsn+2R30c+cHf81l+/eIOT092GAw7jAnMP9ajV4bRL1apqRkp/kXBO//iVdQE5i9qaXz0EbuM9EMJnjaNIq9FPh+14vrD0piZvt2yup3THGxIqVLAKBcpz5PZ3EE7UdQv2+05ojyLqQkCi7uWy9d2qU6CyMKX8rFi7smve/TFHHdnj/awpDxtUG0vQcgKdOvRTUe8vCK+cId+b0B+uhJZYZkRyYBSCFmJIJfNO/pxDmTo/R0BOlwuIM/QmUXNFqjm61Na/LYuRIiifSdGwRNaIxWoDzeBZGn8LJhT0CFIh3jTEU0VKxvMXmbB6q3kSSYJMSVhp45R3SaDoXQ0NyjNTUEjXTEldAaQ6UtqzmsfpVuaHiBb9GPqqLlSFrjuSJ25Gxysz7UYTjOZmEQbcaMkn8rlxsxTB7EbiaQqWlBB0HVRqxtkX0bqkqbvn6WsglbBAFAyTYlGNgnvdepOZlwypmjlgYsBdMQFCTzMF1J1e80WE9jWGaE3qEw6m1u8bRYICwWp80FQ2Lm5kV6odJhIaOFopFthWjGehZEnLmTKcVKPWTaFvMdJu2oLhVOb1FiRlWy6laHXrOp827W1qw3yN2J6ha03AWeRfqC33elNuJdyYOrU4TaKxB3AdBt5lfwxXaCdaMiks6F86oZ4KWA2nVOdwi/N2qEzvaVubO4fCc/aYHySxGpjErM3yFjViSZZWXvT4SwKKMttdoaY1bR0/IKEasWvU8v52/VSIQh6s3fS7bVWgq82SO/0ObROXhujMXVP7NS2YxkyuddsG25Mp61UAv1EPGYbRCsR6UgXedof1DaFXbuIj2oLNdgUo+8PpAuZSt2ylEFh1DZgVG2wsT7S5QnZm7po/UAODr4UA/yG4iUPMpH1rA8sIRd8+GxW8VbQlDMxw0YjzYeY9geygFpLSKCqDcpJkRJymUr4THKQfGPT+osoE/BBtNS+lI4jQMwiPkgqfDSy9xA1wSlCLxPSfCld2k2zoSo7ulmBbjShkj3Pe2kahCLAwJMNetzFAN2ohL+U3w8jsAwVFX1nyQuVDgQKVwWqrKcpLG5gCNHiAZU6zn2mCHlkMOhYqVIKPi266XZXoTtFvsy2yO5t50+ntzCZhDcIT9Omtb6R8kGafEA/0ttnx9Zj1sueQLgJS1UhsgnX3BxaTSc0PeWCrPU+yK+iNdEIsn7jJ0FrQdEiz8iohS4We0F5b/TgJIlW1AoGpUxLYgSlt16qb9Zr+1rBdrqM9xJ4rNOEJM9kf034b0BQ6wmPbNZOQhGN3q7nWGQCt0idafKMkFtCJqZiurDdX7Jannl+XKDXCtU6bJ3yI/aSKqAOmE5wzqZF1mhkO51DKVwlaypbQR3fN6HPEQy+Z9sEQYmteBMYGDKZwmzC9pyR/77JIwG5t7uxNDhjFlmsSjpntiG7UcvPebqagor4QerkR3DTRLWMCm09WebxQVO7jAejK3LteH6wSzboyXQgG3X0XqHWBt2IlD3kcNVWLJsC3+nthDA4TQiK/MygfWqqKPl9HoyX3KlmfCG9xXEb3qiIWQQTMDrSOo1N083jfM4o30fpSFtvnqGBUKht0HWw8lw3XaSbJvgPpEgAtd0HNvJY26TNHMH0biBH2ykrSX3RRrTbSPBh87DYTE02RnH1vuBl0wm5NWQmeQDTvWk2KiBQbY+qO3RbbJ9PMTPo4ZCYCJ1bHO9mTSTk/TbgNIrKZ/txn7LJNghrY+Rc/nVcv70LEaNl6jEeojYj5ghxsSI24u/Q+7t0xyPcwOAGmpExmNlKihOlJPCp6VGLFf7WPu5oCHDDXnaRbN6zvltS72t2XCBezSjPpvSTnNXtDO1gcO635uJsBqE0nH2iRAVNyMQANLiIVCctdtbixgUh1+RLySjQvZKwvYHaHqTLWSDqSLtjcJUQbDaoPdUrVK+2xYL2KhkvI/Whku7cnYYYFJwOhKSzkoNBsyc6cRSUpwo3gsG3XTB7Y5f9X4/MXpLuo7vToWzg+nKEPs8YvxexXwHTWuYviL9E14rY5jx+dofiWjF8uinaLLPvbhiOG+q3Jlgn5Ir1LWgONG7XoYMivzAoD03lUa2muFLUxwF11MIswyzNjQxCyWIfPfFcfit87EOPeeu9hxRnind/8Z5s4jEtxjYyOJUD3ew75ZBt3yvlUGc15TsFxVXO6q78XqP3ZDOpj7UcsArZ9H1uafbVdsMWXS2MngWGTxrOvrWi2xE9Z7aOjB/32yK2PK0x12t8cUC9q1m+IJOZ4kpRzAPVowUxPYxCIdkg2elCpnMJp0fvsAtLKCxumBEnOT4fUVw0FF9+StybSohZiKjWEa+u5ZA9GcuBomnx9w5xo3z7kIpmB1336EUyuCUO/jf11XYoJbIUf3WFmUyIg1K08NYSJ0NU3RLOL8WoOiiJ7z6Brse+9EBMeCBEkYTzRWv0yTXGaNzoiHzuGH55ht8d0u6XNAclKhRCOEuUIrtoyZ7P0C/s4Y8zJm/V6HVPezQgGkV7MMANNG6gxLi8cvhC01eK1ZFO0i1Z59m84+pDOc0+5DM5GFx+iySFCyVGs75VUlzJA63dK5g9zBj//mecvX3Izuct+//fnGxhiFrkY9kq0I0M7Z6HnZ7RuMG9W1BcABjZPw7ECB6yyOKlwPKBInue0Z5OUVVALQ3LJwVqEFk9dOhaY1YaPwrEYWD1ojQGlFPkV4bsuejblYf1LSm4RAYpD7zimWCEZ69pwsih77RkuWNSNbwwueKF6pL/5he+k2wufq2QI6f8Sc+twxknZ1PcecnqbmTxEH7H9/86K5/za0/v0swKzLUlv7+mKjt4fU+MvzvSTKrfnKCjot2N6F4OHYtvlRDV5YMcWyuypUjBiiuZMsckiyNCvWcorwPlec/ifiGyuqV0FX2epKADlULMwHQa3UaGJ5JT1U9sCjgM22wr7SLBKPqRQV9FspOZpBpPR+hlAmDsyUhLtVJ8q94RdkfE3GLOZugQ8cc72+WhljVZ2xPnC5FflCWqLPD3j9DrDi6uRaJVDdD0MP+A1u0HfGXvnhJqJ3tAmUOWowYJYqEUYXeEHxW0+wXFeYs9X2BWLbExxNEAQkDP1sRBjtutZKqZaUHzKqhOO3ymuf6WvdQciAzfWqCvlvL+GMNAQ3tYcfptI4pZoJgHiotWOuN9hW0D1VtXhHFJt1ey84Zn9HjToJPitJ1olve0JKwn7LYKMuUjQnkiRVE/FlJkdRIIWSWhwH2k3VG0H6/xa4teGMydtQQhP5+gaoNdanwRCTuObNAzKBzuc1P0AsIL8iBubjl0q3nyK7cxNuLziOnkwL9375q2z1idDskPeh7sXvGVZ0f4xvK7bn2F7568yQ/uf4n32n1+fXaXH3z5K+zYNX/3//d9VM8Us5dF5/joX95HRSijhDmHKkg4aqcpLxXtDvhX19jMk2eOb9t7xNTUW0mlL4QQFkc3eOqLd3bRraKcKNwoMHclZ6shnBfk1+I7rW97Yh5ZfqRDrQzlqcQIbMhZm4akzxSr22wDqbupYMGzhZwXy/MBvoCzb7VblUU/BLRI84qrFnO1prs9YfZSsS0yNmTWkKlt43Z44slf7+VM23vca7v0A8X6QGirdjFGd57y+Vq8p21Htm6gyOlvTXG7A/zRkPLdK+x7zyQg3BrUrJYcobpBDSsYVcRpRcgN2cVK/GV1S1yt8NczzOEhlDn+zj696uDkN153v60Lkdg5oNnqW3VfCnpzVEkncrWWqq31mOS30F3yibSdfJ2Rr42jCtV77LzFTYpEG0KkDNMc00ZGT73IOA52pbPZBYbPg4TYWUnf1r2nnxS4odl2slyptuO7bpzRV5Z81mHWgWAz8kVg8m4KwypFg+lL6Eab0phtJ9Qko7YfyDcvrqSb1u5G8mthgJuUlVLPczCR5kDS1k17o2sOmXTaTCsTlrrNCVVg9rKl3ZNUYm2ls6svMpRTzF+ShNBiFqlvCT3KbjTlaiP3En65KyHWhlUsIYvoKAvR56kI8oqwzHCjIJ3hwhOcxqeJkF9adCdEGj+I2y5BN4lcfciixzUhKrrdIFr7F2oJSXueo1uFaxLacBnhKgcVMbUUeFGpFHK2uSdutN2m3XRH0j1mEN0o7+tmRuiGinivFAhBK5tOVNBORZ7TjRTRDigKSzcSk9rkLdGD20bMyX6Yi6FZg6mFxuL3higXblB7JqEzQ8QuWvn8sYSTxZGQcXTdy+eHCHdvyUF5sdp2NMQ7Inp35YPwxN83CQC+7s7Fb+crWoNKQWUMSpGupfWv1g34gB4Nt11jPRnLa9i0qK4XL07qiG67pZlMS5SLBKNxh2P8wG713tJuy+V9X/WC8bUV2gWKK48bWhiIUZXUPfOFyDNCrqHedMAitlEEL21PCdzKxQzfiERw0yUXmp5MLNpdmXIKTUr8U0/OdlCdILyV02QDvQ0/CzmgYfyWod01rMc5k1Mo5kHCTo0SuWNaN+JvE1DEZvKBSsO2QUCPeoKyqF5jllo6kPstoTPgDa6S6SZKbWVmQYPfg1AGmi4jZEINC6VH2Ui/zghR4cuOt673eet6HzXw1HcgSxNV5RXqLOf8+REMAjGT6XC0UPuMZV+I5601mFbRnw+4tgW7yU9n6oTvRfYfX0bqY2lEFG8XRCMeteDFK6Z7iElHrh2Mnkgh4SqN7uI28Fb3st8qr8iXkS5K5lC2gvLKk191aBfoR5lQqwxkTaBwUXJDhru4JP0trhzZvBX5xKjETUrsQqNcCj81mjgQhKy5ThNPpYhlkSYcMsnZSDhjmaO6EpRGlcWWAhW1RlsrkIcYt3vSN+VlDaraYHid4L6VEhlWZqVLveoo02vc3d0hu6rR61Ym0xulhda4gfhGok73RYzbrn3UEFJ3201K7PuC30JuMa1n8ih5UD3042y7jwej6A9H9OOMdtdICnoC40CSA7UJNqMS7CKIv6u8kM/ph6nznqZ2rlD4Upqci4cCd/HzTBqeXuEukoSx1aL2SFMQAvSzgj4UcOxob8Wt+oM8wrhHZZ4YtODCnxToVjGbDwm9NCiafsiXzm8ob//1l7+dybDh244e8cb8kLcfH/JGdUCRO9wosnoA+uEK7wzuWZEiDmQPwgaqaU3fWbqxBRUJpyVN5ekqx69c3mdge8lRKtM0R4Fa3ByFYxkISpPPxMf5Tx59mK6zcNDShwLTKGIRUEXA5B7XyZmlH0bZP9lMLG6mF6ZFziJRzkDdRKIgdCcTkjCQ3omKJC+bnBVCYege7tIPdVL7SGbRJiZA9nVpwESlCTZnEKJ4xJT87GIRMM1mTxD/htEy3YxVCZmVyX6nJG/IByhLadbnlrAzlJDT+TpNXcVDqZWSSeFmUpvlmJ0pqipFxrhqRer89Sy73/RC/Y/oivWa0EhKdOw7zGSCGlb4W/tyuHsqhy2zlBAnmxk5cLQpV8SYLZLQjyvMxRJ9scZN7sjYu5HUynrfMnraMfrCBe5oQnt/V75v48jePiHuTVm/OEE5GW13O5Z2rLcjzL5SSbMXWB1JSurxZ2r0oiEUE7J5z+gLM7q7u6xv5SzupwnIvtqaqzejONEdKupUiFRPI/1YMX9B8Ky6lyA9u4aQWfpxoHiwxHtNu86gNuhWy8HBCdYTpZjNCsykQ3/HEtNZlJeN0TWW8VNNuxeZfPs5Z6cT2uc52atzjoY1J796jOkEP+cqaFC0+4E4dphLi7q2uP2egKF4pGkOI27ao68zdKvwt1ts4chzT62gm2p0r8guN5xRKVxi2ty6Q094uWNvsqb1Fm43RBX5zz/2Gd5eH/DP4oelI+IU5YWhvPZUTy1RJ7OckoNbfaRobwWKqxstp5CxkkF4a9hVTN/uUS5SH9g07RGU7/K+4vDXHeVpS31c4gaK1S1DN4F2P+CGlsHE0OzLQeXWP30qnoEixx2MaQ+ThylAdbYias3yQ1PsOlA+XYikz8qGoXzEnFwnGdYUtMLvjzCLFj1fE6/nqCJn8d0vkF87sl8+TWnim2wAMKtOCpC228q+tldV8k19JTlE1BqdZ9v/FstcqCHPTiX08GBXpG29IxyL9lu/9VQ+fWcie8UG3e2CbORGmhD/f/L+NFazbL3vw35r2sM7nqnq1NBd1d2370BekiJlijJFwUNCWwkUmc6HBE4cQLAQyIE/GIIBGzJiKnBkQbCBCIYdRIACI5ESy4BgI/piwI4kZLBEiqQ48w59+94eaj51xnfc41orH56196mWbOpKuWyLVxsodFed4Z32Wut5/s9/6EvL/l6ZitE4hk8xBdtozL4nFEbcslYt5fMN668c0E5FhAh8BiX3hSYk7ZIKkG2CIGABccw5sehe8gIWT2TDN22eeN2K3VuR9tBjdxa0okkUgfwbJf00Ut/zdPNbu3ESRXPyAu793IbmTkGzNBRXHboLVHccvpDUcl1rTJUKkjyS3d1jbWB3VRKDHIxm1jGf1mx1QV9bspcZ0YF51FIbR9gb/EFPyD39NJMMlHTI9gc9OKFCqCLSHIGa9GgT4TLHd5pm0rA+m5GdW6ZfXXH3rS0fffseKmnMZk8VJ79R8+IPFtRfrAm1pEG/3C/YtRlhbzF7jdkrspXkZSgve43bJqototeIpcc+qOlay8O/JEXEi39a9gImQp9TXvZrt4tMv/aKmDnahwepOdQSeqjERtk0UFx0EC31saG4Ek2AWqWwy3fuiOmG0uTXDfb1mtXvPWV3KvoUt43kz24EiWxb/DSnvptTGIVuxP7VO023sBSXCnMjryUq8Mtbi06ltTQhZS4BvDGKfXWy75WbKjXfnRI7zu9j16xY5GByAXOadhTr+8OpBENe7dDrBm5W9D/6Pqv3ck5+RULeYpmPAEXMDf3stmGzVRjpc+NjGfBGUd3L0V1G+bKS3Iepxa1b8m++IBwf0B8UbN8uUh6ExAtsHxW0M0W7VMyeBbJ1jx/cGbuA28JEi6agm6vRse7wg5aoFVc/6CSvTMv9LdoxjzpoOTrecLWe4L4+Gy1+y08NpjbUx1K89yedND6dpnhlya/g8I885ydPPuY//+aP0XcGm/U8vnPNP3/6db65vc+z3QEfP3sbt1E0L3OMF/va/Fomflc/qOiWgflfm9KVM/7mP+PYv55y8DVLcLk836/WHBxv+B+/9XWeVYf8v/ovYTMvFMp9Tug1Xzi5pA+ab14UuBvN4tua+kjTHhq+vb8HNqKMULbjrEdtLMW5fFZRQ/flhugV07OM4lpxow9p3mv56nvP+aY5pV1nmHmHtZ4861nvnLjxnUbsqYT9+d5Q9wUm0UWzTaS8CLi9gEz7O/J4phazkMYl6qZRTF5FsrVMy7qJ5eoH5ffbnRiT6E6mtQM4Gyw0h/I5Nx3oPiPTA4sjUp7JeR8yM07o7KVBdRp/PIMQMTd7oXWn+iQuZvh5gZ849qcZpo0U5znuuhIWQdONTfdwqSInHszFQMdq1KtL4m71Xa2739WNiMpzlM5QsynKOeJ2S1hvMHmWuKwRmhZ93knTMbhbzCaoXQXW4I9mqLrHvrwm5hnh+GB0LnCrGtM4+lI+vO7+AfamwlxuJZkyN7Tv34co2Q4gLgSmCuQgo/M+MrkII5cv2wZso1i/P0P3U/LrnvYgY/vonhwwu8D0lUro4y2/eJiuyERDAogGvrnuQW+sdNcOKRayFMSHpn4+k+lHJy40bgebL3e444bLeYYygcWyYnMzoX6yHBEN5cEB1akgH6tfOWEwqOk6Q+uNUDRS5x+ySOfE3cdcZLi1cNmbtRQg1WmkXwTRhkw9MdOwcfQrR6w04bDn/R95ztS2FLbjl37pSxSvtSRLlwF91Iw37MWTA653hlAEvIv8X3/zJwm9Ghst3SjJ/ZiKY5AK4tLRLsSuL+bi1hE24l62eaxHa1O3UeTXIvYyTaSdiQuW9rf8TbsX4dnurqE6muB20shk60i2hvlThXeRvpSJiq0j/ckc3Ui6qQoRu7vN+mjuzRMSKweWn+XyvZ2nm2cSbhUPUX3A7NrbRRCFrjE0HNOPNzIdyRyESGxa9GqPa7Nx4xg3ERDhZYzE5fd3IxKOlyhrBZUE/MkCX1iyZ1fE7Z5YN6ihQUmOe/oy8U9SCnuYlvSHJfWdjGzVYzct9vVK3st5jm4D5UUctVz5dY9pA22y7e2WWdJ9SNMRnWH2ZC/I+cwlVxxNeemx224Ura/ekXt49iKMVuDVHU1zpFh8lJyxHuYyhr+nMJ3QB8vXivxaLK+DAbdJkz0NtRJKZraSKWpfyN7RHkj46dVXZ4nmpKhOUj6HTbQBFwgRfK+xe4XaaCaPG44mFd++KaVAsYEYFLsqw1/nmL2mWyZE+DeWqCISlx5d9Li8J+xyTKsof+8lSkVuVlOyvGdWNlxdHknTYyIxwuSlpp9q1vkEXckEZP/xgo/NQgTgtSK/kdfz6p8sqO8kZ761wlSas9cPhZaaXIDsXl5bMAL+AKP7mPJQXCrCyqG/5chboYC0MyVTsEyCy8rXlumZZ3dX6GvdW8dEq2gO3aj/Ki6leMsW4rjkS01fyJSoL5NNdDZQACPaBzya+qQg3iuwVeDgO7I/6D6KHac10MqkTrcRfNKVdAHbBty6xWxq4naPbju0Nfi7B4RMROz0gbjdS1ChM2NIr6wDxslpmJfoTfVd5wL8br1U34PJZfqZZ7Kv9l6ynOpeAMwQxv1Wd+BLh5qW8rV0mVVFSZpW94H6/oyQaUwTxAFvH0YXqyE3LGTSCI+hyncO6I4mtEsBHNye0amqPGtoDzKqxpBtxI0TpVJOlegN2rmiW6ScrcEhysp9O30R6KbSyAxi5/KFIVyUnF/kMklZSrip8lAfx3HyQAR35sYw0Kgj9bHik4/v8uTVEWEn5jJdZXjhFvxy8Zhf+Na7ZM8z8pXUNf64g8agW8P6/cjNvEevLXan2b0l9NL29RSzl6TybiHidvsi5+ZZzl96+lOoVlGcG7ppZH2Qo7o0+SeyyGpYdHTKUQVDcFF0XSt5bs1dyfnJn2bj5MLnMp0tyxatIldfKSVv6J2Gw6MtM9dgrcebSDgv6FuF2ioyF9nfD3DYMi1bbl4uMBtDfq1GPW67ECqlqaSZGMw0lt9So42yTlbgzVLJ90/F3CZbC8WrPRDXVN3Lv7ldHF327E7A7nwdyK9a9L7DZ7loQzTjJE5E6R5/MEEtJ7c6sczJXpJnqH2NWm8xIWA2FnclLlqj3mkxIxQZWC17QgjE+VTWRdsR8oyQW+x0gtYeNn//dfe7uxFxDqUdlAVhWqKqirDeorY74X3HKOPktHmgNer0RIq0WiYi/SzD1T3h6gb14BS/yAUJihG9qVF9wO6dUHkOM+zZCi5vUCdz/ETTHhvcxlO83OKnOb60YtEbQXmN6iG76dNGo7FVJLaR9SNxTMrWnn6i2TwST+7Zqie/AZcpmrmkuOerNwV08p98Jd1zOxWRltnLjSxCzSRE74fD9FYsn9/ITbyxkePljtP7QuDb9Rnrqynl69vkdt3J79q932JWlsUHsnG1S+n4m+52aqHSZhZcILu2lOeC2mkv9K/mQDzByYI4z2aif7FXDt1ItsZmpvnpu9/k/fyMh/aa/0X2PqbRKa8lsphVdN5QVxn5uWXyKrJ7S/z83StLMJF+2HQrRTeLtEtJm1ZBaC/tMjJ9tKbvDX1niNoRtaI9FM57zCKmNthKEGhbBTZvOYKFfD0sfNHj6D6yvytN3/xJsuHbi7NOdtOyeVxSnWixQdwHukWGaSx2nfRLrSdkgoy0B/JeunUvdn+lcHh1YCxYlM+xlZd7EKHrxCIj5lboFV2HPruSz8Q5YtcR204CPUOAYTrS97ebStMS+554NP0dWaP/qFx+4jBBEzuNAvqZk8nERx1xtyP23WggoXwQTmwjimm1XIz+6P3UUh9odGfQjRF75b4HjiWkdNvDIsPnFrfpMLuWYIQr3pca0wZslwTHRstnGQLx7WNULkV1dlVjn1/SPbpDP82pT9IBeS4UQtOl6eNpz8EHmvyqY/OwpF1CfTfg1uIsla2iHGyHKmXUJIODCN1cNhK7h/wmoOYyhVFRXOj29+RQjwr6WdKhNbIfKBMlNDCL6GuN20Ppeg7z/UgPAYi9pu81dqOxO0V9z6Nrxfybki68PYwoEzEmoCtxq/qDDz6ij4a/sf8SZd5yVO654khoWxGiF8pl2ymarRV6GFCc61H4b5LD2PahZvdOL6JYL01Tfh2ZvvL4XLM7FaGw7qCbKjGUmMfRlpxkCmA28j2zlz26DWwfZnTTZFOcB9TEo3s5B9QdKSqbo2y0YjVanpPdtOimR3filNTN7WiL6jNFP3GotO5N3RO9oKTtXFMfao4+aMgGn38jJgrKapSWRlH3AzdHCb2zC5jVDqqasN8Ta40yGu4eCJW4Fc1TrGtUno1NR0yWtSpG6ISOHHNH3De/o2v0H4mr90IpskaoaVrJdCSZ4gyRAMo5iLIWo1HEwiV6p4Sjqn2NGSiybYe+O8UP72sCoeTeC/giw6cMERXDaO3u5wXdzNJNtJgSeNEVmTbiLneyVvN8/Nxlyi2GDH2RKNIToVuZJhXFVmH6IYPI4Asjk4ZEQdYe3FbTTRk1HqZW9HMPRQCvUI0me61HE5l2Lk6U2WuL8o5+Gka7731W8OnkkOKTnIMPA80C2qUim3T0NhBvDOa04icff8rf+o0vYXeG5ljuQ3cjZ2M/i/QHPWbekT+dkF9H/PN0PvYRc6Bo4u1Eo48aqwJZ2dFGRevFXEL3kN1IXVPfF/vi4mKgi6f6JY+UWUdmPC9PhaJ+enfFMk9ndqKfurVMc2bPA/tTTXu/oyg7nPXShFyJ7itqoWL2pYCc5WuF2kX8SYu2gfAd0XeaRo3GRc1hortqaR7Ly0CcQ1PeUsPz1W1mDEo0g/k6UL5uMJt6NFgKRqjoqJhcuGRf6A9ymdLuBRTFKKIxkFnUrhKNdYwiPK9rcJnklWVOXLSclrWR3DdjmaHqDnaiUYtWC7XrH4tk9fkUsWcK6NWW8PY94pffhvONNBqbDVgrcfN9T+w93KxR1uLfugNKkb3eygZz/y7dvTnNgRM6RiuUJbWrmXxYU33hmM1jS7Y6wBkjXPs2ILZR6flYPTploWByHqRwaDz1cc7mkaG4EIpWcRXkkNv3ZMD0pdyI7dKyecvQzaUgsHtNthVKRjvT+JwUbii85+kTQTTcVnjg9ZHC7gX91J18b/O22NiGMuAzSQKn1Vxcz+V5R8Wmyjm6s+bkD+/51qf3sOdOeJTTwI996VOu6imfLk9QtUFXGi5ytq9zlt+RBd4caEEC54p+FtmWoBvZrFSQA94d1vSXJdlHckgPTjNRR6q7ETz8J7/1B9AmoLVYYdZ3BEXNrgzNk2PqO4Hi8Yb9nZ5oDXarxHxDQywUMQuQFnWf3H2KC/n7sOECHMz2TFzHy6+/RXkRcbuUaprJqPr6ByG/stgKVr+nRWee7NslbivWvCGDtlAUVymE6FCKmvJS+J/1UUkwCreVwyM4QzA2OZs5uqmmmwqKMeSKoKA+lqY3WIV3GdEKamvaKLoQq0bOJn2gvTOlnxgmfRCaRiYHpGo7KS4Sf1PVLX4+AaNQ2dF4z6p9g64a9OXN7/h6/e/zsh8+x8wPBPH1nuz1DrtxYjV45xg1KYQzq9StW/db94m5Qa/2qKZFP91Q7paYZk727AbOLwldj5pMhMONTBC7haU+0tgqI1MKW3moPFEJ13v7IKO48bi1YveVu0SrRstv5WH7eEJ4fzrqlqYvSJOzmJAyjdvA8S8b+gJWXxCtkorQz1TKpBAUTsABpGB4R75Wvpa9Ibs2oBHkdCaj/OJcDr98FWTqcnDrfjd5Kej9jowhE8NPIn4C6yfHPFfHFM9c4kOLo04/jckdC+xaAJGbLwEqYq8t5pUjtqKRiAb+y2/+ENEr7IucVT7herLEeEF1J79Wpj1NGrHoIl4lupoC3Q/mHZHNe0J7KJ/dWmQP2Subh5Z+CvsHgWylyW5kWhoNLD6WvWT7tjRsplVjvkKx0tgoYINpFdlG0U0N7cKweRxZfcly55cj2cbTl7IfFJc968eO3Vtw8hsTyrOWbiFFVHHRoqLD5yZ9BhnFlWjIupmVSUmusU1k+WmHbjyxdGJaYdTIATeNR0Vwm45u7pILoBf0s8kky6br4M4RYVbgCytNyrNzSUN+/JCYdJP+ZE5whuyjM2mw51NUqyRBeVcRqxrs30Xr/D66wnqDvtqilgvUwUIoV01DfOtUuPVVMxp72G1L+doITXO48gx/PEdvari8Rs1nxKMldtuJE5FWMq26rKTRi5Es0+jCYOoeX1guf6ggW0eW36kwtSePUVgZRuG2ARUj2y8dsnnLsv5CAGUgGuYfyz23vw8QRRuWzru+jEQlIbtOK4qrFt3LF30uJja6U8RklOO2oF5YfCH6qOJMSsU/9C/8IgD/z//HT6CU0LSG/aV/p8ZYT3hdYvaa4lLRr3LOL+6yeJ2CmUstIaTPJ0QX6Q57TND85uv7/JEf/1WO3Y7/21/7p3CbJIbPI37mRT+3ddQnYoU7eSWCev9jW7rWEnYWe22xleKDv/2O5KUddtii4+DOmpv1hG6d0R1KUW5mPX5rAam1mrdb1MZiasXFxZzYGh7+N/K+X3/lDpfJiS9baSaN7BUDgJBfR7Kfd7TLjO1kzp3vCAXv8l+oiFGhv1PKxNVFcQatYPaNHO/Edt3upaGxdcRWgX4idNzyvAUvlCrTWKEVJ8OcITukuqtx28jht2qZshaG4ERvM1B5dw8ysk2gfLHDzzK6Yzu6cuabBrWriWcX6OWCcLKkf3BENCfYqx0xBOK9Y3HfW22h6VBaoXZ7ATSLQsxx6hSICqiuRzdJH1X+Y+KaFY1DNS2xbqQRKCzWJhqWtWKzl/6uskisBdUZ+a/JASfMC3wSjMohm2gsfbLuiyQRqMYWgpSoOIRXifWZCFRV+lnGJFzd+jGUcHBrEISD0StaumdpHPqpHLxoCN0QnJe4pyoJ3coAuTQWw+RjsMUNifMpycxSoEQNZAE/0XQR9F7jfc4FiD1vr8ldz+lkzbezO6CciFILz51CeMtP80NCr4kmYvZCgRhCGwdud1QQCikGVK9SGqugAjoqVKtwe8bQpXYRx81Sd4ru+jYsy3TJzs5EYpQGy9SKthGv/eAY6Wta6NZEHW9B2USt0B0iqM/ke+sqI7M9hU3J1C0oByYIIuEzCVrseo0vFG7SoY1kq0Qj7+tg7WwaEY91UzU+76hINJuISn7gUQ0FoSIMOoBJst/sk4Ui6XvT90cr94Op072S6H0hM5Ib1AcRD2dy/9G92RS/Yelbt3Ivx0hU+vbeB5STyWHcXP/DrsLfFVfY7iCfCpUtRtS+Rg82pZkkquMjuulEfJ5lhNwQciv9sg+jO4jZFah9jd9VgjBHoVtIUNgtahVT4yjWuhHderS3o6tacHqkZQDJ2lIa124m9CLbBbJ1WiPj1FGogW4faWfyu7JNMk0YJqMZdBNB+EwljUA3E8eWfFg3Md2Tyf4bSGtMKIkExuAz5YUSFuzthFH10M/FYU5VZgwbHaYs8IbVYxLNhkwcatTOUJyb0SFwsNEOGydBa3WayNgUCKoi9oVw5LvZ7b8RpFEIFnG7KyLYSMwCqjeYdnj/Eydfi36lLyFmyV3MqtGVz6SwwuSsKS5CRqVAWVk33SQFrG4DKojVe7tM0xGv0V0UChtCnw1ZEgLncn74TApG1QdMFcg24ooWsts9RIUIvcLoiGlEbDqs/2jUmDuiotx3yg82mjLh9UUKVa0dOkZUmOAnmYSX9nIuxapCFYXo0FJxHZOAPbYddC2qLEbdAyBucfH7mJ4VAqHpMU0yqGia22Bko4TyDQJStj1224q4d9Cg2bRn1PZ2bylk2qT7QHQa1YXP0LhUF9AuWS3nRiiRA9kgkuhPgm4Pn3c31dI8Z5FY+HSvSnK2zwe9I8ROYczt+dLO0gQxDc6jknqhnwXyK7kv++TIpJPlfzSyLgDuug2F7mRdpHWnEOMKZT1l0bExSYMU5XEl2E/iD/pC1pQKgFfQa3xt2Kmct4srfrh4xl8y/9Q4WR3qFgkcFkdLlac1kMPj42teb2fctDMBW30CZfeKJrN4G5jnDVXh6DuDtgGtItoEvDUSi5BHykVN1U6gMcTaoFoteyDgNqkuRKa2KpIsgaWJ061MJKTmg3zlCU4xnTT4qGhjCT3oFO1g2kh+LSZGzVGy6u6Fsqu7gFtLvWl2XaotZSJm92/cE/J0RIMYwd7UaX1bQmGSw2ggtgJgSx2VgggzNdooq7pD1a1YeA9h304owcZZVAj4ieh5zXYQpUTiviLUDbaQ/UF1/biHoNM6UfGze8dvc/2ubkRU0xLuLtHX4l+sv/2U3BhBIZwlPL4nDkGXN/j7JzR3S+Foth73QgqvOC3pDksR+l22ZJ/WhMLKxr6viUVG9/YxwSrKC+Foh9JJkWKF8+lzxe7xbBRUu21M/t5eRvGrPfPOU17k9KUdpxvRgE83jWkkFK9LG4WtBLmEyM37hvJ15PCDKlE6FOVFltC42+JE3hTYfqHDzDvMRyV2p5g+E3pGNYd42NIdweHfzJm9DDTLgnau2DyGzfOCvx2PKNYisKruaHpr+Pb6Dp+8PObkrxXs7ou9bvla0P7NO1Iwm0qmHvG+oCLWBhaTGh80lx8dYmqN+vaELPl6D05bxz/2GoD9f32KzxXVvdvPN79MbhQ/tsNaz/p4gtkYsq9NyJIn9/59qfSP/nZG3yvxS88i/QyKC8kDGdxB3FZca7rthO2kZJXBfC0Fyu4t2RyLcxGSZleG9kC0JNNfn4pF516KgnwdxMHIKmwT0F3k+HUrWo9DS74LuFUa4UfQTU+0mt3DUlDSixbdZkRlkm2nNAm6i0w/WomrV24ImRUdjU8aoSBTkZBLGjdNi7uqMdVwainCJ0/Rkwnx4ekbCyUVKttKEsLfOATjckY4mMLr72/7XmUN8WAuTdm+IpydE7secypWg6ruJWek6QiLCd29pbjhrPaiJzMG7p0QEoc/HC/Q05L47CXhZkX5tRfE2YT2/oLivKU8E64+CjaPS1SE2acVbt2y3PX43AioUQWoUpClVfRTQ7YL5CvIr1vMriU7KGRM33i6mWVfO+pDxc37Yh07FAm2jhx8O7I/1WzeDcTDjmzSkv1/57htZP/YEyaKem9oD0VwqtcWXYsTlk4of3BCB/Kl7Cuzpwq3EV57X4glaHYD8xc9r37CoE5r4nkh7joTQV7tbrDSHZpnePf3PuO9+QU/NH3BX/jWT1H+8pLNY8XucY/q0iFXeGIQfZc6bnh8esWqKqiajG03E5e/PCWqt5rypWHyKnL9QxF/2EvOQKXInzkRns5E86V7WL8vlpvlc4vuYPLk1tnQNECUKZIKkdkzmRTVd+M4EVp9QRyk+ndrwtpx+nN6tAu+9wuB4rxl9YWSzdtJl5PB+h2H3cHh1xHAYmHpc3k+Lje4TUf+usLPMnyuyVatBG+eXULwUli+94DNe1Pmn3Tomx0uxhFMGBz2Bpes7KYhOMPNFwtUsExzgwolsET1ojtxV3uxqvaBuNujPqlR8zlxMcW9uoGhANefLSLC6RF+4uDr3/4dXKn//V768ACt9kQf4PJaQAulxBBkoGsZI3TYqsW+3BPnE0LuaB4dMbgT9ssCNX+YaDGMej9zJbqzOOjREGDJZ9KI2OuKo2/YkW7lC007N6IZ1QBmBCxnzwOHH0Y2DzK6BUxfSgHbLsSAZf5UCmLvEuXSRa5+RICJ4tImhz6oH7U8eHCF/5W7TF91PPtns5HaXZwrZt+MbO8r2gP4v/zWT5IXHf69mnZrcZeW/Erh1pG1mbBeeNCR/sCzPY6o3FNMWlbzKfuVpj3pUaXn4GjL9Ysl9/4/mu1bGbu3LP/Fkx/j52fvYR/sqRcZ7jzpUBphYZhGoRPFbH8a6ZaBXZdRtw5ajXu4Y1K0XL9aYFaWo1/V1Ccln8RjbOYlSmCf471iOa/QOlKfOPqTji8cXfNpVNQuh5Qp8uQPI8DpVoKYpy89Vz9oaO54Yi40NZ+bpPGC6VPF9GWgnUuDU//KEaqHxbM4gpGTix6786goyM/6KOJLhakMKkq9M3/WY/ee839iTrDCmrBVZPK6Z/O2xAnMn4hG5OibPdlG9IyqnxFNSXNs8Jli/tEWvW2YtR3+ZMHm3ekIapgmoBsPVyuhIf7wFwltj6paTIzo2oDVBCWAZsgt4YEwKVSM2BBQmy3xcCH1xWo7NiJ+WVKfFEyebVHVG3rW3+b6Xd2I0ElwkPJBRkghpOnFwPWO4ojTS5ExoFBibyiIRZhkYMQhy+w69LYi5jOxSTVa+Hv7Vvh0hU6oskoWsG8GECZ7yGTraxo/uhSpricCfWHG5+Wz2wkH+naEOiIBafIBt2iejN3V+DjqjdpRheRdXUN7YPAuklXJstekcd7Gjl7XOk1auoka06B1P2gfGKkXqtW8uF4StqKTUFEmF0NHrXtF0Amx1ZEYFH3tZOqS+JSmFq1MNKBaQQ180rG0vaH3gowOE6PoAtjIPg+goDSBrjPoncG88ZoGlFgleomI0hWmVditwtaCNPSFoElhqkYeKKRJSRz+X435IyrK4RFyhfdi4+d26bNRyVY5fT6xlRGahJrJ9IIozifDRCpqJy5uiYI1mAxkW9GgCJ9zQC0ETQh54sA2/jNIaIwDWhpQvZegvj4IdaJp0bOpWPEOwWdGyUYDgtwFoSaJdadG1a2IYv33dyOil4sxfExpfWvBO9gRDi5in3G1UcK/D8loU0tTqOtOPqNpgbl7IvvQG/abygd000sjafRIsRrQzJDphDgGfCmFhduEZFWd6IxvfubJAWWYuIoeQPIBBstd00kjq33iG7eKPryxx0SwNxJWKJqPCI24SIUMbAoSHNb9gKBGI3uVzgdEjdFmtz6QKUi3zjA9oqno5DG7WUJL015jani1ntMHzctqyfZywrSXXAFTye/FROg0BAU6EirL0/NDeR5BCQlWDXs7mL0eDSR0p/CNFvOMXFDemKYw3VymKLEIoOO4jn1xS3N4c6octWQ6+TScHYS+IOJ9eY/Sf9MUyLQB3Yfb9ztxs1XPeG/5TCalgxX7MDkHMFUn9uL7ViZv1oAWwXQ0gs76wsJh0nIN96tK3O4A2ov5hUamV+KUNNguCsKqa9E6iJV1NlIViXE0aYh1LbQsY4QgMISTdR6zDXj/Wevv76vLWdk/U2ijMha0NHkoaVIjHtXrMRtoQH3trnvjPNeEXN82IlU/rmkA1XvipCBMhDo3GFgAmFrOvb4UsELW3PB5p/8EcU+y+0C2iaP1KwgFUQI0B0aB1Ce6V6NWpF0Y2mk6MzeWFy+OeHsXMLUnu5FQ1H4ie8OQrt6XEX+Vs7Nih68rMzrdiaOnjPHdTrK52mNPbAyVz1HLjm4JdFpqhKAhC+zvWdqDSMwD+9Zxtp/TtwZ6eaG6VajOCLg4CTivU6Mg78XVdkKzd6hW0e4zgtfosscHRT8RwMF+WtDe6THHgeAVsdNcXsyJnRYTyl7zcr2g74zo30DE3b0iukB3oEQT2KVA242ms0OjKNS0OO1Bi7tUX4pu1e5SuGCTMoMKaBap6QwC/CiPTLodaC8bdbM04/R1sGZWQWhtuhfanOlkz7F7j2oDcVqKxshHkRWQzhCtRKthFKaRENN+anDbHlN1sBTQ3hcWlRl0ZlFNh67SFFBr0S4mAwxsmnLnGSpM5P5O3weITGLbkmuRNaj2H4NGJFY1drWD+u8V0SkfUOs9tB2hqtGrHRkyiiJGwsEUnxu6hcPuPeWzDfpyTdxsCfeW+NJgBweBbz0he/wQX84/Y3sajKI+1OTrSPmqxk8svtDYrSCZ6mYzinn62RGbR47JucduPd08IRwvpdAYGhPTpuIiFw6kaSXsKxq4+aKjL6XwsDtGsdhg7Vu+jsyftiif0xxmzJ/Ic908lht+/pFm8jpQnrdsHmWsHxu2j6Vxy64F6TTVreBd9bK5+O/MyDxs3xo23FTgGMivkg7lSA7VuLNkV6LdqO46oo1MX8uGt3+7x20s8yee9buGroxcvVyiOs1xHQm5aDzcQcPRcsf//NGvcOpW/O9/7Q/Tvy45+FZqAJN7T3CgtpaYBbbv9UiCvCK/UCyehNRkyff1E0F+Bl2K2tjxdSgPxYUs+vJKgpe6WiXdjWJy7tGdTKz6UtEcSoExeH3rXl6r7mH6rKI9zNg8cuO0w2eCSJWvZXF3C4upApNVOxan9d2c3mnakykh03QzTbb2uHWy3I1RUDhANV7ycOpG3FoyiC9fizj9q18Q84LVTpptY4W2ZURYPTavxgiV4Ooaf7OC/LaQ/n682sd3mHxyLRkhRY4qcjnT64a4724Fu/MZ9DI1DYVDOYM+v7oV8NYNbHbE+yf0y5zqrSlEJJxSv4FSN54wz/GFYfKyHtNn+5mjuusorjzZTUN94vBOMXkuc/e+vKXU+ULsFru5+L93SFHQzQSlm54FVu8Kxzn70GOqgM+FM1yca/aZpdWRLGmjjr4mk9HVD/aYraZ8bmmORZC5+E2DqwLVkYAGbhdQQQqA+o7kkQwgRH4NzRLWXwwUZ4bl1y3VXaGWZisp8PcPInavsDuYvJZ1cKMPeGUOuL6Go5QsXFxGccp5GPGTiFknSpGLFE8d0xeW/X1FNxc6qAoQVcR0aqQqtAcKtwJTW9ovVCgTqXMn9Iq9pn3YMFtW9Pscv5N16nOoH3TyPZXGrRQ21de+hO1XWugUdiWmGIsnPdWRpZtBt8jltTUhFQQxCdTzsYnzuUJ3kfxMgBChbkohW16mxORGEpP7ZU52thF0EkTD+OAYP8moTzLczjN5vmf3aEI7y1l+XKMr6RSD04Spw93UgtrnjugMi+8IWGFWO0HyM4d6+Rp/vcL8wPuERYZJTchAV1Z1K01IVROq6jZbyFn8vMA+Pce/fEX8Pt4rYp6hijc0MHkmYZGlZPao7R4Vgohy80zMQpSSaeqTl9K0PDjBT8WwwmcpC+aqkiYvc0L3rhv6+wdsHpfMXjTkr/cMqdXD5LM+EvZEsFBeenQbaZdmBLV0ul+La0+2UzRzATgWT724LM2E/tsXQsUybWTyUhqbzaPbTK+DbyimZ4birEZ3nju/1rC7n3H5o7Lufa6o73pi6Zl+mGErWT9DijdIg56tpB44/q2Gbm55/U9IULOtYPE/eMX/8tEv8X/4pX8OVo6NmuDKjsk/f03mDW1vaDvL2T5HneW4Thp2t1GU55Hrr8L07Q27J4sUTSDU7+bpTADUHvR1DuRkP7zCLSpWzQHTZ5pH/3XNq99fsssDsdGoVrP8poAy28cBszFU1wf0S4+aeGzZ43tN9jKnm0fu/cBrrk8nXD8qmP9WxvwJXP+AkXyhaYAs4KYtRNFiVCeafqJEUJ4yxuoDxfZRCixt4eibnnwTcFvhhIYMdCU0r/U7Mmk9/GYgX3mKsz316YTVu47yIjB7LnWE7iN2Ldli9eMDzF6ognkUs4NoFGFeUJ8KE2jyZMfu3Rnbe4bppx36ZsvuB06TcYVEVXQTzfLDLfr8ApC9CDMXQP16TZxNiNOCsJjAvJSJRxTTHDVYXn/8FLXfE8uSoL870OJ3dSOCNhLm1LbEtpPiwlqx4nyDm6Zm08Rj8ymATMkm3QcJibNaJiMsULMJZttiNyL4xWj0yREByK4kbIoQ0G2PbiwzDaqPI1IJ4tATrcYmdDXkjvYwkwTdfSB/tcM+yhIXVALI+kK66JBBfhUpLhOqEdM0ZCopobqTm1UQUqQBCMKL7KaK6o4k77qtYvOOShzomJyYoJ9qtg9z4QFr+TmioHpRSVr6kBQsXHbZbIIVhEQ0F7e8b/EZT1OGoHArI+PTKGhoNJHqvgQqTp5aooGrrxrsPqW6TwXFXL8LEHErQ0fOudf8n3c/BUB7VaC9Yn9fGiW3EzQ4dKA70XG07zTExuBuZOoTDOxPpYDJ1ilQ6NyJ3eYkJCcuQWqzXaCbSRDh9qEaPwdTyc91pUY7mYQRxD1ovAV9FBtPq4gqoZZIloCtBZ2wlTSS+1OHreNYmI68bqUwlUsuGT2604AVgeO+JSZk0lwnxxxriJnFP7o7Tkf0yZHoCwLouiWu1sL/9vmYnwFIE74Tu06cJXY9ymVE/33M+ya5EC1mIuhfb0Ab0XcYg8q0CO+G8MiuRw983BBQRQ7GEJxBBXEoC2rQdcj6U1WLsgbduTFIzm5b7CpKGrtS+GmG3fcsPuoIuaGbOdw2IDKNW32J9jEZYcgarI5l1D85D6NOpJuJ3iAaIIhuweeaeqlFQ1KLk1S/zchuBFWTYDXRaZkmidIvRTO0eUe+ZvckDZNkGcGw56hkogC7B+KYFZ1kkdR3lQiYe9mDVITsRo1rTCxxFe1BgKgkq8dJQzU4c5kWFDIV1C1MngsHfvV+WrtrMcEgyv9HLZaedifNzrD3qrOcaGXwAaIb0RcZ+/NMQgR7mciqAGZtiTbii4DdG2ICfcIO6nOXMpkkiLBZGmwdxOozpIlp0pYEK8CErTxuJzlIMm0d7iHSdFTAHbeV6Xw3c+NnHYoMfXIIvSc4S/VAJh9u50XP4cRRTXkIRotbVprum3QmRZtsNkewIaGhzsjPv3WKOT0RS/u2I8xLmQgOxbYz6KSHsMdHQs2qG9EApLWhp1PixMF3l1P2u+9KU1MyJwGGuwq2O3Rdyr67mMo0KqSJdNdTv3tEP9HMfJRpVh8we/mvnjiZgPoIWtMfTcepBkoxe9YQnKY5KcfpVRxQ58TzFx2joOLZxo8aMxDrX6kdZH3qXpwXrdWoKPsGpZxpUYlTGkGAuZAJot/NNXWj8ZlQh7UfXPJEq2Ua0LXGmyiZOvr23Pe5BK2aGuZPAtkm0E8NzULjC0H93Try4ukxf5nfh3uWoztF+c4NAOfXc0InboZ42QxUstE1jVA9qzuKkHu818RpT68M02eG5jDy+Cee8dHLE/RHBSGTfekrxxcUtuMXXixoDxQXPyzU2OLDfAyCHjVrVvbwGGUyGxtNUKJBbU578Iqzr92VGikKCNosVbLkVrhXlnYR6R9EbA77u3b8LHYPkrZuY9AdLD6O1EeMYdWmjUyfJ51HstiNNtVfe6n5grOEbEqfa0ydKF5G4dYdug9C6Uxaw36S0RxnMv3yEaYpmDdpT7Ca4rwluxEaYMwc2Uo6SV31hInDzKxMQ7QmnCyJVovxQgiQOZkC7mrRXQ/akBgF9Bxu6yxDg7hx/uMwEVFGQ7IojV2LLguhXFQ1IU0iVFmgFuIOpZoOv5wSnRbOZtUSX77G3DmmfucYJk6cBD69hCrttGVBf7pE71vc2UoQEK2FBgOYTUYsHd08GwuJfmogIZvRSKhUdWToS7DbDvX8jGx7QEtKKnafTVRffseTXyfEK9NUJ0Zscw9EUCbFAuK6cNSLqLERtC4ajd1F3Cay+dEWW3T0Z1JRxCxA4TG5Rz0tcVvJFVFeDv9uDu2BiCfd5tb+LdsItaE5EtrHm45sIaUV+zJgt4bs+rZJGSY27tGO+qLk5Fc111/WmB9ZEX9hyexloLqn6Zc9/gsVfpUx/cSiOkNfadyzUor4+9IENW91mEuH3QsFyvrUKEwV9ocaKp3hti4J50XLwp0G97USuxfdTTdT1OkpRhtxFaPtpi8U9d0gNr4uUr6wmFY2beVlOqW9CNOClU1JeZJQmZSkbFBRsh10J02KqXtCbli9V5DdRBa/vr7lGacJnd0liuCuFXeMzqO3LXpfS5iW0qirG6EBlQXxrTtsH0+YvGqxqwp/shDKTi2C6v7yCj2dov2MuJhBlhoRHwjb7UhBUi6TALP992tlIZfeNoTDA0zT4i+vJIMoy8RRz2ihqQyNSNsJCDFcRT4WaoSAclaEqwgIoTsRv2MNaiaFXz91ZM9vUJud/HyeEQ8K7HUF33mK+sH3qN+eUJyLpask5A7jeClkQmaIuaE+EUBgeia0wWihK2UiC6RUXyni96dJ47SKlJUUw+WVR/Wi+1AhYioJI7SVWHlHDaufqjE2wDekAA5OkodBmhDTpMniNNI/bIiJIlHe3XEwrXh9taCvLN3cjShmNxU9WLtMeRtHPXQKvxaapy8jppaCRyenu24mk5SjDzrOf49j8pUb6q8dkF0mBz0dKV9Jk9QeBEwt3vzBpKnjK2nOupnQSnwZKJ+LW+HgTGZaQVMzp+iW0E88PhOb0vJK9t126dCtiO77UlEfaBZP+jQpsmMhM4A1ykdM1ZNt9GhqEozQX4cGxLRCoXNrubfqOzm2Ekqwnzr6ZS5TEqvZ3hcL8YMPa6H5OJ2mLTFR9PQtmNGkAvYN3QEkitlUgglDZujvFgSnmP+d58S6pj99Wz7fQqYowWmyXYECurePpaD+5qfQ95KibIyAerMMXn8vV+c/Opca7EidJc5KuF7hL6/QkwlqOqW/dyB6vrqHXY3a1+xOHfWxwm5nktuSwuHMDpQvxWY5BLCG5jgXbUammD2tyb79kuqH36I+smQrLQUkjLWE2wWyVTdqSe2uB5OAglKP7os+EyMH5SPZqk2uSBl94cRuPx8svIekdjU6abYLAQpqpBYoz8WUwiYatBhYyP7kJ3GMmulnAXu3or4qyK4Nsyc12YsbLn/yHs2hwk88bi2MkcnHjrPVXQ4+kcyirxy/5ryesfrOIaa7DW6OCvpjUYSHYAUAnUXIA32vcbOWTmdMnwt4+6ff/av87/gZnn7wiG4WCHPPTx1/G6c8v5C9R3sM7THMP7Qcf92zvS97x2AGE12AoAiQ6gpp1nwOk993xdX5gpO/JdrddiHMDn8gYKypYfmRZ3fPcHNoxPb8VD63YKB+2ElDszXMP9Ic/kbFxY9O6BZiMuJ2MH/SE3JFdWQE0HXJdt1LVlSroV1YTHObGxKcEpOEzlOfLMf7qS9lAlZcBWwl+53ykcmr20BD9/KGeHaBenBKLDPsxVYmdFWNnpaYXYmqGlCK5s6EaDWTi7UI1ItMzsaqljPNaDFyUCoFLac1VOSoPMNfXhO7fwwaESYFYbZELWbYowPiai1IcFmipxPC3UPYN4QXZ1I8WIvOHYFMigrvUEUxdnO6k7j6sJzCtLydiNRyOMUioz8oCbnBbsT9Zhh7ZVc1vnQiOLysUd5TP5AGyG178kwQy83jEnv6JdzWk62lGxcELdLOZFOxe6GG9FOZIOgOspvILCT7tiACJxVh8XU3pqPqTuhF9YmM+ma/kRN1DieCJOobK2N6DZOX4nMtbi0yCRGxtniItymNVTQl8naHibjEmFqxfyCCUVQglJGTRzdcXswJ61x418N0O0LfGTCR7UPx+u++vsBY2DzSiWJm6TJJa3Y74V/rTnip3UzRHnpiFtCZx59E1gvN5FNHcSGp8n0B++cz0LC/H7ALRbtRlK8VvC4JTqhc5UVM6K6mn0FfRPoczNQk5AJsNVgkQ3EZxcYwpPTThIRkGyHkRqVGatXkLL1JCdnQPtLNDH2hyG+kwDRV8v7OM8Iko5tnuFWNajztodAg7OqzNMOoFe1xic80s6sF7MXjW9e9OGmsKvT5DfFomcTtlrCYYB+/DY1QLcLDE/p5TvZSHOLso7duHyChe3aawdn3fIX+o3OtNhivZVqa5+hcJkWfEeRaQ1hMhOKyETvwUFrs+QZxOzOYqiOuN5i6wWRORtVWEw7mIu7LDLoP2LojLEqYlZirNaoV+9VQOPT7j/C5we489Z0MyChf3TaC3dTSLu14OC8+CfgMVu9YBjcb5aUXmpyF1BgPTUfSsOlbFL6baEKSFpgaJq+UuG5tI82Bpi+h/Fo52sHaSvKG6kNFuzRUb/WQBbKXTh73pVCTsg3s3prz4rDEvXLknYAlIRPNU34tz32Y+m4fSZpzN09TpJ7bMLEi6cyUgA7XXxIb2t13lpCJnW6cyMaye1tSzM1e1lU/FdcwFSSfxOfQLYOgsSuhnA6akKiFX+0LqB947Foz/cixf+jp7nqiFurJkHhc3R00O0gashpcchRuF2SvcIr1Y0t875aOOX3ZiUPWkZgPmCayv2PEkGRS4vaR2dNawIt5lhpRlbJFUgHYRCkAUmMzaAZ1G2Ryer1Ne5MkJHeLDLvp0K0Iowf9mzcihC9e7dFrMTxR04m4OfqAud4J9TBNScPxQjSIWkGeC+CX1odS6rvmff9uvPzhFHvToZpOpiGzKXY+I642EDx2VYlRgJb3PDxYkm88bq/IX+1QIdCfzKSWqDr0tkFvavzBRNy0UnZI0UgDSpFjGo/bamwt047mwIor20b0g74wNIeWYBTFtcJUnuy8Qi9zgnO4fbjVIinYPpqMr8e0kcmrVGd4yK97olbYyqbCV5gAg9lNyMS6nshIwfI55NeKyStFfhPwmeLmy2AqDR9PMS7SzSJnPzHB7co0rQWzM3TLwOsfh1D0ae0Yyl3g53/rfVSjmT3TVKcR/1ZN6DV0GndpUd3t8/GzgLm2cCYgR95DdUemMn/8N/5XbC6mZFmUs9cr/k9/+59F2cjkoKKpM8JlRrsU05/B2S+/iXSd1BpRR8jAvL3lZL7j+ddOMa2i7UWn2c0UwUiDovvb6WvUcP0lgwqw+KYdnS2DVagMzEpGs6qXWmb9bimUtl6xf5g0IsFKavm16IKihv0djS+EYqt62Qd0JwwLuxdb7ubuBJ8LYGEamL7qCE7AVLsTF8fqxEFQTF4zTkm7hweER0f4QiedsRjwuKta9oymG+uG7LpO01Q7ShJinsGkEG3Z4JLV97BqpRkp8nEKq7tOcrW+C4zzd3UjEjNHLAXNUYVDbXciTLcW8ox+UWB9FAcQQCkNSeAbcge5QScxoPZDYm0gJHqNroY7Lgm/rCa6ZL+YGaLTtHNNFhF7PqtBg95WqN4T7EIetxOnAreXrro+0hx+6DH7XtJUkcMr6pSunBqiYVoC6Wa8limIiNVlQUxfBYKF/V09isZkuhJZfCSHcz/VsrHUCUVV4iBlGumaQxR3G1MJNaM5jvTTZPtZq9umwoUk2kNCi4oAnYI8cFTuWeUlqHy0vxzoWSFRGbqZFFH5taJdiPWnWytUUHS9HoVbupMiq5+mUbCLo3e9zT1m2uJfOclNKEUE6lapgVj29EqD0kyfK+wusn1bxG3Kg/EJVTQqIZqMY27dR8xONr++VIkCJnkv8r4rYlBCxwpC2wH5+fy6labhwImtcy/akHamsJXYIppkBBAKi59Y+onBNA6tJIBqpHLENyyIkfF7V0pAkEp+/8PzVV3iePceZTXRCA0jzKcih6llMwmZHkWUTN5IUe96QUTcm4/4fXi1jWjJvJf9IXMSSvamvaDWxMzKqLlpZa2XyQ5ciZZLxZisTXuoUuZI5ghLaUjkxgUChFIMMcwVQvkIYo3YTV2iQwbqY4t3iuJSj4dFcIJuibVzpDxv6QvD+rEYY+Q3cRQJFleiI6ruFagQKV43gn5PzGgHHJZ6DEIznVhH6k5spweKZ3EuY//6SCy587UXZ69Soacdk1lD/XqJ7cSpy+0EHGmXmuBuU4TbYwEoOgL5jR7DWKOF5tDCTJoE1YOu1SjWHswnVBKf10cirs0vtEwpZ17E7BH8wqMaCUqMmtHhR3cxZQFJUSJUMzWafYRMfndfyOQ5lh51I2YU+0fgZi3NsSVsNJNdosBNBjF6amSUGumxuovj/twtFH0plLQMoQKiLNFYdB/I1t2Yuj7Y9JptQyglWHNY+32pEx02CZhTMrIYFqhEr5N1PyCXKnMEq1Nys4defya0FAClhGJxfgmzGdHJ/qk6T9zspNlQinB8QMzT13xEDaYOwzoxGprvX7F6yCzRBlTdELY71OkJcZKjtjspvroehZXmsLSCVteRrOnRW3HW8sUclMe0PdRetDcnkqwuIuWAu5HCLzrJdLGVFzGw06P1u+4StdsK4j009LpT6KZDdy7Z9Ab53GMk5Ib9HalfTCu/I0s2tCpE3Famr6VVyRxGsb+jaZKTW9TQLT2qkwDQmGyx80tFcRMoX3f0U8ONFvAuWwllPE49+/vJmKKFMISeTgJ62knB32nASOH9wiWaYmR/D6bzmqZx9K3B1G6cShAjUUV0q8dJq/Kwv69ARfbfWWKQ6WpMZ1j5aUawkP3ojs54Yi/rPbgoQYNtolSHNyjmOnL/YM2PHz/hr3x8B90bmsZCf3s2q4jY8EZG8Lc5CWQ3mtnzkPLCUt2TxPsDuCJRBbf0ufpAplf9ROzW3aZPlDyIxiQgVCZYYu0rTYjZ9+i6pznO6KbSeCgfpYltA7ZSYhOt1GgBHaxGE1B9pJ072oW+te+Nsh/pxmEqUJtOjCq6Hl11xEQdH0AQnCVkFl23oyEOAE1D1IV8PXeEwuKyDNx3R+P8Xd2I0Hv0xy9Qs6mIZ+4eo48PwWgi4C620tH9+A/Sl5a+MOSXNbr1NMe5IAMHBe6qxn392fhr/buChI6Fw8yKy8CmJvvkgqztBIEuHeWFkRsq0S7sqz3+ZEHIDOVZRXCabpEJWnneA5ZuCvs7FtMaCceqAvamoT6WEe/kQkOlqI8M3UTE0boXNHNw3qjuiXd49isBt+lYfAz7+znb+0aQ/Z2iuiNd/MlvenymqA8V6/cj9u0d15/OyFYygTCtoKTi85+oGArau9L+687eCsNNpDny5JcGU5s0FYEnnz7CddLsbN8OcLeh/M0SWynWR8L/dDuo70Tqt2pCa6DV2J2VCcLOEMrIzY922EtLfq3G1OHJEyv6lYOIbsFsJdAo3wRuvqLw08DiA5ucuRztQoodGVdDtpZiZfu28MnL84jbyHjVVdL07R7KSivPbxEPkA1l+nQPfSDbTGgODOt3NJOXkdnLnt09h88ljTZkmtU7NgmJe/pcpVGriMigxOeK6x9cjBk03VQKSNNF4YBWA7JwuzS7UkbD0SiYlrTv3SE4eb7tvTn6YCIUjS6gn74Wp6dpKX8O5+htS7GqUJu9mCekAgZgcMuJ08/SOr7fLrWY0711ir3Zoy5uULOJCEff9D/vevSNFByqKLAvr7EXlv7uAkLEvRbzCX2wJBzOxPGmD2Kv3PaoVsCL6sGM3T3LwYeV/IzWxMLRLRJ9UyncpkPvO+JbGX0Ju/uSkCwuTpFsnQ6euse+XpM5y8HiWHjjdaDPEy9cQT+xrN6V0fgs12Nu0O5U0y7FiMHWqZGvI+V5w/ZBzvqxFnrWKrJ7qFJOTqQ+gfUXNSEPRBdwzwr6qiRvZW34AraPAvzeBqXlMPPnJXYH009SQNhbLVXlMHWiqOqUGWQhu9H4LNLPItmNSoJXaRgWnwb6QrF5J+m3VpH6FMykx32rRPVQvd0TJx5/0BJfFphaUR/J+ti/26Eqw92fl/3MF5H6SFHdJelBIm/9D5/xYr2g/OUDulnk+vd4Zh9b8l+ZpuZMjEIGlLg9FM76vZ8PFFct1+8XRAPVsdj/2iaiX5OaBHmPddVT38m5+kE4/IZh+smWbCs2XPPnvVBs3nBRcpvB0aoUDviul2Y2NxKk1wS2Dy3tQjH/VNZsuHMgGo+UiG5qcWtTbY+f5RKU6bSE4p3tpVk+eIR98hq17ekeHeFCIF5fY956QHf/ELuuUddbzHYvBchiJs1QsuiMux0c3CLu32+X+/gM5UoJP0bo3OIclMsU5GAqmrx9g90YaSwaf9tU+EDx8cXoNEbmCEWOfb3Gak3z9sH4WAJcOMy6wawb/DwHE8nWnpAp2oUR6l4TmJx1cn/fsXBgcIeHI4gWnEUtDG4bZLKm3mAkpEtE74r14wmmiRx+q6GbWuoTTX2kaJeRo69LBsbRB0Kf2p2SUH45P/d3ND7LUgBiSIGEAjbqRvLFghZQM95r+PP/5P+d/+03/6eo//yYyx+NFG9tufmKw60NxYUAk9c/Ihb5u01B2DkJMX67RdmAzTz9OiM/szR3POGdlvpVIcV2I9NU3YF+b8sfef+3+I3rh7zazNltl5hGsf7OgWjBeoXPInESR03pzVeDgMa1Foc7F/noyV0+fnGCuzGiPfvFGbmF5kj2jmCguBJKVnVXQNJQRLpppDrRNIfQzZOmp4PZpwg161B+xjTCyBB9jRoDEVWIFC+33PzQITfvayavotQou0DIFJuHhsnrwPSjlZxVITJ5LsD48sOIn1iqOxn5VU/+akt/UOJLzfyZx+eKqy/n5OvA4uPUESTjHLdpMecrojX0dxeibSwcupVsEF8KCKGuV3IvL2YCnCxy8petNNiLqZyXAEUuE/+2l0bFGFRZwubvv+6+5/YX3nt+9md/lnfffZeyLPnCF77An/7Tf5r4pi1mjPypP/WnuH//PmVZ8tM//dN8+OGH/8CPpQbUp/eoph9HyxKmolB1i+oDwWpB9wo98rAHi8wxcCt4lNGoIpfOVEkCKiESMuHoopQ4X1SVPK6P2G0nIrOA/InCxfOFJVgZfw2bgwRPMVrn9oVOGoMg9sKdoOY+17QLR3OgaZe3ne1gA4qSxa96sfv0hUnIgWwYcdBtFKTws4Ctg1AUgpLU8uS0dYvCMqaKD5Z0b1bkgrwIHcLUGt1IoWDrFOJzDdlmQAoVodPjqDH2QqVQorUVW98oiKXQmGSioTpFtmiILoni26TLSPzq/FqRX0mSadTQLLRsuv0t1cRt4ujk0U+hOZBmbAgqU1EKBdOk74uJ5+2SpWmQ99nu5DG6Sfrs37BRHew/o06IbnoPo2IU85k6YBtBMnQraJfq4ygGHGxDSZQM1QvlYgwVMjqhugG3D7itPLehMQ5WoZs0kckNQ8AmTSPhRAnFjEqhmha1raDvxea67W4DjAbrzs/ZkvPz3CeGawgeU9aM9tzy2oMI6zoJdwLhuf4970sI0lQspvhpji8twZkUCIf8SXadQo0KEopmjdBakmhZt0K91G0v92Fzuz+Mlt0+Sg5RdWstPIRhDc2KioL8D01p1EKp7ItbWuUQ9Okz3tiLBpH1MFkdmtJkVduC6pJnf21wG5mCDFQxn0diJjSQ8fPMRZPhtsnqutWJDiVBfSG7BRaGUDA53OO4Lgev/WHKIXtSom61QuN0u1Q89Apt4kgn60uhX+JFiO+qiG3i6BI36LlUD854lJIgUZXW8rAPiaV2HIX50TEaVLidx6xbTKLGDZ+zd7fW3wPHPxRiijLYC/uJE33IXj7XwUWNID+jm15oPF283VPSGaOSi5tQb+Uei8bIYzgjmsU0wUCrMWMkKrGKVhH0RsCUsUA2QjP7zERQyWOq3hN2e5m0GqEhyddFJxLf/JnP4fo894rYJGFuDGLoMYQaQ5ooJ11W2yXwIaBrQanF9UrL1KTpJGhZa2IhE1isgJZv2viCTNaV98m8JAXbpWnGsPaVF0rXcL8Gq0aNWDDpHkz30meakLQfkayifUaiYgn6rgJJByJn2ZvByWhQvaznaOQ8HQx2TC3nNSqiOiXsiaSb0r0i9hqjAlXryFdCkwRSUjtJ7I2cuV4R9haz1ZitRrmAcWl9pN/J8DKs0FBJjBACdI3l0/0RfZRQZr/0dPOQhPbq9nzW8TYWQQPp7+PVauJeAE2xImekpQ/7w2AJHi2gImajZVqay8RlML+QwEeph0wz1EVSx+gWiSGolIAWvQDepAZy2Ht0Jxll0Q57kSEUGWGS3wIQIUCQzz9kemQ/hEwnkbrsZTFliekuiNV7K80zvRfThT4Z+Dhx2CPPxowi+l4o3Gk96C7c1trDuklna8yd7A+DLfh3WVd8zyci//6//+/z5//8n+cv/sW/yFe/+lX+zt/5O/wr/8q/wnK55F//1/91AP6D/+A/4D/6j/4j/uJf/Iu8++67/OzP/ix/6A/9Ib7+9a9TFMXf5xFur3i9gkePYbsnvjhDLxfEQrj2ygdx/Oh6XNthDmfoeYbuPPSB8qMreeMKJ4v03h3qezPahcXtPHbXo5++Qh8u2T8s0K3GlA5dipjP5wKXuScXMo5aTIi5oZ8c0M8cPtPsT8XBqrjqaZeW6khjKxEd1UeK2EF+UY2I1uRFRX5puP5ySf0lw+79FnrN/FuWyWvpaDePC6oTzeI7Ukxc/EjiXb7O6GYiDm1OPLEIZK8tKkhOCBGyrdj3VX7O4TchX3uqQ01zqNh+qYOQGoZFi8t79LdmuI2Ip1SUZsOmzr46kXGn28bbMZ8X/vXy2+Cf5GwfiUOV3kpoms9kw+uflBR7QTNsLYf84bc8N+8Zyi9WXMUJ2Ub0GcLTFr7qnV8V4mi0ipc/aeDdPdk3puTXMHktnGifafqpjK+bL1dkeU/5X85wuwDKkF9HZk8r9g8KKqPpi4FPL6LZ8jKQ3/TkryvOf2LB7iH4bIL2sLufrAg/CYKInhiKa4+tPLr1+GRrmW8ixQcvcesjumUuft3pcmvP7BtXhHlBt8zfuJmRAqVqiJmjXTrKXQtVzexvfQeUhjuH9POSZqEpL3qKT6/FSq+wEtzZdLJhGCM2lHWDuVoR64boPeTyeLGuxVFrWkhj3XVwdf0Ptd7/Ya/Pc58ACNcr3KqGsoBJKftDJXSt2HUiYE8Ijr5zjD+aSaHhI3qbOtvM0R+U1Hey8SDVb9BUojP4RYatPMuPA+ZqJ3zbgxnRarKLnRSgbTcWGPOPtoTC0c1dohXdnox636E3e7rTJb6UALKogSLRNCy0M4PpIvMnnm6i2byjRhvv6VNJc375U3PqOwp1FglW085yghPgoJ9IIVOei3C8vJLmyG47+qnFl5r9iVDFujyJ1U9bzEXG9Fsl1WmkXwTaE08/0cyfyD5jaitajZkAFUTwE+FBu40Z84IGrZvu5LVdfVUmM34W6A6hAgkxfZaR38jhHp5puoWi0ZDVcrjv70dCETj6NeFM1wcpMDaTZsBuJKmeqPiweUeMHSZCDS1fWfYPIru3Iw//3+D2IaXeR7pFZPFtzfJjQRuVj3iHTKNXgfpAU91RFFeyX3mn8A4274gD0b2/7WkWmosfmbD4tKc862iOMlRhKHeNhOuuW8zFmnizgreWCVzKsFWgeLEZC6nld9KExCj8QmxjdSNTM+UDpg10Czn/8td7VGZoDh267vDf+QRz9w56PiUupsLhTs2QPj6C3mNfr+W+jFGaEOel1wwB1XTESQGLKVTbf6C19//v9XnvFYDQNq1NE+S0xoNGVx1q3xAvrwXF1Rq92kHXi05s6Nmqhnh1Awcz2qOC9vEUFW+n68C4F8Q8A6vRrZeCDnDrFr2u6I+m9PPkvIVQMQH5jKzCZ3pE17PzSr52340gQTBCx862Ymzgc9k3Ng8dbi8hebPnghBe/lDO+l1DeyR/t3tB3ievOzZvO+pTT7YWc4jFt8VqvD0QBobbRm5+AGLhmXzb4S9y/tfdH6N46gCPqaHe5rzp5mprKF7elqD5tRT+N0tLryP5mUXPIuGdCnVeYL81GRjaMnVJr3H+SyWv/osv8Pyf1iy/cM1PffVDbtqSD//mOygv4YS6V9BoyS2qRdPRlxIpMAIqVqYkKAkp3D4SkKh8rZJuTLQp/VRqnWyjOfmtnmZp2DxOIE5jqO/1MvEtksh8I/oOt4uJYgfla6k5Fk8afKZZfXmBaSJ3fk1MOraPYfbXh+BBS18qVl9eCDhjFLPnLbqPbN/Kxlyy+tDQLBfj68nWAm5LTeMxVzvyzmP3wtDx04z26J7sQedbYuHws1zAutahXolpU4wRXWhCmaE3NebshnCyxC8K7Ksb4q7CX1xgi4e0ywxrNWaviC9f49dX39V6+543Ij/3cz/Hz/zMz/CH//AfBuCdd97hP/vP/jN+8Rd/ERDk4j/8D/9D/p1/59/hZ37mZwD4S3/pL3F6espf/at/lX/pX/qXvvsH00rcatoOZbQgmiCUFK3hZj0ixTpzWMWIRKmuH3/HKNjdScFoqh7dejg6IJYZbuNx214KksGNKwRBO6Zl+n0eP83G0EFIyHoVyM52wJQmHRLDSC5q8KVDZUZQ+ZS2jJbu2b0Wz3txS5CQPOXB7iLVXYUvozhx6YRYlEmk2WhUJaJyoSsJEuqdOD4Vl4pgRKiuIuPmoBotnE9r6U1kciWpntu3ZAzqtgnRHHQoE5KmRZy1fKlojm9RTaIgqyoIklHfHQjhUnjYPbQHsvkUiWN+dTPDVPK867u33M5YC1faZ4OgX1G/LjFKbIm7qWhNhgKNCGFnqWvD0V42AqFCweoLE1CMjljBKdxaNoa+UKilJZoJzYGinwRMp9IEJXFgu0j0siGETNEZM4pNy4uI23limRMycaLxpbix2cqDgvbBQnjBm3a8B4PVch8m5xu3SZShIkd5+bfYCfJm68QfVhIaZHa3S0IdH4qjTkLYiFEOVGuF7w2C9g0uFzEK4qG+58PR3/b6XPcJpLBQk5kgOf2AJMmEA2NQ1slENJcwSF0lHUiMY5hhmOVC0Vr7dPgrfGGJ2uOut6hWi2DdiWh94OiPCHKaaMVJht7LaFt5Kfy6qUwQTC2IqfaRMHFgZ4TcCDc86Y66iRonmqaNmDqgMoEHyzNNtpWG3G479K6huJyhvEoNutCdBl60bhQqccV9EUe3piJX9KWmz8XUwlZiquF2CrvPx2lCtlLYylDfSfd2suT1KYJC94zmFQN9Q6gJET3pCbW5RSVjyi0K4Kdgdhq31pJsrqG6+4YDVa2wV3J8NYfgp6JzaucGa+V9lMwVcd0JDtxejTQT5cW6fJjO5NcyPQwuSFF3I693mKACgvaFIJNUJdOtfC2T1SGsdODZDy5FKsjPy5oNhEzTLMV0pLhwqeGx6OUUnRoLt01agDYkyo/ovkzjMY2XvUKRKFPIfRKkeewWWWpozYiyojUqywThD7c25Gbdis7t+ADqVsTZRvRQ5t5d+UwGNz0f5Hu7XpgIn+P1ue4VSgvjYbhcJhPUtGfoTSWRAcYImly1st9i0dvB81vQYnVyRIwRt24JVkLl2mWGaQL2upLPoczkdw2TCK1Ei9ghj1f32GFgqRX9zKUG24h2oA6gxKEtukEH+MbLSXoFlUTyphFtRF/IPdqXmjjTBCNAoYqQXcma62diBtMcGGnmt/I4DBorJXlmov+SAl93drT9zl847F5AAd0q9IUjv9Tp3JV71+5SrMBE9FY61QxEqUWigrYxY40ygBqtk2mlnwbaylAvJRT55mbKLzdvEyO0Jx5da+xG3kAdhqkPBJWmGsjjmVpDSFTLnWKINBBBeappjPyMOApKIzS4XZlKqOP9TMTpulVjqOjgttUX6jY41aah5xCMXQ726EKXVVHRlyaZh8ie2RxIzeT2YQxEzbaBYNQYWGh3Hl9Ksvow6S1fC2snFg7VeFy9J5RO7OgH/XMu2kizbUY2hUqTV8kSMRJQ2PWis+y87CdNCzFgjg5BK7LrerQVJ3PoIv/vRyPyB/7AH+Av/IW/wLe+9S2+9KUv8eu//uv8zb/5N/lzf+7PAfDxxx/z6tUrfvqnf3r8meVyye///b+fn//5n/9v3TSapqFpbt2E1uu1/I+xhNcXsskWxRjGFE+WECNhJd+nywbtPbYuZWKSKFaAvJlJAGzbDpssPGPuqN47EoeLl1vUvkG9sdGozhNzTftggdl12IsN/WTO/q4j20onm9943E1N+NoH5N0XqI+OxdoxExcFFaA5dmlkKlStXvoaslVk9ux2NBuNYncqDhmTi8Dl74PiuMJfFWIniaCV6n6N+8aE8iyOoUPBCkrXTaWZKC/Ecq45VBSXwltUnSa/0iw+ilxbS6dg+XFyXvmf3NB5w+7jJdmNIDDtQZTNIw+YvcZtFc0Sqi+0koraK7Jrg11pfC6o6cm7V9xsSrrrAvNSk60j6x8QEWp+LQJJ/aQgv1aYLrJ/3FMcV4RPpyIEnxnamaI+URQXkdlTxeqLkXrKmHoKjLaj+SuXHDJSwYelvqO4/j09829b5k8Du/saX8DBt6RBrY819bGMrqt7gTD15GtFdtPTznIJMEuUqKhEx+MzyAqNrQMHH+xlMnMyp11m9FNNcIKgF692dIcFFz9UsHjSM/9N8cCMWqEO5DWGeYnqA9nza2Lu0qRNpnbm1TXGB4qrZPNZONTz1/jLK8zxEWo2pX3nBNUG3NnqNkl8UozWtIAU2+mKbSfo5+ccUvY7sU/Af/deoeZT/OkxeltLcFzTEH1AHyzT/pGjMieBhl0PF5+dEKlJiZ/NMbsO9+qG7v4B7UFGu7SYRuO+sQLAdD1qOZVG5L/l8tOM6l5B+dLgEg0sajGwUD0sLxsGAXd74PB5LvdbALsLBCtW3m4r7m3ZqsfuO0GiKpg9regnjubQSgZG3bL89p72KOPlT1pMpZi+CnivkvBampJuLofh/lEKO3wlE42QR+7+cqB43dAtnIhfL3bsHy24+oplciZ0o4tCJghVsq/0WcTtVNJiyQtyGzmQg42EMrJcVNzsHJBsk4M41fVTRbdQTF5qjr7RcflVR3Ua6B/XRK+YfKNI2hbF/n6kervDzASE2j8UKtnsqYAM1QMP8x6b97T7KbqB/qTDXFumLwaLYcXBh2KZvn0o58PiaU9faOoDjauicPaXmbgZbdMkoY0UZ5XcDw8OaRcO04RRK4ZS9Lli8WlL+dEl7cND2gPH7p4Yi5SvM3ypqQ8MIZ/htgVm3WI3Df2iQCcXm5g7+nmOu9ij9zW6EEvemDt8YWmXGcVFjbnc4CeHBGfxU3dL3ckM9mApwtHhfvYefXFNXM7Zv3dI+XQDZ+eyDoqC+sv30V3A/fp3pOHJ80T77D/3QMPPtaZQCn+9Gv/dHCzBFPLaYyTuK5S1Qt3se9R6SzxcELQmfvgxhIg5PiScHNI8mJG/2GKfXqD6I/p5xvpRTrYNLM7WxEmOn2afeV5RizWv6tI9tq3QwwDKWbrlkm4iJjn5KjC5amlxqFxJfplR47kPieLZiTOS7gLZNtCX8vOdjninaQ/UZzKDlt/xVMea65/oqb0Vp8wKJrvksDkRkbbbaKZPI7u3FPW9nskTi60kzNTUcPBBpF0odm+pRN/WlBfS6F//gFA/J68i+1LRHXhMYyW7q5bQv8lZQHeafuaE7u0i+Q0pakDhC8/s4ZpNMaUvRbjvnuZkFwXdBN75Z57z6mYBvzlHDUZvCSQJeRwpX6bSFBeK/EamFs2C0RRgoHYKvTRRsDIxzPARVtriVjKF3j+ITN9Zsf/wgOJSUV72ond7JEBScJHyXOE2IlJXHnyhxYZ5pujSKCO/ls+sOZBGpLgJ1Iea/X3F8tuB6Yt038bI5NMdobTUd3PKsxr76Wv6x3dplxm+0Jg6UH5wJo6vdxfYsxXx7AJ9/64wIhI9088LzKZGv74mLmbCFMozlDHEMoemI55diMlLJkHfutEjfTO+dSp21t96gl7MiZNC2AUWePX3X+Pf80bkT/7JP8l6veYrX/kKxhi89/yZP/Nn+Jf/5X8ZgFev5Fmdnp5+5udOT0/Hr/3d15/9s3+Wf/ff/Xf/3i/4Hkhcb+dgXxGaBnOzJVqDvX+aeK23PFeV1P6xaUAJAhozB9PyFsFMzkO26lH9Z/mc8fhAJh8HQnNx6xY/cVQ/chfdRKYvW+xeeN3dIsNPMrJ3HuEXJaYTZBGguise2V2psY0Ik0wbxVlrrscOOmpBMoMVJC+/EsSzfKrxFzOWZ4KUEmH+KfBJmbilsgkFh4hS91BeBnG0mWhBCidxpILk54Io1MdpgrQzVMeCDFy9XIJX5BuZwuwWwgvVrWLx3lqalHqBqWD+tYz6JNIt/ZgN0JfikHP5rWOZ6HhFdRqpTsHeCApRnSaUci0/4x3YlaEOJcVaLDj7Qt6Lbh6p7ksTVJxZQV2OJX9g8lIE7TZRv5SPbN5ysiE8FgvD8rkIyiHx54vI6ouy2ZavI82hojkUtNhUFqIXvvdgnZxpsnUvEw1V0k312DCCoBohN+J2NdEM3ApByaG4EmQqzIqEWt7yuv00F21BcsBCg941Uhx7D53CXdfjvaomE4xScPeY4AzuYi/j/p00zWqYAPggE0NribOJoBp1KxPDIk+I+ud3/U7sE/Db7BV1i3l2LuGnVS3FxGDfO3x2Icr7bI1kq1gjewfSG7jz3djcmX1HFsFshP7J4XKktajOY3eJcpGKQpTC1j2qD9h9kILhcIqfZPhSqEqCBqYm12pMJW57okGL6D7g9hbdZwyOJ+3S0i0Muo2CAi4zupmhPtJEXZId5PSlCNtnT5JbVhNHpzhXDVxtUL2SHB9/qy2JvXjc+6wQhxWjWL17KE5V3eBalxBAL/SKdg7tQ4+fyCFbnimybeTwWwHvFPt7Cu0N6/YAV8mB79by+0IS4GfXEsa2eseNOT7510t0e5trtH0kFC5shOcluhZjLd0kbr+XIqPPNd5qtBarbb2ShqwvB768oLY+dzKBNdDOXNLfCNqLhtkzmYzuTg3aR8pL0L1DtzPMrqXctezfnuEzaWQGt6NoFN3pckwwnj0XJz4VY3K3UVTHlvrQMP9UHLfapcNWGgvj/TRkXND1oDPaZQZaXBajUYRZIVz2NkjisjOjflBlmQAaCckfDBpU01KcV+hdJRKnUsC67PVOaCpv3RNR6m4vU1WVRuKf4/V51hSxrsXae/h720noa5GjtJFJshHNl+yrXtDlzOJOjsVRLwW92W0nUyRnk84n4CrRBIRpIRMMksbrje1Xt4HoNN09uWeiVmKv6j2mCuKqN1EorzGHmZzX7W2o8vQsfbYh0k1kAlcqhWkDN+/bpBtNusu1TFRUf5uLpdI0wL12ZNcC+lWnsl5mT6S20F40W8VKAgyDEzDB5+BWojML7lZz0k3lTzTi2GR38vXNewJaqJTLYWqZcvQHgfOZIRQ9dtGiPi0pzyQ0uC8RfcZes/tkifGyV2XXSsxyHonL3vlmRlM5bBlFX3otjdEQWKwionlt0n6nZC/r5smoIjJGIphGJpt9IbWZu5B9MruRyUN9IvXG5tWc6cVA1exR3mArg7mWoEK392gPm3ck8LEv3agV9bm8F/Masp2waZQHU3tMY+RPG2kOM0ztkz172tPaSD9xxHdO5exoAvlVI4B5KZoS9/JG9oKTI0L2JigRMOt61EcOgcn0ntg0KK2FnplnYgw1m6D3aTqynMs5+eYa2mylFu97gv/u8sm+543IX/krf4X/9D/9T/nLf/kv89WvfpVf+7Vf40/8iT/BgwcP+KN/9I/+Q/3Of/vf/rf5N/6Nf2P8+3q95u233yZ2PWLYbCQlOkYpNDZbmZAczEdaxDhSqlti1xGbVkZOUegwfp6jGo/yXkbwRsbkf7ewrD8oaQ4z2oVGd5H8dU+7zFi/bVl+0pM/30lInRIErZ8Y1L0DQmHEC3rnk02wNCI+k0Yia5KYHOgLJx10Jl9vDgbhZhwF3JNXsiHMn7f4XLO7Z5g975l8eEn9+JDm0KKiorMSBJZfKZafeJqlSbQqsejtpxJSWJ4ltGOBjO0rRXMgiED22o6py9UsoO7VxOcluoMvHp+jVeQXzieUTx2H3+q5dJZ+cWvlJ1koivKpIuTiyFE/askXDfrX5+ge9m97zE4zeSFIgSSMKnRncFtGQVifxriTx2seH17z0bN3ydZQ3QuAFjFoC6FKPvzA+h1Nu4jwoMaf58w/TiNekvjMRerDHntjWX4sjUi/8OQXJtkLM1oqqpiEZK3477uJQwVDXwzkYCkifaFT0BAjshKdiBWLG0lL9tOcmImhwaA1CLkhBo02tyeTutreBmyGIDkXzhJzK7ztIqM/FEjLfXo+TgZVlkGegfci7KxqaboP5lKI9H1KWHfwOZtm/U7sE/Db7BVtS39zO+Uwi8Wtfe8A8HovzZqzQq0rrBycEVTbo8+uhObmLKpqsW1P/OSZhKf+0PtCzVnvhb5SKWJuCMbhJzYJiWXTt5VYNfbznJCJHTgwggdoRUQKUtUnJ6Q+oKoGvXXopsSXlr401IdC/ysvPUSx6m7mmmap8E4SjkHol7OXPjVLMBguCLUrCg2gjxRXMU1sFUH0t7RLoQlkWykC1u/J2syvGDnnugXtFdlaKFFu2dA5R7CW4lL2yvlHO0Jm6GalCMo3ehSwu52s2/pYKKtuK8jl/n4U6+0Ay+8E3C7QLjTtXOHvJVv2qCjPFdlNpDlS48GuvejPVKclvTktKbcWxNVnjI8vCOut4LY5TLSWTmzG+zJid1r0fSeMNDXda3Sbk71co/Y1/ZcWeAezj/ZEp2mOi2TrnQk1pg1MX97mcAzCVF8KHas8FyembvrG1CHdT+OEs/eQRfrZcKaICD0Usoh16yUvJHPog1w+6zcL6Ka9FWB3PeZyQ9wnOpITYbW+XkPmaN86wm4sare/FbmHzzdH5POsKULdYifzEbiMVUX0HlMWAk6UwqEHaSTxnpBZsflezqSYq6RIM7uWMXU6iOGA3aesssnthitW8mo0HNCNJ+SGbm7wTo21iNmJjtB3WmhUpYSUur0AFtEIqFK8bsAo+kIoS82hwtaK4Ay7B4JgzJ4IPdBt/AhKDFpSkH0hv9DkN5FiFdi+bSTs+OtCDQIjAOpWJiO+ENZF1KI9U/2gT5F/65O9bjRS+Lut0Kva+x20Gl3JmjRtJBaeYtFw9GgnVHvg4qOS8iLQLGSdRiV1S3GlpMmZB9xO9p/976s5mO+5vpwTG2Fk6FaC/nwuVKrhF+s2hakOWWlWaoyQCxCpB4OLvbiZ7e9ofCfum7qXQNhuqqjuCvCRXYoONV9FzK4Tx7sKyqvA9Fkt2ozc0C0s6qhlN3WYvSa70XTzSD/3xGeyrt22FyfMqpe9Z21oDzOZhsUICGCJEQtfX2q6RY7beEzVY85X4APhaI7aN4TzS/TxIeFg9pm1oPqAWm1HcELuR43xXphDVqa7yjnipMAvCzHAaVrC4UJohW8YWISqHoMMQ+z4bq7veSPyb/6b/yZ/8k/+yXEc+sM//MN8+umn/Nk/+2f5o3/0j3Lv3j0Azs7OuH///vhzZ2dn/OiP/uh/6+/M85z8DZRiuFSeQytojz+cYgA9m4o4d7cT7Uj63nh6TPdgIShF1clYuu+J641sGiGI0j9G9KYiWkN3ukATxFYxc4TTI8y2YbJrUQ+nBKtoTkoZ5T/pIUL11hy360eHJJ9p9g8L0RhUnn5iCM5SXAglItsGulJx8UN54mJLAW2vJQgs6khxLYhddapG5xxXSUHRT24Lmc3blvWjUyYXAbcNNEtL1LD8EGwlN1mfK7qphJHZvaJbyM7THkhxPjmLYyBRyBAE/yK9i0r4k911jkkc9d/8618m2AhHnuY48OonDKiIu9Fjw+PnntAquplJmhcILx39jSXcDWAiMQ/ERgGpAdOygE2VkJIuJYt6MK2mvTngw3zJ8tngOqPpp5HXP64Ik0Ase5a/lkng216Q3KoxKB2pjzSZg7CDu7/SY1oZV0sHBNOX4HbClTdtoJtodK5GC8WQafb3Mvzju0xfdOTnNblW9BPHzRcnuCqSX3UcfG2LXu9Z/d57tFNNVgx2j4G+lJAqtw2YQfAcPyt+HriWYTGBhTQaUesxnyIqxM1LqdGXPhwv0BuHv7pB66R5cKJ/IEs0gPVOUI/lXKgFVQXh86Vb/E7sE/DfvVdgLObwUN6PshgnSv54Lu55L84I3qOqGrWvUEWBPlqKJeerc+GOH8ylgEsmGCDTU10W1MclykecUuKC0wf0xRraDt0cirNR1aJqha66EUXNnt+Im0l/h2AV7VGG3XnsqqE7LPClTg4ugeza4icZu4e5TAcLmFwE7I0ADO1MbG9jcoSZPlVku8j+rmTsVHfsqLEYcjuqO0b++7hDtZrTv5Ua70zySrJtpFmIFqpKQalDJo4EIgp66LakHA9BU/l0QrkVy25fwOaxZn86l/c8F+RzQCi7aZo6RGkMukXEvL+VxObXQn0QkOZ2guu2kfzjIuUVyEc80B2igd1Dsez0RSS71JhnOfMnAdsE2pRCH62YYAwhZVFDdaoIRv59+Dfdgo1imlH727yf+lCLsH/VsP/CIe3C0Czk/asfTMQBqQlEK4Xm6r2MvlQcfNSLNXPVJ5RTjEOG3IeQSe6Q/run8ZNc3G+2FfSe/CI5vHmx8PQHDrdO+kaApqV4tkFvdoSzc9Rb9wmzHLOrxERh0D+BIP7OSdMTI+17Ml1wL+X+pMjFBMMa1Obmv3P9/U5cn2dNYe8cQ3WrgTH3TuXsP78kbneo6QRVloSDuTjiVRXukzPcEG6aO0me3leo3R5VSmByzMRFM79sxC3veidgR+nY389pp5rDD0Tst3k8SQYOiSnRpDPCKOoToQee/lJFPzESmpsS1vMbj6kjdl3jpzndnYzmQNEcRSavxBL66GviuIhKKd2ZplkomiNFfSzOkf1U2BFuK4yK7X3DwbcD5muR6y+JS9vsmZyjFz+SmjIidiMgqduKfqKbK/b3IvrdHf1lgVsZynMgiBAcDe7M0R33FI82VM2CbCWi8nqbca0ibWvxW8d0I83H5h3wM8/kmUnrNYwAw+5hZP8A4ouCdSgpVsk90EN9Etm8q4h5Dyaiy57oFaxdmjYI1dXWgW4m4nDTSEngc0WVQXVsaY5SvlkZICjcRqWGTo1Wx6aVffDmy7MUoJocOJdCbSVE7vySJrhi3HuCjezvSW3hc2HFmMai8kh/J0+aQMl9gzSl6UJyaNXUh0Zo460YbagghjUA/UGBySwmOTiqpiNMc5liKWlQuXco4MX5Jaqeop2RCeh0QjyYf6bRsDe3oIV6fiasgaODtE8UcsYO7KLQwnehV/+eVx/7/R6tP/trjTGE1G29++673Lt3j7/xN/7G+PX1es0v/MIv8JM/+ZP/YA+mTRKbCvUq5sJrA8R9omuF27kX3v4gIo2FTV1eEgh7PwpTASk0quaNdHCxV/MpN0DtG6FNNJFohZaTrcRhJ2SCRPhUdKqk/xgQj5gsAN1e+Jq6lQfpJxKiN4T46E4aDtO8+f+33M8h5CaYIeRKFkxzJLxkRntOQQlMI2PF0SrTk7JJhFYRjBT5bhexe+F4hgxCntDONi2yRmF2ekRUJy8ik5diJRyKQHvH48uB9iRopsxASf8v4067F8E5KtnmDu+1lu8ZxsO2lr8PInl5zhLKVp7J+yje3ELV8jMP847JshrFd7pNVr21RnkppgZ+aH7dUjzfMP10S3EmCKvpBNHI155s7Ue/dhmRyn3scwkrBNB1h963glYVySrVKBEyXt8k22V5jYPFYjRCy4vJIlGFONrr6U4SdUlCZrHUs4TcEkqbxMtprG8kAItexNcxs3IYDiIz52Ra6ATJx2him8KI0kg1tt1nrDA/j+tz3SeGK9kSxsxJcWCFgjnQ4gie2LUjkDGiPpstcb+/RUn7W1tClTizIaGaAzoUk5Av7vYi7BtoNSEIv7buRQOwr4m7vbj09UKlGNzXxMZ2sL9Ne5xVYtU40B4EGBOxaa7oZwFfRoKNYzEzWE72E/kjoXrDv4kzVL6sYZ50c1EOR7HNjqNYc7i3P3Npxv1HBWkyUELPyNbg1ingcBapTyLNkdz7KooIcxBvDtRTec2Ro/kOsoDupbgRW3OxJh6EpG4N2VpJ8QJjsKHY+UYJNkT2uGwtNBS38SIeT7bJtoq4fbLa7m7XwGC3qQKJoikcb19K2rH28h5GI1TWdm6ojm/Tz/tSp4Ig/U4ltDMx30jnQRBrXtMJspxftnJOmSE0Nd7azYdAtFrCdp0VSlYfkh1sSJPdJHQ2Wta2UhKyt9sTBqe2ZK0ZUx7BmKFjjOgnk15ysKxXdStnI9xaXuvvednw216f617hrNA2E3UzTopEeQtj0Bsx3qLAxqT94g2hutZSfwwalMxJ3WHEQlU1XvaFqknxAnImqV7MCVCkLJDBACEh1fr2vnEXW9ymGyf0fX4buKo60XaGMbSQEQDLV4F8HZNSOr3m9Hghi8Q8jrb/upPH7EtJeS/PGrp5lDwvL8V1v/T4SRgNJQY60xg2XEaKvBvPdUBMZ2ZBQpQbWc9F1km9oIVOqXaWepvj1xlmZQWIUODnARadmEwMlNIAppX12ZcRU6vRctxtBWANGeg7NWrSozKPMQGl0xuQJsSD++dguTvQ1NBSm7XLZPOvkOlOHpLIPln1NiJaj1o+DwFZFLf2wckAZGoor3qmr3rK857y0lOsAtlGgFcV0mftxBXND5lROjV9w+Q83J4RfXFr0jM2AYUjFhJ2GpwWNgTcmrBEqS9kb7K39+1QCwx19RCSnDs5K5PAHS3GDnEvAd5i/qLS2snEIOYNXdpvd33PJyJ/5I/8Ef7Mn/kzPHr0iK9+9av86q/+Kn/uz/05/tgf+2OAcNb/xJ/4E/x7/96/xxe/+MXRau/Bgwf8i//iv/gP9FhqkqMs4AP6Zpc2zW5U68eDudjonV/C6yvK7f7WUStGVJHjT+7KB9IH4esbhV5voW6wZyvIM8KBiE9DpgmtRQP5y7UUHNntW+guxFmkerSkm2vyixbbBcrE4/O5lmnJjXSyMSWlun1k8WkYF8JwUBXXnnZhOPt9ivxasfgk0E0U1YmmuLrNFbB1IL9Oo7mJ0DKquy55essB3k0V1ali+jRy+EHH2Y87unnk5NelAWkOFKaWgn32wqMCPP0fKZh16KYQ/+sOspU4zOzvyYbVpWLc7jX9NKCPWtxxjzGB9oMFbq0AS+SWCwqyQfkcjn9Voz2s35NmqD6OzJ7A/GlPP5VE8asfkvdl+jxpZ0pG9EFE/oo7Xznn/GrO8V8r8IWhLwuKK1lobi/c7vzG0M4V9clgVepZv1OAKiiuxX53d6qTsAyWH4njSTsX9GVwNWsWIhScP+1QbZDCv+3R+46jbyrqo4zVe47tg7vY5g7Lb2yYrXbCpXRWhKgTaQKyVYe92EqjAKi2u91IJjkht+Jk0Ys4XRoSg7uuUM/OxsMwPDqlzwvsthWU/v3H+GVJt8ikyG169GovBXFVE3tJVA/rDaGqUHcW/5Ar/h/u+jz3CQD6FmxOvF4Rqhpz7y5xPsFc7VBdT8gcKn0GsW0JVUKHnEXPZ/KZnJ0TQxQK6Htv0R5PyC730PaUL3epyWiIRU4snTieKUV7Z5qC5eTzUa8uRYdiFOHOASEzVKcZfSHNbTfVtEtLftVRnAmCqjqPvtpgModdT9NBFLj+4QN29xzlZWByHnE7oW34QpFfS37Q5FzAiW4m62ByHmgTfcvuBbRod3OKHqKWUzPbiDPf6gua/FpQv+AkL8RPpLnoi1uHnn4qh+f+QcDuRK/2ZobHEA6oPLheGoB87VMo461ovjlQZCvNxd85ZXYjLnTdTIqhzTuge8XpLwbx3rc6pZ5HNo9kAjv5JOIzqI8kZDS7YUxBrg8NYFi/p8iu4f7PbajvFOxOreSO1JHFJ6Kj60s1FmjDY2wfyv4zfyrJxe1S3tfd45l8f5QJlXj3v0FVMFJQHP/WbZhuyDS+sKI1Oe9wNzV6U1O9e4gv9YichuUEvalR12viQkSoNoUctkuLqQPZdYPbdth9T303x584soXDrTvsNz4Bl2Ef3pfpXp0K6RCJdS2C1CInFhlhkqGvV4TVmvzXWtGVDGfo1Y0IVZ0jln93N/o7e32ee0XcbuGtRymPwaRsj4A+PBB3wbIQumbVEpZTwt3lSJ2k9wIclXkyBJnSPD6iPnajjtNnivK8w37z2xitYTEhW3lMK+6KZt9y+N88IS5nVG8v8KXsBcWFxjSe8qKFAP3BhG7uJDT3jXstDlkOWtZ6eR4T06HDbTuqu46uFNDCVZHspmMWobjWTF+o1LzcZpFInpGiPjS0M3GBMTXS0NwE5s8U67cN1b3kJGUU8Vz2hv3jHrMxhJ87xJwGujsdm7eluo+NIbaarhd77tUHR8w+1eSrSHihkug+l8mlAbf5LFA26FyOfkOyONzeUx8Yupli806gn0kHoVthYNi9ojkvmH0qJjm+SO9Z2qN8rti8JSY12VqYKdWpuOrlN1JztAeR8rUYhfjC4jNol+KuB8kdbw+bdxR9GclWae9I+0d203H+oyXVvUh5Jm6Ebhsprj2zX3nN5MWS+m4+mnvUh5JeP33VCogQwOc6JbALOGWaQMhlimJrcVHLL2t01VE/nBOMEsfXpD1UvYDuppbg5LCcyr/XnYBiQDiYUt8pmL5eEXc76S8nBf7OHF/IlL54sUdv9uiDpYCYTUvcV/jVGrOYidasaYn9Gw50v831PW9E/uP/+D/mZ3/2Z/nX/rV/jdevX/PgwQP+1X/1X+VP/ak/NX7Pv/Vv/Vvsdjv++B//49zc3PAH/+Af5L/6r/6rf3C/76aDbgTnoeuIPtwKypJIF4AoG4Xa18KLV0q6t85Lt27F8pQOEfQiupKoNZAJWt3E0W7zM6hQ6ixVkG7SVsJ98IVJegE5pIZR+5uBQ4MHdL4KaVoiBxdKULW+ELqBraC4lGT2YBkzBew+hdQ0MpILiaozdPYqMFr1BZPCcTI1hu/onhSyJmK1+kBRXimhcqUkxgER7UvhRGbrSDfXIpLruA35CwrfGHwt/nh5J//u1sm+biqPLwE78qH5AmIKECIlu/tc4Qs9Ijo6/Z7BsnQIYdIdNIfiNHZ9OSdsHd1M+JJ2L+PRbqpHioWEPiXbzhjpUwr1bRilfCamidgdYosaBucydcuvJ32vj2ORGAonB1QXRIRq1BigpIZgHycBZP3UCp2qEt4w3kP+9y7FaGWCZ+AWuXzznut6oVcoJUWwlwNy/N4wPL4gbarrRcg+BIEqJYX2bDaii5/X9bnuEyB6sjd/LISRcx+tQR8dyv4xcOUHgapzMlUKQUR4WqGUEW91HxjSsUNhb20LIQEbFqU1weg3glMFWVVdD40hzPLEm07Np5b7LBj5/KPV0GuiY8x/CJnF7FtU1Y50niFN2TTima+7lLlh1fg1m/RTInBMwtJdTOsr7TN1TOtZ/j4ItiVEFbRWhD5iK0V+zWemi8FCzAOhNYLqI9SfwW53DFFFvrebaLSX/I3B4lKnPnyYZg52u75I+2aEdvbm3kuaCjBSu6IRTZndi/ugaFzS70y6Ed2Bn1iZXGSgtqKVCVP1xu8Fk/ZHFeS9kmm27C1tlH16aFiAcYLdLGU6ojstAvw39JwDvWIIkXszwFCamNvg06jlnAKZSESjZN8JgWxN0g60gmg6LeeBVdhaAjMxBjUphBc+0Csyh1JK6JrpXscasZ/WMkmNVZ0mJm/wyfteENPy801W/1z3CiVhxqO2dJhSODtOkKUo9NAHlL11UFRaPhvVewEprUHXnmx9G2w8oNn6YJmaGikUTaNlQtpL4Cw+jIG5gyhZQos1KgZM1eFLoVqaYerp0rlZWAFOrfxstgVfmrE+EMt+OcuiVW9MXkAOZVkr7ZEap4bD7y8u5Oe7icY2Abf12FqPYu+oE10zB9UK0JGtomi6Sk3MPKBQG9Gdyvs5TAFkX7BVHKcnPlFQg1W0QRFVL5qS7haIjYpkCkMS7Qsbg5AYJEEmFZnSY4jxsGfGtD8OYvGQga/VqC/TncQltHNhfMQU6KmE4UV+pcapcEhnvupJLl8CBLtKhOe66dN+rcY6IljRvPjlVPShSskTHCZLyW5bwFFpPEzVE4xOkwy5XyUYUc4PvNQGpvKoLE3RC0s8nGK2jdh0A6NJTgDdSVyAMho6yUaTyV9iHalkiqFlYqcGPclQX1sjA4DM3Tp0vrF3/X2XXfy8ORnfg2u9XrNcLvln+BmsciiX3WYkaI0+OgAgXq8kyA0E1ZyUhLNzYtNg7guvNK7WqMMl/f1D7MtrCUk8PZERbRLsheVUNqOuH8fl3amIdHRKyVVtLzQPo7HnMi25+Kn7dDOZGuTXkdnLXhyt+iidrZGb0O4C5YttctCxUpwaxfmPlKnzj8yfeWa//IT2/fvs7+fs7snCO/mNWhxVmo7t+0tu3jdkNzHpG0R4unmUKEQpaVn3sH1bxGMnv6zG79vfV+weexYfGCZngfPfqwh5ZPGhoI37B4HlB4rj39qzeVzSzhX5WvJIrn8gvf0eZp/A7JXn5guCGsyfBNq54uaHA3ajya7FLjDkkX4iN7Ldi0e5n3qya0N2M7heyaahvTQfwST++kroZs/+UEQVntP/2tEcKFY/VWOeFsw/hvZAxOJuJz9XnYp7xsG3A/WhjE6Pv96RXQnX2peW7cOMyeuO8qMr4rTAl476VLjZ5VmNLyz1sU3ppJHpN14TN1v2P/EeIVO4taddWvZ3tAQJXfe4VT02K90iY/1ORnkVKF/W2FUFbUc4mEpj0HQjStMflnRzS/lc7KPDwVQOk9zgrmvUy4vRhlbdvyuj1Jevx81B3zkWy77Xa9jLCDX2PWG/l/FpnqNPjoizCf2rV/yNi/+E1WrFYvH5Tkd+J69hr/hn3f+M7PjOZ76mtCacHuFLR7dwZKsW8/Gty068cySTDbgVqxvZcMeirqqhyLn58XvJfrbDrhrMakeYl4TcisNeiOSvd+hNJZbjqckJdw9lotZ0oKWI6KeO5sCOhbdpAihkMpcOzclZR3a2wy8L+tKwe5ARzO3h7HaBfqLHSQjIpDNqac73p5r9vcjBBzA962kW4tU/fVbJ/ja37E4t9YkU8WjIruWxu6mEeh794muatw+pTxybtzXdHOp7PbrW5Odawk9rRhc/00iBU91NxVALsxeB4qLj6T+X0S89x3/HSHjXV3vyM8vsSWT7SNEtA5NnIrBtD+Rns5UULaYRvrovpJBRQZqQ4iowe9Fy/iMF+/uR2TNBM8tLT1/IZHmYfh5+0JNft1x9pRQaRysFRH4jU+luoihuBhezQD8xrB9Zsk2kvOzZ35H8hMMPBL28/nI+Ni8gRdpgnlEdi9X47EU/FiTZTYvZNMTCjhSM4dL7Dr2rqN89oVsYZh+uUNu9nG+De97pCeFwhrlYQ93cFhGZo7+zYP9wgt17aVDeMGHR25r47FXaD0RPhlZyDmqFOjyQaWwygQlVBY9O+euf/B+/r/aKYZ/46Yf/G8z09jWptpPXn4xv9PX6s6CQ1kL3tIZYZpJE/fxMdGiLGVxcEzYb9Bfeka9XLbFwNHcm0mx2AXu+ETR6iBaIkXA4Y/+wxO4DZt9jaqHHVfcmuG1P9mvfIb51n+0Xl5hG2BT7O1b2htc9vhC3u2wTyDaBm/cd7RymL24piEK9DInqqWjnKRhxE6lONLuf2OO+NeHk1z3tTBrro69tCJnhxT81xa3h4Dstu/tOcs2cnM3NvQ7VaObfMbh9CnA+FKfObi57weRF0l6cDsnhEbcVCuTy4/R6TjTNEVQPevSio5y07F5PsSvD4TduQYr6RFHdDUxeatwmcv0jgWgiiw8kUFC3qfbxkf2ppi/AdFIT9DMRpdsq0VZzmQDpFmbPZR8tX7ec/1jJ6sca7Fkmz7MV56/jr9dUdzKuvyyum7ZKGhkNN18W6uiDv1VhthJQWX3hmOrYjPTXIW/Iu7Tmlbib2iqQrSRssV1YuqmmPtQcfthSfHKNP5iIW+vdTKh625DymRST5xX6eivGTGXO7ssn9BNNO1XMXvYUr0SLFJWiOywwjcd98vrvva9DELbF0VyauraT9dD14xnon74QJsH7j2RPaVo5y1LWUB9a/vqrv/D33Su+5xORz/PS0wnGltJ1vRnIlhZzTJMLZS0UObGUwmvIECFG2TB8wFxuhesZI8pZQu5Qdw8Z7DhRSjYc5APUrSdkhvYgxzQeexOFw58ZbEKoXRXQPvlTJytOn2tirkcxO7UskJBbcVCyCm/lMMo2iTPZyPfG+ZR+knIr1tLRr9/JsVXG5KwlKuFk56uYnC0A5HeaWqxpxX1LEa0kEbcLS7aBfOVFTF4Jj7k+FJ4la0V5IZSwfiKjj+b49pAdwwuVcDPzKzXag7ptROeK/alQGrL/H3l/tmtblqYFgt8/mtmtdndnn8aOmbmbuYcHHk0BeUFWVVIXhQqpJB6gFJdIPAYPwCUSEk+Q16jEHapCikohICKzksI9Iry1Y3bstLtb7WxHUxffmHMdC0hwSJowY0om97ObtVczxxj///1fc6coPu8wobXBpqlHJxATES1TOe2ezdSI3AQraK5OgWbNBRdu9SUAGEQVYI/A/I9K2GOc3jtVkqMpaiyKuAHpFsg9zQSGVZb0HRT1thcGUV8QaY2nSYq4QBQcoI3fDNDfu4SpV9BtgKkpXJWQw2cZivuBDUPPRSk+QA+Bzl4dJyduVQIoofdd4s7m/DvtAH3ooVtHJ6Z+gOQZk2FrYa6NCFCWtNfrejpk+MCv53lyxKHjVhwGoqNKoLMVpyU+IXfyzcLnu3hJZrjuY2DjVpV8P+oOpnecMPTum5xW74FE8xYXuFd8+L3REjlGzF82COMEA0iwPvn75uiAcNpH1HLBvcSahLABflmQx904qJxhZZIsXkOiL9lDQDSAyxW6tYGrlmm6yDVn0oEExRF+P1NwVdI7eKBd69PkQpDsd0m7iIpoXneep58RmC6iuEtIpwHacyKF81ekMfXP1qivCQAMc2o7shtaTrPgEJhjnA7I7oxvTbYbPxRyqbszg/K9wG+ZXeJz0EUnbdPBUv8FYSOS37Oh4eNJ0uphEsorN1ptCrbfy9lEbQW6YRG0+4QmHlEwqSS7lUKwOUPOIicq5KDLFFboMzqR5Z6i0WEJuLmgubIJ5CE9Vhz34PFvmI6IqG44YdUtC8YRkXaFINsAMpogaEXKbwiccAKI1sBu22QnHicHK1FCrWTGcESs5xDPLCL4wOJhCDC1R37f0Qp8xB5dcpEMgSCGMVMBMQajRqUgznNSGALEMNTxu37JkPQgSgHWJA49KSqTdbqnLg91w2lWz1oixAhlDEKVQxU5xLm01oXIs5Jkv0q9CKxBnJWQ3QHQGu7pOaBYUHYXBeqnBfL7geF4C4VgLexHT+AuSk7/OjYrZdIL+KQXsceEkus0KTQ8T8XzzB61j/nWQ9cOu++X8BlzxgBgf1NA/KlxVg5wcyZ5Z5sIW3NKqVyEbggchgHoh5MWc1BJv2DTxLaVdN+PGiu+38ol3ZvEKWdHfEznnYI3Bq1wyiL+NDF1JZuG2SsFnaIRVKMAldgaWhia7JECjwlUjG5eURJNvOLXIBHmyH2uuRT0C02KmAbM+wymkWTby/rElXTCnL2KE0g0zPl3sh2bFVdoqI4vVHcetkkBlFrgwXombwK6JcEc3QuCVhBvoFyEPfhpKhsFcBfzyW1T95ycDTNFECqZEiHP4M/mpBeGyIa249+PyWo5Cgh6h4hwsaSZyqGmzlopxO0OCBHK6KQVUWRh7A/As2vE3ELNZ0AMkF19+hmjT5OQ33Cv+HY3IqslpFxwwxj+7TZhY1pyLHP4RQ4sct7gb+7ZZMwqFmqv36UHZTERKksv99oj+/oBscgR5idurGoGQAmaCw1bK+jGwZcGPlfIjIY0DtnOT0ho1Box1xgWBfq5QnnrofoAlZwQ3TybxIY+J/pQ3vlJ7CguwJ/PMCyIGM5fO0QlePN/0hR3RToVlHcBxZ3j+C7XiJouGVnHYK320qI9A2IWIZWjza8HVr/s4MoSzU5NVK78nt397FVLOpGxiEIXjfKeBXW3VEh5ijBHweIlU6eHktZ/PgNu/ypRh+WvMW3iOr3ufkVKmG6R6ExcwOUdkRw1sHlrzzXqJ0Qr7I5uXz4Dnv5PHvlmwOazAsUm4PKffIlwsUb/aAYJJoU3CYIA2Z5NUDCC7Big28hgp0oj33HDdCUnJfvnCuVNRLYP8DkREBkCxPL5DxWR5n6RQfcZzn9ygE5cbtUuEdUS2bsD5H7LJthoiFJQ2iHfmmnD6M8z+FxhcbOD+IDm2YKoZTswD6duSJMAoJKGAe0piItOLRnk7c30cyhyyGLGKcj9A0FXpSBFQdpiWZDTudn+R668b98lRUHOaj8gDj10UXDquT9SfF7XdAZaLk6/0/aQ9JZGrViEOH9CSR2pbqFpof71AeZsjf6zR6ffT42M7jydtLqBj3OxTmnZanrs7jKD6iLKXQfpQzJYYOHaXHHfKd+2XNPnFs0Zg8jMkaLr6tZzr7o5Yjiv0K4ZfDjMgflLTkmOTzjOVykZXDcCN2Oolt1Hpq8XnIyogc58+YNHthsQMoWv/mYOXQvWP6/RrzNsPsvRXjLXx80CxAlWvyTN6vD5ANNYNjszTlXq5x6qUbj+oyRgr/j1YaaxfOGhfMTDD9mMmMPolJWoYYUHxEAN3OPqK4XjxwG618g3iVaRpzCwxMluLhXqZxHFe7oBZocIlwu2P/KQQVC9OoFX7YVCt+b/V47A0cjpN3VA3nrsPsnhCsDWpMx2ZynHZDEg/3WB4j0LF9MGVO962qeea5gjedt620D6ATmAWOZoPl6xEVsqzATAnkilKAWcLUmjfPOePOz1Avp2B931iGdLTtHybJp6+JKC6GFBpFJ3Hqr1sO+2UN2A7EFBv31AuH+AlAUpSHU9MU0nC/ymAbyH/+QRU543LaRuEfb7iXkw0TG+y9fgEHZ7qNWS5hY5m3XMS2pKAaBnsxJv7xGOR6iqOtFSMktQqZ1DKeqBohICSiHAHCyBiX5AWFWIJod6+RqS52gfPWPT+NMvEP/6j7D7WGFuLHRH2tPgBMAqJawLdONgbvfQR+p89p9UUD6ieHCT4DlYNvTiSeVyidrtM0H+voa8eIXs6kcYZoLi6z3MscTxMRkZ9RNB+Y7gQ3fOAObZuzBpGUiDTJM/A7RHlajlYxPE4n40nQCSkL1AEnqT6hSyiFgAhzkbm+UXiVK1VegBeC8wLZsiV5ISNcwZZbD8ckBzYTDMBfZA6r3uydZoL06kn9Hdyn/QBLkqAqsBsVeAE+j3bISOT1n8d+fUos1fymTWMXvnEwVTwzYBZz9r0J1l6FaK06EiYvYKadKiYVpSrFXnYY4qUc8BxBHwcejnFv0SEEdDEghtg2df1rBKIdtwfbfXOVRH6qap6fjZXmgUm4D8nrTrUBgcPq4QtSDbOtijg9l2SeucXnhMFsNWoXs8R3bfQh9qxDxj0vrb9whNA9X33DPOVohtC7/bQT57juG8QLFdItYNwt0Dwb3lPOWKpGbnN9wrvtWNSGxaxAEJffTkgXvP5kKEdC1jKMg7NDCHBv7xGYJVUGPjspyxSBj54FrDa50QjuRelFlI28FsD/DXa/jS0vWmdVh+0SSHA01XpdohLEtgUcDsB3IP5zk3IRHoJiD3QLfSiIoflm0CrRhFwxtJNpgcrUoAigcG6vFvROSbgPLrA+Aj5h+d0YGp4gQl37C58NcW1bsBqosTF7k7N3TUisDsBf9+9Y7Tlt33SnQrHszdI484czB1Dt0B+0+LJChNepNScPdYMyn0vaSihm9nt1aT20y3pvht8Wt2x+GDuy3qkfvITaK8jQk5ST9rBfWVQdRAtyLnVLd0rekvHfRBQzeC2981iMqgfexgdhrt+nvIDvT87ucKbsZibVzs3drg8ExB3gmynYcEOlLsnifh6B2nP/0yWSUPcZqwddfVtHnN3jjY/YDDxwWGUtCf5bBWw/gAKAW774lqXqw5nVMK7qIEfETxtp70BJlWdETKM8RI73Bd91A3GyITyzlweUa9gAhR+w8bkTyDX+SwG6L1YpnCHvdHIhVFPmlJ+Atxmgiq9Qrx2ED2B0jxX1aA+l/rEq0AlQNDj7jn6Fm0glxdTHSrmGhsarUkN3xwkKjhFwYyaj1SNoBYOzlixVnJVOTKQkLFz6rria6K0LUk8fJDwewBu+8hrUP+QC1J9zjR7zJBc5nB58DsLZuMqQACqQWmJmUxamD7qYFpNNYhwue0cnQV0J0HLF8Apg0IaVpjXITUgOqJFrqS2gfdsMDwGScE3RkQlYY4S16wjxR+3h7QnV+gfkKdSHlDswlq1sgT1zvy191McPg4wM8D8vcauqUo1BcUf86+FlTvaJHtC6B+HBDKACk98DJD9Q5YvBCEVzkWXxMZbM6YVGx3CiothfnLAInMOIhCQCHbR8jXwvdpIG0uWAW7PW1E2Z7T01F4n28CIILmXJ3cBT0n12PQI5C43ztB9VYj2ypkyY2rPdNwOTUyY/Bc3Eqi29K5hplWAeYwIIqFteRw6yeXpO4AGM4rWnN/dAZdD1D1gLieJ80im1wBOJnrAVX3MACyr2tOMGYl0ciegJnqzZ+jXnAyF52nq2RVwl8soNsO4XAknROkLkcA+uqKa0cE/vjdBTDi/gDRdMmSPKN4/XCAcZ5gUhL7xrqmILfMoc7WpH6niVI41oj7A+zX1InFeUVrVID7BsAsqFQT+NLCVRr5b30PiBHZpufU4POPYWqP8z8j8q2GgMWvWrh5hu3nJUwTUdx7RKvgLhfQ+w6q7lE8ZJNmiU6XpC35jOuDlDCGbfpc0F5XsLPv4eGHGr4EirsFXJqmmgawD5wA1iWnLONEQ3cE95pzQXcmmH8doY8EC33OAt/UgnIjH0xgOJ0tbiL6taB5FiBHBd0o+I9bzOct9q+WkIMg3wT0zzW6HzYInQZ6hfyONKrmEZ+HqQXdSnD32+n8EqBfhcRgSJPi42nin+0IsvRrPkdfRcQsQACYjYHdC9pz7rOz13zeDFSl/mR00zIpWPL4VCHbCuwuTTz6D3SkwEStHeYG/Y8uMcxYb4w/N7kGWpr2mKOguIvI9wHZhk6Kfp4haLpn6S7AHMOUP9VesEFWA6jXudkjzAqEwiSdL5DfkRouvYOKDL4dXTe/ce8rsn5GFpBcX0E5j9h2U/C3FAUp3d0Ac2TqugAI9xtIVSIsS1pTjy5yv2Hm0Le7Eel7THkpShHtdAOt/rSGVCVpWVoDXYNwrIFHKzYAadIQExIkWUbemz4J0vRARDIaBXV0CJst5GI5CU9l8DDvG8Qqx3BeQQ0eqnVw8wzQArPtELXALfIkaGSTId6juSDFigJOhWIUjyWhuUS6Uo3hXPR7pr+8PabgNOdRPKwxlGwQsgOgGwf32KJfCsqb9Do6Ps5QsQuXSJqWchH5LsAVguNjPf29WHksz2p4myMYoLlkc0G6E0eo3bVHrBzsISfS0fM9GSq6QeieqEVUQHlDmkK/TO9bxCREhyISa5pRoCVTgnO/OBUsdK8RuHlEedGgbeewTtA+8Yilx/L8iHqdY4sSs68p2hxpHvkDJxvlV1tEtYb7gZrCn3gPAN05x8aztx5RKQwzmfQpUZIP+HwUvguybQ/75Q3M1XO6kJQKEg304bSQR7G56tlIutJwJL+tp3tYHzVUf7KQ1a2DqnuEwxEqo0ONXxQUFfYBGiD1anTWshohJyoqMXIj6QfE/eZ0T3v/zTBk505ah+MRfrsDPv5mKvF38RJND3wBCFoMDlJVQJaCIX2AdLT8DocD1KxKCcouUVcUTSzM6aSJ42chQlczldZpZtiIONqhwhjEBTOH4GMCFkjhlMFDHwegMOguMz6mAP1C4ObA8quQ3NDUJOIUT4MJAHS9WhEgGN6mQsdx6uArmhjoLk50IPGkA+guorsQUhNqUhxME3jopT3FF2kiG9PB3gBSc0zkZhHVG6B671E/NiljJHBqeUgUigLwZw75ooP99QKqJ6XKzQP8mUN8k6WQQk3B+sJBVw550aPPyH+ubijiLm57BKtweEwXO3OUqTEoHpK1dkTy4tdJOM69VAL3RtUJdM3UdAmcxBb3Hu25hs8ITkQjODxNzZcDsgNBAOUjswfAfdUegep9wOKLVGQqQXNBeosfCMJM4Iuj/S5G+0uMNAkF1xOMcKscWpKRxszAF8yHKG8V8nqArzKeRZ07iUVjTCYrDtJp4P0dfF1DP3tCWlFMNsDJ3vsbV55BlEOsgWg0/MxCm+Qct9sDPsBvNlDzOdTFSewe7zt8V6/Q9RO7QoxBOBwRug46WfpCBLHt4B8eoC8vgJKUb4CZJDJo4Fgjdj2bwEcXiGUGtTkk50Pe0+h6iNHJRpwi8+5RCd0H2IcWoTDoLwqYo0N13yDkhr/38xfIrq/gfqdkk7DntDJUBnpPO2CzHxAzBVcQUBUPFBvqw3Qbkj6B4JjP6L7Wrwzay0TXXmlOTAynFfkuor4WDBUgkfWJL5B0qAJfCtyMdrAssEnhjpb0TLuPE10pmuRL00a4QQATALC+KKsez9cb/PTNAsoL7DEA0Fivj9hsZoidhj0Cuolw8xQguGeN0J2z6REPhILTWYhMlv+T3q6PKS0dDGA03BdjoD7F7oD2KgAasL9Q09RptCeneyipmjFTnGD4tJdL2ifJ3wcQp71nmCu0qzHAlTluyhHoZCNCCrnumC1HbWmHMRib2tBUWzUDoslIA6tS6PQhcvLedMCioKNgSyq52reYDJWUAuAg2p4MGSJYCykaLCCZLoUZp38SI6elRtHcJtG+VTOcEtgd10zIDHQIiIcja/L430AjEuoGQRz0+RlwcQZ1bJgq3Q98M5sWqIhaQAlUniHuW6i6B85XJzeSKkeYl1D7GnJsoBOPEyIpwTojhzPPEENgeFxyJ5IQgaZH9s5juJyjvSwYWnTkc5DIhmREQEf61ZDcWS5/wkNsWGVpjHqaCiy/TIKfSiUuOAuRqAS3/8NTHniZwJdAexExzDWGskJ14zB/5bH5LEfI6BwDxcJG9xRvZcc0Wv2ge2fBHqGGDPW5RSYMGqs/4bRh9QsWL7oDdKsRjEa2Gx+ATUfIgHolCFnE8ldcZDf/1x6x1rj8Y4rn8geH9sKy2H9BXcbmh4na9VWc+PH9WjDMI8obWgvbY4TdK9TtAjYJ2Vd/oiFeob04g86ZFD8iPfaYeNs5p0v+x+cAgPUvAoIBDs8y5hdkQL8OUIPgcNBTqr1EQDcB1YsdJyJPFmgvLPafKERVYoGryaHnw/fRrUo01xmqNx3M7QHD4wW8VbTRHfyUdQMQGYP3k32v2iRe8pNHLHqbHvbQssA9m3Mysj7Rh0bDhFAVkNySgpW+FZsGcb+HfnxN5OJQnxqYfiC3WRT0+Rnc7vC/czX+xb5kXiFcP4Kqe8juiHg40r1qMaPb2e7IsfP+AMky6PMzFnlj8JsIfK5hBg/Z7NODCiekVYbunGFV2aaH6ok+wRNdD1dr+HmO7WcVbBNQvu2gmwH2vj55unc91F7BbAz8Mkd/lmH5FT8rc3QIpcHDDwroDpi96RGVYYJ5ExNCdzrQdB+QbT1mrxmKVd520LWDPZCm6bM0Pd17RNEobhSWXzGEdVhoTgc+kA2pgQX/4quAfBfgr9bIH3o8/f+c9DQXf+IY3nqpYNqI63854P63LfY/dJBWY9jNMNvGRMEQ5A8K9k8tfAE8/NBgWLDpkU5B7gvkXxSwVnB8IijfR2Q+4vBRnkJeuR+MWhOfC7bftwiaVAZTR8xf9Tg8y7D9nLq1bMepL+SU/FxsAop7j/ymRtQVhkoleiiR36GirsW0At3pqYlrz5h8vP6lgysFDz+ii5REoHrnoDsWAEGTgpFteUi3T+ZwM80CoQ+wu/6D9zhA+oBQ2QkpH8PRJLktmk1NrVHXJ1S+gSzmkwV0tBr2bAVVFvCP1nBzi+bScs+9bUjZHAaE/YHc77JA9B6hrqE3e1hFfrdaLTkJCBF6vQYA0jgvzxEWFWQ7A9r/HKv0v/4lAvjbu+nfqqqgZxXC/gARgVqvqNW7vOBEBCBV0weKzcfHKQrIrERIhifRroDAojAqAOWC7kUPW5hFRR7/hnpCqVsWfIecE9W2h3I8F/yPP0Ofa6x/PUA3icJ7oHufXxXUiT408LMMYWmnXBuVzFWybY9gFOonOZSnNnT/3KC9EMy/AkyrkO0dsi1Q3skkcjbHOImxg8EUeuxyfq/qBdvPeF7rjw/wjcXspwRgm6tEpS6T1ktF1J9HyFFj9suMWR/HiGZY4VflCnliWPhcYfXCw/2P56g+UmgvI+lSEVDtKQ19vNqrAJiIxS85jb3/3ZBy0yJ0yi17+DFd6dY/VbB7QPcEhH3FfdRVQPWaQMfD7wQU7xWe/WGN7fdL7L4vMDUBUZ+xEcgfqJX1hUJ9lVLsj8w4CpphrVHMxKQwDaYsMeWB/J5T2n6lp6R2W3N/GClUuqO2NDaCfm1wfJLR8nvvcP6nbgIbhoVF/d9/RDaPA00tEvUPMfLeanqowwBpMoYaWw30AflbGmLEze5E+Xx3y+bkySPuFxvWCHK+JsWwH0gLTwyLuN3B/Bps3psWqsjxmyYVfqsbEQATGjnZ6xlD212AYlx/sun80HI3VPkU/hMjJoQJShEBTSI1AIAWdrhaUQQoccp7iJlNhcTwjfAqKCBCQ0KgjaICi0ilkmiNC0r6wA9bncTbYzCN7nxCH3g4uhkPYDUwmdtVRDHHA5LBO3yq4gKGBTeL8n3EaHM52naGlrbBY2MTMiD2SCFoJ3vcqDHZ7I3Pa7IJ7bkhjZvdlNq8SIhF5N9QNsAbdbLfjaQ7qDQ6hQj6caG2qVAeRbUGp8002QzrTibhuW5ZgGV7wCXB22gFaLo0mSn4HNszBVNznN0vNXyeEIyQ/qCcXCwY0sb3Wuo2Le7ZySpUgGjp929BTr+4OE2uGLyWigaAjXDnIMMHqOSHhnUJvUTXs1ExtJ8WH4ieAcCqSs2xnnIkZPBQI2oxCs81kYvoPdeATvdyjNQ1aA3EZCM70hfr05TmO3mpFNBmVBL4JhAi0U1i16f/OojWgCLVLYZAO1NDpxO4wPwFpU/2pyqNtRHZhAw+wX46Wa6OYnD+XDSKn99omgFMn486NgxcDYDp/CQmjIrTTPKsqW8yeQo89RE+LZLTWgnIjnH6dzSKKecpeEx5NgW2iYkSQOpXt9YfPAYgddob0lYYFVgsC2D3DsOCyL1uA++pkf7VeEiwgI5Qew17FK6RiGRvmVDRpBMZg8LGv5tvI4Y5975gx8wSmcw7iE4SdKDlN/cqPwiUxeRKOAbAjsjmNFEKybp8IEVSt+EDm8y0p8m4N5xe+0gvEQ+Y2sPnnASNU6YxkDTYFFYa0meea/hkxx60gtFpahSYAzWdHQAmWnDgQSIh8gwaImld476hBDAavrTT64rJmndsqKJOTWWk26PY9P2Y9oYYAeGZJ233zXMPIPjmHGLnoFy6t799Rpu/+aU1Yu/wDfMbpYkCj5cIKbCKAYUYQ+CUQjR8z2QMTVUED0OmgaAYgBpTELJwKq/anhO6OpkVhDhNUmW0GHceYgA3J5Jt9sNk9zt+JiEJmKPmHsMQPD5f3XmmbhuFaNUUdmoaD8Ag2GRbX0cEy/pEt561x8gAGcubVAOMIacqTVe5t0XEIIiejYJPociTZb+OgA2whcPQKxb2LScpxR31YP2K63aoaEubbzyaKz7n8XGiAPCYJhXjOR49JvoYmx4AvUDiaS+AkB7GcGSkCIN07htAtX9+3adYBUPK/Cj2H53/EJBCq0/7L4BpTbsqTaCTAH+0XB4F6JC0NwEJ5A3QrUt7CLUw4iKNDlYm2TTzPLLb7lQDSwaXS5oAsfZgnVpO9+3k9hgj71ulUo5eohym6b+AjCMoNVlHw40RBIaZfc5xwjLeo8kcA94DMU1go8dvcn2rGxG9WgDbho1Dcg3681dsW8ibjjQUaxEul3AzC19o6M4j+3oD2R0Q7u6hHl8Tbe6CPzukAAEAAElEQVR6QGu0z1f03z8OdB96dwtJvPG42QHGIFwuyafbNzDvdzC3Cv3TJYZlNgkGzc0OqqN9m56XCKXB+Y4ioeZxAeUizNEzyGwuU7bHMDdQfUBx0+P4NMfmBxqX/9qhfLFBsOcYZrzrlYswf0p6Q7cSHJ4aQBkcn3EhZFvSqhZfO9z9OMP+ex6LLzSyrSA7xBR2GNFeAcdnAjdjUuryVwrF1mP9S3b29bWgX0UMy4DyDUWtj//mSwDAiz/6CLPXgrOf9Xj/VzJ0Twf0iwz5Blj/04KbsQWOjzV2n2hOXnpyyKMAi1+zOHL5CYodPcAPH5PuEb6mBaCbByy/ECy/7PDmvy8wLCOyDTcVTm14H1RvOui6x7Aq0J0bvP/vFMq3CssvGqjBwNbsfug0oqfE5/GYNU2E2TYcVyrSM8r3PeZfOXrIhwB7c0wNKQ+dkNGZSHcR+sAgMLOaQeUGelNP9Igx08M/vYCfk46jOg9btzyA+uEbVEGEANW606FQt4h3D+RrZnay2sNqTqrh2RqoG6jDkZSjpoN/2PDgO19P1MX/Zq4YYd7vIMcG4cDwQSjF9zlEuLt7IKQNdXBA27KgsBbhak0Nxb6F2uzh7h+gFwvEsoC+P0BtFewbNY2/oUm5GC5m8LlC8WoHta9xeXNALDMM64LNZJqMRaux/2wB0wTM/uxmesq6oV7Iz3MgAutf9uQIbxuYXYvylYKfWfjKoL7kfVI8sFFWjUP1DsjvFfYfZbTe/NMjX+siwzDX6JcquWdFdGfpKPhgEjJ/FVDeerz6vxgMVwOGuUW2MTj/GcWUriQ/2xeAPWqIi8wc0MDDb9FppnhpUd5wmik+TtPefgUcP6IgXQaKSKMG6kuPAcDxCfeI5ZcBh2cK9WPB2c+ZjG73A1/zlYGrBP2S3G/dJkF6KXj9f7aYvQY++qcNDs9ztGuF4iEAwj1OUmK7cgbKFbDbDnYL3P/OAv0yTUJqYPFVRHnrkG161JcVhgWnJWNAre6TQcjtAHPocXw+w/GJQn0tyUY4IjtoZAcLl6tT3kM6qsy2g329hbtaYFhaFK8ObAjG5OLCIuQGbl1A7xRk4MRMQoR5ZxGWFYZVxhCzhwPirEAwJfT9Eea9R/Hz5MKVsrXi2ZIBZe5UIOjZjNqG+w3U1QViblmIq8Apiue/w80d4tev4d13dBwCQMoKStxEa43bHbWof/m3OHH68oaFFpCAhAQmaE3RuRaoKgdcIF1u8FCgJixqQX89g27J5Y9GQ85WiPdbqDcdAYc8R7y+YHHYD4hlTtQ6Uh/E3LEAc388NYTJ5dMVGiETuGoJnwu6hYIrqa+8uulh72rc/eUzAMDyyw7mOEDtGszn50Dk+detFZpHijShPk40UTdjA24P3C+KO9YNx6cMOM62EWc/ozajW1XwuaBPU05fRWT3ClUtqK/JlpBjhrInUCr+RC+irTSf9+aHqdqPGj4n1St7YM3T/qBFOFjMv0wOXUawfE2nztElrHhrJmDV1DzP179i41FfkSHi81QbvQw4PNHozsguUQPw0f87oD0X/PL/YWF3zAxRPZLtOD/3wzMGR9dXGlmyBn/4kYYrIy7+NRuXw3NBcRtRvmZIczCC+Ysj4CP2n89pzXvBiIfiISB/uQHuN8D3nsLNLIaFQfbQw76+R4lzqKHA/rlB0AYXf3qKg1B9wPKrFt6OOjJqxPTbB4JimUWscriL+Skk9+EAaMWIig+BsTT9iynIF3mOuJidGpnxajvuJZEB4XK2Yp5ImooE/5vtFd/qRgQAoDSiD1CHOsXTB3wYjSLjtEQSX7YZYEAuvgyJUydCYWpGtEFG7lxgVysdbTdlMef41aQizmiKDAFuTlrxQ7W82cwxIdWZJbrtUsjUeBkFVyZ3AYUpK6PY0FELkiYK7QDTZNAtkcHh0SIJR1NRGxPK6chbDlYQFIVcnBbQ4YpdNaA6Jo7qLsLu2d7bPakHygGIFJEHCwylmlJhVQrqUX1ykUovJdcOvuTG1K0NeY5vbbK/RAraITriKqBfUhdiY6S1LvhzcKSM+TQVsjWRjJCsAcWl59BLCis0dLbayuTXHzQ3mGAVdG+RK8CX/DzsjsJVTJ8vFzCpXHyOOoVA6pZo7HBewWzTZ6QZlijdacGGxNse6RT8wUSVcUkM7QIkA/y6guo9R5yBCJpq+Fi+tCcx8liE5BlilUM9eKBPqBvS96wByiJxPoHRsAH9MFEKRVHTENsWGJL2SSsesiEQ/beW9+d3fCCCfoA4RV1Z33PqAfC91kI9jpNpSvSNJi3xrKXlZ6UXCyDPOSkZBeiDm6ZXcVYi5hq67qFrEDESQVgULCR6btzRqCkQ8ZRCTl637sM05RIf0oRbJctQIMwtXHWiRmWHU9q5RAXVEwix3QDdW/hM4GY25SCd9jefyxSQCmCiO5ALzalstrWI2tLxRujv73M6bo2WlbrjhKVf8/GCBcZQrqgFPovId2k/DZKCwmQqEABOhO2theqS0DyhoiN3Omg6fAEWw1yhW3PqYI8jqkqkMWrANCz6u3MmSY+T0pMAHdOUWIZA1ymrpqlvtmMTYY8BviBgZNoIPSSQYUjaC/x5GhuNMeyB7wuEFA1vBaYLkDrtiX2a/GoBqhwxoZ8x13RABBKVp4G4pD/wyX3NhcRDj5B2gN31kGZIhYeDuA9g2RH4EDkBdZklYl/kpFfsE+VCq8nViZNUzWI5Gb/EViGGCDF2qr+/c5cS7o+K04oY45RFFgWcVI/7fPhAdzOyIpQ6TUai5hoePMkYagzQjYhVnvIWPPeaskBsWu4pWhgFKhlCZRFKQw0ZAJ/xvjaWzA/pB/hZAT+zKThTkkV0xKx2aM81unUKOs7MFH7oc8WQ0X6g295BpVA+TLlD4gFJ+ki7B5uSdGvpjhqyYLlXlPfh35gK8CwVqIE0adNE2D0bo5ABHincL00ex7whX3DKqbsRJGT48qi3Eg/ExkC3MhnjjNMSn5/AzfJ9xLAQNI8DtWGtTLlDphkZImxi2jN+ZtzzJNkWa7gKsFsNcxCo5ManHNCvTJpmRq7vLDkBzpgnojtBdvA0EnrQScMREE3S2JTci8eYhaBpTe4KmQxNpBmgjEI4pyNeLHOID7B7B3EGovi3teP0SvX8TyqGK4eKLpkyJPvoKmdDnClgSPXK+Ld6GqqoWcV73nmeg0YjLmZJ1zQgFhnpWIMDPihlVVGkMMRk/20NVMzJEvkNJGXf6kYkDg66LBDbDm6/h6Ti4BtXZiHLk8Wvun1go9K05McCUJfn8J9eQ7o0egaAQIGoDIHhZFUBfz5L34tQGcU7w9ImQXgPzEq4VQmfs/DVdU//+WUB1QyQfQNpOuiGn0w0GrkAoTQY5ga6Cyi7gNmfvEfc7OB++2PeHNsahdVYlCW6pUJ9XWL9ix75Ax/HzSwOTzNkh4DZmwHtBW1r519Tz7F8wa7U5xp2T81FeReQbzzKLzcIVQafL6bNYJhRt9GvBN2aRQEieZziBbpVKO64abzZLrGqGmA1oBGDYDVmryLOfuGpy0gTbepHOFHpnw5QPoPEkZrFAia/iyjftBhWGfqFQvmeXUq2p1d2P1fJS5soqM8NHv9PD1C3WyDPMDxZ4/1fqdA8juif9AhZhvLmZAqw/iUT6Dn9II2pW1CY3l7yNeYP3DSzHa2J23WO+SvN4KdC4UMtCADUH1Xo52oSsWVbBzUQIcXgJl0RYsTu8znyncfs3f3k5ob3d1D9APn+R0lAHyYhubuYoz/LUNXdCa1IoXeikytcP3B835A+JvsjkGcIi9m0Fvz9BggeqqogZYG4nHGistlC5jOEeYV48xbf5StsdwiSTfa9yHOK11MjodYrxLqB3+2gFnPEizVkd+T4uU90id2BFr/Pn7Dh8wHufIZoFMy2gRxaGlpUBdwiR/anX8Pf3EGePkY4X2D3+RzZ3qP8cp9MBgxUR6qNqWkHGTML8RFmP+ZHaGraRBDXpxyT5rrA/pnB7L2HPQTMv2rgS4OHH2ZwlWAoLZYvPPTtHsU6R79Q2H2cQXlMAIYaItyaNtRuzgO+ektwwByT8BTA+pceQ7LB9iWw+4zBo1gO0G9zZA+C6j33zYe/pBGqgGgC7L1BfkdkVGa0HAfopmePLPTzbYA9OvRLUg6Ke2pcytsBh2cZ9h9zr7F3dLYaZgKfabg50F7SdWv+in+blFFqvRZfEpC4+7E5JVpHQPcBplYpzC3le+w6HH64QnNGUMK0EbM3HmrgfvHwwxzHZ4In/6xH8eaAmFsEw2DRYPk7rtIAMtiDgz3QSWyYGRyvT1PX2esOet8i5nZqXnyVYZifzqxhVUAWSROy7SBfv4VUJUx9oldogMBD2wFNC7PZsXg2etIvxfWCVKwPQLm4PyB2PeTxFeKsQHtdIdv2UO9v+ft5jng4cCIIFhNIdr0CQIoCKgTEXAEnGcV36hKlIEWGOAwEcMZA5N6TQp2o2AC4J/epEQmBToeZZYq9SnlhPZsFScWYAhCrHN31DNlNA73Zw33yCG5mkb/ZE0xNiddhbtCd8Sycv6QYeZgrSFDQbUFNye4APztDe5UTTIig3fRdC/WzL5H/6BPsPp/BFxr9eYHiziEaQXtOK2zTdrDbDqUmfSuKoL7OJk1DMAwqnL9xMLXH5nNOOrMDbWNDFpE/RCz+5A4Pf/US7YVCvyCgUdwR+BwDFPk+stHZ/u4AGRTUoGHBtahT4Gd7weZn+QV/trlKFO0sAMIaILvTyRI4wLnTlDWuBd0lLXI//X/WuPu9Cs//71+h8wb1YLHvrrH8Eihv+D7UVxrthWD3WURxK9Sd7Qma3v53AXajcP1HNPQZygTAxojt9ymwP/+T5IyaKxwfc7Kx+DKi2HiUb5kvk99yfY/UNtUL6iecas5fHFEAqAqD+kmO+pFGmBfQGwu520D8Av7jEsNCQz9aQh862Pd75E/yBLDQScu+3/N+7HrIeoFQZOgfsV61Dy2jI5Yfxk84AsCZhbikeywLhMcXUDcbhN0eMisRZyWO31sh2/Qw/+pXkMdX8KuCtK9EOxejIWdrxGHg+ZdnkLKElCV0KIDfoLT4VjciUApi6VIUh548zrIgVStEctycQzzW05QDSOhQVSbeG39W1bRbDXkGHcm/V/Vw0o4k+9yo2cFPKDgSz7yiI47qHcRlpN0ucqjOQx85dfFnM+iHI/MdzpbwqxJ3P56RE70LREFdRP/sDPJkDVcRHRnmF3CVhivUxBfUyVqYNDMied1KoV9knAhk3Ah0F9E8yqf0zn4lcAXQnKt0sJ8jWEF7rpDtIvKth88paM0f0iQkoYe8iMqPqEn84xVuyyXihYepyUMfxds2uWcFk5wt5nSmKl5QoCYOH3AgAVcJHn67ottVRqqGBBZIwTD53dRMhx25orsfLmGeL1C+azDMyXXN7wT5XQY1MAWaAvyTYE/1Hm7GDX5Y8P3INtxkypsTN8vWMTUXPVTnYAGikZ1L/H9B/jDA1DpNm0ibiZmBLwxkVUFSmq7at6je51AukP6X9B9SFIBlSJhA0XYzUTJU75DfR1IrZiUpVoMHCsMAzCqD2Sug6YFjoDtWUXyDzhX7gaIxrRmkl1kEEaKe/YDYtFAqTUmO/5nX63/FS7IM6uwSaFqE/YG897aD3D1wqpqC3NRsRnF63XLvCIENSQh0wvEB4jzCegFfWU4rBg/pmOujztaIMSK7OUKMgT5fI1yuEAqD+VcN94FVwcbGn9BUuxumolEGDz14hCqj61pIonejoB11AtnWocrpDqcGukWpzmP2Nkz0qmFhEbIzPn4dktA7TVXndKVD0j3oZE8bEuArHmjXCt0yR7H1KDY+NQvUc9itgn1ZTFqK4zUpiVFHqJqe976IaK5TMdLKNGEGOOnoVpKaA4X6EfOR7J7f75cUnBZ3NNDQHWkizgL1M4pPVz8DTMfXNTr0ZclHIJhEjUr3tETAHj1UF1DeEiGmqxU1VxOKm/Qnw0wRxXwYMHtvoBzXe3+ZQmULQbtSnH7U5Nrr1qE7yxG1wB5pvZnvSTcdStI/Vcsp+ujhr+BgtND5SAuU5xkw2WsmjVJIU7bRJU9chBkcs2n6/kTTKfKJCx5V2jfSpUQgg0PISQXN72n3iiybkFFoDRFODuH95JAG5yfqohQf6CW+a5cSUjfTJWXJ921zYMHlPGKZw53PYN5tEe83FKZnFnHJwk9tj3y/vOc5f8avSwTfbx+Rv6/hZxm63/uIzeuuR8jThNMoDIsM7YWhrXV6u0eQ1GepkL3OIWHFicbWoV8xKHMSOn/2HH5mT6h70j/5TKFfCiRaqP4xJ8IDBe+wzNPSQ8TsTY/2wsJdKDz8lkUwdrKw7hKts7hR8FlE/fkZTBtRvSMQcJqGAl0pnHIYYPY2QG0B82AQbER/Fib93lDx90LGeqB4CDC1QA18vsNcJu2qPNDG19aR2o0sCcPziPxWQ/fA9vMK/ULws1fXCDsLs9eYH5LWVTgRoVunEDwRhpGGjHvH6mcaqk+xAoabqknh0mNt5EvFumpO2lb1JtLtsNIwRzqkuZk+1WyR+yEt/QXDivvFMGNUw+ydRzAK6mxJN6rc0gHRCJpHOfJMQTf8mmkJrABkW+hjT21I3UK3PaesViNUFqr3KL7ekUJuNdTmyHNsUSLCcpoxasOM5v28P0C6HsUi530LQA41DEDwM0v3q1Kc1rQ9sN1N9UccBkT/34Brlogk2lOaEZUFx5wjb825yaYTY07IeJUFD/6WYh91aOEvFvClgXSkUEnbTQdnTIuFgjBAj8mRAkQjCFXKcRgoCoNSdEhRAnOzQ5yXGFYFPZbrBvH6HP06x+4HDO+yPztZw9VPiG5k+4CoBc2F+ub434GiZxfgCzYo0QBDIXAV6U9RRcxeE9VsLlRyhzrxNvu1YFgI6msewhSrJXs/TyFUsQmT69Tp79OarzvjwX/9xz18pvD6r2uYhoXEiIDYIxEWX3Dzc7NI9PQdwwijOQlIR8eK+ilSIxCn12r3bKyaRwGzVwrzVz3cTMOVCrvvMZn60hd0FzNEdedf99h8nqFfCqr3AaYdUeAwpST385QIrVnw2CMwf9VjWGh0Sw17DLAHB/NQc5E1LScZWXK20RrmoZkWkSRHpbhewC0yOJsByJB/2QJ1i/wtCwm/KunedGjTYiYKHhEQixwwnHqoQ0+r35FGMeaHBAYWuZlmWrsLtPB0LtnsaX5M3rNBnxGdiKtTDgECm/dY07VNsu92johkGfzlEmqXKHDbHcLQwd/dE0AoS46iSxYN4/uCEBF2+xMFo+8ZBHe1Rn9eIL+pOe0cHIXpqzmk6RBvH1jgrZfoz0tIiMh/9hrxbIn6kxVs7SBjCm4A9J6f7SgclH4AqgxxLJRH++4+QAaGU32o8JEYIX1A9armhLUytIw81ww4bQNMpqb7vj0XNE887FbB1JxQjEniQHKtW1FIXt6Bzk9jIrlm437xkwG7T+i401yd7LjNXrB8EbD9TGH4uEXYWkik6FESFc2XtNzM9oJ8y98f5hHzHgAE/YKIY3WTjCACD2NXCfrrAcXLDBc/PaI7z9Ge6UTHBJTj1HIUlNtDau4iHfB041DeKrhKoV0rCtPtCVQyCZXt5wLdK6h6QPlWkG0MhoVBd27Iva+oqyvfKRT3A62BmwH+aUkaVs3izu4BbzWn5BkLA1dpFhK79gM6pkXQLFjEB4gZlfssEEJl4eYZfJHyBPoAvU9NR3867GPBVGT+Lr4xfYFRNFtIjZB6OPC+zT44F40hbdQ5ovPNBxzvkaKUf7f3iim8scjZZGiFeL/hN6sScV6hvcowvzcI+z10ZgGVwy8KyBCgXr1D6DrEroM+X2FYJ2qdi7AhcL94t0H/l55h83mGy594qJsa/pwOfgDgZprouMU0nZDB09o+AYe+oDnN5U8YmuyLKmVKcOrfXmWcetQMBfY2USpzFvVBC6IqkD9QdwUQGPQFhdXZ6x1ccYbwWGP/fQ913iP7sxKm5qRCfET5PsLnwPZTi9UXA4o7B4n5RKMaMtYZ/Zpn/uJrwLSe62kFDNc9OmNYHxQEJnzhYQ6KuT9akB016isNNciU42Fb0qJME5KQXE1gRHVDMGH/sSBaQH9VYP5OUN0wI2lsKiQww02CAnKK9tXAvUk8cPHTFj7XODxNU9U4CvwDigchFTaX5K4nmL2lpu729yxcKZi95TrvlhqmS25ffYBK1MqgMU2Cu4WgvA8objpACdxZBdUObBpchCuoH47KItvTJIfAKgX5w5rOsLofgM0eGHroMkeoMvTrHFk7IL58w+ygqgAetqRgXS4JcH1g5AStIdbC3z0AAExZMOATdMTC4QhZr04ucdbArUtGEXy4Xzg32fr++65vdSMyXmIMJM9Jt3IMNUTgVEMSzWXiwgMsLm7vSV25Oj9x5WKE6lJwWIzA9kDk+2xJ+91cwbSe3W0SDkexMIcBcnMPKXLEPKMIzGl4y8M3LCqEynJ899tXiPKIo66jw8W/0sgOHtUXO8SEdNujgnIquTxE2EO6iVNnHAVExSKQbTqYo4buLUPIgkJxy0lEtqfWJN9EuEqjOTcwNSb6wegi4Srg+BTYfwrsvpdh9orULXI+BXY/5mAwWZTppUQUHj5n17/+M/5bDxHdUnC8Npi/9tB95IFvgOoVtRzZMWB/ptEvye8GQPpGIDXKHMh5zw5shLqlQvCC1S8E9hCSIw5/Tw3khW5+YKHbiNWvmZkxLPX0/XEkCgDdmcHu0wz5NmD5lUNz1AhGUN2wWLO7Dr5gFkC3VPC5hWor6MYCi5KalhAQSqYZ+4qJuebo6L6TGchAE4SQjAnQ9YjOYTivWIxogRHhdGV74GRiwQmdvHoHGAMzrxAWJfzlAvr+CNU15GzDM8HdB4jPeHAsc5hXAaFpocsOIoKQlQiPzqBXC6KawwDcbaBEGJ6YXLLCsYb0PbCe/Wdfp/81rxgjzM2WKBMAmVXQWQZ/YPAjAI79ixzxcPwGKqqqim58KZMlDgMw8PDWtzt+vqtkqTy6hgCkdYWA4lfv+RxCIKCRC7zXgI+J8hHhZ5yWyebIwnM1gzQDbN0jlHToye9aBKvQfP8CvtCTrkMikN+ziGgvDLVmTWBgp6cQ3RXkQSsXUTxEhA2pofOvIsp7WvdCAd1SJ4tf0igMgO33DcQb2D2RwPUvAd25lPyepg0HgE5/tMUs7rn2+5c580EscHhqUx4Pk5Sr1wwtU12goP1ATZwrBcdnBCyWXzq4SsFZhezgYVpB+F8y6C6iflLCFZzeDnMiqfNXpHo2j7gPrl60aC8y9DOF5pGlkxdvCBSbAN1FhNygPSMNdfkiJh49G6vhqvoGHVM8sHrRIWhBdWPhbcTx2mCYKZi2oHavj1NjaHc9bG1Q3rGY6dc57LanjXcAohVOvVqP4jCQC64VzF1qhD97DpfSkEcOuE2W3er9wzf0kAC41hN4Jpo6MxjmFKntkQGm42Qjy9h4LOfUinwQlAoAkwX+mDlkM56Zu+/u6DQ2LXRRIPqAcKyhq5JTpq7nPlHkUHWL+U86YHuAKgrg4gyhysmg8B5ytoL2nFCj6VB8+YFz0MiiWC+Qvz3g8c2RE3aA1HATETKN/LbD9dsm6VBAZ60QUb3pmDlT6ZTFJcjvOE0tv9oDigHK+CCwbjJIsKwddB+xeBkxlAQ56ysFKK4L8UBxxwnr5i9fcupxFxB/oeGLEutfkkJ6vOYEsz0ni2D2nntNMAr26OEKhfacz6G4I/ovs4jNZ4la1gHqTmAOOeyeVGjlqbNoHgl8FfHmrxUo7iIWL13StI6UUaC8d3CFwsMP7DRpzR/ovFXecz+PKk1S0tHGXCHWUrplKGBzzkmueZfBNAAU0Fxz2iH/3wiVxHu6J0hxeMKJ5PqXjpMnq5AdgOoWib2isPzCM7Txtkc0AleoKYWeTyxOjUT1ukF/lqO5sGjOFfpFiTIBR8PcQDzzk/qlRbAaxd2A7N0ew8UsZYU4ygg2pH/HPAOeXKR7jdTA8ld7OmIVBfzjM7TXFaovLe2jXYDu3ZRLh2Fgs32+gjzm48S647TkbA71cEDYbJkT0veITy4BAPblHZDojDKbETzd7RFGQO/fc327G5FxKqGEIq8RFR6pKSnYEJq2vtPX4Tl6DiElLX/QDSYRIG1/3YSUIdnijU3IKEzTuSaHvB/4N2zgRAXUMkiME+ImEWiX9OnPtgLdOszeCBuXhx0Ra0PU83RxTEpP+UCxmmZXr4xAHwbI4GGNwGcWrmBIoa1pSamGAN0MQMxgKgXl2IRQ5MVFCaGIzpURuOjg70ooBwwlR5T5fUAMApWNom2kdFagvgaUF1S/4mYbDDM8hgU3P+VOwtXsQBRDdwHBaPgyhRBFEMEPHMnaIy128/sOaggYqhmACFvz70ZNNCekjzMKG5ncC4rbgdbGM5U0L5gKiSiSApwE+Rawux5RZ6nZYsYHrRD5nIMX+MimL30Uk3lBKCxCrvl5GED1ikOIKoM+dlBbui6hOCUaj6goKSyJPuEc0J0KgLDfQ7KM9+WipBnCmJBcak7o2p4NhQgpWvqDKYejoBUiRENzCz0WGV3Ht8KTlsU3JUyc8O/0FSLi8RQ8B2PYXDQtHQZHMEKEzcb4mShNO0OTijGXTC88Pfxj250mskASk8cTFTQExO2Ra6wqJ0onRd5pT4Ga6FTiA6JFCq4buM8Y7lHiPURn8KWeLGbHfYUBiQzA0x09/3XjoTqH5spiqFism4aIqaklZQV4FLctC2+j0vrlpED5CDhOUQGguCc4kN/3yapTpqAwlUSc4gk2qCEgfwjIH5jXM8w4XRkteE3DfCPdcz2bmtoUrg0wc8AQRR5TytnoRMzfeATLqQlAACPqRAtzcTLGkAiYTQtdGahCpnwUPVAkq5owifdHG+BxaiOBxZMr9ESDlcA9zxySacEQ0J6Pr00hGAanqhSEK4H28HoXoI8D2qsSvhDYLXjGaOEUzSroboA0A5BxwisD6Z/D4kSDEhcIQIQIaZkjAiXAaC07Wmx6T3rhGN4ZDASWzICuQ0gghFqv2FgkMxUgsQzGvUkpxDHBPZh03mqg/u42IvAesBaIPZ0Rk3HI9NpFCDxstvz5FIgcMg2dssVG1zwAXL9jMyfCTDOtEDNDCtf9BrJaMuhwIEgSCwPdEuSIx5oi9stzxCKHPvZQHd3TRsMC1Scdy6HmmVBlp0nbdPYBo22teE5JgtYJYAQF5Ib2+LM3ERBBe5boT8fAZkQJyrdEvJvzCqi4TgECH1FxHSGBE0GzebB1TNMK5okAgH0jQAoWZKZRSOduCjS2Ef06wrSS1hLXOW13WcTHCuguSCs1R+47zDnjHqD6ZL6hUpSAj8BIMxdMTBAJoL34ACCcQlxHGj7p6dwXfEngVg0R5ujgK0Nadu/RJz1P9W6ckDL/Sf7cZ0A75bSfHDvoygCwCBmfzzjxCFZBSYTqOpiWehpdD6RezQuEmOh6ycYfKRrCz3I2Kc0A1XjEu4fJJdOXFsMsMS46zTPFsb6I/QAMPc8pq+FWORAAW3eAVvCzHFJ3p3XiZDLwidvdBIoIMJ2jI53z33d9uxuRLKcnevpn7DrEEGGur06hcR1TqmX0R0+IpX50xSLh7e0J7czOEGcKctOSe/vogqPrNzdQ5VP4PIfZd1B3O1JgtIJtesTcwP32x1Cdg2odVN3RheisgrhA214RWCUwBwrH7M9f0VrtBxQp+8dnU0Nkagc0yVLWCOiWQ45hVAKv5d/2bkB3iU+dggrtnknEmx/Np6aIDQ1YTKWDPYsB8y8VhrlCf1/CHMkj33/CTaG8VbAHh/yuhYQKwRINCQsWAM4Cdz/W3HQOXExqoFtM1AmBNXxM0yaf7A5QHe32TEsks75U2P0wIGpOhHxeQHn67AcjaNcKuhdYCWguqO9oL/jpL16QxpG/uIW5WqExJfIt3y9TczG4OcPWli+I1g7LDMXbGuIj9p8toHxE+RYYFhSwLV8ElLcUn0ct6C6yiVfOUCKget1A71oW99ZguKwQsxJYFpOY1ZwtIW0PexgQrEbIFPRxII0rNQSja4WcnbEJKQs2mJuWRQlIs5hE03UD9c5BL+Z0sVgtoKuSgtTgoT+w54xNwyIkCS3DwwMgiuL1lCPiY8B3+fL3DxCxUGUBmc84ITUaar0i0imp2Gi7D8S6GQW7H2YKpEs2e+i9RlzO+e9DTeR5VgJF0q1lTGKWbkDUGv1VNYkLs20P/VBjeLQgqvmLt9y4y4IBZqMLV4yQ17dQWsE/u4Sqe8x/suX0t20RP3kKt8hTLkFAdgjTpFN8gOochaD9N/eM2dsB658P8KVhcm9GfnT1qsawzOFH+qGhWN00kfvDQqFdlxR6dyHRnwCTNCZARMg4WQ0GU5OR7dl0SAhTbkl+32H7gxm238+QP9CRapjRXefyf2Uz3VzZKb9j8znRz+WXDBI8PhGsvgiYvzhCuRmGGScqDHVk7dxdEw7NdgH9Ik1SE9DQXGiU9wQk8i2Lr35Batdo61m2p3WU37SAEjz8aA7lIhYvGsxeHjH/lcNwUcFVKazQBZhtBz/LsP98gepVC/vyFra06DKLd39tBnHA2S+GNN0WqJ6AkerT9PlyDvGB9K1kBevXFUKmkb3esBj+MNvCOQJn84pFx+5AevJxw8JiXlHAfrmCfv9A97hkUw+cpqHT7xc59SSbLWLPM1SfryHzGdB9dxsRWcyBfccp6HLJ6edDD1nOgRDhX3Odjk5aAKBfvoHOc8hiloCH/ammSDbh4XJF3YYS2qYeOjqSXZyRilm3pHQuKhy+P4eEDPpRheoXtwj3G+ZClRnDETVzJMzRwWxqms1UFqFYcyq/ayGDhc/1dM7bI/eS/H2DUBhsP69g2oCLn3Rpqhlx95cK+Jz5PrpxmL3yaB7lOF4rzN9Sh6J6j2gU8h0pTVFx2rl/biYHq5Dx/F+88jC1hzkOqN6biebkczYT/VJwfB6QbRT6B81GQAG+dFCdwqP/mYAG6YhIWhkaVuw+zTAsItyzFuo2Q+lUamIEzSX3awK2gN0rTlLaOIVGP/yQGtLVFwPqR6SxmpYgbvFOIxpg92kO3fFrQ6XQXQnKG4KpdttDPKnx0Qi80tN0VnykGDxyulVfMS8l34H7bIiofnYL6Qa4J2cIWqG6CUl/k4xLeg+78YhaYVjmUD5g8WWNkGl037ua3NHMg0PILZpnCxRva6iv3iD87qdoLy3sXsPuNcwrgeQZwtkSZtdiuWmh7jZ0j8Rq0nhgVrJGbjqo+z2ybYom2B0AY2CPDWLSjMliDuQZ1KGbcvvGK/YD+7d/S5zG/9b17W5EQgQ0eNhrTbGRCqcJx0ixCoFI8RgGlRJk4di8SAwpDJE8yswHjqhUmbQACtJ52IOH1B2nKXOK06XtT5Z+CeGEJDTEJctVo+mgVPcwmYFyDJVCniHkhtMAo04Ix5DGbALAC6lkVmGYj3QjdudRBKGk5TAioFvSyqKMAYh2SlKmc4zA+JOff0iIalRJi1GfkAOfpRRQjwk1DLlJvNLkpz0QoQiWBcRYMIyTCOWToCuj84YrU0bKQMeObC/Id2OBwmJJ9bTOk4gpJyXf+m+iIS4maz9gtMgc9S3wgYFH6b4Y3y9+IKdbxxUCFIJsoyHeJcSDUxMgCfRlnPDoJPL9ALlOSLB0HtL21GWkzzxadRKUNg6hyoCcOhCF0eEnsjHoBxbCA0M0JWM6OkSSD71L97lOX48pIdkhhqQnQOKIG6JzCJHNxxi6lxBSlUTx0TkioSIsskUh/obBQ9/qa6SkjOGRg+N7n9BpEU5KxBrSPYsPXPim0KeB6JEx/AxNhaiTiNVo0qjSwR4NP0cZA03HSUhI6Pbg0h4hJxQb4ITLGsB1p/sDir/nk64NIBIuaSrhI5TghLT5k7aN4X0R2Y5IHB1q0qRUAAkavlCImcAtMvictFDlAEicChUJPNj7hUAPgG81pxbJUEL5iDgk+94M077EENSElgW6+owiy4kGNpD64AruEaYh93wMcx2LCtp3swgKNonrI6aAsgk5TUtimOnJfvzPX5wCK7RX1PeZhjkkANCpFAw2ajbShCNoNjMxvSfwtOlWfYCy1BFGzelxTIJ5CJjt46l3UR1/N9gEaPScnNBmU0OQbIRFKCAeLXh9gHLCf4+hYQDQB96P4/qfzr9EURnR8RAgA/cdSXuMiABNx7XgaTE/7oHjFWP8gL4o0776nbw+pLop4dpM1runRD8FyTQBi+BTQQcWcjGm30v77LiXp4aARiGg49D4XuoEgmhqCMf1BgFNRjLSyknb48SKgcAhmZ6MGipFe/YUEWAaN+WA8AwT6oRUigXw41nNPVC3ka83pq+3tP5WTkHSWhiWOSeateeZWKrpLHQl3yuG7abvuQhzBLUzIpyAqlNosznItFb5/gPmoKlRm4O6kHR+q57rfcwJiQqIA4EDnvdIdMf0MpKRxodTIZ/JRDmXEFlbaYEv4sSwKO5jCpfmhDff+rTHCLJdmOosgDVXNCk8dfw7mrozfBBezOecJiEuBVbGyIwYAOYY+JkODFaNljUnfEjB24GGSvMcQXH6LeP5rxQ/Q4BmNek1S6q/YDMa4uSa+qS2P+UIjftAqvHY4ATe0+M6Vx+sdyWsKVJYr/TDKQhRhMCdc4gx8PfGM+Dfc327GxHXIxo6AqHUUEoQB0eU2bmT4BSgwLRtp7wQAEAICE0DbZjJ4OYWw9KgDExPlrbgiPX6Emp/RPkv3tDK0Bj01wtEJchfPkCaDqbrU+qkRv9ohmAF+fsGUED/aI7s5ojw9gbSdjCZhfv0GsPckrfsgezgE2+QdpLS9ZA2AxRgRFA/X+DhhwarLzyqVy3RdiPonpZQfUR+18E+9JC6Q/vJGbpzi/1HOSAM84kGGBZc1LqLaM8ouPQZEkJJ95fZW4/DE41+JXjyz2robYvhssKwMDg+Ypq7L4GznzsUNz18oTHMNXYfp/Cg/nTXZTsuorsfa4Scu1V7KVCDxurXAetf9cjfHhCNwuYvraB74OxPAFsHmCbg/kcGbgZc/ERgmoDyln7Z5uhQ3ADRKnTnJVxJyojuA8JqjmGZoVtQ6AcA86+ILndndCHp1oJouKlBKjoQvTxyE8s17MGjesMN6/DUTC5gPmexMns70po4Go1KEJZsTM2+g1sW6C80Fj/fQl6+Q/1//BzDTGPxqz253QBCYTF8coHstQG2eyLqIxd73ADuNvCbDczj68n9JuQW7tE8FT8e+v7A3wW4ESwXQNPCvX0HNZsRuQApF3E5ZwHz/rSxjM5y+ECv+l289HIGbBtulEWOcHuPcDiwQDAG6uwMKDJaGxsNlcSq0CqZX9B9j0hyB71ckkubUdflzkoiY7lmurYLkD45au1r1qK5hS/Mya41Rth3Wxba5ysWMW2PsCzRXVWo/vQt3Jt3MJ8+pytJGsOjyNF/fI7j4xy2ZhFsdwNpjekAUgPRNLfKEy0yYPGiZdES4/Q9+2YHaTq433mC7kzj4bcKmCMwe8upIYTuWVErOrpohfbRqWG3e+4vOnGedccCu4cgOwZke492TbRQMk5j8wdSTLuP6JCne6C8dbD7AVEVnBJkp0RnX9DxL9vT5SZ/3yBkM4SMuo7jRxX6mUzFiRoiivsAnwsOTzTyXWBjk5z4OCEC7NFh+z2L3feB1c+B+VuPxR+/AgDUv/OUn2PnoDc1ZH9E/9ljDAuLfMeGAiHCzzN01xXR6f2A/fcoVs/nGuboMf/VDiE36D8+h/QBxW2L6sUGMbc4fG8Bu/fI3x+h9g3QtKT05uZk0QtOQqPVUAdO6iHCwuLD+/HiHCgq/qwWik/TuShlQe742xuE7Q764484+Yhz4NjAffElxKRskWTJieJkFS3GQLSemvLvsrFF2B+ghGnycA4q0aZiyvPR52dsGIqM+/PDw+mX246Uz7MVpOlogbpcIBYZ1D3t3OR8AWkHit+TdjWuF4i5xXDGnKHituf+3qaU64+eYDiv4Cu+/2oIMJtuctGSYwvdKPgnS4q+yxlM42Hf7BhiZzWGj2bo5wr9agbdR8xfd3ClQfPotPHbhjUAk7sVdGdhao/F1wAiA5bvf9tCDcCTf3qPrLKQWLGR9hE3f9liWEasfsZ64+53BMWtxfJLNkNRkkBeA905qaHP/18dhrlBtzxNnfMt0J4rbP9vBwwPBea/MijuIuavPXafaLgyhTTvBP4hS9EA3IdoD5yo1Xk82WTngpCTVeHzpJF1QHNl0VwL+ic9zDGDaRUu/9UR4gJu/soCEiOKdzVNhh5oTYs8Q//pJRCA7MUNYlVguJpDdxo6i+hXBr5QKN41EBeQ7fiedkuFxdcDspsGYUWNhysJlBRvT0FezUczuFKhjIDq/PRZS9dDB0B1DvXzGaJSKAcHOTYoN3uEiyXaHz2BcgHlu27KysN6gZBnCIVlblnTErTQGdy64n39tqbhTQgM8KwboCq59qsS0RqEwkKO5kRXjBFxs0NMdE9VVZCiQNgfEI5HqKKAqsrfyI3z292IaPMNfjbRzIzojYvsDscrJAH7WOSl0apeLLix7I/QxwXMqAfQmt2mCEJmgTyDLBaQgUWo6jhCj3nGhk8LpB2g9g1sTvRCQkDUpOKEzDD0peKhENIEJN960qVaf0LstUyoVtQabp0jWKaXih+F6uRk64YODL4y6C5yuHLJr3eByeERKO8o+KxtQg9S6NDkBNEDs/cePlNoLtjgqB6T6NHnCt1S4fgR7XPtnijCMD81H7N3Ad5ywbuCRUG3Ouk0JO0I4ji9GEpB/cgCcT4htiN/lX+TG1ZULCAANSGjkhaoDAHlO7p66Y4d/XBVIaTEY9Olx1OCKLQ6jQoYBgVJwYXZzsMeXJpkaPSrhAgHIrTiU2iRETS5YtO27xMKopKfNkWmAGC2PYwIcpu0Rxdr6CbxXwsLlXJhVOLkS0ITEm0VsZzzvhs9urWmhWwaf6oYoXrmT6hDcnWbxJRxKprFGKLsdcNmI/HFoRRUWZ7QC4AIn/0Oo5zARK+KyX6XiHLk1GhEk0MyDxiGtF8kRKsqk+6GiGMUITWjbXlAKAVTE3QwVid020/ULAwD9xgtUINH8b6HOnSTPSOUmsLmojUTQhXOFjD6OZ9HP8A9XkF1DqbtKYROtpxRC6cbAHxp0uuUkxNU4m8PC8uCQMmkhYhPV5zKYKRkcM248kMUjP/jiiQ+fY/keAfkDzFpvyhcH3UY01oOycY79e7iI0KmGBY6E+gWKNvIiYzOEoVknMAIJCTrzBiR79js9BcFfCYobuREt0ihhSMaaLo4hS6adkxRjwxNPfC5RiXQTURxS7S7W2jY33qcps0JVTWKzagep97cW8WliRfGCU2c9uQo8eQQ5vlzrtDIjwNUMzCHpGBuFABy+l1IesI00UhOeNImoWgInL63HZ+LT9O5EKe1jrajxazh9FRsCttU6qQdcQ5xf4R4T3AjsQnEmtN+APD+Tz8vOtl5DszOifhu0zgBTPSr2La8pZJDUHSJkw8gRoKSUGqaZrJJNNzD0/cggnBGQEhtj6SLxwhVlggXS0jTs5nI9DRFBcDpRc3P3ew7qN7TtMAFqH09UTdjZic7eTYitIPW+zSdHTyy3QDVsxZRQ2RGjYuT4QVwAhG7taaFbK8np6d+bagZ9Zx+9o9moFVwnAKVsy2gek5rgpB6HQwpkPk2wNQBMue0Nb+nSyUiJy2m5XMZGxXxQHhVodgr5pgJ0M8ZMZDtMFEvaUMODAuaXdgj7XchwLBgqHP5nlbAKmWWRQNIk6arnlq14kWG4paA5vFZ+Y3Q18meNizgHq3gUzCs+IBYEaxWLkwOq/1MQSoBQolRl2PakMxwesjgp6DK9sLSHEMxx4WGFIEWueNULGUWxVVBPZAL0G1ElPTZZ3YKy9WNg+rcdAZNxhUhUNOoFJAohABOERVGcy9puhRaaqgpTTQr1iY0JoouOcoqxRwSJYm5EabsneneV7/BOATf8kZEihxxe5p6qPWKav2HDb+/XJwWdQo0HN2x0A/crC/PEfdH+JsbmMWJKyvWJnoWfz8sCsTzGfUA/QCza1PoUIaoFXyukb98QHh/C+08VE7LVWQUWobSQC9mCMuKPE+joFxA9nU9IV+hyuAqIhjT1wqDw7MscS7ZdLmZht0O0I7e9b4waC8ttp9qHD5zuPyXGssv+8nerfjyAe5ygaGsmFxquVAlApLEYvOf3uL4o0vc/8gg2yXbSyWIySa2uVQYfqsGflZh+YIBP640yPacXix/tsVwXmL/UY6wong8Glpw2g86Yt1FmJrOGPVTwTDLYOuIbEcUWfUB/cqgXyiOYYVNi7dMP9edZhFyD5jjgLOfd1PB5QuF43UO0wZkh9Rg9GESm2ebHspbuELBNnzexes96XZFjjDTaK7MhPbmD44ZIs2AUFq0ZzOivvcHppRWGYMB6wa+vObmtD9C6hbFroa/WGB4fga7bWEfgPZxBXsQ6K+P02iWXP9EtRFBmOVMSd4d+KU8Z5ExBghZC60U1KFGuLmDPLpEmFdQziN2PTeCECB5jtgPCLtdWhya+ThaMU/kz1/fXZDzm5cnlWLkeKvMcvKRZ4hNC//uPbUhaTIl1sJfrgCAKPOQM/htu4Ova5jzMygfgDfvJ2Fv7AeEoYf55DlT1rueh4XVMNsG+NVLIMt4iJQ5aTtNuo/zDMwjCmiezRA+nWPxR19Duh71k0ewBwNzu4fedyh8QHdZsMHZHMhFfzybDsTxMvsBUQu2n5VMNM6Se90+YP8RRZLLFw724FHeEkjoVieEUvfJzndOJPHiT1u4SqNda1Q3DnbTIeR0FezndppKjGnx2dZNAEPUgn5lUo6IwuJrh/Jdi4ffmsHnwPmfNGxW0sQ3WFqXByOo3nSAArbfK6CGiPUvBzpqFRTi+4zNhfIB5ki3vX5JQwzdMfFcDRHF+w4xU2gvMhSbgGID1I8U6mvB4aMcuuPEF56OVjEj35+0BUB3ydAi4/TLHNIUQXFyqwZJ4v20h2cabqZRvuwhuyO6Hz5GyBTpLVrQneXIhFOMWKRGtBlIe9gfIdZSI7A/ULhcVUDwCF0HiIIqCzIBhj1kGFgEFDnponk22UGH1Oz6mxuIzaA+/4RnYJ5zyvGBq2Rs6bQXu46AXp4j7g8Uun/HHfYAsAnpOgYe9wPErFlLdB1tT5Fsz8vym7+omGCOEE8TVRG0T9iI5D/7AnFwULMK4XyB46dzzH96C7y7hXEescjgzipA8d7Tg0PY7iBdD5NnCOcLZha9u+VEJSNCHzKuP1cypC8rFOyuYCjzsYV93cOKwJ/POG252UCaCgXm01M3DzWi1Th8tAaiQDkDU/McbdcZ2nNBtuNesP0ez+3yzk35JPPX3FPZ3AjyDe2Fj88E9ih8nHPa8M5fkQ4dMgXlI+zBw+cGPuPvi4+4/F9oCKGGiOZSoT0XXPzpALsdGFsw0wA0ujOBf9RDvs5RbELaM5gNoh80Lv9VTUMPASAm2XyfprjzVwGrL1h7SIx49ddLDLOI5RdsRHyuEbISWJe4/1GJYSl49McNVOcmLZdqHSQFvnRnfD9cSbvhbB9Qvmthv3jHcyaz8JcV+pXB4RnDkItCkG8Vsg1gDx+A68L7YFhYtOca1dsB2X0Du+0BAUKVw88sDs8LVO8GMnTa/gTQj/qPwUENDmFewq8KNiu9myZ1scwhdcspXp5B8gz+9g7Re6i+h1rMgWWFMU8rdqRuycVZkhM4hK5LgYb5aV38hpTvb3UjEkfP4hHp6WhdihDJaz3Uic9miGgsqmRlSq1IdHS7kszCfO8TxDJnx5kKutgPkLLgB+PpSjBG2ANAtBrtZQHdB9gN80ho4WtP4TAhwBw9VJP+Vu+gRNjIiMAvcqJ/LkxC5uZJBQAobtqEop4WzXh9aEk7umDMXwtMa1BsU5Hl2Ew03z9nKjhOacISWJAcntGfeni8QrdSCJbdOQTYf1xMh2lxHyH/vEL+EGGPAVGxIXDJ175bcRJT3rIxcgUzRUyLKT3d5cLx797DlbS97ZdcsEELG4g9EVzdBvjMYJgJhiWg24jF134KZlQ9OZPNNdFRewiAkNblM0F9ZTAfIswQUF+zyq7e9WnTBFCzWGo+WiCqJWL6uLI9Py97GBByzcDIsxxQKVelj+ifn8HsOui7A1HF1RzDguFHuSKCGtNUzGcKUtpkw8f08/D4gohn5xCXcwoh0/2itjUkLXSAzbbkORGv8WeODeKxobOTCGJOtFaMhpyvga6fNhEApBHlOVPXY0zBfFwzSJSL2H/HnbO8h3nymE3IdvcNp7A4OOB+w0ZizA/ILKcoMUJvR4/pZCyQZZD1CjJu9t4DmYUyJeJixibxcDyh6MkiXDcDrTgvzyekCkeGHI5i1pAb6NYhe7eHtUS2KSBWyO8H2MOAuD9SzN5lUMsMbpZE8iHQRjpEqM7Bzyy8Vck9JmDxNc0rRm3CKGoPJgWapYZ+1GiM+062o0arudDUjQDI7nuUrwb4WQY353MICeAYtVXBkWLlEqWketOSTrlQCKnxdYVCn3IW1Mh4NAr92kz6tX5Osary+fS8TRuRbXoAGaLWWL7gtLO5UNCtwupXNfOdrCYvOxJlZaCpQ4wapg5wFYPUTM09xlUyaeg4xVUpBMwguzlyurEsyIVPQZIA6RLiAnIR+Mpg/zxDsRHkL2pkMULXCVGflSygIlBseH7RjTGFnd0xs2ZMPI4gGh/WM+jUGI80Pq00Kch9D6kqTtuPNeIw8B4OEXFwBEt2+wnwUFXFZuX9HXVmAClAKZ39hMgbKJv0jF1HCuNiAR+/43sFcBKr1zVC1xHEUYr76KiXSVkrccxxWS35u3c7fq+jdkRiRPHmQFc4YxiuulwA+wbzXyRu/+U5tWHOw9wxQHXUncnTa8h2z307gCYbq+WkL/GrEm6RwR5dygRKLm8RPGdGh8RROyTCplMJVO8xLDO4SqNfc4Ky/mWX8r/UNEkdZswoo+MTUN7yvD1e20mLobsTq8E0EbobtV100tx+VuD4lM388itSmptLi2znkW1pdat7BZdzCtov6dqVbxlhoAagXWv0Cz3Z8ObbADUoDO8ymJaWxPmWBjnLL4GoA3bfLzHMGJhs9xHlTUxTUdYluvXIHlq4RQ5XGqx/ztdW3gyn9zFd2fHEEpFgT+YSi3wCYPKHFLisWIMV9z0n3FdrdI9mGBaGgIWLdA4caCbQnmnsnhvM39AYwGwTJct76L1Gdm+htw3k2EDKfFqrEgLmL7nHh3lJ62hHc5poDcKimqbaBLk83DyDRItse+S+cDhMe0FsWtbPWkON9+oYYqoU6Wn9wJ952LCGWMyhyoLA6qgHzOw33rt/1/XtbkS6DpCMCMXoGpKoUwiBWQnWpPTqCn6ewzRdEtPECfmRqoC7WkL1iVIx0MosNA11aoMD3Ae8+tELXAn6pUK2A/KOBQCsRUyiM4CLUrcOqqNuBQMbEdkeIFrBXZSk5QjRP7pD6eT2YNK4PyWCj+KniG+I6iRE6DaguIvItzI1LJIcZD5E+ZXnz5rG08XiuULIgX7FEJ4xnwMA2gsKZMu7gHznMX916m5lxt2H41TAzRSK+4DybQ9zQdTDtGwMsp1H0AIsqb/INj3sBZ233IwccDUAEAXTpJTixqGoFNSgcHwqQBBkDz18ZeBXmgd3O8CVqZBoSYcwbYArNfqlwN8p6E4xQRpAcSeT7amkkXBzbeETg880EbPXRBzU2zsM338Mt7To56TRlTcDglVoLyxmjYMcaoRHZ/DzHC5XMJFOP7TRo1h1dDjRXYC6OwDWoH80g9n3kLZDnJfMqCkMnTK+eMdiue9TQZxNIYWxyNkQH3ZE5lIhHHWij0SNOK+oB/nQUjZ54cdUbAM4Ne7JeSf6D4KIvoNXTCnHcr+Fb9Nr/YCm6Y9HQGm6ao3Wvun78Xji74oxbBqNJhUjgQhIKHRYz5hUH8K0T4Ql0SFpk5PKYgbpUwjijo/ty0uEQsPnmg3L/fZk0Xx9jpBp2F0PvW/T1MtDnIPya/6NzNBSuKMeSgYPpMkrAHKVb45sXDOTwlk5eSVV6yTulJg0FDUBjvyuBVxAv5hPB4vZtYhfvYb6rU/S3qGmEDOaZSBZ6gqGGacaM8f14crTHuozmUwpVNpeohEM5ckYwpUMWWsDxaum4zrX+w6m0HCVQvmeWQrv/moJbQF97JEpQZnlpzU/WuomKppuPVzJkEdbc5+VeBK/jpbBwSoooyEHan2wyIEg0+MApL9I28OEAIkl+mUO3VFfJD7ANB31G2UGn1EsLIfmFJib7ql4qGmhuV6d9vjMws8sVJNDALgVNyybQlbHvSLOK6BuEbt2ysKSwSG2Lfw4GRXhmlcC/7AlrSLPJxvamKdJYNPyvkiBwbHtIEUOZS38cfsfsvS+fVcILNQXM6Btk9V/pHuvSRUmwBpiYGiyKGFhCLDpGz+7gZRYdbNJ4mQD2IwI9LFBvLmDPL5CWJSkaA0OaGtElyzEnzyCO5/BHmoyNMA1hepEO/czi2GuUbx30L2D2QJI5jJjQCqAiSYTtZzMVXoHnxWp2aeYfPbPbxCNRvvxmjTKnNbWIYvwScxu2giXs1nggyYaE+JEg9QfOM4dnlm054L2MtCQZgiImcZQCbIDoBpHWnwAlCPA2V6qaX2YFGDYXKhkcUt6VrbzyB8cdOdxfFagnwvy95zi5C9u0T+/wNu/VqI7i3BLj7P/n5pYHJNjnYukyi4YJL34MoXUtgOiNXDr03utu4gM3BN8ILUpGgNfMo9EDxE66Ua7peLk5UBqtF8UaB5ZtGuF5UuK1rMj9x3TBByvNY7PgHynmKnU0RhFWiamK4AAeWL3iDFJO+hgjy3irICf51BHTZOE0Vq6TBThZIQkg4fPmeieiQDOwW931IkVZFJENzDkN88JclmGoEZNymf0Aeh7+MMBkmXQq2VymJQpNw3GfOgP9O+8vt2NiPOQZcEXm0LHAHwDtZCiQJyVFJQ/7LhZL+dASo1Ua9IuzHuGtMSmTQ2Ogrl+xGCjN++gztZEovqB3MB+gA4Biy8UolHorirkPkJ9KJDPEoLdJreuImeiZdfTOzzP4IqEQBURw0Kjnyksvu5hdz18YRCNwB487G6AfXc6APzZDCEziJn6N1xOghHIGLKXNg7lI2xDR4ZhqVHc9DD7Htd/RJcUprEKXKkxe8PF3Z1bBE1+49jcRCOTc1ZUTF8WByy+dlBDxLC0KG89inuPhx9YHJ5p6I7C8X4dUb1J4rVISpga2Py4Krl3DQr1lYbPM1Q3AdV7h+qGtKv7H5d8LQ7Q1zlsSWRBdzLxtlXvJ4u+u79kEKzB43/Zw+wHhELD7jyWBw898OeZpCwoNp66mi0nVeHxBeonBdozhdUXPXSTLF0Dkd+Qa4TrcwzrAiFTmL1qiUhcrtK0o4e9CTAPCUEdPyPnYXZEJsOqgtq3MNsj1LIin7xlIm9oO+iPn6L+eIXizQHS9PBLTuz0RohWFAUtoPctwpJTNIaWpZyAooCUJcL+gPiw4YGpNdRqAXF0VJH5DFKWkN13G+UUrSG7I6JzfF+She8o+J1+piym8NM4Y+6H2jdEgPYHxLIgTWe3RzzWUJcX/NnlyAGvWWA07ZQtpFZzopGpwImlJS/XecSPrhGVgrlJhWKeTb8fnzyCX5VTkF20GjG3LFzWM/SrDKbxqF435PxrDbfIpqCz7KFH+XLHQkQxXwBg8SFigEzDlwr+g2ybYSZJ5wUsXgaU+wFuRivf8oYuWz7jPW0eX6Fb5xjmGtW7DjIEuDmd+kImk+OezghW9Gc5JAKz9wEhIaWmS65RFQWmh48L6C5i9qanU58RRGUweCKxposo3w9QPsCvCvRLg36u0J7RmKO8jbB1QMxMojMomJpOYf1cQZUK2Zavx+cKdu+QbTFNdPJtSK8xaVNywO4E6AfUv/0Yw0ylIiug2LXwVQY3M5xCxQh52MF0A+yBomAUOWKZIxQ0HoEI5r8+8PPPLIJi2vpYdMRnV9yP9/Vk2y11C/s+JrvvHnYEEw6peT5bT4CGUpIsZHcMIEx2vKooILMKkmVEQEOE+fgZ7znHiV7MLSQ5aMWmORm/pJwunK/h1zPgF4f/cgv3v/TlPULnCBRsdwhpmhD7HjIM8A+b0zQzBsQQoeczOtiNbnxlMRVgE5ixmCEWFu6shD4OUC/eEICsWJtI29MqOQTSYM5X6J8ukb0/wr54B/fJI4Rcw97WiEqj/fRsEmIrR5bB9gcVogIWL3tqFlwk46JkI+tzjWGmYZqA6s0DcGCIXZ4bQBVJkB8RUrhutiXwN0SD+dcB5XuB6QJ0F1B9fYSfZ5CQM2i09mjPCWbun2uonlTy0SFr9UWH858MeP3XF3AVsPkh7fXPf3pgZsU6x92PC3QrYPGS+iq75xSEGlFe2Z4ZIf1C0C3J6Fi89Fj+yR54mtMVqxAEa7H79BmGZMgzeyXI/4TmFrtPNBYvWddkWwdXajS/dwF74L+jVgQXr2eTLpXMD0nA6mmaEkqufbvp4CsLV6YGL5JuhhDhljkZHO0Ae8wQtDDjyVMbR5MPj/OfeZz9nGGl4gP8PEfUJbNKAmn2+thDmp6sC2By1oz7A5uPOam+yCkZgA8wm4buW/2A0Um2HFj3xcORcRbnZ0kXFaDO1zwDkxNWzDP+nbd3vJ/TRE2MmQYtcbtj+nrTTuvCLBeA/QDZ/ndc3+pGBAAmj/8PXq9ohWkWNRaAXU9HjCoJkUYfcEUqF9yAWDcITeJ+GsWioOvh+4Gc/pHXP14hQh+7pO3Qp/FX4Gg0+nHDiqfn0g+0Vl0tOQ73kcj5FHIG6NpB7Rr4fA5Ecit13bOwGe3+0nMPZrRqZCHhCgXThumGI9eTjYjqIt2izIgER9h7UkOi1TCtgW7V9POmDpNwjIhHRMRoUfzB+x0iBdlpqjP6YEdj4apk/WsZFOTT2JVWm9xoggW6tQBqHOOyMaHQK8LuegxzC/dJzrTnNlLnstDJezuQkxu5gamOo+GoBb6M0DXfPzerkn3oqeg2TYB4SXamHqp1CKXFkNCRqIic6nqAW+WpaSOK7EvLpHQl5ImHcBIo65wFX9NDFsXJTjhGClYzMyHS3Exo1YcP8jyiZQ4J7V7JS0eymIUekgiV4ZrjBI45OafJDLQiwjEku0iVgj2FSJ0UBVFQ890WicSRkuaSTXKaekyXCPcCUVMgWUxBglErCvMiEXWM01T/wTozmpt9QoNijEByJFNVwfc8hNPjpn0p5Py3fkifvx+tnIU/azXQJSAjpLU3KzgZTFkC0pFCEC2mMMJgGJo62pczLJCHSDScopESCohOwuo/B1+NgXxhZvh4mxRkWDBdOMxL3p+geYRqWXgoq+CDngol2lYzADGGpB/xRA8l7QNRYcoaUg7QrUt7m56Eqcql9Z0C3EKmUtM18tKB4sEzrC1Zak72vg7TxMaXhvtZRJo2e1ItNChoVYDP9ATgAAAMJy/DTCVaBffMMeg2WA3JEgIYAnU1EVMzC8WpFQCY7Z5gVpHRmMQooOX0wqWcCHVUp/tUhCLxkIJIE8Uq9gMkw+k8+FBDHuJkuCAitPwuCiL94++XOe/Z0e8/2YFyv0gmGm6AjIHAMu79vynO+S28RIDoEQePOHzw9X7gvZ8se6eflUTXGqkrAIs4AFNUQLLjjpYTT1rZKjZ4Y/Mymg+kx4053fXsnQBth5BrDDMDcycEytIZPk4hAKTcHsCVmiF/Q7LvNdSwjoADgGQH7wHX0RmupbYCMTJSADx/ogh0H5AdEoUzWX/L4KE6D3sMMLVnLtbapufGp+SztN8oQLUeelMj38whkYCHaQT60MEvCwRr4ErAV/EENnZcoz47hRrahvfqUGnA0snSW/mmyB98H4Y56w7lU0jynUe3HjNJBBKYj8ZQR7IxAO4rYwTCGBo7giKSjIDGvS1aBfQBuu2TQZFKNNDTRGjcI6EYNjuZjCQb5dHUQ9f9VBtEo6b6YpiT9m1DRChOk3ru3zw3YttBpclXNGqaYIz3rjj/DVmBHJtJzwgAyJM2DcnoxuhJ3xQT/QtNi5jnlCooxXtWa56tKZ9vbEL+Q69vdSMiRictB6ksahTdpSIfbYd4OCK8ecs3N7ljiVYU7oUAPGyJYFQlZCinXgJa04kIgL4459/51QP01SXirERYllOitXQe5YsNHU6AyU5VtR2kKuGeXUAPHmhaoCygEucfg0Px1YbipWWObJfyPmKEX5XkWh5ayNfvIPMZ/JNz+MrAFeRIQoB+mTryvUdzYXD4SHD5ryOK9zX8nMXl7FU7ZZTwCXLyEecGdjdA9Q5qc4Re8Of3H2nsn2s8+uMj9LHH4ftLaB9hNy368xJ+mTYXT6GXBEwZJ0RWNdSgYA8xFfkpi+ClIN8F5Bs3ITZ63yJmBg+/vRgn3sj2EcUmop8pDKXC+dsDMhdQ3GUo7xyqL7Y4/GCN5kLTDWMAhiWzSSwAW9MKdPEVH687y9A+ylnkDBH2yPR65SLmP3kHDA7Njx6T973ZY3j8BLe/l2P2OmD1YoBqB4TC4OGHBewhYvVne4TCIBTMClEhsBhs2Sz2n1/j/f+hxNkvB5Rf7k+bVmEh7QDZHoAyh6pyog2ZPQVOFgVgM+jZDHK3w/zhgHD/AN8PsG0HlAX89Rr6VsHf3pGHCQBv37PQXSwoSC9LxMEh3N3zcxeBXq+n4luqAnF2xg1XBLhcA7f/SZfnX6iLvFczUdIQAmAtwrEGYuCaVIpUzSReV9sjwQdrWDQUBcbQQ1kvoR5dUOPRdhNNayzypChOwtYkQJfdgSh4rqEaNgL6SAe24ekZrbvv9ohVASxJ3zLv+0k/JHWHOCvQPp4he+gwe7uHP6vgFwXMzR5iFPpFyhpyEfWTHPFpjvmXNVRNEMPNLJpHGW1j02NI29Hms8wA0MhAXDwFgVYKLlfQrZn8891M0wq0iyhuE2psFMy+S01xRvqXpmV49IDqAkKmcHiikR0iqrcDJ6yJD+7TFMbUBBbczKA7M9BdRHkbaOkrQHeZTeFfAOkSo34r25CPHTNOLsq7wGKp8ZjfN4hG4e73lrBNxOrPdnCrHO2jHLoJsMluPCpBBopG7ds93PkM7fMV7M7BHAXdmUG31Ojnc2R7BjP60sAtZrA57xVbEyy5+yvnWL5okf36HfofP0W/0Fi929J8AgCcZhbJvkY8HKAul/DG8vMoLKKdw5cWvjIovpQEHnwzyDDcbyDHDNpa3ttKQVZL7gcPW8isAp48IoPAeXK8ASC5cLl3NzRtGA0URE3hwOoDMXb86hXkywisqv/Eq/MvzqXWKyhpTuBNuvxmA4iCKvJJyK6qigGP6yWCNVDbA8HB88WUVu3P5/AzC3tTQ21rFF+9hyxm6H78HPahgbx/mKi3Kn2uY12RbRLweLGGahxsAKfiQ0D1YkuDi/0B/e98gubK4vJ/3gAAHn53BdMIsrsWqu4gdQt1mDNHYlsDmcXxt65o8XvLNHa77VB/VMFnzBQaKoXDc4X5y4DVz/eQRQ5fcGrYFwbtxQr2GFC+rdFdFGiuZgia+87yKwYYN5djkF9A/bQAnhbUnygGCvpc0D1ZsGivHWavDfIHwfIFQzyHVYb2TOP4hPR3e4zI7wZq6DaW5hhLmlrc//4ZJDnrmYa1xfm9g88Z1ByVoF9pmJrgZ/1IJe2Ypf70qw7DwqC+JnXSdBHrf/aSVOqPzpHtSDkdLXFDYRGsQr+0yB56qPs9ZJbDFwrZzk0TEOk87P4If7lE83SG/LZD8brD7kdreAsU9x4SIgGkrAASDSxqQb/kXm4PAfltA/XFa+D6Em6dqL4hQjcEQENdU0IAwM8yoMoYrt071hsiBB7Ga3tAbFuEY016ZoysgZcLxPsHhGMD+e3vI2YG+mbLc7AqgapEmBdQu/oE5qdLZjOo6ys27Sk+I4bfjPL97W5EEsrIf5x4myM/FgALiA99z4f+G0hH9D6N2ZjBIIs54mbHN3ks2kA/75jQUiiVuthkgda7U0BRWfDrnqFTseugj30qaCybp2QB+uF0Qw2BDi1G0TGl87QEHkXEPvD/57TUG4t20yQLv9QYmFYmhxra+8nkGBHtyYnGlypxwgXmqKDvD/TNH4ARYYmKPFNXyJQ74EsWF6MrjmlIZXClmqY6PnGyo1D7obv0kILJAQdQUAjTODs7hCmJeZy+qDSJGREClRLjT68DU/ZKvzTQAuSdn6wzpaM4WM8MJJDakT5Q/k+MFAMCE1UrVgWYSk/kQnceY5CcPZKnOhZjUU42qESadbpPJIl905QmRL78MbSs604czmS7yM8YCWVPiEl3Qj6jG8jT1omHbCkc5c/15IvGSMR/tJUMAdETBZMxmHNET53nQWbIJx3tgr/z18jJd2nK8EHom+BEpZj2FWCy1h2npzGmgk7kZAPcn9BM+qwDURUTQp7+CBHqIbBQCZx+CAz/7UJCmagxQsqEGPcagUVUagoDnCaqkvY7z7TzcR1OHvqzpBWJvOd1F2BaTjBkcNybipFaAiKSQ7LZzUklkEhaZgRpV3ytoAPPkP6m1bSlTmuYvHrhtBQn+pN47l+jaJvgBf8LSZsRMp1Er2EKeDNHTvpIvSCKCXA4GBVRzmFpU6gh90TmJgXarSfLbdvwceFIVfWWIlbdJhtvo+CTXStCcvNLQWMA9Sk+U+hnAtPxnhAXoRBYRAqSNS/DDycdSJp4R8V7ZNTJyHiga05IRytgDDS0kBRCC+DULMQI1G2afIRpkod0D8cy5/rfbFNIpoZqusneG8IwshgCC+CJOuqm5yIa3FdGYwvvEUM86TC/i5cPkDIVg96f9tuhBxCmCVUcHDV8ZcFb2J+suGMymZB0PqjWp1wwZr4gp10zPmBMTFMpIK1JeyJ1hGS2EHj+wQXSN9sOsethjgNspUnZkVMgcLRqQrZpBR35HNL+FDIFv8zT1CJRuB0pRRIAu+e6H1YFnegah66wnFyWKk00A3yp0K7pxKeHESBI61wDQ0XtiXKYzrrynnvWMNfUrEZmmPD3/el+T9oTX3DSkh0sTK2m6IFsHzDMSJuKUXgbp/PaF7Thzx8chqWZtKSxJ6V8fN1RuN7G8GefAUBaQ+MZn7QVITNkwMzMpKcNmUZYL+BLk6zGU+0lwolnorzpJgVO69EVlVNi6SNZGuPnoIAYBKaW9DkM1MQuF3RctSrRtyJClVPHXNHRymw+kAYkBsY4cZMQ0mQuAWtCCv+YFTLZgCe77nHviTU1iVA63UcpxNAHak6TsB0xnWkiiUEQfuN09W91IwJrgS6kHICTS1Xs+qngkqKgHuNYIx6O8LsDEdCUpfDh1X1yju7MYvlHnnqR5YwF2+4A5DlUntM3OrOQY0vbTmCyV41nS3K6W1qj4UC7RXz1Gmq5QDhbwi9zhEzTESEECsoCi2a/yNCdGyxfbRDf3pxujsWcB+K7e1i3hvgCw5Lj3/KLB8TCovlojmxH/qKtHWKuibYqBbfOyQ+dMw9kmCVqVQR0p1A8KGS/HqDrHtmBXv66CxgWFr7I0Z7zvWzPCojj2HT2ZoA5OoQi0YfKVAxYQXshGBZA/kAnGnuMCJYhRcwYSCs4AlmuofqA8m2LmCkMcwOfUfia7Tm1GFYUVumByEHz0Zz2vlaQ7QeozmP7fYt8C5j3O06+csMFEwLy14CkjIhwtkTzySJR1TyGp0kjtO2IQny0hm4drv6IVobRUHiMzmP90y2iUgiFmTZUNZDaMPL33SqH+IiLf11D7zug66G6NPbcHog0Ni0PvGGgtkCfbDPRdZOgfLzGxR67jodK64iyf/IMePMe/v4B+rNPIUoh/PpLcsLXK+pB0kFKP3t1esz9AX63o6NWWcDf3fzvXo5/ka8JBU7XaG4x/bvrSLFYzFkYtBQYwnICckqn9iwAkmOflAUR5GPNzftDa+SMOQ6yPZyyYgbHwNKats0CAIOjiUbgiF0SL7d5OkO/1Ji96qAGz/ygIcDe1AiVxXA1gz70MDtmyEg/oHzdwM0zdGeGTbOPaK4yRKHZgu48Zl/seMiM7oFlDncxgy9pAcpGm2jjMBsLjDhpT4ZZyulJ+4TqXKKYCYY8m/jM41W8PUIGj3f/wwWCFVTvPHwu2H1skO0SVSE1TuPepDsLuxuQvz2iezqHqxRmX+4h3qP5eIXujNaX5U1EeetwvDZwFRsY1TOQUTnSNHXtoI8dHfK0YPVnOzZ9QKJVkZdtti11GGWO9tEVvFWwmYU0A2w3oL+cIWpB8a7DsMqw/8jCdAolALPv2NgUBE3M0cMcPXKhoBV5loImI4sB4GSt23LqJdmSYt3OcWJybODevoMYC13kkMtzhNUcsTAENd6fnPGkyHleJfqhu5izoHv359b83T21ZVoj1vw9dX2VRNcDdQp9T874CMQ1LcLxSMvfwqDf7P4TrMi/mFfY7aCfPYdK9Cop+V6Fu3v+QFnw/lYKspgjrOe0zvYB7snZiSKbLnN7gN4dEJtmsk9G28K+200aoAnEAEi/qxsoreHzJUyM/EwD3SRU66DqDvFhO+1J+u0Dqm2OMVMkOyT60jpHtBraaoJyY9ZUjNN0sn2UEzjUgmzvYXYO+a9vAKVQfj1H/fEM97+d4+KnLbJ3e7Tn53S6mwvUwHurOdM4fAKsfiET7Uh8RHbgej4+UVi98ChuexyeM2D1/J+/gT+f4+73l8hSw5M/DJOYmjQ2mUDB+rGgP2eooj1q5okcA6ovj5CLAj6ns1cwwOwd35fdxwblfcTqf71H/P452rXB/LWDGgJ2n+Yncw3NIFqfy2QfHE1E/fkFKdudh953kM0e/Y+fork06JakkC6+dnAzjfp319NnKC5AOk+RuE3OVoNH8dUG7nKO4apkY+bpCFjcB9gvb7gvpEkolEL2mu6W0nQIV2vsf/86uf4FmAfanNefLqG6AkWafvqfvuaTUBrm+dMTJbjt4B8eoC8vGLhpaUqhAFpzP76A7GqE23s6sp2tgNt7xJZhhdRPljRKQYKq0yRmshAfbX3z7ERP/A0v9e//kW9ef/iHf4i/9bf+Fp4+fQoRwT/6R//oG9+PMeLv/t2/iydPnqAsS/yNv/E38Itf/OIbP3N/f48/+IM/wHK5xHq9xt/+238bh8N/hABO6xM3DThZkg49na+SDzrq5huL/TQtSZaFMQB1A/vQorjpKdqbz+hWMDhOMrKM/x0bqLsNrVDr5vTY1pL3b9Q0EZHzM6jLc7oWZUQ4VONSOFHycW4pIPKLAj7nxzFcL4Hvf4R4dY64mn+zYXIeaqArhN0PiXdOT/9hphAN+dp6104duQwUV0XhmHT+2qO4CygeApZfOVRve8R5hVDw5iHaqFE/MmjOSbGyR/K6bRNRPCTuY6HJDR8CXPL+Lm8d5q8D5l9FzN54zN56FHcDinuP8pboZn2paMHrybUPRtA8KdBcZnAlCyHTJBGrR8oVoR7E1B7ZfY/56wHLL8kjdzOL8pbpyf1HZ+ifLJlEu64QFhUnKLlFOFsyOX3noJukywiYxP7SeWTvDjBb2ux2lyUOzzkGVYcWanOAOjSQwcNsWuQvH2A2DVSdCsHkoMTU8xOyqO8P0O82vBd94H00nyFerIluAnTUSe+/VBXk2WOoR5dQZ2s6OY3ZFgDU9gC1P0LtKVbV6zXv1aaDvn4EfbaebD3JI894Dyqh+cKxPoUeqv88fO+/UPsEwA3dGqjlHPrqiv9dXlDEm+fQyyXUnPkIcWD6LJqWlK6BQmL0w8SzjS4JeWMElEAtF/ROH2jTjaad0CGYlG59fY5YFaRwDI5i+SRmBsADqyoJdpSW6OQxwOw7NrUg+uYuysmaN2qaZYy5NCOwUdwPyO97ZA897N4zV2ff07rxrIQ/qxCWFfqPz9F+eg596GDv20kTZvcD8o1Dee/hSkFzlia3fUC+8cg2bkLqACSr3IRUJqdA3XGSgOTcU70P0x4gnpQqPdA1prwJmL0hKiqe5hT9WYb22Ry68SjedXDrAsOjOXQXkG09Zq8DdEdUFenvqv5E2fKZoDvT8KVB1JpufF1Ae13BnZVQNQ0mogDDyqK/mrE50Jy4upnGcMn9QwaP7tygfpSodUPA/DWBnxGwgFFQdQ+dwudUT+48AMQypxnG3kPqdhKFQyuE1Yz3Sd3wXHCBz6MsUlpxzrUaI8R7ZrZUGWS1JJVovSLC2aRAwzyDuTtA7RqoizMWz4ODlCULEZwmgrEfaLxwOFC4CkCM5Zma7vkPHfj+c+hD/sLtFZtdMrEYppTpKRvhQwBjcJBjm7R9EaodoOpv/ocYKewtS+7BfEGcjBuNuF6k2kDRDOfyDOp8jagVspsGUArhcpW0jw5+ntGFL7OQooCakSYng0NYz+AXOco3Nco3NeyuZ1MLTsSQWcTVHGFRIVgF3QZUL4+Yfd1i9qZLFEmDWBUIsxJ+mTGs+K1HvzI4fnYGu3cobx1My3UbrYZtIvI7SbqoOFnTDjMyI+whwhWC5jrj1MUD/bMzdJd8P6IiGMAcFA23zOFLw0lJG9IEEzBHRhkol8KGHQj8RVKcdMt9pV9q9CuTIgpA9y8ryA5kTygXcPYzj+WLgH7GcFUg7VsDa6Rsx4lK88ji5i9XOPxghbiaJ10HkO8Y5DpORUZXL9OSErv/fI5hmRGozTTByzKb8pGyrUN+PyDfeZgjwwDHvJ9odZp8pOlb17FW/CCbCQCNBm5aRg2sZ8mAJWOi+azifTk6wGWWYd8+QA41m4ZhoFHLwJBFDC6BbLQInqb9MXKC+sE9J3l2qonHqAqfQLq6QTgcf+NpCPAf0Ygcj0f8/u//Pv7BP/gH/9bv/72/9/fw9//+38c//If/EP/iX/wLzGYz/M2/+TfRtieu2B/8wR/gpz/9Kf7JP/kn+Mf/+B/jD//wD/F3/s7f+Q99Khz/DP3JxjTxv2P7wX9NS9eg/t+knkhS/yNGCtnf3SN79UDHgUXFYqIfyNFO/4XNFu7NW4TdnlH2+5TEnMRo0Z5oW/5iAX+5BBazqeBUxxb64chDoxugDi3ER/Rri5CTUsEbeYnu8QzurJpG+ABI0egd9L6F3jG7JGQa7blKiIBA1T3kYZds+tSkxwCA4nbA4hdbzN4OKG8cqj99i+zlHb3Ik+PDaKnZXAvaq6Tr2JG2le098zCUUKvSOajOwxUcI5av9lj8ao+znx2x+NUe1Vc75O+PKN7VmL3pmUfwiCPQ0Qt85I3Xj6gJAdhw6I4NVLtS6BekZtmDg323RfnLW8z+7DbxRA1mr1pkO4f98xzHJxmaK4v+vGAqfUkLO6auG5gtmwcZvmk+IF2P+PINZMOQn/rKYP9xsjjdHxHuN8DuAOk85OYe/he/htxtIHU3jZJJ40ippooUqvD+Fu7rV4h1w6Y3s4jLGbrrOWJJZMJXLC7w/yfvT2Jt29KzUPAbxaxWvatT3CrujQg7XCmTTPPwQ0kDHm6QKBtIdJwtWiAhuYEAIdGggYVEnxZNd6CR0kuUrfRrwHvKRjr9sPUAm2fjuBFxy1PtatWzHGNk4/vHmGufeyIcgSJM3OshHd179ll7rbnmHMVffIVWUNMK3dtLDFcL+NWciUlZAFkOKA1/dw9/cwd/c8fAYyUdv+MR7uk5E5ymTThnVTARUVoD3sHvqL6TZDt/AuOnaZ8AQOGI2PF4dC5/LqCqione+YpGcQDQ9ePa3h/kXnYPjBDhHOEaPnAfWs6YQPQierHbMzkA50CYlGiezuCnBfzd/ajzXuXwk1wIkVqCgALDNIPuPPJ1D73eQ20PgOdaaS5y9LNRgjdkhoeY81RwCgHZ9RH2eofs5YZy2Zsees3ORHORoz0v0K9KbN8rsfl6Dr09wlyvCcPygYn2qxrViwZDBbQXSoQeHIqbBvltA7tuUsId+SCAwCr3DIJGMqbH9JM9pp81UJ7BCL0GWHCYPusx/6RDJnKWfaXQnBns3slgmgHZJ9doL3McH+XQrUNx22DxnQNs49HO1QgDbUKCYA6lRnOm6bOSaZhDD1M7HJ5kaC8y4FjTCwT0Jzg+zuEnJUJBiMVQadSXOXxpySM71zg+oRy37jzm3z2guGsfPAe1O0Jt9kxE2oHBKIjb1u1AVb79AeFwkGBUoxdcuD8ced54Dz/JicWez8ZClggZuMJgmFr4sxnCas5gVrMrhzwjzO7FNbDZwV0t4WclA5xpBTy64GvlPAxdB3d7B7fewB8kEckzUcx6bc7/hMZP1V7hPdzNLdx2i9B38IcD/G5HNb1JJTBZiTeahnxQSerUsYXe1w/+xC5FmE24B0c4p5icDucSGyiF/nKC9vEM7nxBYvOLWxpePqYTtq57QowWOROjSYkQTZj7Ad1ZgX6RQX/vGfTHL2Fu99C1FGCthi8yDKsKw7KALxTssYf6409gv/0Z8u+8grcK7cKwKLoo0J5lMK3H/Ds7NCuD9Tct8k2H6tl+7JLmBtneY/qcRQEEwNZc992CCpvFNmCoFA6PDbQj/Gv/bim2AkhS2cPEoJ9bGp5OLeyBJqvZ0SPfBWRbQqt0D1jxSulWFJ4oXxyQHzyUA5qlRrOig/tQKGy/Rj5K4qZ2Hqv/9RlWf7BGP0OKObTwzsp7h2LNru3hscb6l1usv2EZiynAdB7lHV8TJb6zg0N2cLC1x/5tg/U3DbqFwTCJiUhGJS7h2WR3R+Qvd8jvu9EQVeaFzy2hX6WQxqUgwETkhAjuHOzntzB3B3RnBfxMihbzOYtqTpKLjN41qiwQhoFJQsOOvJd4GV0vyUkHvz98MZEQikOcc6qqoIp85GVrTQhn38Efj/C73Si+8EMMFcJJJPYjDqUU/s2/+Tf4G3/jb3BhhoC33noL/+Af/AP8w3/4DwEAm80Gjx8/xm/+5m/i137t1/CHf/iH+IVf+AX8+3//7/Hn//yfBwD81m/9Fv76X//r+Oyzz/DWW2/9iZ+73W6xXC7xV8/+Fo0CfRjxnFrxv4JzQz+QyDObQk2n8FveoOj8GOqaHY8iH1VFpKMRK0QwJyo7oogTjjV/9uhC1HYUgqY6iqo5sfxqygOyc8lYSHX9qOttNPxqhpBbuIklttELXtQHuElGTPe2oy54zsBf9ScHg+Yh2K9IYtOdh9k1UO2A7uliVMjSSrgdnp2IwOuy33nOfz9fYjiboLkqaGIYcdaGAQHAhWpENSO6lkMBw8Ri+z4JpLYNmH+vRvbsDpv/7i30E43z/3CPUGTYfHMq0rrA7PMBxX0Ls20QMoPDB3PyPiwTFNMFTD+8h6pb3P/3b9GH4Dn1tCN8QfUe/XkJbxWybY9hnmH3ToaoiFNsqOhR3LXS/RgXVnc1RbuymDxrWME81PDzCttvLbnxrXscnxTop7x+vT1ysWnFTtrgGIzOJmNFFCDx1PsxwfGAPoqR4Tz6SfTkhtiHdQDVO+BmTVhhJKSGkCpuyWxMa4TdgTCL6QQqz2igB8CcnyEMDv7+nlCs0/VQih563wmmXCep2vb55/if2/8HNpsNFovFn7gGf5Tx32qfAMa94n+Y/t+Rzc9GRRCA3bjrG0oWivxurOr4rofOsy8mas7x36Lp4dUFOx7rHcLgeG+tZZKXZ+QNRfWyzEAdGoTnryi5Oq0ocOED/HIGRKWn3BKGNfCwtddbKB8wPFqw27atpbpmYXYNMDgMjxbwucZQGmTHAfa2ZoJiNWGiISAUlPDsVjlcSa8OJ4i1sw8bKCG4Z3uP8rMdenH/jcp01XfvECYFNj+/pPTleqD30kDeC6xG/ZgiG/m6Y/VPVOUABigAnYrNcUB2d0T7dI7m3KLYuATnIlRCyx81yocLhj2/ruEri+aqSBVCbwnpioe1GgK6pcXxSqO6oZeRrR28Vbj/2QLZIWD17SPa8wL1pUGxJUm+uGHw2C/ZoR4mGuVtj2zd4PjODEPFYMi0HsWrI4Ll/hvx4eXne/KtrBn5G+EkgPAe/sUrQGvoR5eQBQF3tcQwz1F8fMdO3GIGWAOfW+img9rXo5/Fas73H4RzVjcMhp3jGlcKfn/g/Lw8Z1dfAt9gNLDeUm0vnoGiiOPbNu0VsdIe+p6f6Zx4b3l0xx3+F////ErtFacxhWnEIPmkE6Tnc3p9HY8sXkRBHK3p/eId72fsGBnNivZ2D9QN1PmKfLw2JgaizJdn0PdbQl7OVzxb+oHP434N9Y2voXl7jvyugeoGhNzSj+j5K6jJBH45S+dNFLjR3/4Eqqrg3r5Ee1mhOTMo7wbYxpGXIuqWunP0LNIa3mrc/zzlfx//TyRpH751RQGNXlT3AmVmvdXoziOHCom/kt+zuBpyi+ZRhed/0WLyUmH17Q79jAbI5b1DUMD+LSudBS/wJ4/9WzmGCpi+dNCdcEQ8CxNOjJOHMnoCsQtRvhq7j8d3Z2hWBoM0noptoMdZqVBuZA/Y92JVQOW/dmWTjwc5XArNObsWtqY5cnOuMf/MYfadDbY/t0Kzoou86bg/u5z7RHbwMI1Dc5nBZSS80xKgZ/xmNLJdB9UN6C7ZlYodGt06mNs9cHMPPLoQ4RAAg2cH3ZrkkK4ci9w+09D1kDirqu4I+Z1VnCfS5cB2LwiJfvTImlacu5stO/FVBfS9eFTJXvX4kmfXzV36WezYq6bj64+1oAPIUz0V0vB1g2Fo8D8P/+OfuFf8yB2RHzS+973v4cWLF/jVX/3V9LPlcolf+ZVfwW//9m8DAH77t38bq9UqbRgA8Ku/+qvQWuN3fud33vi+bdtiu90++AMgfXn+xSPpnRsjhFEhmomDNPKMm3OWManQijrhzo0yiSKnGroT9+lYBQmBWN9oepZn8HNWMIMVQtixHYNQ+a/PDUlL0n6LFRQoksGDUdA1JWbNvoW5P9JBM8IeCgM3zdCt8iStBwDQlHgDgOLZHtntkcR4reEnBZUYCi1ydFSTAoChNIJX9qMUXEPYBnHVVJkpn+9RPj+KGzml5oJmpVENAabuR2iIB3xOZ+NgqE/drDTqK4VgjChMcBMptuxs6H0HtTtCb48o7ntk+9GvxGeKi+puTUK6Y+IUlEI/Z4cjFPwekbwbFHkqwbIlmyRzPXGn6thCSat6mBipmngmCk2LYAz27xjUFxY+pwxysXVMMvMMflYSMiEyrH4+ha+yJDIQsaCJhBiDpEkJvyAcxM3JMYLz7IYJMU/VJDMqo1m1uL1nIjw4Bh0CGQmZmBjlGRDo6huaVir0A/xmi7DbpUNUWQvftPB7cqOU0amaAQk6SLD+YVb4j2f8pPYJ4PvvFRS2oPEp28cNvRKGgZWcmhUiEvD8KNF5OkTCF56EPhRUPQuZkQ5sw9+VvQYQ0qLmvqK3R3ZCo+O60Ym7xm6qJC1CalYnpMegaaCnDy0TmdstzJ5cE9X16BYZFfQC0rwLmYaLfIKmhyvYGdC9hzcK/ZSfYXqgXWXoVlny/oAkA/1Eo7jvUH22A+7WUHWHdqHQT3RKMpQP0MeWEEXqUKQkxGcK3VyjXVG6lN8jUF3r0+cwDZMDiNGgOfYwxyHBqPRA/4/jpX1I+Mw0uhnJ9fm2R7YbYA8u/deIKh5d0mm4GoySP5T97Bc5TVyFXG7rIUk2Z7sOtnYk/UoRKN/1KO8GIdXLWSH7KI1LNUJhkiIinBNzSUkEjjXCoX5YaWw7+Ls1fGFRX7IIFuo6uWG7RU4PEmskSW6A9Q5qvUvvG471KLnb90yIPYUPVNuN51c/UGTB2rHoJucZimKclwDPyCLnOZlnhHeZH2u48EONP+2YAmaUN38wJBZIhrBlzr3YaNmH+xG21fdj8ahu4Ha7VHwMBf1aghVhgpbw2dD1ULsD+aiyF/mmkU5nSM9Fb46E5Dp6A8FqirkUGfkjB2kHWprk9jONdslug8t0Il9TXl+jOyvZSVnmPC8DeO4ca8IqBfmQ3R6Qf0QeYbCEdcEDrqLYjDlSeVPf76XwgfR+9khJ7azmGjOtT5GnrT1Mw0DcZ5TtV5Lc+IL7nu48su1A77MmCOSKRUsjnhu8MDAol73TNp4QLg8hNYz/7ZcZhokhL0bENGzjkO16uJymqyrQ1HX50YDymsVMl2M0fhYunPI0jmZXlgWa8t496F5Ek1d9aKFvtzRdnmuxKzDoF7l0PR1U0zKOBPh8I2l+ewDWO/KDjIIrJQ6ymq/3HqHI4MscbpLTSsAa8k67nrGe0RRMqgr4CX3GTj1DlPDHACBMS/g5XwNLxclYWHlgYwGJsbWGmrLgn4ocP2Q39cdKVn/x4gUA4PHjxw9+/vjx4/RvL168wKNHjx5ehLU4Pz9Pr3l9/PN//s/xT//pP/3Cz/2xhlcDdFWxotmzW6GFMOpeUY9Ux0qwBGxxqCyDfesJHuh4e88WtlJMOCQIDVWOYZIh+/wOYbMDLlasHG1rBqmTDKrIhDRKnK+5kYQppxyjX02hdwaqH9C9tRLd6QB76GFe3MOfzzGsSnjDalT+6kAp33kBXQ8o912CALlZAV8Y1JcZ8h0NitzjFY5vC2bU83DVtWfnY9dCvbhFtpzDLyr0iwL9vETzrQ+Q7z3mv/s5dN3DNAU3ld5h8wsrDCXld00XkO/IB1EDJS6HecHkqe5hmhz93KK+MOiXGdS33sXk2qHYKOy/MUO70Ni9D+QbhfIayDcGpsngimXqNJiGeEk1sErQfOMRXPEkkda6ZU5N803Pjsjg4TM6mHtJSqpbj35CnfJ865DfktMRlIIq8sQHye87qIFqQm45hWk7mPUej//XjMFD65Ddcq705xOEy0lq69oteEC0HQMGpYjbjdWLzBIO0dCoKlYis0aqYScdE3UkxjjMJ7y2+4YmeOcr+OUUw6yAfbUlZhOEI6JuAaVg336LwXTXw1yxeuG3O5LQypJB7evDGITFFGp3hH/xMh24vv8idPEnNX5S+wTw/feKIEFcLCCEw4GS37MpyeZdN3J3jkeSz6uKyYKokuHyDPrYwN/ejVjazZat6UcXzB9a7iFoWpqnWgO1r/kz72lw98HbUOs98PyaB0ORQ3cDgpMg0BZJ9185A3uzE4ddVpv0asm96uUN3PtPMcwLwiXFL0RJ58/sGphNQKhy4Zx4qEOPYr1HOa0wmxckYXqP/c+uMFQa+Zq6+sd3uYfmO08BiWKGTHwwLn7/CLttoG7X/D55hv7RHCHTXFfiYN6tShyvDCbXDnbjREqTbsqunGFSPwJ8QHXdo/ruLQOw8yWGZYn6KsdQMiCYvnDINwM19ecW9aM8mZaaxiF7sYMtqSimArX268cl7MHh8j822H1Q4fDEoLzpke86TF8YmC6guD5yv+ss7IG+CLru2dXsemQ9RTKUD/CVxfExCa7lLaEn7dUE2b6Hud2j3Asn73YNpRSG9zm3Ve+S6WH1vXuozQ76Z97nc246dsXmU9hXWyxfBkpBT6fo3jsHPEU0YhVdTSeck1G9bbNjJ//pIyrg1XVyQfd1A9Uq6KjYFQKgmvF3nUO47VmYKIsE09CFSMhutuPvyVDWQlUldOiAw/ddgj/W8acdU8A73jtjqEQUh2Jn2Vycs9BZt6lIeRpTBO+BtgWaBtizcKGFW6IOjgVOa2mqbFl80DvxwIjFIXCf1y0LDcULw3NCjCZRlvDfeIcFhrpj58VqSsi3PX0cMotulaO86TH7iB4XwWhRk1PwOSHb+bpLfLNH/8tLqKbD8K13EYyGaT1cRTnfYVnBWHZO1OCR39foHk2xe88iLxTyTMO0U6iaMJ3yxRFf/x+BYVHg+ITQUxUAc+hhmwHnrcNQGbTnGf1ENFCuPfI9CxUIAaahWtbuoqC32RBgmoCi9qIyqrH5mSmKe4fq+UF8fhSqG49sT0uFUGYoLgmpglboVrnwyZg0mHp8dtkdC0XFowLdXKM+1yi2AbPvbDCcVdj93LlwXQnJGqYGToq6k5cddOOguwHunFxX+o2Bfk/HAfl1w+cYAoq7FlluYA89fKYxzDKaxL7zhIUEo9E+4nVnW8Ypw8Qgv29h9i3sZ7ewA5Wr1LTC8GgJsz4CN/fQ6y20MYkwHooCOp57x5rnFlicC4cjz6DFHOFwhL+941mXZbSNiCqxRlO+F+DcbxrO+4JFUQ1An5/BPT0n7L1uYc5W8F0O3P6Jy/zH2xH5SY1//I//MTabTfrz6aef8h+UJrFOgssQEwqpBoVBNvDZFNBGKkUnmVysXGqdKqGp86EpxxoyiyBdiyRJGU3nxFBGRQlgL5J8Wo8GO6+Xmo1mi9YHaCdkzmEMTINiZc0JaRv9AH3sSH5rRoJ1knqT64jE2Fj1o/mOdD1iW00pKHk/ysgpDIXCUOhRRjbeHsWD3meQFqNgvaUNC40EIwlawRx7QisCxFmZDq7ZgdXXpFCRpDrVKFsbqGDFP6J93TvKC1YiO+rldxRfH6yoV9kTGUwvWM1apABblxQ4QknZvVCSy6MHj3wjOOlMJydSs28F397T86PpRdZPM0BxrH6Gwo7tUy9tXY0RIjFIJTTJxIYEzVOC54+yr6HvE3wH0TDvZKhY6fReeFCifpJZSupFrlNmGVgYw6DaWqjMSqVTp2tL1TqAczn4L3zml3V8373idMgeEXwYK74AgzSj2UkVE7fUcdUkncMabtIZK6e+6+HbdoTMFZk8F3bb4Dzf0/L9QmbZ1VSKQcnr990jST7rIQiM8uQ1WosRnkkBkApU3dPNwCREUUo3GJGTNuSfRNNPKEWPkk0NfWzYDW15yGd7quHRbJRQg1j8CJkGjILuae4aokRlhLoFpH2Jsphq/DmAfqrRT/jzYBT8lL4s2hE2hqpkVyhWbQeSz5UHoqoWvzDf07ZyXWX2QCAiGpC5ioT3JDfueF9tQ14KPwupc5Iqz0aKT4ZqWrrzKTgCiBHXHSGuFKegsk0ieCrh+2iRXtZSHdYqdSAfnAtGs2Cx2adnrHqqkakjBS4oDW4SpAen3QmlTt5bJ8lZgGdihFS9PiK/Mjg/Jhxap85f+r3452QOftnH948pKGka72dU5Iyw71QtHgZWmk9UDqMSX+h6PodJxc51fOZas3t9Sv73GPcgiSFGOKchjFy8ikLbjXuXiR14WfPRMgBIviTBgsiHA+FLY+cgGv86xgLCH1X7I8July5NOZ/WPo07TTIzVm3H83UAoACf88wPpcUwI69Kb2voVvYokbn3BbkP8VqGglysYcaYyAgaw7SePK2CewYtAcTvIggnLSPcnIlSAZdBupsBtiFsEY4iPV6KIO2Kf4LCGAvKfhtNDE3jhXCPce8Th3WK5TQwtRN/NCHAty7FLTRBlO6MfIQSs1DeS0KqTDMkfllUJAxWJyNBgF0ZyhmzwxuE6wPx6UArypydxL1GM6Y41mPsIfM6iFdQMvKVOBfGMCaN512c423H4pBct4rrXmTnQz8w3oi/k6TbZd84SYb+pPFj7Yg8efIEAPDy5Us8ffo0/fzly5f4c3/uz6XXvHr16sHvDcOAu7u79Puvj6IoUBTFF35ulnOY1QVlCe/uRyiUuKMjBOjFDP6Dt2ButvA3d7xBr2+kw5BkyQBBRsQMUl5rbnfQ6w2CtUBREDdnDLCYMwjoR01+f7mk1vRZlfgMumXrMpLeze9/F+h76LMVg+DljMTy1sGdZxgKhbLKoNsO4X//kJXby/N0fbq0gA+Y1sRpUwrSI9/IJheAbMPvNMwLuGoC/3SG8vke+tU9zKJEUAqLjx20CxgeLZP0YL/gIRzbi/maxmP9zMrCMsgOlME7vFvRGPC7O240OQOHmFhAAaaxsI1B0CbhGfmgAsztDmg7GK0F6lZR5aq0DIIGD1PoZPjHhWjQrjIMlRKp4YCs7hiMtAOKVyduoEqhu6iSKgfb0gHVswP09RrDu5esCE3OBa5GxTF1vyX/oyKBXPce+ae30v2YoH0yQ31psfz2AXp9EN8DDQNQejMqKoEdMRjNQON1ad62Y2s/M0Cg23kkmqvDEVmWwd+v4bse5nzF6n1DTLiK7fmqTMGNKssUVKiMQbE2BqFuKF293UMfjuy6XJyn56DuHfCnZA/wk9ongO+/V6jIkRkEU28MdGXGFrJmEJnw9gCDCGugjjXvUSPk9AkVcEKZA69uGXhs9/R4WEwRCvBwu9sAbYfhZ96Bzw09aV4bIXJEckt+WevYjdt2Sf4ZEChIaRncT3LojEmmebmGeRG4V5U5hsVEDjed5t+putUwL9B+bYbypkP2fE3DtdJi8vEG6tjAff4C2bRCdnUhAc3JXumBUGU4vl3BNBXs1Qy+YHBSfu8OALD9P17xM/fEfc+eefhMoV0abD7Q0D1w9Z94H9vHwkPQwPYvXMJbYPaCLs+Tz6lopXqH7c8usH9aYP7pgOwwIL/36d/qt6a4/XMrnP/ve+jNEd3jGVzJa779BQv7F+6h/t0ZHv3ekV3cWQ4lmPP7n6Mho20DrBQ53LyAzzU7zVuH6vMd4ZzOYRoWJOeuG1aftweeJSdQLJyv4POMztNND329RravYCfFaI757BXX7WLO944qNsNAI0IA+vf+iPcmz6EvzuCuloRytj2fdSYOy4OD2uzGNT+bcr+Kf49zvutIei8LIgP6HhDpTVUSdhUM1d1SoBLXQ5yrUfAlfDGp+UmNP+2YQlkLc3khikK817EYEQRqFe91aFqEvkuIC3e3TkUd++QR9r/wCNNv30E9f0XOj1YIL3mdCqwsq35g53Q5g//ep9zHv/FuSvz84Qh1rOlzpGSvNwZmfWS80bQ8U6UYEIwGzpbwc7mmykCdTQi7rgf4ykK7AHO9J/R5s4XJ38EwncC9fUnVtw8/hyoK+KsVzzuBTkIzNtBDQPZpB3uzx9mHirDQmabhYa5x+/OUOJ49L7iWX8geZhTW36zgcyppRSPT1ih4qzF56VGuHYoPXyJUBe7/ymO4kpzS7ECOh88U+onC9gMDUwOrD3s05wbb9yuYmkIVjBsC+idLdGc5tu9ZDBUNU/sZE5lHv6uhXYCrqICnOk+FPDNFcdugvAGhT7nG8WsLmNajetkhe7WDOtSwzwBkFm41S3NH72uouoV+Zw5UgG7HYg58EFlexeLyoUEIBe5/aUH4WU8DWdX0jBcsVdN0NwDPXkF1HXTbQn/wHoarOUxVRjs0wrP/4I+hLy/g37qCvl4Dh+PIM93tpYAlypxhBsiehkqMfKucsc7FAvp6nTinIQR2917jf4SuI1fy8pxz9nCk7PfdAWp3YKdF/Hh+mPFjTUQ++OADPHnyBP/23/7btElst1v8zu/8Dv7u3/27AIC/+Bf/ItbrNX7v934Pv/zLvwwA+Hf/7t/Be49f+ZVf+ZE+L3Qdsd0x6FMnxFylqCCQ59B7whZUkTNbDAEqEn+dYzvV+7HqETF10upXg2NFoqfkqVIKmE7H6lTEewOiihEYUESToI6VeeUDZWRzAzubcmOPWPK6ZXtK0QBMeWIA1VQkHGczuPnYKlbdANMRlxc18XXbI9uMXYZkzlXo1Br1hYVazFIXIVgNZwKUt/Qo2LZwpWX1ExBORibt2I5eA+UYnHgLafUaaBdQ3pPIbuqe3Bgt6hw+oCp0qmoqz2sJmeWC0lowt0LS7R2GaQZfEI8aCahRJpT4cZUc0iNBPXUf4nsaJaaEJ3j2zifzuKgqMmLdO5HVNOkeZluBxCWXbQ1zHFDeIsEmTMPqS6p+GT2ah8lzRZ4BvXqQ9LL6YQXSE8RITEyoioKBcJ5DRx8Q4YUoa4GyoCv2IKZ0scrqAyWskzEasc1KK76HZxdEKcVuTD/8xJVxTsef9j6Rhla8f6f+IXUtVWSZ07FrBHAP8KwWq3DC74p4+8AqmjLSbdKar4kYWsu5bTY1jNGcV5mFF16XygSrn2VJZS2Z22mkPS1VSIXDpqQjAedpwGl0moc+00Lm5DzXsbIuewGkE+pzDT8pkQioRQaVGejJ+/zMWJGLxq1KwQvZ3WXco0xcO4I9hzlZY71PcAjdB2ijUKypZKMGzssQvIhpjB1NLUp5/SJj56GlCqFpaaQ4eIO8FfGPtoetHfIDq4qYlwhiKJbtHaprjfvvLvHo2sPsWzoOg3uHEgx7ND+MhFfI9U9e0cQs+gNF0RFz7Mk160lmVmWBUOap00Q3dJPuedrfeycCFexqqJPOZwiBZ5WZwF8uOafWG3ZWjU5wX5x0UfmwJSEwhueZjnuOVDCVogKWdw/3Ifmjo2qed6M5Wdezwz+bCRH7kD4jQTTeoED5kxr/TWKKzCaeqIpGxgDvU9dxvZblqJwnHWgjxskRS1/cEeev5rMk+61XS75+EO+xpgWmFSGAcwlqW3J5EInF1oy8E+doFTApgCModhElwiMsVKDFapC15lnAC5mStQ0a4XkP7A0w0CvD5wZQBcx8NnI/Hc/zYDWGsoDP2TXwSzq1e8v1VMgZHDSh3HrgGuQe5MQwUWFyM6ROhh4C9KDgCoWhjJK8gRLDE4rfUMJfEeWw69GtMrAFM67drA7wd0FME9lVgQ8IuQY8kO+YoLgc0D25Gv2UHZ5s56hCV5n0fm4abQzYRc63Pe9jvP/OJQSF7oZUOA0u5z6ZK/iI+vDscnjFGCm7HQifKzJg8CjWnpLHRwd76LmXh4Aw+OQxlQRnLDtJuh05xpxgKiXLqneMC/KxE6HmM+5DwpeFx0PRJC0/z2lB8caOZyw+RLEXzVgkdvyjEI7a7llUCQGqbRHCD7dX/MiJyH6/x4cffpj+/r3vfQ//4T/8B5yfn+O9997D3/t7fw//7J/9M/zMz/wMPvjgA/yTf/JP8NZbbyUVjJ//+Z/HX/trfw1/+2//bfzLf/kv0fc9fv3Xfx2/9mu/9kMr4cThD0e441jGTXCUCZWEwmoO1C3CJ8+g5jPi4DZiJBQNzk5bpRkXvr+9Q/ABxloGLidVIX6Qgntyxo257dmyLAxUy4CCLqoBqi+YyNRt+tVhlov77yVVMADofQP/8hr6/AzKzFDeNCR3L6k7XRwu4JYTNE8kEQnA5Nu3lA48ccVVuyPM3SZdYzhbIOQW/cywirFzGGY5hpl8dwUMEyYHwSoU1w3MZ9fQ82mCHfkyw90vzlCuPao/+Az67Uu4J2NC5DJ+9jDPYeoB8z8+pgqiWk6AoKHXBxhrYJoq/V4/y9DPLcyxItejGD0t9H0LtdnBvTtHuzBYvmqYILQd/GqK5nGF/J7E/iDu028awXIztesGRowdlWdLOpJB9eYAdTAIZcE292aXWuXKB6DpYO+3Y4uzYNs5u94j/3CXHKnNncAqRCkplBl0P5Br4D2CsQjzCurYItyv0zXq1ZJzcb1DFEOIn8/vZqB9gBIpvNBSohrzGfxiwo5Z3TwMpvsObr1J3iO+pjOqnkweQkIAylsfj0D48SYiP037xOkIzifHegBwbQtowX6LWWF67fGYkIoJShXJ7vI6VZVAlqfkUonXSIhmlXYC/91P0measzOot4U/UJbwj84Qcktp3RNoBQB2Y+M+JY+WqlnH9BnDuxcYZhnKj9dyCOqUhGT3NV8br78qUtdzqAxwOUF2c4RqjmjfO0e/MNg/Ncj2wPzTFvbQQx27dGC58wllYzPFJOGza+iLFcU6Sh5iNCwF7K7jAZ1p8tMGD+2mKVFRg4fpHNw0w1AZklADkN82cNMM+w8K6XQSFjqpB3QLKu9kWwXtPVTTIbs+whwyDPMcnZi8ms4jvz7g6pXGxX80JPU3NHelKzFvSX4HuAk/3xw66F0N1dFkMDx/BX1xhvb9S3Qri77SOPuPd8Dtms8mzpE8g5uXMGBRws24H9uXG97z2YRJa9PBL6fwpR25bp/ejxLPqzncssLhbe6Ry7vVOBedH58jQFdt71n4iqIp04o8oG9/ArfecK2LctsIIfKpigpj2H2J81mkvkNcD1cXQAjwL4gTVwJTQp5BuXGN/DjGT9Ne4TY7mAmSFYAHxnXpHHzT0OxwNYfyDjgek0+TP1sgqWYeG5jf/y7U1QV9QJ7d8F6//Zid+vstZVJ3O9jVAmFSIDy9ZPyw3rEwWhYI8ymThvWeSeaRHJH2skJ+r2B2B1HfsskklYaIGqabwbQOuhnQr0r4XJMToRW6qwq51TB7SkabrcGwKjBMLExxxqIeAH3sYfZ7HL95gTaqZw5A8zaLmb5QKF+1sDd79I8XGCYGkxsH03gUn66ZfOeWEtgApr/3CUIIaH/xXSYR6wb9WYl2lSHfCMrigyV8rpAdg9QoAonq1zsMU15bdhhlustXLWbf7cRoWNObTSl0UwvTeiy+J2enYkdnmGjs3jHQPbDa05m9WWlU9x724FBfZpTlBcg/+cPnlGafliI+ouFnk/SsQ05JZV1aqMGLGiETrMjBZPFHIbveMwY9XwFth+l/ueHesN5AX5zBr2bstsZigvNAngN5DjWle7re1mMSASIf1NmK/7/ewT8+h6syZM/vAefhL5djjDgIrGrHhOF06OUC4XL5A9dHKHPeh/s1UNfJwBDLGdT+SAPWgr5H7nCEc80PfL84fuRE5Hd/93fxV/7KX0l///t//+8DAP7W3/pb+M3f/E38o3/0j3A4HPB3/s7fwXq9xl/6S38Jv/Vbv4WyHNs0/+pf/Sv8+q//Ov7qX/2r0Frjb/7Nv4l/8S/+xY96KQy01Jj56QmNVmCJoVXHJlWPgqN8biTqYb1JOPA4QtMCQWAbInurrIWazxhYNG3ajPW2ZiY6SLZ/EJ5FlHaVwwdKEeJQ0i8AALLDAHO9YXdmPiU+7ymJm3rfwBUZglYo7kV2NrPQxw6Tjwa4eQFXSqA6m8AvGMjrXT1+j1NeQu8wed6Ie7tDf16iW1j6dHQek2c1XGmxe7eA7gvY51n6PT8r4XODckM1q/7rT4AAFNcNhlkON9HIamIwu6VF4QKyfUMt/nlJXKXVaL9xQaOzQAlPs+9gDwqhIWwqdmd052GPPUJhgdkEpvHItcIwzWABmNs1MJ+gn2i4vIS+KJDtqdAxTA1M7VFsa7izCbpVAXsg6R4gXlN3JO7rzZGV6cfnVDLqB0reaQtV5PCrGdqrCYqbmrKZFyso5xA+e8H32ZfJFTfsJAE5X3E+1G2SaqVbMsnv6B0x+5rk0NiFCMNA7GU0FzRmDNbaHip0wk+wrN4HDz2fA0pD7+oUROhzdk9wCqUYeiQOSFokgukMfiS2T6fAcZfUln4c46dpnwCkxSweDSoTEyalxkpx36UkRYk2eqipcKQyO1Z4egYop1haZTSUmMoBGM3g7lkUCP3A4G65gFrORZY7+rrgoRw3wH3rfsu9LCYlERM++AefYfYt58qhRqhIsiw2Dvnna4Qih1vNYJ5TtKP72jkQgNl3tmLySTgYjEG2aWCPBvlm3A+91UBuoQzx7cN07IYOEwP7zhXnzCBqLZlGseb97GX9ZWvKc/vKEItu+bvZIcAcOkmabKq0Auwuzj7vpWLq4Y1GsKPvULAaw6KEv5ikTkZUz7O7TuTPAcBDd1KQmJSEOcjZ63OLYVnAHHvkr/ZM4iYlVWqKDPjW1zAIJNPuBQs/OHrGnPOwVnULt5ygvSxR9h6m7SknLx0pSBctZBZ+WkHta9iNh94L6fOBJ4CHbgbMP9wS1z6hUIq/vuWZEquOURXSireVcwj7Ixto3rMgURRQU0K0wp4JjLk4ZyC83lJy3mjCT+OcE0XJtB7u1gAAPZuNnRdracL5Y+6e/jTtFVoqwsoY+jb5MBYdjIa5vOC973omgkXBZ9C20OsdQlWgf7xAdq0RXt3Qq0ZTKAV5BrXZc58ocijvWV8YHGW9q5zJ33ZHZEVmmRjHCnRVAhcrenNcH9klK/KxS3qixhYONcpPN4xD2h75oeGZN8kBF5A9P6YzTHU9dAgIZ2VCG8Czm+oWOdrHE2gxK25X4/6gXYA+BgSj4c6nMA3P207RAiDkGf1ILgryVV2APVsAg4OpWekfZjlFOYJwZtsB+YbdCFNoKgcOHsp5+GlJyGptEFSekiXl2TEMFfcg3TLu6FZWTJDZfYkFmnwIWH3Irm358gg7y6GHHPlmgD30sAdROQWgek8jZPGICxdzKuUdGsAadO+skn+SOXI/XjYDfG7QLXPywySW1H1AKCz0coH6m1fwmUb1+Y6wqEdL+IEecW5ZIRgNe3fguROLURCYt8g+A2DHxJOnRm6ygao72LqjqFLw0NFwULorAB4q94niZigpLRy9+KJRql9vuPYr0Mh7uyc6KM8RDgegbaGGCmEYGJsAb+Sk/aDxIycif/kv/2X8IOsRpRR+4zd+A7/xG7/xfV9zfn6Of/2v//WP+tFf/KzcPkhE1KQaK4iijZ42Vu8IQxEMp9tsoWwGfb5Kvx9awly0wCUSOa3IoY6EajBg1CR2SVUqfu8wm7BCPrhkbKbyDGrJzsQwzxkMHwf4uzVC08KIs7JbTGHuj6zIX8wBo2CujyLJltPn4tUNzNtPgPOpBLoGw7wgH+MkEcEwCPGNG5R9VadDrz8v0U8VTCMymp/fQZ/P0f1iiXxvUGV0Zg49F5PPDfI1FWsOb5eYvOhgr7foVxcYJpr62wboZhrZVjEQXkz4XVuHYDT2TznN8r2H7jVs72B6Lpz6SYGhoCtrdgTsEfxuk4LYysDARbkAfaypIlYodHO2WGcC2WqXBrlWKJyDKy3qS4OJmAvy4bK1quoe2OwQnlygP6+QHyh/StiKQsgshkWJ45MM9jjA7mu4JSsh6ttUP9LTSWq1+z2lFPXFGWFWfQ8UmWxcPLgjuStJ5WYZ541zSTYPZSGdlILwnFacvAc5bCIOXea5Ukqcv2uEQVq9ecZWfZrQ4aErssxT5Bl16o9H6uNPKqj2+GNNRH6a9gkAXEcCKaFDbEGiv5BNg0BtwjCMHiD7Aw0hMyvkdj8amp2SgpWiAaqQxhECMbTSiQKkaLKcw88m8BVldpXwnnAiKAEAoWngbm5hFouEs40FkATXku8TJaDD4QiVWfRTjeJ+QHj2Eur9dzDMcmghuTbnGQ3CvvsZzMUZcLVMsA69OUINDrZpERYz9E8XgCLsKoiDuyt1qhQOlUbzaIJ83cEcWrgJiyf5fUuPj4uchYDNAcPVgjBTHwAHuKmBrZm068FBNRZ6kZFfFgLQOJSfM8FXITDpKA30INVFqzBURvwRNIpbEYcYQOWYEEQKk8F5KKQAsJHgSykow/fI7o4IH38O9d5bCVcfMoP6UQFbe+R3DYsgvRz2xqA/q6gApBSGeY52ZZDfW5gN4bEP5lzTAqsFuxW3xF6rfUm4zQnmWg0O6AaEjz/n/Pr5b5A7dBjlqcwiUEa3KgnxKnJWwY9HJipgpyYaj8F5elFMJlDzCU1QD0eor78Fn1tk99vx83MJlOXMdHf3VI46O0udQhVFF37MichP1V4R92vpAkWJb46cipzeJ+6WsixSoO0Q2g5akZdgDgU7TE3DPVeedbhfM4Y4W0KhZDFiGKCOPOfhPJ+RpreD6gkDDXLv28fscmQfvWLhUxKRdDYohQDuIfiMimEpRjEa+q3HwODgvvsJdFnQD6XtZF2MQTMCCyT9pMThqcXi4w7ZpkU/m4pnj4LqI6RLoy8yFK8O0L2DFv+zkBn08wzHKxYesqOHW1bQjUC3S4thkafPVMMIkQxGwZSjgmUoDPwkg13XMCGgzPT4e16+v0LyTQtaoZuSB6KCRkiwLQfVe5S3hyR/ndUTqDCj/1rdPVRwymkCGcdQUOCiXO8RANRXOdEme3LC1P0W+lkNbS38L30NQ2XgC4Gn9oHomVmFw1s5FfhuCNVvrnJ2fV5tMcQu8ZrF7hATCRGoic7rUKCPiHNA3UmCYqE3h1E2GoApSxbZmoYqe1KIPB2hp8N6NE8MQ88z0miE61H2yh9oVqhLWlh44Zlp5wghF8rBKbLghxk/Vo7In/pwDr5vaC42qVjhPZXnjdWjipsyalYF1MTCSCXDCxY3+IAH3gExkdEKaBqSAC/PgP2RLdJTKeCMcmfYHaA2e1a0tYa6uuDv+wC93qO42cCfz1mV+Nn3AA/0oiChm4Eby3JOlYtjN6rtaCBkFvqMRMg0otpUI3ryqzn68wmyGxLRuqsZYBTsreJmc2yQvzzANCWrkR0/U/UOqw87ZNuHbGXdncgSWqpo9QsLNSxQvDygeBGw/+YSCMDZ72/gJjn2v/weCVri7aF8QCk4SNMQRzosJLgKwPzDHYJRqJ9Ok3pHEKMoyo+CFcbBE0pwbLH6oz0hHaVBfcUpvPrDHRObb1wg33Q4/501/KxiEHIyVM8kUF2dwxVGSP4OescKh59PYO9rnL/YsIPmPOzdgXj8qLXfdmzVns+h59OE940VKdUPMBsao8XEVAmHQw2vHeKRvwEQ/tD2iVwKTY5NuFsnNZ5TRRyAAYQGEJ6/4sEpUCFzdjY+u45EWN+0AFqomjKeuizTPNfTElh/n3X2FRih7YByrCwlA8hHV1BGw9/e02FdWtwjbl9z//BMLlRmR8wuQAd1pcjhiR4vzkENJZ9LfJbBA00L3Q/I77cIiylx0JGT1HZjFUlpmNUS6vyMMtCtcHhu11BlAX8252EZFQL7gbLDVUHxht7zmrseZt/Bf/MdBAVMnjfQ9cDgQynobT1ihYXv5i8XUL1D/uk93HIKN80o1ds7TAZPInxBTxBXKvSLDL40yO7qxENRPqAEYDb057GvNjDWJH5VfkvZ0u7dMyjBkGsXoFrCm/wkx/6DGaqXHfKPrhHOKvRTi3zL7qfPmRT1M4VyTTGQmIAMjxaAD5Q8js/EkENijpScbH/uLQSlkO1ovqbffwe+lOSwd0A7YHboyEPpB/hFhSHL2DGZlNi/V8J0AfNdA904lHcU5XACvdK9g76+Z+C+nHOf3or8dkHxi6R+Ngh3S8RO1NUFg49jC9WSCK3KgjC+wxFhvYGGnG2S9OqzFYts6y0DAylCpbl/OCDsdvTM8g76k1cwRsPdr7nnTKqH52NmOb9EijYmCX67A9Yb+NcgHV+p4Rx8O3AvmEwSHNMsFlTJe3k9mjtK3KAFHh2hXNMPKz7Pt99icbOuEbacj3q5IJSuyMWMsqYEKgB9cy+F0CIZ0Ia25TN4coVQWuS3nOdhOcOwrNBeFChuW5hDCz+roJyDfgV21qdjAB2FdMLza/I2339XlLVGaWB76IEAQqZbcsCy44DqlkIv/qJE9bwBFNCeF1AD1569EVlaAKHI0J5bdm3k7J193qN8Sb8wPykBo2hxIPxVn1EVSznpCMwKxgAAhmmG/jHRFVBAeFKQi/qqJSdFvIz8agq7aWBvBoSKZ+LseS/eQ4OomtIkmoUJBvgRLulKA7MBIZxzmhS7WUHrg5cRPWPQv7ugeeFqBtU7zL+7R+SSwgPhbMEAXkk3VQEDDIr7FvbzO8YNhcXy20d2G6zm3vrxgRDuIkfxYo/C+/Ge5hnUkQaX+vwMmE9guwFBa/hZDlV74H5DiFaRs1tSLihY0YlJYZZDn68Q9ge4+zXMk0csPOzooG6qkrHIs5cAAF0U5IdpxfjaviFV0Br2yWN28Q7HL/ybLvms8EOgs77ciQjAA14JpKXrRvy3NtAVAwaVZQihQ+hcMiMMEbL1JgnNEwlDuBPic5UBe4hp1JAUuFI1M7pXFvl40ATyDNC0rHRMK2CSS0Z7gtf3PUmKloGucp5GNnEYnWAaCZ6hZPFGWVdD4yIrsCAa7SmYzEA5wxZe28Hs5D2cyAAGuqLS5MiM98N7qJ4Jg861yOYpuMrC3u4JQwpLtjw3B/jColto5FukRARCxAL4s6BGzw/6bhwApWAuKiYiPiTSeSLlyn0KMx6Y5m4P1ZTQkwzHRxmCBsz9AaHM4d6qoF45hBfX0O88gbfleJ8jQVQrJneK2E0lbrYBACY5fR9e3iBUJRd3TQlNnJIRlSImXtPIUt9ux8TU+dFBVwjG8V7wP6Jok9kUNIQQWNmIxlldD5UDymTwXcfqtyg8wQeEWOcylJMNTYuAngRUrUY5SCAlOU7mevBi4Bm/jxCrv/IjEvx0lEn2KVAFwHspsDkMA6uLSXpz/H1dFGMgIvNGtS0rn7IXqSxLiWno2UEJYnYWuh5qUvJznVTaJbhRUYo1y8kRyu1IGO96PutslFuMnT6I+Ibp2CGMlVrlHLqzkkaiEc4RBTaiwWrfCz/OwJUWRiq8ypWAygV+JVKfmUn7nbeU7vYZD1N0PWAKQhdakc8Mgco+setnNHQd4JZTDJWF9QOhXeSyIkrfDqVixTOuNUvopnIe3pI87s2JdLcUAqgWhrTOo1FkJOojBBq6BsAexQOoZIIUFKC8SJbKtRPmJc8xY1HIWwXlIMEG3ZqVD4DVfHZKEeqnyZ1R7ZA4aRSLkOfpZT4qBQxiRHi2YHGo4fdRec6AdDaBOtbw/XDy+z5J0KthgB8oqZnmegj8XqfnIiQxgZx9eS4wfJ4hSiTBkxznqbCDFDS+KlLfbxwnHk/QinuAwKQACJ8ufPF3tGYxs+ug7hgUJn5O18PXNYsXF2ciWCACDzFpVGF0sY+ywXlGk9QYq4gctAqBQWhh0E818p0GajHTdJp7RJHR20pej1b4rG1L3qAkBAAEIkqBGN0bDBOR6fWUpc32InhjFeyWUWVzJR47AyHv4XjkWZlZyvdbeoCY2iPb9tDrPcJ6A1U+pvIo8CD+USe3NIjkuPJiMRDFcRTgDaCdfG6QDoXR8AC0CAv5yA090IU8CtIAIpBjZV83IK8k16mTQrNiwlZdYQRF0SYvsGDIiw2ZnPub47iGrewzMU5zHmqgPLluBgb2RQbAsrhpNIazCVQfYDbC9cks5ZpbGlMnWB4A37TQwzAWPE0YJdIHOYeAZEmh8lyKGoKWEcn30LaMl4ucym3KAUETBVPXjCGyE5hmFHE6HRHiHTtyryci6feyr34iovIcZj5lQH2sR119IcuoyUQIXxN2KpoWOF9SKvPbH6fgjo60Y5WHakUymYqcsIu2h3l+RynVunlQtVC5wGKM4SYu+uyqLDixN9v0WngPfexgdyeEo1MDvDo6NDuomk7eYT7la5sWan+ECh7+g7fgJhaq81Rrqhuo57eYbEQ6zXlkywlclaF9VMEec2SifBMyje68RDBA9fmBCUE7ED72eJEMBSlB2UFtD9CzCj5bImjqdtPzwmPyvKax4jevoDww+7RN1Yco1VvcsMXoMwNfGgylQfXZDnpzQCjJbciva1aS624053pyBXdGnoovDJqLDOVNj/KjW+jbNdTzDuftYyYEFTsP8//4gpWfSUXohw8YLmcICrC7Fm41wfDOL0E7+og8wOc7N5KGz1dwZ3P4SYbsuy94aD+6gOp6+Js7ap4fG7in5ximGfL7L0rzxoA2ym365YSb4u09eUeL6ah0cropD47QH+EI6HaSAuLQdamaDxD7raXqSrWsPnmNhK5D6AfYt5+yUl83CEPPOe8cN53ZjPOy2/84l+ZP3dCTCn5fQ1cV12yEcB6lcxVhNKJs9YA7JtAmX9cwqxXnwXqLsD9wH4ivAWFfwRqSWXfkoJmK6lSR2KfPV/DTEr6wsFGRLwQGBEUO1bTwTQ29O0L3A7DeMpF57wmLFTHJPRGqiDKe5auSalZlgVAWdFx2HnDg95TKt390hvbRlHCKfYPhEWUk7a5FsBr9+49Y7dw2cPMCWJaEgBmNfpGhuKmR/8GnwKNz/rvAlrqrKe/34KGrHKqVYopS8MspglLU2w8B2abj/w8ezcUUfaUALJHtB5z/b/e8Z6s5lKMsuT72UL1DeX+EaedozkoMpUL7eIpyYMBg93Jvihz9+QTHJzm0A5QLsI/OoI8tJh+tudetSmTXB+D5NcLXntI4th24Pz6Z0WB1XY+JKgDdDLj4/75gdXxeUu70xX1KaLV0Pb3z0FmGflmxoyR+QXGeBACqrlMhwe/28HUDK1yCCMNQZ0uESQk/LWAGx07+as45JveVF6agixzo6WvjN9uRV+IfCjSogpALDSA4N8rOAlRSivAk5+iRkxbCVzgBkRECYC4vCY+8vmV3qKrgN1t2JU/uQeSahY4KheZMoI51A7/bp59HOHhwDuFuDTWdkJxeFVAXZwhRvvk9miurj56RE1gVPD+6Hurzl7CTCvv/0zswjUP5Hz5C3q0ALGl6WXfkeWgNf0bVqeayRL7rYTd8hsEahG99wBjkbkfYjcB0Q13zbFIKOQBz7KA+fwU7mcDMJ3ALFk7U3QbIM7h8BT1w7vVPVgjvnSO7OQKDQ3k3wBuqdGb7gUF3CFBVBVdl8GUGf0ZURL7toXpPwZrKYngypwO5CzDbFpnwOrwl76N8toNqerjzKdpljt17GSbX7Cgcvr5Cu2QRw/TA4uOGKnz1GNtZgOTyywkVMW8PGFYTuFWGUGUIbYn67Rl8rjD97pbd6KqAO5+hvSrRT7gX6I5SuwBEsKKAXR+ZmEgBQNc8Y1xlyEf75jvQmyP0/Z4dcenE6M4h3N3zzJf3U9ZSPazIMKwK2H0FKx33kJ/wdBopmJyfjfHG3ZrXMJ8BljK/wXmEu3vChQHOKSlCB0FFwBiYy8vEl/xBQy/m9H3a7pho7/dytn5REvuHGV/qROQBaU6IetCyQYdIFiRpfCSlstLpIyQmViCBpDIES2O4sVolFcu+/+JmfJqJek+5P+QPX5PlfD/hBkTlgsQP0IpVM/mcKNsX+p7vO58yKy5yoD+Mh5lSMA0xgmpS8f3zDGoopGPDSoMKI46SpEYa6LhCSVUDrJQC0EaNFVj5DBUCMLDy58XxmTdMQdfs5Li5yG0eXapoRK3eYUI4me4oYWwaP5LrrKEpYmGoNOZ8klD1VQY3zaQSGg3e/NiJyjLg0ED1GeVHlWJl1FLO0i+n8IWl3F00H8vodqoaD3MU8QKjxWQwnBzsrDC5wiCrSsKeZF4ppQjjG0gE1Aokl/Y2YYdTZU2qGdHQifPBpq5b4o/EEV8fF3RMVk+u6wE8K0roybWFaKIXq2syR1WnR0hRfC+p6uO0kvpVHSLHHJyDGoZUuY4+LkmyF3EtSzcpmjsphSifHLtnypixM2rGfYe4boih1MmGHk3HOgbUavCscorxZBpKJWnleIggPvKBXU1ADiwhK8Zugzm0hAhUBbs4gxQqjEIoMigXRh+EE0NRbzUrpLLnJbNU8daJAgqAp959Lx42QcwAk8oLCxDm0LPTkczZdFLOQcvvb2LVHoCtA5QHbENTU1W3rBCWGYhXf3gflfPQPaAdZA0rFkeGk33LedhanmPgPUgiJvGZxiF8MtWIhKY8/2C1mIp5MSijMACshSpsUi9TSo2KVHIOABhlfCPvQHgACF4MwU4EU7zs/37kg7G7MkA18jPvEmR0NHIN43kCMGkVB+8HkIqTOcz2D+cZjKFonpeu3CnRNHUHDHSRMUnZb36sfLKfquHDG342QiZxMmUemEhq6XBpcH8PgT83AGCSfHpw7PJHOeZgRT75VF45DqVGbpiIZJjGkTvZ9VBtB7vvoA40JQUAJcbEUbxBdX4sthktNgJyxmpBZYg3WrCEOel2YIDr2C1VTQctncVYVMuOHqaJZ7Fi92BZQvce2bpN8r+66blHGQNUJiEEgkCXzL7j9QSewzoHQiD/RB+pvAcfoArLEK8RU+BkNHgSoygACsiOAdqBvmcuwNz0yRBU9UwmwzxnVwosmpiGsLBT6LSKRtPGpGKEHgAVvOzfjHVUiEbHBqiKUQSgd1ByT9PfowR819ONXEyXH8ypYWAC6zy7Lo3Ml7gWleI5EAKQqXEtxj07nkVRUCcERInuUxNHACx8aQ1/rClRH18nUPAk5SvQ5HROChIH2kAZFk4BMKkB0v6nwhukgN8wvtSJiK9bBHViRJhnUMHC1zVlcZVC2B/gX7RQVlRBXt6wQjR80b3NPLpkBS4az0V1oxfX7HhIu1XHzaLvEyEIAPR8TiLz+ZJtOgmKw3w6Esa6Xtru8qCla6I24/uEx+cImYH6z98h9OdiBT8pEJYVrFRWAS4Uc7MBrMHw3iNKUU4Miju6g0N0wO2OLsrhxTV/Tymot77FhEIpJjLrHZUrlGIXxhr45YQJUZnzfV5tESYF9FQqsXkGdWhgQoB/WkJ53hdXGrhCs5KRadz8HzKYFlh9OKC4a1F8vmbbtcyZbJQWzaMC2XZAtT2KeU6J5lGFbmGw/IM1bNcju89Z3WhahPMlq4TXG6Af4C6mgAb0ZHTJ3nxzgn6i8Pj/9R1K5j19DD04FN1Ab5m6ocRqngESnOBEocJbOrs371/ANAOyTyjBeGrUo1/dQ2cZmp99DASg+OQuGU0htee7tPEAAMS0TNUt/O09fJxD2kBXJfR8Bn95Br3ewW+240EIJBW3NNqWPKd00T7JTKosh65KuOsbBOcI7XoNguWPR+B4hA9/Sm6G/41HaFu4qIxl7QNCOe+/ga8bhL6DWS0pgQrwQAD4b9/7GGY+5+F9PLIaOpsmF9mw3cHd3Y8+DSfDH48I9/cwfY+snhNCMSkwLErogWsM1nKOtS0PCCEYKpHt9Zst9NUF3MUc5mYLDA79e+dco59ek2z+ZA67bqB3R/hyAZ9ptBclstwgu12Ld4Bn4N31CJmm4owYpcYAWoUA/XLNPXM5I2dqu6di33uP5aYGhN0BGAbkpXg1vbyBXi1T5S9khhKXvYe5YXCi2o4CH0WO+X++4SFdNzz8xEzSF1YcnpGc3ePI9x7ZdkC27cb96ORQt9c7ZN97iXC+hJvmKQiB7MsA4IsMZrWAOjbQh5pkYmOQK5UgGrpzyTMlzaOug351/2aStVKcG30P+8kruUUBWMzY5Wi4H4T7NWHDyxm7I5GY7jxcNL4rihQMuEicvr1LewWcowR1hHsWBXRZ8AyMhSeB9qQzUAjQAFEFSubxKTH+wdexlq976zH8cgLzx98Btm986Zd+BOeSFLeuyNHww0BFztMkARiLRsLbdOs1dFFAv/WEQdoDKfCaSYjWQN9B3W/FtyFjRflwhBWY8umMCpOSpnP3G6DrUf3nz1k4CAHYH2AGB3+/hqtrmMtLJrpVAVV3KDfHUU58MWWg/OFH8CHAnK0YYFc5k32l0K9KQAH5ix27rhEKXDfstuQZhscrAMDkw/sE/1OTHEEBu/crIABn/+8/ZJL91uPkweavVuRciLkzlCI5/KNn7BDNJrCxw1DJWn3+CqooYBYzqEUFVXJPCGDh1B4M8q2FrXk+5tseptao/ugFQpnj2f/1KaYvNLL/tIY6X8HPKuj1nonD+QRQYHGm7lF970gPjKZBvjkjf1Q8MljA8cg2PTIgqRRicOQddj1MP8CdT9E/mRJp0fbQdzvoMIErpihuB6jvfiY8Uw1c3wJKI2tXLL5WVUrywvNX8HUDoxU7rAKt8iFAmwt2ufdEvYSzGefaqcXEasH3+e4nhHNV5ZhQvDZ/h4sZdDNAbbY82046oHoy2jSEroPfjos+7Hacx2crIFQsEMs8V0U++or4PwOJiNJKsPS0rg8ir5mw4JLNJmw9JFM7abWPmzSlENEKSTx2QwAewp04rcZqfJTNi3i9bKw+qWPD94iHQz8gFDn1wPdHYgXlGiPOG5DKp5eqnAfl06yFE9lf5bkZ6MUcYUutcAAImaUk6OBR3PSsQjgHtGC2W9JETb/zBGp3RDgcUb44IjvmNO9RCma9Q1jOMVzOEgQiTV5FhaoYVOlorgWk1+SbgXAuqUj6TME0rHDOP6FPwOTTHauzRZ42W71roIYcw7slHdQzC1Ssztijgx6CqFblNGlKmEhWCYIkDnbXImQGwzSjjN6uxfRZBldqqOkEKs/hF9GHJbDCawyfjXPJ8CdkliaBhyOyMoceSlaLAYQpVUwS3huAX80RCnFbHl4rE0q3I8IGo+kZIJUD4YQoa6Wy7jjP2o7qV/JvajHjvT912I2VTDHXC8JpUGUxehw4R7lSqcw96HrESr02VGgJAfgqN0XifRZ4BbljFqjf8FrpUgSpPJ+qjChjGBwCgHcwjx8BAHXZ42t9GI1VT2FeEYNfkHwcRAlNDQ4mdl5KKqQpo3mtvRwwisaGKlbbeybToWTgAWA0ydMKLtOwSo38tQDYAx+we/cR4OkzEmUfs/tGOGU6Vda8VlBWw9RS+bda+ATs9LmJhdl2hG/OqHGPGGQL1E1pBd0TYpi6LEXOoCh2BgfHgCzPSLB8wFGj6lXQih3MEOBnNBPL9g72OEA3PdyU3Ch7P0IjkFmE1Typbpl9ywCryAlDaAbuZWJUGqyhDDOAMDjCt2Y5svsGumkRZhW8MjBRklvMCZFZgeDIfi+dbVWWcFcr3p/IM3P0Q0q4f+fJx8kyEqLj95YERJUl56Omchk5iMIDc4TDnR71IYSx0xLnH8BO3sm5F7uDAM/RB+Pk33QpQYxAAvWx+8o2Q9KIFXrnHqAuVGYpiyyKdUHMZPVsClgh+GuNsDswPpiQtI6+l+eFh7wc50cVt8ym7ncIAarvgPWOXDJJdChBThETNako0DOtoPOM83NwPDsEchW9wFQISYo/e/KI86+XzsJRAk+lYIVbEXKbCpRphECZ3zYbu4J5Bj+voOseZTMgGPoEEQFiRgPPnJ1Ys2+FV0n+ly8z2MiZyci3TF1ZIHX0QmYZLPcO/fkEwWruBWKK6DOF7ryCqQfkexYllA+YPXMob2lgDYmR4CepwOK1RndeMSExCuVnBuqenLdgiVQJhsqk0fR0mOfwVkFfcZ8YphnsoYe53hDK7mhOHDurcB7FXU+1zswCZwv4SQH12UvOsbKQOFUnRSy9mDPxl8JW5PRRjKaAqzKog4UKPfT9ftwvRdI7xSgLKmLGOYEoNS1+QUprioj0wxhXJP6OTgm2r6n8picTrgcnXZOGwjchiJCLUiy+Oo8AdmjDD+k59OVORKTroDL6P4S6fsD1AJDciyNmHtZKi1Uz8OvpUq2kgpVMArOHlczQtHyteAyoKYNaJVi7mAGGEIDNlg92UvGh1Q301QXC2QShpjRnkggWF3gASS1JH+kEHy5W1LufZdCt40KucpKMXlyTHHq+QqhyDFOD8mUH89l1OmhVKy3J3MDNcjRPJqg+z6D6Hvo7n0LnGQ7//TegS4PJZ8BwOcPtL1aYf56huBXt9Agn0pr+HsDY3tQjiS+/HqtpQRXwGTcDe+hx9rtrmt08fwH79lsY3r1M760/egFdFhjKJfTAzxiWFfqFRfXZHqrpsf+5cwA0LtICIVOiMuSXNOkzz+8QZhMMj0q2q2/XKG/XgFJwb13AFxa+MNCdh9k1ieSJlq3hcL5MUBW1P1I+tethpxO4JxeEaZ1NoFoHs+F3DVqheXsGV2nM/38fcy6uFuOkEeK53x/IzYhQPCAZiKmi4NyTADn0HfxRwUiCpYocw+MVfGWRPTfcYJr2wfXz/ToEpWHm8xOIiCMxvSigTA5f11+AFipjpJOovtKJSHC8D4j33VoemFq9rmTIfzvplpwaQao844YeSahff5tQiN+jV4eOTtpFQbWjLBulO+smQS2CVPzVZk9Vnn5AyDPO58FDxeAiXlQMrAFW27sOuOvg331E+OJpi1+zu3Fq9KlcgN3UcLMCm5+ZYvZpi+yPP6dggTXQL++g8wzde5dfMAjVRyo9MUChwlvILPqJpSHi/Rb+8TmC1jAvbpNMcjgeSWKV+2A99fi9VFABJLPB4XzK4oMWCEMka/dOOiqa3VCt0D2ZQg8U2DAHBvntkxmGSmN2d2DwV9C3aZhxb3S5Rv7ZwC7o2QJBa+i98NE6KqqFIuf9DwHm/gCYEt3KIttwT/BnM7jCQO+FwxE/Y5pxz2lO4DVdj7Ba4PDBDMVdj/xaQ20PYobZjF3OvgN2BwanF6U4o1MFTWlNyF0kse4zdpHOpKN6L+fMSYc23K0R+o4VfIHcvK60l14r1U/1pn/rOu4NJ/K9YX/4U3VV/285QiT1ng5j4C8WyXQwNDSKVJcXCFUBbS07rtfXMJcXCJdLMR+VwlUIJ+85TYWo6Mwe+pMCV90grDcwV1fc5+N1iYgJlku41RTdeQndTaBbB/vd54L1Z0fRzQoYKcj2ixz9zCDYCxYPvvMpCycnyYbpB8rXn0/J8TopXKmG6mE6Qqu2O6jlAm5WwL7cILy8QRXega+iNHrko9ICwF7voNc13NPzRAT3ViNkZwzgO1nnAg1TSnG/LnIKduxr6LpF/TNL9FON+ScAFGD6gKFU6OYZlv+lgXl2S+6C0Vj8p2uaBQIIRY5hRn6sGijoAQMcH2cYSoVhqnDm5ygHR2K+7IGhMGgvaLaYHToME4NupjFMDYIG2oXG9KXB9LNrqFac5PcNk72KSUb2YsOEM8/RPZqjO8sxu9kgNA28mEtruU+Eoq24zgHpBruETBkWJYaphTlQdW34/BlUZmHOVhQ3mVXQL+/IE37nCZ/dZy/oibOYMX44SjG866H6fuzqZtmY/AA853wgxznPYZYLxhnSwQt9B2ylSNu2o8/QMACdh6+bn5yh4U/jCB2dKWn+ckKWeb2VejJ0niEECaxfe104nJRJg5eFpYUQWDAgOEjlzfvUYQkNnU0THKNteRC8/YTtu++94H8Xi1G5Jl5nLio7XTdyQw41jNYw6wxhUmJYRtndDqqqOFEGB3Vskd/l0LuGh1z0OZhWgMkwzHIoH5DfdySDK4Xw9BFCRYdf3XmgyGHvj7j4feKtfWHgjYZ2HuZ6INHthCQVjKGnR8XqoNnUhFJUGexhoCkSAJ8b3utpBXN1BX+xQHteIDsM0K2Df/8J4D0u//29PBh2N8yxo5ts16N8NWWw9wYYRMiI31QXJNlPvn3HimSRC1nXYpgX3OA6x3bw56+44KylG65RUC9uyR0ACLVZLBh8NS3M/Y7VUtmo/bzifTw2qL53LzLLlgd+7MilKahgHl2OHTrhGqk8B1xJmJU1wM2YnLw+zN2eFXPhGEQjwi+0W4NH2O1Gopk2QrYsWQGWjoA/HKCsZYUjKupkX/jYr9QI0fxLhq8bqK5LfgF8Hm40NCwLmMxKl3LMVILz9B6RgNE8u5XK+3L8sNMgJnrFACw0SAVJTYTYFzG3MTHpuZ7VVjosVQmcLclneMV2fhLBGAaR4B2SCh6yjGvmxZHk8szC7Fpi1z1gti1Wf9BCb4/y3E8evDHoVhmy/YDio1v4xQRuSuiBajroncheziZQbYfJh7es9ANcD9YwSJaOnT42iQQJpaCODZQx8ErRONBo+GkBTHKq8A2Oh3fkPGQ2SW0CgJ9wb9d9gD32sM/vEaoCfkajM7vnmghlgeGsgmkG5M+3UE/mwMzS/LXIMawIgzN3PIzRtlBHVhJDL0lXZqF6h+qlEH3Pl4SzCW5cDQ44bGD2GeUtm5bJx0LW85MrhCpHcd+zW3qokzSuit3XqhCzU5Fx7Xp2byX5wOBomCrFqtD3nC8vpGtfVWMSMQwJnw1toB9fsXv0ignyAzGMPGeHr5auSkxIYsXUOcK4DGFE45wLhAt+heV7zeU5VGDBx0O6yBG66cSvq+sTZFYVBc/crifsMp4hdQN9vSYkKyI1tGJiARY21XRCid0T3gCceLbkGfRqydfkmXBfRZFTaWBHWFZZ95xbTcuuXFWmwofZNQi5hbua06hv1zHIP7YU3JnSd83PJghVxm6h4tkPAKbr+dlRgMN5yr0OLiVHZtfALycIlx/w9zzS+ukuKgRRttPdBFop6F0Dva2RhZA8OiivDcJS2w7uyRkD8rYFphXaywpmlsO0DuVdj3ynSfLuPaoXjfy+JjduNYebMxHR3QB/OcfwrccwPSHqvjCABfKPbmDLAt3qAvnew37ikF8fKCohLujsAjoUtz1M3UN1Ayaf7lFZTW6sUaiWFcxeoPKiSBqKDCgy+JKGhgDPcL/ZIv/YIrsuud59gLndJ/8Ps6lZYBVRkXA4Erkxn7FIMiuguwG5dIegVBJNgqIvk6pb7gNFQfgfQDhYLvzksoBZLUlejzDV1ytxMsJuP3YHBRIcOyJaeLO+blLXMDgH1Cex86kdxp8wvhqJyIkR2Zv0jh/geCOpKcsekvJOXysmZzh1tAX4UETe8EFVK/5uP8A3DbsdxrBFXhTE1V5v4F5dE1telSn5CRFGYASOAXAzAli9iy3yR5fwj6YwB2n9R0Jc00J1PcyhpdqOtP+VUsC0YnU01yS5bflaKEVtfCGC65ayvepQI7vbwD+5QL8qubh7jI7C9iTwtYCXTUv3ESYgZDch0A+LklJ5VkOFDFjO4GYFhkrD1vz+7XkB03rYP/jPDIzffkz9/H5I6l92UyPklCP+wvMS+VBMC9htQz8NwZyGijLJruB1mzpA1R3c3T07B9NJgnmY3T51DPRkwgQhHgySmPqmgV7M4c5nMI2YDb66YcAozupRASmOZHRpjcAzTpVXmGAis1B7Vk/C0D+cGwD9aSKfaBgedDYezPkQ4JsTzlR0YI6EWGuZbEkigqpkADMMD+CKX8Xxuht06DuEQSWpQlVGTsZRoC9GEjmMa10KDyHKZQ8D/O0dO6Rnkoi0HXwQI8nXSIMJ7tE9NM1SUaZRKSYibUd/Eukk+KkoH603fN7zKecmePip4WROWUOol8hBwujxcCtyVupe3iR4jQLGLp3R6Cca2R7wr26g1RWrkUMUZuiS6abeH+Fv70l2tJb/5i38akp1vMLAbkzi2Me9CjYQnhmb0hn3DPO8JoQxu0gJe4LYxreQAEmLJKdfb6CzC/hiQmnhSGDNKEFqmgFqs4NZVBgqC19mQG4xTC3s0VGxbBgEHtWSKyfuxCHPSHTdiDP8tCDkYhDzycHRATvPuebblvvAnEWTIPhquyf8JdQNOSK5GOVqzcSoG1Jw63Y72PmMz03kt4N0fk9LML5uWAWdTR/AhzFQQEDBsFjSU+ktckPSMBoxQgpiXgsgQReDc9CFSBp3vXQIC8B1Uiz56rZOVVVAdQKPijCUuFh84Jnc0AxWZTmTRuGCnEr7hq6H3+4eGCKqLCeEcXDwa8JdQplBy7kfRKQlOAedVcCCcyFYTRi2YZyQrsPJXrHZUtHv4hzKFklRTdUdQpHBVRb5zZEwrBBNVynuEzILNy8wzDPk9+Bci1C9BFmU+RICcMdzTwncXdUdhsUC7WUO3QYWIKV7O1QGQTYAVxioMqNcf9sh1DXUfI5wVrErrQhp8+sN8ORMRHSIIBhmBj7XGJxFvulgDgHNo4oGpieBPAD4knDzoCnE088zHJ5YTF8MqDYH+NLQQuDmDmoyge7Oke96ZM/EN8wzPoxCFso5mD3V/dAP0MINCYcDlDHIauF4iAUAwO4LrIhzyL3URjNRFeM/gLGB2h3Y9cxnjN/u1gmO6Xc7rr3zFUJh4QvLDvKJCtjpuo6F8GRRIZK6ajoZi5ZCTsexHj2uvs/wTTsmE95xfsvQ83ky/U2viefef8X4ciciWQYzmyKIS3QQvwUAgNIkmzkPVTfwLVvwqm35bwsSfmNlM3Qdq86R52EM1GJOQvWsgr7Z0G1WqkfBB2Lro9RvWUANAx0mq4pBedsh7A9Qf/QRQp7Bvv0Wg5q2Rbgk3Mh/+gy6KKCKcwaKIjkM2ZxGjxKH/KV4d3R9Cm5REm/NttwEOr5ei1ym1ig/27Fit94C0wnCag7zgoTZeB/DfDIqBX36AvnHAf7rb41KGUaqAFGTH8Se6s5B1wMNdfIcxrEiGIyC3Xdc0IGygqrIYY49pp96Go4da6h3H8FbDf21dxB9TlJQ9fhyxKx66boArLpK8GUOHXStk6KNPl9R7nKSQzcDbN3Bbrn5wCiS7X/xWwzk+gFBEa+q3n0L9tjA394hSjCqy3P4WQl9t2MXoyQ51L5cI5QF/JML6Be3XPBtNwYFbQu/PxA7XJaE+wFJEz7UdSKARr6QqkqoSUWp1xOoXlK+AICmIZH4tOv3RhKadKGcp3t6CClZiQG5b1uo27uTv391q5xvGno6JW9oR/lBVdesKIIBRVznUDo5q/uuH6FsuTjUit+Qajuuo+Wc8IVenGmtHeV/hThoLi9GU7TTEQLnpRe4zSD8JZF3VhVx4W45hbnfAdsdwmpBr4pnN+SX5Tm7gVVBPlhdA48uqCrXO7plr5bkO8xKdKVFMIrSm0Yh3xNeEOE+Ed4ZTbrYcbBw2RxqMeH6AUgCrVtWPUXOkty0JY1RXYAKJK7XT0rYvUPx6oDspmZQtZwDyxlwfQ9VFhjevYLZNdAfv4SZTbgPTznvs404Dn/wNkI9yucCYMdZKcqYZxb+8TkweBTXR/gyQzAKxW2TVGjCbAIVTUmVwvFnr+CtQr7ukreBXddQN4eR5yKYblWViGox6RHmhKOkLlU/QB1qwvLyPOHVAbCbVbckflYlk5BoQnd9z/u6WvKMOh75bK2FeecpX7OXCnzbpr1br5ZMpp7fAsHDnJ/JPBa42OsS46+vi9kUUJrrIr5WaSgRZYAo63xVh3txDRXICYtBo7YWvmmhdJdMSk9HkPsaxSmigfLp68zjR3x+0Z9mUjFofNY+6ILrxRzDL38Lqu45r5sOSiv4yzPmjh9+wi7M199hVbxuaXA5qR4UYZWo85ljA/Ps5FoFpRH+zz8P7wNUN8CXooQ5eOhji2IjAWeRU01yLdLuPqSCVoIMlhn04JGvBwwTg2FqcPzZK9ijw/Tbd2PBTL539+4FglXIXx3gqgz9MkO+7rnGZhOYaYVuQgSHqSqEEJCvB/Qzi35m0J5ZKA+Ut+zwqFrgq5KIqBCQXXMvc9Mc2XHA/FOfCOTdghDO1TtPAedQvqrJva0Y58EoTD6iAAi8J+x9VcDuFHTXo/36FYaJQfUZuRnDsiJ/pB3Idz3UhLEZDdVSatfNCDEzlxdj4QNSaBT5+CgnryZVKkTq1ZI8sxVl/rPna4Qyp2GjCJfgNBboB5Lc85yF4rphIf18lZJTv5iw+/LZNZFEdfPmjojSAjPOHhQ3f5ihRCXWty0Q/uTXA1/2RAR4CL9Smtn1MADwqaoWuwwpY1PqoYzZCdGQP5LFE/8eYTWnGZ9SAEwiqUeDsSCQnySl5phJGnFUpYNySAlGkg+O5PVYMZN/C1peEwInePScEPMc1Tga81gNZcQQUd4rCM9FbwiR8HUDNZ/BlznM7jgaKIUAuDJJiYYDAxi9bxMvJJH3lUrSmPGgVpGUHb93CFS58f4B/jglMD0JmuFYkwDphbgaTb6MJkE8fR6rxiGzSeovwSMEEuILMfGJvyM+J6oXHXZF+VJi1LMUv+vBC4bUAu6EsxON7tT4LKLcH7peCLfSvj2dg0ISBcCKpvOjBGxMeuM9j/PJB6iJGqtdQJLQS0orABA5ANkbcFRKA8GNHZAsA1ybqvBJNtGdVC9SoKF+6A3jyzoSITcazgnUkoGkG4Ms4OSe8d8S4dezU6kE0hklgeF9knCFJuGPZlKsIipLGKbOaVB3GjSntd+P/CG5YCS5YBeA0cLywTUqrZjkazXKOCr5WQgiIUxJ1rR2LAsXwzSDz2nkZ6XbkExF7cn8j0RSQAiY7GgES78J5YIQsV8LUBXkPTyv33BdukzBxLUUKCccqpyVXy8BQGbEH+rIQ9oayh3H9a014aHAiMEHxmvQivCIwlK84zggyhLHJCEYjWgalgQeNBCM7FXu5I5Ll0b5kUx7GvgFa2kwFvU9eieyu9JFCAFqGNj1lnmj6jbJbCupItOfKSRIFILAqOL5pFVS/Apd/wXpbR2TY/EaUpPRBJVz7SRxkvMy8hRISh/FCtJnBocQ1IMz8qs6Qtsi6JOOdtzPJdkIsTgQ16pzad+Ia1tlGQL6B5w77suaCWkUFWlaJuGn91UpuIpz3cS9PygmIZoCFip4zk+BhStrH5yzyYRzIAmZ61nOpK4HigL9qoBpHeyJylzsxlJVztJ/rekeFtlkL4vnFzx/z4iEtsu1oCAUi58S0KeYxKjEXwta/sTpVuYP3jtMK/LXWgdVRRl1AArQLXklbxoqBMpRg7GG7fy4p0C2I62g+gB97Md7G0Uxbnd83hMWBZNxqvy/y6U4Onjug1rBw0IfdSpSpPsVRNpXKeiy5DkRu71eOr/RoFQLBNIJ/FPiPL6HFKms4V4RBWqsHbv0IbBIEPj/Ku5vMVZS5EOGeEY9sAGIwVy8bjmrtBq771rxnJTPeKPUdRxvKpD+gPGlTkT8bg93GCvo5nwFNZ3APXtJ0u/3y+RCgFuv0/9/4Z+FmO4PR1YQpxVc/fC9dFGw8/HkkodiCs5fe7+o2pVJxitYPff5c1ZXv/YOJ+P+CEwqVjL3R7b7RbYtVOWYFEklwi1LYgy//TGTi8t3YI6s5EdvBLUkTCCqZACAn1donkyQV3bUC2874OU11GoJ9/QcJs8QdgeEjz9jkLBaAotZkvcDgOy2hWp6kjvjmE9Rf22F4qamMWCRiwEb5TLdpISvSHKd7I4I2x0ze615jdMK/dMFmosc7ULj6v/zHP7FK6hvfYBhWeD4jSmmn7fI/uN3+F1ksapJhe6X3qGT6ifPoNwC2upR2aujyR/uWujpFLggaTYUGcyzW+imgVrM2XL1HuryHO5qCfPZNfxHnyEs5w9IxwAhMeZQp+oWSmmJFzkwTGDmM0K62hbh0Tk7O4LXNhfnMokU9HLBzabtqHpyOmejJrfggkPDQ+xUPlhuBOU/tYV5SoJa6ATSEattITwkq2uTzPgAQAcDvMEc9asyYgtbGQNVVQh1DX+QAkEMKNsWbrsd5UrF+C3CYwCkFrUSEnBqXx+PlO4MrBqq8xX89S21/997JxlRqaYD7rfslg6DrBGRc8xy4OpMlNaO0PMZ59x6lwiCuu9hxC0bYMeCjs0rAJJPRqhVRanIcH3HIFggo6fkV917ICAd0qb1IidZws8quEWOU5kk0wgvJs+o2BPx6TW9NYaruQT4gK4HmH07Vu/yDDrPMBWz01Bk6N69SORQ3QeUVSVdxw07CQA7nIuKHYTM4vD1FfJNj/zD52N1drdn4C8GgM3bC+ghwBx7Gqfeb4CPWug8R/jme1SnUYqw02ZcI9Pff06FnYs513Y30AD38YoBSttxjWv9cB2KMz08oOueBrrHGsNmCz2dUDClrulALLK7w92ass/nK96fppX3Vnx902B49iIlIlqCS/Upg1e/3z9UcYNUvJVOZ5eaVAxIm1agfhJc+EDEwCBw4umUn7nbwbdtqu6Htk17RXJW/yoPbR7Ilirh16m6RhgC137i15EXosuSruIn8NzXh19vCMc7HGHOlnDvP4bZNjQIbJqxSl7XqP7wxbhPW8MC3Ms7dr4seWv6O58zmZlNHn6Qcwj3BxbBQoB65wm6J3Nkt0eRrGc3Mcrrq7qD3Rn6dtxvCTkqS4QyR/tkjmzXUZmpyMdCYtPDf/eTxGOJ+41VikXE1Yzwp9WMfLe9FD37Afln93z93Rp2NkUuSn3t0zmTi8Ejf7ZGyCyOP3uJ7DAge76F7itk+wx21yYPFgRaAKTCDlg07q+mIye0ddDbGt1bC9SXGWaf1jD3R8Y2APTFOffmWfXwPiqViiOmEQ5ElaN8vkf5LKQEy9xsEGYVxTYyA0xKDI8WlP+VhCm73vO+xLhDOCaqd+RxiEeZX0zgJjnspk4JYKgb6O/seE7MJuToNA3c/gAoze7o4CiQFEVCGppK68dXlAL//Dnj0KKAOtawWcaE+eIMBowVfNMk0SauAw08uQKMhvHs4qrFHGG9hbu/ZxItfkivj9B3b+S6/qDxpU5EUvas1FhBPM3S9JjxqTfZ1Pvw4IYF54gTzk5gLLE7EYOVVHHTYtKVs9pYdyRNT6oU+CbOR9+PDyxWTeX/Q2Gh+hMctBqNsdRywcXWiLY+TgzMILKORQGlFOxB5CDPqImP2C0AkMy0ZsRvx05GrFAkU62TLD6S9JUxNFTMqcwDkd6LlUTV9nQflaQgGKT38bmll0lLBRzdsAJspGKQ3K3jMwwBqvOwB5eqJMSf97AHjXxD3DcyO0Jj+h6wlgT5eqwwJzMi+f4M4CsGNWWWDmOaNg1pYyEMhwEIipwb7TAgoE8k0pBnJOK2owNpeoIixxrx2sgzUadQYwB48tkBgIrt2kC1JBLah1RtT7ym+PqoUBHhVhoJdxpl9JRUjaFPVNlORoQYBamshO9DWPvKjMjZUuw8xcpOGAYaOQEj0VSejYrGb28aPgBW0TcIDCAonUqJWSUV9CDzSwHQ0TtDkk2lVCKyJ8lV6eAFmROpsKEJeXq9GxaDfvR+rMa5k+6H1qmaq5b5aM7laegZMsOOY09DzyiTCfBnuh5OzLw8ZSidA1SOUBh4XUGVeZIeNcc+BSz62EEdakJEjYG525L/1RTSrSH52zQa3TLnHJfnA8OkXk0moxS6zGPTuFQxjZLFqqqAcnyNHgKTpr0cmKlLSTngU0K8mxTQezn8o2ntQMUuvTsgFHmSF1ZyP6EUgyCpeLICDahMpe7JgyFrPgR6NYXYvXeOlePoOeQ94MJD87FopJeJ43LkMEYTsWEYjUqjtHjwYKv85DyM1+Qx7n3xZ86NkCulUyU9zbN07hnAfXU9h5QICsRnFZ9lOL0XXvgjJ3tmRC2MLwqcS0qnwob8MrkGjaxz5/msT6CccQ0D4FnkPJ951zMx0kZsCMgHQ98nbzEEymYn3mndwq5z8pDqhudK29Fz4zgk+eCQSUcuI/wPISDbdYnAjq6H8iYl+Nln2cPuLiCGm4yFYgc62hukdQ2w8i9cKHPoCeEsDNzEwvkA+5KmsDQ+9qkLq3snBq1+RIZIghTNGKFVMlVVjusY3sMcehSG5HOEkFRPoRTv4ZEQN5+bZGDN66c5q3JuVPMbXOpUJFPjI8nsKsY50iFSARgupjREFRPb+AfOs9CUumvyHcGuhYrdEiPw38PINzrdz2JXWRlDqJaosaZulMyj0EnR3vZj7HUy0ryW+au6np0i+f2o6AeAZxNYBEtr47Rz+yOOL3UiooscaP1YFQpebjYnqT55yCrPH1QCAQDDAHd7l/4aBso7qumUEpWxAi0SqwpghbsfJ4Nb5CQzbfcI50sMswL21QbKOaoVCAnRnFSfee1U3/KFVGpf/3LGoH/vkm3PP/qYBxdA47C2hV5N4UoLXLKCaj59Bf/kAsevr5DtB5jjAP3RC15vVUKVBfx8Cp9bVgk6l9zUYYUPkzHoJ/myg3r6CGFSoF+VlAe8pqGhn+TwpYXKDMwLyY7fQPwfVgVcrlFtqQahtnvoSQU9Y8tTLebji0WbP3u5gb1WiPUJdXEG3G9h7gKmn4Kb5HIBdzHHMMtg1y102yP75JoHRsFnnqqccWQZ3JMzuIlFPyNZ1cTkLQQg6mAXBdD30K/u4d6+hJtdIvvfvgO/P5CPlGforybIrgF1OBJC4QMwrcS8idWf0LTQizm7XDf3SZIT4KEV/JDkH0M0zMozGgR1PcJ6wySh72CqCtAn5LEj+Hq5f0opYD6judmra+KaV0tW7mLV9rUNIumKdz2v4StuaKisJVzltZa0PzEkHX/oEFoHj4fwmy8MraGeXPG/z1+JGVoLgLhl34nvxe0dOSYn3S49p8a7v1tT2rkSz4HtHl6UdtC2PJCqMhVHktOy9wDaRNTUdzskE9aBhHgl0ryh61hBP5vzcGwdVDvA7hv4ecXf3zIQ9+sNq/LzGfShhj42VIFRinKxkThdZBjmBYapgc8UZoMDtnuo5zdj93Z/gDse0fzf/jscHhs8/p82CMcD9KRkwLw7ALs9fNPC/sovwU3kXlsDv6iAoaCyD8AAwpLrVbw4IBQG3TtnyNYN9OYAf7lkpXHD7kt+fWASdH0LtZhDrRbQwQPWop9lsLWD2u7h3rnC4b0p5v9lQNgSC0/u2wC1PWD49LNkVOvefQSfadj/8inPlcVUghafhCjCcj4WmrSiuszrc6ggBl4VBcIwYHjxEvb99+AuFzCv1gjHJgkk6JOui55NqXL0+SHNmSQzm+VQecZK6ffhcJwaGSI8FLaIvgAwBrrUD7unsh5UltPwsu7xVTUT0ZV4/AzD6PfiX6v8egffvCZ+EYQnFoNKEa6h3H8FtZSzbrOFb1uYl3c8J4S4HZyjgEpZwC+ndBDf7oUn2MMfaiB46MdXlPmucnYbdgf47e4BkZhfxHDOfv4C4aNPHiizq65H/scne2Cm0S0sstUMSiTCVddD/dFH0NMJwnwKrLlP3v8PVwgaePujC0KVltPxI9d7yuHLOjodKsuADFR/qjL07yxhjgOyj15Czybwswr7b8zQVxrlJxbq2KD49F6U8zImFs0gansZCduZxbAaOxmuoKRuvulGKXPx9rKfXsMcjlSzmxTAhGqdqIVncnsPfXUBzCuJZyQR6QZoUZ8CkODValKxKAEAdQNzgpgxdcOudVXAnc9w94szVHcO04/37A7H11oLfz4nf67t0h8A5K00ojh4tgR2BwzPX8AsFlCTilITPjwshlYldD4Wd8Nuz3lZVanrgVPEhVIPPPa+MK9f3YwJT13D3d+P96HvEHqJQyL0PCpw/leML3UiEgeN2/oRh/iaEU/oqUbxJg10PZ0mg5ZYZU8VSzEyC/tDSmRiBVnPZyRnbzvoowTumz1sw3YahiFxRZTAsiIOnPhxwen1YpwlrVq9kUVsDey6ZoVhUpEIK9KPwTuY2x20NaPSQ0Zte1N7uEzDLXMUTy+4oQmxW2/2UM6RyL05JqNFVkQs/KzAsCiQ1yIRLIo8xfbIf19OWDU9dnzfKDupNPSjS4Sc/iOq7ikX/OpATHeUw3SeijQCiwoKJK2HALeasQJ5bMQQzI9qJO89Ajxg7rZjYln3sBH3DowwJqUQjQRJmtd0qlc05DLeAx6w9zX05sSErusJ8bg8oxLZ/khdcENCmAYExtHCbinlq/Jc8N9SWbIGmFRQR8Bv98SDGiN4Ss4jdpLsWIk0BioSXqVKm8wzAc6dnJVQM5uyUt6PikyhacbEOGJr+yFhxAEkNZYHPKhhAPYH6QLl9BH5auciAE73Cs4XPZ9DKUXSXnzN0I/7BkCIlPMPN3GA8+x+M1aQQzST06OZnBflsswSBta2DCo8yaQ0mXtYIFHWcl+KndmaIgXhKLCeacWDPc/pCN4PCPu9HFoUcoj8kJiQKADY1zIfR46SOlKFRYmL8APSaz+IlPiEsMOqTB2aoGgwqDtij/2igpoUrLxKQqbPVtCPLqE7j/JejVAxJd3B5Rw6z6H7Hk6qiWF/GImbkXs2KUazxQB2bQZPgj0I3VJtD1WHk/2BnZCY/GNwCO+/DV9amN5Dxy5uNyDbDoSGTSoGCd5LV3mAnk7Z9ZpUY6c1mlYeKR0aMksVmv2BcK/YYQ4BwIm7duQXyFl1usZD3cDcnHQ0IF38iklb6DrCRgdHoRXpmpLPlicBBa01eYk1A9c4B0LHivuDzv5JFV/lGdRsirA/0JG9qkaI3zCMXZh4XV/RRMTXLbw/jl1pgF38S3pfuRvCa5O88esdSu9HA9ss57ptWoT1hkmeVOL9/pA+I3pIoe8S/wfOwctaYEdFOuXHmkmC8C9C16X9IqlzCU/odKjonwZ2fRAYM4Qyh24HlDfqYZCsNYVfMisKnR6h7TB75oRDJXyLnvNZdX3qikbFNwzD6JkU748RxEJUuJtNqOC5KJDtPbK9dKfLHH41hZNOSX7XsMgg1+YXDKDNoUvcs6zp2Q0Rv6HhbMJORAgUEwLgpiV8aWHXRxZdRV5cC6FbDZ7wWOERBg1gNuH53nZcQ7qCP1sQ2rU/Mn6KsVjXj10tAPrYY/lRS/W8Q8P7nmf05gCgT1A6fjmFm5ewN7QtQEZ+mDrUXL+ZiF1E4RzIOR4C1690VUM0Qz4hvocugz/p6qnMjkmGOolRT/4tIS7eAMeMXNQI5QoD4yGV5+n885vtQ/7eDxhfiUSEAcBruLT4AJxL2dvrQ1kLfXHOBSPa3bCWXgw+EMs/DPCHA5Up8iwpbKmqYnAhcnT+VLELYJVU4E7Ujdd8KGI2mBRYBg8/yXB8q8Tsew7q43vosxXbr3fElWJSMYAvLFSX8XC5ueOkjIFDkQOO+vrtRYGh1ICewdQOdttA72r4u3tizNsKYbPlQSabTShyuFmO+jKDXVcwO5HZk66RubzE8Na7sNsWZtsgbHcpeFOTCdwljZ7sq7F6gGevCG956zE3M+eTqkw/y1hdvNkB3sMtcmJEjw2Dvr6H326hlELz+H0AwGRfp1avPjbAEfQdeH1EyIEQO9tLblrlx/dQjUikvrzFcH0Nc3bGxXusoXSF/nKCbK0lEaFKiipybizDAFUHYiYBkXKOC51kZT+fQosfSGi7kYAeORqi5nY6Bx9M5b4HZC6rGGBETOeU0o8QnDLACs0XuFBevELk9x9o4cfPiZLX8TNC+DORiMS9AgArQos512qEwQE8dKPTfQ+ude+Bk4pQHLGjmqrTfQcEO0onA+yo5hnCckat96iEduJj8mDkD+VWY2Djj0cq+8XgIM+YpBwC3HbP6uUkJ0SgH1htPR4Tzh27QzLJi0Mdm7GTInyr9Lnx97OM3Vghk0ZpS8IRWDHu3j2DNwoFQJnQpkVYztBdTSnP3Tg6PcfkKjPUxZ8UQpJ10H0Lv9tBB0keHCEaPpvATTK40kD5gCwE6N0A3NwDqwX8ooK53nC/Ws253nYH3luBymIYcHxnhmGiMf2sTt1g1fTIN51gwtnBDsNANRuAicykgp+UKYBS1nL9HGuoqoSf8ff8gcGlKguo1ZI8mNOpJ9LN5G+Fh2a6+wOTsFMlrnj9SvF3RGhFSWIc1hteY/TBifPGueQrEZOQ0Hfcd+K8Gh724FWeU8lpt2e3ZTEbFSTrBq5llZgGqforu1eEtoXvXsuylALOl9zrb++ollkWKfmLnhBBYFxRdjVy0cIwwK3piG6uLr6AxEifHYNYIRe73Q5GLcRojoIR4Vh/QVdEFTm0raSLJopczj/gG7IYEnlyMr8yizAtoeseenNkTBCT40mFcDnyP5Tz8Icjph/txdtH4JJdz67M4QhVltznMisS1/TdCtPXOY0gIiMEhGmJYVGgW1qU1x2hlABCWaBb5nAVDQSztUrqk8gzDG8toIaA7OWW/kW5fZhIlQVctUDICIlCVZCnOs3oMP+cktrhWEMvF/Bnc+4J/YD+6QLeavr/QCPYEjg07FaUBVERl0wo844O6qHIRjhTFLoB45Tij9bjd5f4z9cNZdyloKnKAr7M0FzlmK0pjqCsQfCKSStA6J7MEzWbck+/45mkqmpM+o70tcFsykQSgGosry3Oh7JkUehYU9jk9EwoRlf3ILy010eaT2k/IXFelWJCaY0gRr7wq28cX/pExD55jNB2lO+VgCtVOUW3+QtDKfp5gCSyhBs/HInzlgoFCWZqJPC0lN9EVbI6qQVnHxdvVfJQObCqhAdV1iFh6FJg6UEdaaOg+4LZOEA5WGuZmYcAXN+RkL5gVQ4tIRkJKuYp/6bXO6jnNSabC3Y9jnLgRfnRmj4YocwBs2JQFidq18OuFaYDFXbCYsaq/+BgViuoIqchUnNSdSkLfvfgR7lKAP3TFbpVhul/GhA2W6itOJE3DTAr0VyWxHB37JDAmtFp9fGSsIjeQZ8tAB9QPpcNKLPA0NLVdTFn4HBsWDVtWqjZFP17l9DHHvogDrNaE4bhPBVsSjq16rJI0AgFQF+eI1iD7OYIfaiTMaQyJn1HXkNO4tjh+KDrAIFYqchZef+9pGwRAwS7mCP0Pdz9ZlRbO5HUjOaDqixhn5SJNxKaBmggyjbqjbKhaWqfEFdjgBvNO0lkVaN538kGE7ovbjZfpRGGgXBI+d6xouPv13zBCY8mKY+B9zAUWVIdeVBBLoWc7kXuVmBuqqq4zrqeCWAsknR9MpVCrISeXqNzUHUjxOcTKc4iJ8fKi6TozT0Th8UM2O6BvqOHgNHA5zcIfQ9/rNnCXy3H7lvGIoZ/dUOZ8NkEYTFNYhHEmw8j/0u6IMgzHrSxoyveA90yR/n5Hvp+i+J7N6wgVkVSfwkgWdNu5WDM5T1e3ZDge7ZgVdI5YFIygPm5b7J7uycvzi+n8BkTxeKaJo2qJwdLlQVNX7d77sni0QAAYT7let/u0veffvsOoZRgLEI37tbQt/fsBuT09VHOJ519dD3CfIpQGMpzitrfg3uaHpSCvrzg8zvtak4nCMsZtAT0frunjPPPfB1qf8Tw8pqEdimIcD5V6ZAPg8hyZpbKhPtDwsmrmJiK2SALZDRZTF3ikhC3IJBPAKk4ooqCc8TTLTty04JUd0PXfZHv8mdhiAS6lzUcnr3kz70D9EnHMEraKj2KokCSzsMxnRup4FMWgMtgzs4omNE0SUAgdB0hWq8sQt9TZSkINt+dJEeS0EZHdn4AO2PwjnEL8EZ1xWSIqBST5raH2tciZsCzx726ISxwU5IfVeVQ0wk9gT59QVWw86WYKTcPK+Zaw13OqRLVTKFbikXwpoS0h+jFlB1OrWH3PXTnYe8OXLOTErAapvXQLsC0mlyRskjy5nbXjQgA8exw1RIqLGhUGoLEKz2NJacVQllQFjjyRKyFilLmpYXZ1zSKXE6gMg3zck2Y6Gom3iAGw/kUPtfIP6dberBGOD8d/LyCu5wnnp2K3ZLVnPdpuycqR+69LgqEn32f63h7hNm3mHzquYdJYqCikmj0+4qj6wEtHJJYDG1aimFEtbTdns/qRNAgrmc9I+8XTUMVsaJIHb6w27EbJzFyaNovnFW+bcltjcV358Yz6zDG3bosGLv8CeNLn4igpBGcas1ozBQ38O8nL6YEH+8dwnabcOPhtYcd+u6BulDoB3FZN8IfGURXXngqMUM8CokwEU3l786TDBSlGgMxfqoboPuQ5CJD11GiLzP8WdtBlfJZzo/EVqVEHlbIm21HLkOewzRFwvyG1XyE5URjQivwBzcSolXTw8S2qTWELgDJ10TXJ+1XY4RQJ+TcXq5BKwxTi2ZlMClzYKeSTHCQxMwVCnqQzxHietAik6csjNUkbfkAFcCWrLQ04T0rApG8GjkOIg7QLTJkCiSXyf3UbdT079l2FHUPlecJ/xtK3o/oBh26ntCOU6ifEMLYyWKn7IGhoHMIxwFqMYefTdi27fpREljaw/AOcEqqXyf4Yy8E0ZzVbiXQmCjxmA6RCMt6nRim1EhaPR3GsPoUq1vWjpLWQu7/k/wFvvTDeyiTjXuC0uIMy8p3wspKUSIJRiRZ05NAQNr20Ca52pJAGqErms/Pe4Tej9XS/sgEtCwTIT6NuEcMA4me+kRcQ2nAIAUWYX9IxYw4Z5Tsg7Ed7tsWZkpOAWqBBBgNDBi15gHxIDLQsVqWrkm+m/ejjO8JpCtoBVeSKB+6HjgchGB+weuOSXDPYCV5hcSCCAB1zEdiaJEDmcGwKKE74aOVOSWCA6CGAL0fu0m8RKrN+cORBaKMqmRBq7Fb2Q9pnajbe+gYREWVoraD3+9h4hlQZA/l2p1L3kyqI/crkT4h+0zspCmdXKhV054ULywLQ7L3hL6j+uGighlOSOLWJqiOmU3ZvfKRnOsSeTypuKU93SCaDaopTQ6jOWGaj5EPdnLtcX6rqmR1+NCM0rQCqUiY75Mk/L+Sj/qlGkrmsNIDkbWvc8kiVyoEckC05r2KUJQQkDRkwWcw7iUUaokeMFFm1UuQ6MWILq2/IQrUSGEESAU0udj0GSF4+jcoDZ2JKMvpeWBE/vXEbDV0XXIx57X7xJFJHcwyhwoB7tUNz9CL1Sid/dqEcJWFNwrGKAr5bPo0X8OxZjEtzxhjSDeeQhgtP3NSEkrtA1QXKN/rWbSMfiS6PrnPAOOHKL+7leTg2LNw0PdQvhRlvpN9XGvuMZkRcjhFATB4+sWIkhT8BDAKPssxVAY+0yh2B963s6VwQ1tgOcUwyZBJTBXhrlRL1Hxm8VkYejMNs5zk9YaqYnEfjh0VJYiaEDxw0qkLg4MypwIKnvtoFL7xfoRoVdLNVfR8SpYAycNAIcrOxzPFdz2Md0hUh+DHPSXujcPwxW6J8ETCMNDYO8u++omIbzuSsaKCRZyUNSeQOV8JRva1/pBia/VNLafTESsSp+60fK9+3IiONSERV+dATUhC7M6Y89W4SViRzVQqwQAY/LckV26I+0wVU2uhb7esoB+OUEbDrEuE/YHEtLqhtPByzk2laRHevkLz59/H5JMtYV2nnICygH37KcJiStUoAKr3UB99yoPy/aeAl4N1e2DH5+KMXQeAC2u9I4ZVZB3TgdgPlKuclPArSueZLsCvptBasyUYJUn3DaqXJZW7fGCypSkl6CqN+ipDdd3DbptRpi+zrKS8uJb7UzI56+lsHZznfQgB5YujwGwAvLxBONYwj694D4410Pcw/UAi6fkKYbvnolnvuDA9OxC+rmHfekrJvFeUYfV1DVPxO5paWsgtF7t+7x0EKwGdooZ62OzgNlsGScZQpvE1V2I9nyc8aex2UTJzVNmJm7hfk49w2kYlubQU8yCZq69Jer5xbhcFMJ9xPtX19yW4fmWGc/BiYgdAnNX7VFH8fvctOAf16obV/aqSKiQhUe72bixCTCZ8FpMJ13zd0Fm562CuLqG05vMzhsUT5ymQIIUNJfKo7tU1O5GlKKhpA78l3NFcXTIB3u1piikJQRRYAKTlPp1AW0tZyowt+dALrtxamG98jQd63RCCGDzde/OMr3ltqBjMC7xSbfbI6hZ2XZDA3rZQF2fsrkYVHlHS0ps+EaRV1yOUOdxf+AXo2wPctz+iqEIUeqgDLAiXCvdrIMthduSQAEB4fA4/KaA7cjpCZqAzS9GSID5LIVDF73ZNXsfTR1yToi4EreFzywNe7pcRiA28B67vHpiOAUDY7mAEgqHyHL4djUBhDLTWCNbCnC0pE2w0MJ0QznbSFVezKeUyo9HYhoUKXY6EdlUWTGyUJuzy5o57VVk+VChyjlVJy0AuQb6kGPGmwkI0TPWb7YPKfZSK93VNmIhS7AQAKZhIZ1/fY2i/ujrfqiiAzo98HtkvdFmeFBRFwlsw8ZgTAuPv7smvmTysQIdh4P7c9TCaxcNQ11BFAXN5yQq0iAMQ3lICfQe334+8VUkI9dMnUMPwgJyuchZA/ctrCpqEgJil6MkEWCzgt1uEw5EFgOkE7uk59LYGXt0mbliCYVUC967KxFkZHi0QtEIu0uFqveM6OdZjQaxl/OJyDZ9J3BMKwC0oDRzJ0x4sjgwsBJu3nqB/uoK5kfuy1tBVAV8taJh8aFkwqXLGEm0HvLzh9/QBupmQa1vQsFTdbQRF0EK99QS7/8s3UN50sNc76JsNn+3FiqqSRhHSfn+k6unZikJDAA2V2w7q81fAxRnc5QzFTc2iq+ZewIIeeUH65R3KTQE/pbgM5N9ULfvSpEpKY+FyTmrv738XarlA+/Ur5C/3wPNrgYKPCmO0BHj4zE1VIn5I6Hry0y7OgceXUM9ejfYUANShhp5WUBdn0PsjETvDkLotYTjhlCoNPa1gzlfwuz3gw2iLcbmAfXGP4fNno3z9iajF62vmRxlf6kTkAd4bQJLxBavFSfrydUWnU8KmVDWVMTSaijdSKW7AMdOMxk8nBxAASucNIv8aqwuniVEsRsQqRLym2AIX0z3dDpJBk+ioNDkJSd7TeSrYOCdVbz1iPSPMJmHc+b7wAQpDwnEnaVtP0qXqncB9TOqMxM4GyfSG+MEoA+c94MfqcIS0sa0s3QYXoHsP06n0mcFoqEGloC+2RiPmOnhPWV5lYUoNPQRRkiBsI0QCujzfZNQj9yVN/sERkhVHrACemsUJeT5WpmA0VNB8DvF7S7U8bcyRPOucVB9P+ASxKi7vHSqqFqkIw5HOV3AOcBjnT/wMPc7ZyABl9Vy+k0gv87s6QIWxAnsyn6OMns6zLxAVT9dGMvaL8ySugz8LI37PN8gZp2fwhgAumfnFZxHnhVYAuBZTxVqpsaIolelTmBcAkbl04+edSn+eGsolWUc3/j2S4MEkmO+vEowvdT6sYYUPJ9cBJLgi984+va+SBDp9zyHCBVnhj+pcqnfJSE/F9XVyrWpwQvL04z4S51lmk18JA+Z4zz2TGK3ZuZRAHN4liCQg3Vst+1SQNSxk8SShK9cfui5xu4LREtzLNcbqcp6LIaDgoAdJHEJ4GAiIMWUc9JAQFZq+T94dsJaV5cEnTyI+qCAyokGq4ewwqyiiEj/LuSSQEqWlU7IcYTZJRjdeFzu98edJmCK+Rs6KNHw46QqqZNiX5Gd9YHD2A8ZXmaz+YGs43RdPuggqmsdJPKDiPY2ds2jsq6SwdXJmh6Yl/FvIvV+wFDi9ljgvTvcGP4ps8DV69BqxFipzAOxYedc0OdaTSZobD1AfwwClM8ZLIjkfubIPRgCLh2KgeCpFr16bC/bo4HNBPPhAI2A5d5WRrqDnHI/iGcmcULGzpCBIBnkPpTwQVLrH0cA3dm6UJRdTidQtANkTw0iQH2KcFBIsTHXDeF5XBfyEc1t5B19lKZ9IMVrNAmiEr6audJ4hDA441lBVMZ4ZQXgjEZJvRGZY/i303Ed15xO6Azi5z6+POBecR1DRxNCP3Ym4bwvCh8+4R+gFXgwImuVEkjr+fvyIPuNzia+RfUGdxj0+4AsP/guXGt54nr5pfLkTkddG8pYAKGV6t39zkJUWKYnDKrNURtIKIWZ5SrMyoVVSE/GHkROgJxMkSc6mASL57LQLUTcnnzXlwdjLhDkxMYJzbNsPjso0JXHWaMRMqioRug7D58+gZzPoi/ORuHS/SYei7npMb+eIfhNoW/gQiBsEWNXteuiuAtZbLoSvPeVG8HK8/jCfIqzmCFUG1Tu4F69oXvToktcokC9UUcs6pIDBtB10t4RZlDB3e762pFSxWi2SRLBqh1GJAoBqClilUHw6JkDhIOSzqmT14fElqyH7IwP+Ioe6X3OhNdRZx/akhe49eSBtxw27YrV4uJzDHCjbp4qCDs0xqRKFKp0TT6+2e0JKjIZpmGSaF7eJQGYWMyDLEW7uoKYTdD/7FPa+RnhxDT2bwiznCJvdQyEDSIJSlawiSRU6quQoMSCL8r2n1bjvO/eLgnPo6SOotod/ef2F15yS5H3bEpb4Z2w80PQHHkCzgnNfJP4rBTOdAD7A7XZQkvCroiAMBkBUlImbdJRJ1Ys5q1ktFY9QlUDdYLh7nvYqt90DwacqqhYSLGJnJsJxRH1H5RlxzXVDiNZqycNwvWEFvW2hq4pJdSeJ/KMLXgcg3csd/OEIv9vBvvsOO5mfPmM1d7VkELw/QK+WCIsphkWJkHP+mUMP1TSpAm/mc36vY80OgEAAFICwmMEvJxS+6Hr0TxeAC8j+4CPuX19/jx2VzRb+0bvwZQb7asukYrVgV2m3Tx1idai5TqNIBpBMYLE9PMQrg4GIaoSbEztGIUBvjwh5Bvd4BXO3p/DGepMKGspa6LOzFCSqaDS7JfY8fP0dVjn/y4ej5HtZkDtQsNM+PH9JUnNBiKzZaITjEaHreY+1emA0G7qO59Fywa/w4iULC1U1zodT6XhFefo4Z1WWQ1c5fNMiROnRLKf6WsSQ7w/j/BbpTjWdIixnPJO221GWU1R5viD5CUAvK2D9A5fZn4mRBD82WybsknAklcsig9pY6CxLKkfu5uakKyuiCNJJjZzWCAkylxfwuz3FcuQMGJ6/hFku4H/xA5hdC3W7JsyvzKCeXNH0EqAU92bc38N7TxAyA/UHH3Jtrw+UrQVGPtCxFt4E5yDqhnOnyJC9pBgEPLka7dfOYfc9zKdfRJVkf/ARE5mzxVh8yDOS98/kvZ+9JET17UcIdQfz/I6vWS3gPnsOYEeFy6qEX0yg9jWhW94Twng5Z4D//BVjj7ZNoiCYToDphLL3AGVzd4SHqknF7tUkp4z5s5eMXwC4n/samkcVpn98C9X1aK8uoQsL2y6BuoX+9qfSJaI4UCgyDKsJvUPmFfTdjmpYzjP5kjmC3Z6fO5tI7NPB3K4ZWz6+AvoB9j9/jwT2tgWEf2wuzsf9zjkmkwJ7IoTs4b13t3fA3T3McgF9cS5oEf4enMPw2eepi5d8Z94w/OFAqO1r74vPn8NHz603CEAl4Y2Ta/Q/pC3AlzsR0QYPJCQkAH9QSYhVHxlR7ix0/ViNkC5Bai29PoS0rMtyJK+dQmyE2PaFcVpeid2Ugbj/cFrBE0399Nk+EHsdMX7ZmFypSUWDwUPNDLwoeOAJRwJKMZgVbJ8SuVeV51RaCIEbUKwy1uLALc7IqiyFmNsnUzR9cYYIKYtYwvRZQMJbJ2z44GCOYvAo8sDpfgifREmw9gAzGl8X5UetJbxCnlFQCtoHwXwGeKWgplNowdIqw+Qx+nikjoOovUQirj6WlMT7gphAYGVFgqk0N+KijZ2VIqe8cSQpaoUoq2fva95TgYugH6CWc6qOCIwsSd8pJr4PsL5SsQFAQpldypyQeybV9pQ4OfeAK6KjmeXpNIxdK6nGxTn2APOpv7pVzgcjQquc/0K1RhkDdbLGAXDeyVzS8/lIdo8cBKlgqUnF59Z3I0Z3cFDoxso4IFVBI87tOXR8P0NOFg0pCwa2XY8Az+A0khKddCfjvhC7FyLhTc8ZmVEiI6lacrT8rITyekwWrOXe1g/jPIyiGn78o5sBGDSx002X9lgl7tu8AfKZTUOn+DxLHb0wn1LjvnWj/G0Q+VtJaBLmW2uETDqV3kM1UnE8qfaFEHiYzidcX4eaULAyJ0FU67TXRUd3TMrxdyVBgwvJpwXy3QlvEvijwDQROWmRcyHdyiiK8gCHH6vkMfgfhtGPSp5dlDxP8MtT7HjEbysNZXhfg/MUMRBceRRVUVYq31FBTz43wHD+SmcF2iZxkQjjSmOgX0ro+gcV2Afk6NfH9+NefkVGTMIAPNwLXh8nsUXaV+P+DCTVNBrvUjhGRwU+GVF+98GIvMXT7pZ8XvRK08cuqVqqGCfEmKKlb5AqS55n1rKS3yggdmGkcxrVkyjWI6Iy0tXH/ihdBJ/O8lCw427XLW0LhiHxTkKsxpcFoWJJUUn4HVU5muxF53cnnYq25ftbFl6hFcJsglDlcFUGexDe5mrO7kNp6S0i8FWVC2cuqnlJ/BCMHrmoVZm6EZE/qmYzFgO6Hqr3sPXYfU6E+FgkTjyrPu0n9nY/fl4ITFQkxol7BzsD5IxEPk6QYq4qu9G89mQtp/0hiLmp89zXqoqGqCJswPnysMMZ+mHs0sWRZeQFniIwxPwyrfVTWOdJTPFgfppcYsuR25rMgWWfVkUBVVXkOv2Q5qdf6kRE5xZoTwk87Dao0wqy0g9w3+mmnTqqv+nNY3TonFQic6jlAmq9QWgf/r7OM1a5TkYIISmg8H1kg3gDTyBWp0dlDU7mSJDTF+djMrWcw60mMK9uKef59lPA5QxSC9kAFhP43MCKmhScZyfg7XPYlxv4Vzdy4ZpckmGAW29gFgtgMeeiPDHdce8+ogvyRgipxgiRVHCgLozJEtjGVP1ALfCygGpayvkBo+u4VCn9bgcoDTOfpcM8KlKpp48Y9K8fdjlC00LN5b6u5tB9hXC3BrIc/vKM/iBN+/9v79xi7KrqP/5da9/OzDlz7dCZDlBa8EIUbQxK0xjRhEYkxniLIdgH7wQtCV5iiA9a9QWDiQ8aEl8MPGi8kAhEEmMqhRJMqVBrCKANxaYFmellrue+917r93/4rb32Pp0pVdOemT3/9UmatOfs6ay99t6/vdbv8v3xAsTzbG0IR41iSCLbBMrK93ZjW8xV7ERORMD8Yl74WeNokVSaXwBeHqmgdgd49TXANBukepPP5fpt0IGEPHOWPRSFJmdcdGyKkDPJxeye2TQKNTEEb4m9QdKk/ulOZ1WBBYpj4CytTD0y8tF6uWFfqpn3IlP7kqH/HxWVlZ2s+6wo9EWw3xnPs6w3evJxM1ECb8ske5XPzYFCbkqnG01ASMjJK9h4L9VtyhK1Wnw/DQ7mmwOzgJfVQX5pKZMWFEWc+12vA0M1loGuN7nYcmKcNzALy/kmOwyBKDLyisoszgNg6gr2XNabJpLggRbZM0qm+ZgojIOlZE2vIqV6NudQ3EnYM7UXtrOu1r1RG8D2DlDLDVZ/C7mIU3QV0oka6/yfXmY7VRvkWrqzc9Z75i8sw+tUuK7Fl9CRzyo9HdPYsZPa1DQAoNoAWteMYPDkEvQbp0Fv2wZVDRB2uBdDvHUc/lIXYuYcaNMwklFeOMhYITh5FkITZGQWUUM1MxcJ1Nw8p3cMDbLDxkSaALAqoonMQAiIiXHbyyEji4xlinzU7UJryovsiczv8DjqogoNCT2PF0WFjRDADimdxPAmN7Nc8DJL7Nq0Kluzx4sAGXJU30bRBo1HGlXIIIReWLD3vm61QAsL/O7JridRb0PD8zg/uruRIEWQBdlaLCyuaF6YIfzA1njZnzeiLFlqjojY4aDmeM69KzbZRni60QTV67lTqWccmgUIVtkQUpzAO7Ng7q84924bZ4g6d44bzU1P5mub+UV+xw1yDyISgqVejeQr+aaWUyuoWgTZTYEZU8tk5P114CEZYzGJ4KWTuTMzCnm9ZdZEtHmKu6VXAlatWm7zumQghFxsWIeYULwOyBoow5OggZAdL55EcsUQdOhBhxL+HDt90olppFUfXocXy14YgqoD0LXcYSnnuSUADUR5sX1kIlRdI0ITsz3REyO8SVtuQLa6CI3zmjzJUZrAhx6tIRMYotmz0M0WvKkJnutX/mUEHwa4wfBwDVm9mlpcMlHNCr93O12O/haikgDytWoQWNlce62JemSYpVELxeszK5oHZvcjtdvQWbQkS0etVIDRobzXCQDSundNYM4D7UIH9yyVNLufM8nqQpd1YWqmssancngYGKlBvj7Toxz7ZpR6I3IhRK3Kuz7T1KnngmWNzKrVvM4g6wgpjVFPWa6VzEbAhmALylz2dwX8EGYPEkcE0nwD40nu/6BZ1QpByEXwrXYucWYKh23ItsFFQja3FLAvLHF2Hn69CZKCQ3UtNhYyeynWm5x+5UnWBSfiRY/vwat3WZ5y21Vc0BXHNsIhh4ZYZjLingEQwp6Hd2bRjEFzXqSUnNYE2FoXrqnxWV2jY+oyPMmeksEISDVEvZVHTXyOCMixMf6/UwUuojDzWonYaKTGsyA9yGabFyYAqNmGTBUX30chewl8VgDSIzWISghRb4K6MZ+/x4Wt6HLIWoQBvMFNdiFo0yUKXgRqNHnOh2q86Fxcgmh3eBwpK6gJ08kdopPr/gO8CTGpGN7sAjxPIu1R/DFSeeZ35Ccucq97vQlPCOM5Np4VKW3zIeqaDXJPd1STF1tcLFjVr/ylJnwfcngIeok9snqDy/fqOIUEF1qi3jAypRrCz5VleiRLz4OSFDS/aL+jDivk8DOsbNFncUHBCm2ckgOwXbKRyTgBNVq5l7zZ5DSwTePct6PR4t8RJxBLdR6fydUlI0wgSLNkZ0aSsmMB7FzJFtDZ+Xnnlmyxeyb9KQYH+WXd7nDq5lDNPp9Zg02LeVGK6qCRuo1sY1MkqVWlkyYFkjxe3HjLACQ4shgnppO0SSEx3jPuk8HyxSIMuIC91THP3xAQBbwBkBLapHcM/muBnR4T46BmB7JlRB5ShfBfZ/ll2WxCaEI0F7FUMcD2xPeBJF/sw+eIkDDRzWKDNjk+xhuTZbYnMKIDeQfu/PnN6gNEELCjxSpddW0k1Bsfy6PLUQRvYhNsfYbSgEryd8fAQL5QUYo3mZlAwlANiHNnjjCbmd4bl/LUlSxKY/K+s3u5x56YZnirSXwXn6WNCikFXUjv1Zn4SLUK4Un28krj3Mw2etm1NDVadh6NXHZex6htQTf3dknt7xCesUXmO84S4P4ScqBiawH4AJMKKo36VqudN23O7L9JK86yMNjxEPY42UQn5o1QrcaOBU+CAPj/nmObFIV5L5lOF6IrEJrMBExN8LPX7ua1WqZJowAgUpbjpdCH2lSDt9AyDkJemHK036g3RtyIkwDeIJhIZjCzyOpRUrItCDlFzI8C6KppdxCFHAlqtPNraJ5zmGe4qLSXNUvGEvd6YflywVHbOGGFP9MHhKqmiWmjDdHN3wuyEoFC7uviX3WlcTrx4t326tBke9Tx9fT4PMdGOQLULGTAqLwx5WqSy8VjKAp5I1sdZAXAODbKWqzClokgZHVspIzKaGiclZ2uUV3kd5MMA1Aq8mygrCzBOCVEJuykFHSzbev6bJPUVTKBqF6HSOJVbceF2HgbESFsPiYA+1CuOCZTMsoO63bz3g6ms3JPvniaroycCGHlYLMOxvA82z+C0gRAYFMgqNPl7r1Gv9muuwOfXypGrlWfvzg1hXCUplCmqZo3NgZEpgt8pQIaqvKD3mpZr7pud4zU3pjdPKixKndPL+S0281Shesl4GubpkEp54tnEpBsdKXVTKeWydse4DBwMcVDJJ5plhgAwvTYCAKWIjXycTa9pFuQxBSC9fKTBBRniyHe2FDK6VXU6fB5jg+BogBawqR1cOd2DAbwjca5GBlij87wAORCA3pmFt7AOMRQzfYZoBqrhohOwbuZpqyeZRYOZJRqZNbsLGAJQruoEBz+ZRWalvX26rPn+Hy1yr1nnikALqphCLO5pFzJQoAjLdZoCWEVbCg1Ci02FY8jKplSS/E8VhAE/HOZVORGV83SijcFhQgSYNIwCmIA53uZij+vCjU15+fIKuNVluOj+YdGCEIvLXP65OAgUGFdd7FYB7XMgsd4oGUUsR1ITWTC1ARk9QMcKc0K4WWeGiIL41+u25o37l+S2r4zenEpjwwOcrdwitgrKrqx7UCcNTiVzTZHE2GihJWIC9ejEHoggKoG8BoSss0bDlI6j9QMcK+ULDoKU7NCcQy1tGxTu0QY2iJvUkY1MDQv2y6PH4MV6KEKvC5PeDpagV/vgk6e5nqZ4SrXbyQJ16NphfSNmdyjb54v/8pp7gsQJ7xYKhboSwnW/ZactpilkICjL8kVVY62dGOO+ngepPRMqm1hoZNFOwcqfI6mdq2YwpJ1e89qfhAGeQ+Kdqf33REax1CYLTA5BcLK7gIoNibN7qciWUQlU7qxKRVpyg6eipENzsaYpe0Jsbrt2Mi2QqueaCgAWJVNT0K02iwtm3mFE05B7llLZJ5iz+tNywTshqFnbWFSh7M6MZ01rDX9iUQQsJc6ux9No0pO7wy4m/v5DZ0Vd2HPxuiNjUFUwp40IorZa+9p4ve/eY+lb3ANmzc+xs4VMsIxRpKWooC7lndTyEIKM7RpLZClXy/WgfERJLUA3jlla1aEJ4HhIZ43IttLzKZSZnNoVLYA8IYjCEDzC7yAnt5sozoiTthJAQBSQo3VQJ6AN29sz3lKgKQ5TZqbTnIWCQ1GEOe4UbMYH+VI8oBpDrtY50i0iTyJMIAOPOjAg9g0DNFoc61PFuEx48BQlTND5hd5s+N7QDDI85mm3FNEylzwSEiIC+xDKHMKxNynjNcevp1PUalw9kWaQtaq+RrYrC8ojWzdoK05MtkYIpvvbAOb2WWYjUjAsvd8jwUQFbM+SeKeTBh7O69SV3YxSr0R0d0YsnAKssoeRz2/sGqem/B9K3Oa3VTUYU+RrFTyoshud3UDjCwCIqweuy7c5MKop2S5ut7I8MqQa8y1F7qdp2iJbhfC5P3yhoNfkMWmi3aMZrOTeRVJKUilIJciI8XagX/1NPRQFf5Sg1N5zpwzC9gQUgr4GsDCEvSyKQStVLhzrFK8mamEHNkwalvZTS2yKEmWO52ktrZEjo3wA392jhsHBYGV2PWyF7Xp3pxPBrFXGODCtqxD6kIdWFgChmp8o4dG/SYKQRFvbLy5Om8iTs+zN6XKne4lANHscLdX06CLqgNsmF4/CxDBv3Ka5SpnTpsGYCFHa8yY7PX0JDcdajQ4fWykUMQXsPeCmi1WsFAagDYiACbqZiRdixvLbAFhU7PCIE+ROf/+bnfMAo8jY97EOEhrqLNz+WIi5mJ/iiJepLbbK1KO7PkYLweZHFVaWOLn4f8BIgiBdGWqie52887U2bHGVth/VyKQ0it7CRT//4LxzrBS36RBKUEvLEB2ubjRegazCET2M0v1PLISZNKdF06FoTiBEKntqK2WGxCpz7VU2ca+EFqHb56RTBSj0WLnh7E/HM2o5s0HTWidjPeVNfMb8BoS3pxR8TF6+WKwYhXmsNQoLE5Mr4GxEfbwZvUOUZgX3ZsXmu50IRU3K7QF5klqPaWUJAhfneVi0a3TQLPNMt1FFUEhOMqcXWPTkJSqA7lEcZxAz56BHBvlPkumeStfFMHe4MDnSGuSIjjbRDI5AkyOwM9qg7p5zVXWmFQCbOdGhqxqoxyu2Q7clKXoEvGmQwruO0XaRsEBEyWX0vYQAjiVh73eRsXR1AZIE5nRWRrEeYqNIvB7lAZ70MpIvhYWzGaRyo1yowtGRv4/IKtV7no9v2AkwBNTS1a4v7K+HaZmSphGv7YfCGA3b7rdgTDv8vOdIkUo5WaJXnBhLzl1u/xuSc1zkjkKgTyVJrv2ihssahOtkRixbQ2yzAgxNGSyIYyiYyXizczZOYiRYb6vkxRCKfhCmAhmYf0zNsp/abaBOIGaX4BstzGwVOP1xJbNwNwC25VuzOpj57/3pMd9fuQgRLsC0enyPG4aQ7KpiuCNBVCzDZxbgKxEUJtHIRum0WjMdTiinUB4gsfme6CxYYh6izNcoghCSnhTk+yUMHVTom0aDQ5UeK2UKojT8/xZJbKqZwBsfaxMNeTsXF6PE4V581dNwPwSiMz6SROwsGSU0iSnTmZtB4QAOh2W2B0Z5iyJOGEbk9WLRhF3Su90oecWOBtDCLYpQrLdscIXZjMURWxXWxxdFwtL1l6cvy7N5l6adHZ7jxFx3V92r5iatyzLIpO9lxVuwFzcDIsogoTcuH1EMsOcUgwU4hSeVIBP0MvNFQ+4gICQAhoKIAWZcv2GjrsmXz6EECylqSkB0QU2IoLTjTSZl2uxGKe4/tMCnlflpjOUgHQCohgiFQB86LQDUmn+c+fX9AgB8tlzoeJmPkaPFRl02rUXXcQastMAJW1o1QF5GipU8EJAKI20tcyGkiLIbgAdAKrbhI6bkL6GUADJGkTchei2QQGBfILUXYCUfaHZYmYFUNrhBUzagZAhPCSgpAPVWIQUNUhvsPfcPKOHTYVLRgSKeZEPWYX2BchP4SOBTtuQFPLBHkCSQFJB+wLpgIfI14BQQIsL7EQIEPkgmUK2GtDLi9DGSEqRACQgGovsARiugXQHql2HV/F4b7RKugFRDJIKiFu2UIxfynzOkBpIuj0e0eI9ILyIrxUlIG2uFQlIoSBgmjxSAvK0VZeQFINIgSjheyv7/8gD+VwPkKpCbwLN8soi4NQAlXZWeEQzpGQvmyYu9hddAqUxiFKk5gZc0SSx5GTno2QKIr3KAQBIQAYAkQZRYm0FAL7uHgBoqAspgAgBKX1zTT1+3inma0eU24okgehoyEgCaRdEKaRUgCSQZ9I3ulnTTbPQEXwfAnytQTEUJRAkTAG1OSwYBJBCqQ6E8NlOGCTFgPAAkYJECpIKAnwPUtyyHZ75dM29pEII1YFOc0+j1NlGduXGSFRMnrgH46gomKDfmAAADDdJREFUHNPN7tcqIDT/fkmA8EC6Cx23ISUvvLXqQKQaMu1wihLFkKoDisG2LU1B7RbkyDDS8Qh+vQvdWuaFgPDZRpGGlvmDSCIFaQUSKbQU8JDmz381AqgC6ARCpzy3ENBIAEHcpDJpA2kH8bgP7QsM+ARKNCguiF3oGKRS06gVABIIJNAUQ8iA7VNHgVQXIpFmc/omb2gJAApI83tOx908n5sIOumwN12yvbDvk3xQkJSJjJj/r3g/ZhTeYYIkBCnoNLsfhH0uMjairbBrCiTFJQU8X0N4BNVp5JEO4UOQ4Dmn/HgpBIQvIDwCIYFSq1xflQDkQVY8jm4V5lWa59wqDakEpAII7fG7iFLznYQkLg6nON8ISOkXFpG8zoEE/9GsOKW7bYjUg5eE/AxQYt4hBAl2FKaUQJJge5a0oZpL8GsRCBIiNanR0jTyLEZhKiHL/Xd44as6DYi0A5F2ICfGoWsDEFAAxRCJcaR2e+eIF/nci0xIBSEVNMVAoNENU0AqCGEyMWQViRiEhxRSxyDFG3MkbZCSvMaTAbTnQyLmtYoHiNAHBRLwCCQSdkAkCYSOzbzxhoaaSyZzgBtbIrMpkpCqDqdrt5fzVCbJWTO2ID5pAaQhKgMcUYljCGJRCJVwDZcnBgGpoCgBCQV4On9/pMV5MY50ay85M0Qnbd5AxCZKQQnPeWbHSUEhNe/7TMSE7/R8HZbwmkAQtO/3fmcOhTLHKAGRAlrFfH9l789wgG1s8X6GRGp2GBezFYJKaE1ef/11XH311Ws9DIdjw/Haa6/hqquuWuthXDKcrXA4Lg8byVY4O+FwXD4uZitKuRHRWuPYsWN4xzvegddeew3Dw8NrPaSLsry8jKuvvro04wXKN+ayjRdYP2MmItTrdUxPT0NepGdJmXC2oj+UbcxuvP87G9FWlNFOAOvrvvhPKNt4gfKNeT2N9z+1FaVMzZJS4sorrwQADA8Pr/lk/zeUbbxA+cZctvEC62PMIyMjFz+oZDhb0V/KNmY33v+NjWYrymwngPKNuWzjBco35vUy3v/EVmwMd4bD4XA4HA6Hw+EoFW4j4nA4HA6Hw+FwOPpOaTciURRh3759iIrdfdcxZRsvUL4xl228QDnHXDbKNsdlGy9QvjG78TrOp4xzXLYxl228QPnGXLbxAiUtVnc4HA6Hw+FwOBzlprQREYfD4XA4HA6Hw1Fe3EbE4XA4HA6Hw+Fw9B23EXE4HA6Hw+FwOBx9x21EHA6Hw+FwOBwOR99xGxGHw+FwOBwOh8PRd0q5EXnggQewbds2VCoV7Ny5E3/961/XekiW++67D+973/swNDSEzZs34xOf+ASOHTvWc8yHPvQhCCF6/tx1111rMt7vf//7K8Zy/fXX2+87nQ727t2LTZs2oVar4dOf/jROnz69JmPN2LZt24oxCyGwd+9eAGs/v08//TQ+9rGPYXp6GkIIPProoz3fExG+973vYcuWLRgYGMDu3bvxyiuv9BwzPz+PPXv2YHh4GKOjo/jSl76ERqPRt3PYKKxXW1E2OwGUz1asdzsBOFuxnnC24tLhbMWlZaPbidJtRH7729/im9/8Jvbt24e//e1v2LFjB2699VacOXNmrYcGADh48CD27t2LZ599Fvv370eSJPjwhz+MZrPZc9xXvvIVzMzM2D/333//Go0YeOc739kzlmeeecZ+941vfAN/+MMf8PDDD+PgwYN444038KlPfWrNxgoAzz33XM949+/fDwD4zGc+Y49Zy/ltNpvYsWMHHnjggVW/v//++/HTn/4UP//5z3H48GFUq1Xceuut6HQ69pg9e/bgpZdewv79+/H444/j6aefxp133tmvU9gQrGdbUUY7AZTLVqx3OwE4W7FecLbi0uNsxaVjw9sJKhk33XQT7d271/5bKUXT09N03333reGoLsyZM2cIAB08eNB+9sEPfpDuueeetRtUgX379tGOHTtW/W5xcZGCIKCHH37YfvaPf/yDANChQ4f6NMKLc88999B1111HWmsiWl/zC4AeeeQR+2+tNU1NTdGPf/xj+9ni4iJFUUS//vWviYjo5ZdfJgD03HPP2WP++Mc/khCC/v3vf/dt7GWnTLZivdsJovLbivVsJ4icrVhLnK24tDhbcfnYiHaiVBGROI5x5MgR7N69234mpcTu3btx6NChNRzZhVlaWgIAjI+P93z+q1/9ChMTE7jhhhvwne98B61Way2GBwB45ZVXMD09jWuvvRZ79uzBqVOnAABHjhxBkiQ983399ddj69at62a+4zjGL3/5S3zxi1+EEMJ+vp7mt8iJEycwOzvbM6cjIyPYuXOnndNDhw5hdHQU733ve+0xu3fvhpQShw8f7vuYy0jZbEUZ7ARQXltRNjsBOFvRL5ytuDw4W9EfNoKd8Nd6AP8N586dg1IKk5OTPZ9PTk7in//85xqN6sJorfH1r38d73//+3HDDTfYzz/72c/immuuwfT0NF544QXce++9OHbsGH7/+9/3fYw7d+7EQw89hLe//e2YmZnBD37wA3zgAx/Aiy++iNnZWYRhiNHR0Z6fmZycxOzsbN/HuhqPPvooFhcX8fnPf95+tp7m93yyeVvtHs6+m52dxebNm3u+930f4+Pj62be1ztlshVlsBNAuW1F2ewE4GxFv3C24tLjbEX/2Ah2olQbkbKxd+9evPjiiz25kQB68vLe9a53YcuWLbjlllvw6quv4rrrruvrGG+77Tb793e/+93YuXMnrrnmGvzud7/DwMBAX8fyv/CLX/wCt912G6anp+1n62l+HY6LUQY7AZTbVjg74dgIOFtx+XG2ov+UKjVrYmICnuetUFc4ffo0pqam1mhUq3P33Xfj8ccfx5NPPomrrrrqTY/duXMnAOD48eP9GNqbMjo6ire97W04fvw4pqamEMcxFhcXe45ZL/N98uRJ/PnPf8aXv/zlNz1uPc1vNm9vdg9PTU2tKJJM0xTz8/PrYt7LQFlsRVntBFAeW1FGOwE4W9EvnK24/DhbcfnYCHaiVBuRMAxx44034oknnrCfaa3xxBNPYNeuXWs4shwiwt13341HHnkEBw4cwPbt2y/6M3//+98BAFu2bLnMo7s4jUYDr776KrZs2YIbb7wRQRD0zPexY8dw6tSpdTHfDz74IDZv3oyPfvSjb3rceprf7du3Y2pqqmdOl5eXcfjwYTunu3btwuLiIo4cOWKPOXDgALTW1gA63pz1bivKbieA8tiKMtoJwNmKfuFsxeXH2YrLx4awE2tcLP9f85vf/IaiKKKHHnqIXn75ZbrzzjtpdHSUZmdn13poRET01a9+lUZGRuipp56imZkZ+6fVahER0fHjx+mHP/whPf/883TixAl67LHH6Nprr6Wbb755Tcb7rW99i5566ik6ceIE/eUvf6Hdu3fTxMQEnTlzhoiI7rrrLtq6dSsdOHCAnn/+edq1axft2rVrTcZaRClFW7dupXvvvbfn8/Uwv/V6nY4ePUpHjx4lAPSTn/yEjh49SidPniQioh/96Ec0OjpKjz32GL3wwgv08Y9/nLZv307tdtv+Hx/5yEfoPe95Dx0+fJieeeYZeutb30p33HFH385hI7CebUXZ7ARROW3FerYTRM5WrBecrbi0OFtxadnodqJ0GxEiop/97Ge0detWCsOQbrrpJnr22WfXekgWAKv+efDBB4mI6NSpU3TzzTfT+Pg4RVFEb3nLW+jb3/42LS0trcl4b7/9dtqyZQuFYUhXXnkl3X777XT8+HH7fbvdpq997Ws0NjZGg4OD9MlPfpJmZmbWZKxF/vSnPxEAOnbsWM/n62F+n3zyyVXvgc997nNExHJ73/3ud2lycpKiKKJbbrllxXnMzc3RHXfcQbVajYaHh+kLX/gC1ev1vp3DRmG92oqy2QmictqK9WwniJytWE84W3HpcLbi0rLR7YQgIrqMAReHw+FwOBwOh8PhWEGpakQcDofD4XA4HA7HxsBtRBwOh8PhcDgcDkffcRsRh8PhcDgcDofD0XfcRsThcDgcDofD4XD0HbcRcTgcDofD4XA4HH3HbUQcDofD4XA4HA5H33EbEYfD4XA4HA6Hw9F33EbE4XA4HA6Hw+Fw9B23EXE4HA6Hw+FwOBx9x21EHA6Hw+FwOBwOR99xGxGHw+FwOBwOh8PRd/4PMpvH9rZl7NcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAEFCAYAAAAfe1P5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Sa9lS5YeBn7LzHZ32tt597p4kUkqKZIQWUWRCahqKIhAjTTjkOA8NUlNxIkEjQjNNJD0G8QJa1QFTTioggABKoigWIKYzCa617r7bU+7O7OlwWdm+1x3j4wIKjMy3su7gIcIv/fcc/bZ22zZar7vW6Kqiid7sid7sid7sid7sid7sid7sl+jmb/oC3iyJ3uyJ3uyJ3uyJ3uyJ3uyv3z2lIg82ZM92ZM92ZM92ZM92ZM92a/dnhKRJ3uyJ3uyJ3uyJ3uyJ3uyJ/u121Mi8mRP9mRP9mRP9mRP9mRP9mS/dntKRJ7syZ7syZ7syZ7syZ7syZ7s125PiciTPdmTPdmTPdmTPdmTPdmT/drtKRF5sid7sid7sid7sid7sid7sl+7PSUiT/ZkT/ZkT/ZkT/ZkT/ZkT/Zrt6dE5Mme7Mme7Mme7Mme7Mme7Ml+7faUiDzZkz3Zkz3Zkz3Zkz3Zkz3Zr93+whKR//a//W/x+eefo65r/O7v/i7+5//5f/6LupQne7In+w22J1/xZE/2ZL+MPfmKJ3uy7579hSQi//Sf/lP8/u//Pv6L/+K/wL/4F/8Cf+tv/S38/b//9/HmzZu/iMt5sid7st9Qe/IVT/ZkT/bL2JOveLIn+26aqKr+uj/0d3/3d/F3/+7fxX/z3/w3AIAQAj799FP8J//Jf4L/7D/7z37h34cQ8PXXX2O5XEJE/rwv98me7HtvqortdouPPvoIxvzmIDaffMWTPdlvln0ffcWTn3iyJ/uzt1/WV7hf4zUBAPq+x//yv/wv+Mf/+B/nnxlj8B/+h/8h/qf/6X/64N90XYeu6/K/v/rqK/z1v/7X/9yv9cme7C+bffHFF/jkk0/+oi8DwJOveLIn+02277KvePITT/Zkvz77Rb7i156IXF9fw3uPFy9ePPr5ixcv8Ad/8Acf/Jt/8k/+Cf7L//K/fO/n/3f8P+BQQJyDVCW066HjyF+KwDQ11AfoicOxZyvAlfC3d0DwfOk7f2/qCjAG4XCEVBXMegUMA7TvIXUNiPng3z8yVYRjC4iBaSpIWQJFAd1sENru0UvTZ0hZAM4ivLlGOLawF+eAtazQOAuUBfTmDn67g/v8U6hzCD/+GaQsYF48A4YRGEa82+QSEaAqEBZzmIctwv0Df24t5HwNdQ5alRDvIf2AcH2LsNvD/vAzoHDAN28gsxnGjy9hNy1kswPqEhCB3j8AQYG6BsYR2nUwVxcI8xmk6yHeA8cOOo7Qts33Acs5tCphHraAD0BT5esNTY3QOLibLf/25PtI4YCyyPdYH7aA9/x876F9D3N5jvHZCvZH3yA8bGA+/5Qvf/0WUpaQ1QK6P0L3ez5Pa6HHIxDC40cY14O9OIcUBa+j7+DvN5CihJQurwftWogIpGkeP6vNlm9mLJ+nBt6H+Rwyb/is94dHa+7nmZk1kKqCrJfQ7R7+5hZ2tQTKCuH+flr7xsI0FbQfoUPPvykLSFUDwcPf3r235kNl8P/t/p9YLpc/9/N/3fbn4Sv+bUwqrs1TP3L6O7EGUlW8j9vdn/5eRQmznEOHARgGvq/G9xaBedePGL43UpU2eGjbQUc/rc26gnY9MAzwmy39yXyW30K7jnvEmOwP7dUV9PkFzMMWemyRLkS7jmv6bAXsDtDdDub8jOt5ewA00Nc5C3XT8SH9wC8CQIcRuttBnAOc43tVJTCM9Af9AIye9+DRzRGuydHzc59foX91hvJHrzG+eQv77AoigrDdTteY7O6Be//qAjDm0WfoMADew1xdQIsCKAvI4YjxZ1/Bnq2B8zVwv4EeDo+eR7qPUhSANdDdHjqOfB4aoG0HFAV/f2rpPs7m0OcXkOs7+Ddvs88wVxfA6DF+/W2+Z8ns1RXEGoxvbyBGYFZL+tW+z68JXf/e35lZA6lrhM02+wEpSthnF9DDAf5+8+EFmW69cxBnEfoxn2s/7zV9u8f/iP/Xd9pX/Fv5ieTDx/7R/XwUU2iAmTX5d1JVgHMIt3dQ7x/FJGk9hGMHaIjng8Lf3fNsTr7AGK6D8p3rOnYI2+0H45Z0BpjzM4TVAlpbQAH51z/K8ce7cYs5P+M6v3sAnIOsl4wn+gHoO+gQzxdVhMMRpq4gqyk2AgApS4TPXgFOIMcxxxTJ/NkcEMDcHyD7I8bXb2DPzyBpL4cAfdgAYvj5/YDwsMlnmT0/YwwBANbQr5yaKvw3b4CgsB89Bwb6ZHO+RljMeY0hAK+vIcs5Nn/7Feq3HYo/+Ra6203nb4wfk981Z2uE9fLR36fvrKN//2yIa0WsYdwQYyOpquwvVBV6PMbzo0bY7RD2B7gXz4G6hEafFtoOpq5g1muE7TZfo1QV8Nd+i7dis8/fX7d7xqpVzR8dD9PtOV0r1j6+dfEef9A+FFO4+PfeP4ppT9f1GFr8j/h//0Jf8WtPRP5t7B//43+M3//938//3mw2+PTTT+FQwEkBqIUMAg0GkLhZRWCkBEyAFgbqPaAK0ykQAmyzePwhIlBnAPEQy8UdZARGgWk9RCxQLXi4aYBxNQ+jcYSIg8i0IXQcgaAwcBBXwszXMYAYoN7ASAFTc5GEtoVIAWNKoFegG2CkhBYGJhhAYjtLDMRbaL2EsxXEVFAxwNklf90GqAcQBDAOYk/aYM4BRYFQVDCmR4jXKtYBzZIbuh8ggwK9Qqs5UMwg6qDBAi8/ojMcLYw3UC9AOaNjPHgGJ4sF76E1QOFgjIHpOmg3ALZgECQBImW8vwUUDji7AFQhh5b3tuvgUEClAIqG97XrudnbFmJKiIlJiypUOsAG4OoZMHpgs4NICXsAZLaCFg3Cag1RhdkP3HymhBoPlQFmtmLiYON7Wsvn1w9QOwIhQFwDMQZwDooCphgYZImFmDJuaMuEzAvvq6mgroEpRr7WWoir+JrKAWogbUCQElooEAwAQbG+hHreh7RmYSwPJnEQOEhwUHVcN8FCgoFXx0AufZY4qAhUFBIMMADGAQgGIkVesyoKFUEoK6DDdx6W8At9xbtmTpyxBt5vEe67VGgIBhp08i1Avs8ICoTkayxC4R89NwB8H2NhVwu+rxEeQt7zWRkBmpIHlvdMlquKa2AYYSo3vZcBMKv5O+lhPJ+tzNfAOMIcR0DSPuV1SDnj53oPlREaDAwspA3cx7ZmkO1HQB3EG8jR83dXCwYHxxHajkyMDCAqgAoP2JQAZ7PA4hwwEu+fBTrlzz14gKsAhvcMRng4izCogeHeCQ7mKJBgIMUMtpxFP1JwnQ7TWtVgoVLCDEJ/FixUhfc6BOioMEfPvWMEIiXM8hymnkFtBbgGWgoTNoC+x1r6UlMAxkJdgGKERB+LWc3PspaJj/dAVfF7FzP64N0AHQWmaCBNw4KArQGjMMtzYBgQ+oH72xqgDxBRmComkl0AxALlnL8XAy3pl+A91Af6XykhfvIDXHcGdj9Ae4VI8d66frQ+g0A810U+c9Jr4r6gz3AI0jOo/Q77il/ZTwAABKYdAR/vZ7RHMYUIA+WygDQ1C15ty3jBKNeSegQJ0Q8XCBIA9bCB993EtSNVE5+x534cBLKY0bd0PTRY2GrBcyq+DoOHkYI+QEqYdM62oK9qlggoWDAsashyBT0coX0PKyVgHbB2TEiqCoIe8IaxkVEWPUKAb9/CuAZmsWay0vXQ/R7oFW400GAgABAA8bHAZwRGCwACsR5SGdjzK663HYNbmALqGt7H4ICmhp5fQvZH6KGlrxBhTCMCeNAHDUMuAhrH2MrYGvADgraQwwg3Hvl3RoB6AZgSyxvAPXho66EDGJvN5xBreT+NYcJWNAhFjBECYC6e8Z63HdB1CMHQb5dFvDb6eTH0DxqOCEMPQWByNp/x56bM30crIPQK4wXSAwEFIOBaQQHjec5oaWAWc66xh5gA9ApNPqEL0BEwtaNfXa6BtoO/uQNMxUJwMECquxrGDSlemBY2zyb6d4EMwjOwsICaGOtYQCzXsKR/x3gDFohJ/S/yFb/2ROTq6grWWrx+/frRz1+/fo2XL19+8G+qqkJVVR/8HQAG+T+nigPLIA79AB16hLYFug728oLBBMCqWdtNFTxgqjgFj7DdcnE2NcL9gZt4NuMB/d4hzIpgDmKsgSxm0O0OYbvNr5H5jBvpJJPWwwFhv88VbI0dDgCQwvNBz2rAxszeB2C9YtXg7n5676ZG1iEQYTXTPc5++TuDsKggXmFuH/J9MKsl0NTAsYVogf7zK0gfULx+AI4t71VZIMwr2G3FCsm8gTYFhmUJt+thDgPC/QM7O5cX73+2p2MdXq4hChSbPXS/h79/gDm2MMsFdL1kp2YYgdAjbLewIkCq9qbF7RyGqwVkDCh8YOX19gG6WkCbFfyqBLyiWMwg4XSjGWhT8TOcZSJVlZC2g+wOj7tcIkDhIJgq5NOvhN0uH1hVNZZO2Dk+y9lsSgytALaEDkOunktZIhyPEFdALs/Zlbp/ADp2kkxZTNWLoNB+6vzl9adhOgTf2fQ6jnTW1r7X9cnfwf3m1ST+XHzFOyaFy05SfWC1x1qIcwgdA7AP7XHu0ZIVyd4Ds1l26ADveQouQxf4ORfnPCh2e/7vOELEAIXl+3kPv9nw/89nMRHpgVADafsaC2lKHqYhxKBegctzJs0PZf556AcgeNj5M/qTrmPSEwKrnJstuwGzGthupw5N37O78OoF/OUS5os30IcNfacIzFBBi4I+YLefKn3xPkrTAJcryOhZXDi0sZNS8XsfjvTLZcF94Rx0Gf3hW3aapSx4DTcb3qfCAYWjH6sKBj+7fX4eKenStssJ0OnvdOgRtjvIsYUJS8BadrqjXxRr6CePTA7NaslrTV2bGCwIYrfEOciyyXtN016dNfQFVQG0PcLba/65c5BZMyVcIjDrFYPU3T52ih3CwwbBe9izs9hh28LUNaSOldR4Dan7KykYymvhZH8Hrqe8Zl2R1yMAmDL6rOA/vM5Fptf8vErpb4j9qr7iV/UTAHjO7ffv/fiDMcVyjvFyAfeTDj4+Q5R/uo/Vfog+vKC/iB1reA//wOfoZjUQFGGzjQUL/qeq0Jvb95+h95BuAOL7oK5hrIXvYjdvPgOOLULXcQ1YA50vJxkj73nmxXWr5yvGJG9vIIVDWDaQbuR+3e8R2g5uf2TMBUSUxtQRkZ7FDAA8Ty/OoXcP8Nc3sGdrSF1PHcZhQFgvcPzBEuX9DPahhXnYAeNIpIYq0HYI+wNjgxfPWTR8t3MEIGx20KHnXipLyMUZL+FH30IPx0exmTlb8/1v7+lLTs9fADDAeLWEBIW533NvDyPMcgHMGmhEi8h9fM+yANoWOvTcRyJwscP16FqHggWotuOefuc5asuuudQVcHUOGAP/Jz+BBmWnLca4vNHC++Mcxudr2Ls99NvX7FZUFdE6JwWJD53/powF5HHk2hj6x38/eMhs6ryzi1dlX/ir2K89+ijLEn/n7/wd/PN//s/xH//H/zEAEsX++T//5/i93/u9X+m9ePgVjwL//Lt00CQH65nxZusHVpM+sGi1HyDWwP3W50DXY/zqa4RjC+P91J4EAGthV6tcwc4WmDSYxYILrR+4eXBSSU0JRlnCVBUXFwBrbYYimZg1x5v0uB1/OPJ1ZytIev1qCT1bQu630OORjg2ADKzgS19B9zGR+vxT6KyCvd6wkwDEbLqD7i0weshyDi0c3N0RMkRIhbXcqJs924GWmbW5vgOcg31r4S+XGJ7N4IrPYdseeHOTv29upwaFtD2K1xuIDwh396z8VBUTqaqEdD3QskpM2AYDtLCaAWOsLEQnXNweGJxstpDFHGF9zt8fe5SbAw/qQwuNB7Us5sDFGrI7QnYHoGZCJds973lVQjc7tk7L2PUYBsLIwGQvB1aq0JRUNLFTttnynp+tc+VS4yEmZcHqVFxr0BCrKVMrXho6THhPpxhfq6qQrsvOXZyD1BVMrLBr37N7drKu85oTmaA+QaeuC4Cwm9q3vyn2Z+krsolAXAEdCSXSvmdnEchBnHrPDsi7EMfipOvZDzFwMBBnHkFnHpkxsFdXrMxvtu+/Zww6YNhhkKKk8+/6nDSmg4A2AENP3wUwmLCGazg89mcmHugybxjA7/fcd8sE9xkg2z1hh1U1fb9xJFRxGGEOE+RCVCHOwZytoW2LsNlx7S3mU/KbfO3r67jehJ9XOEIuQAiI9gO0ZVEDqox7nM37EwDfJyg7CYsFtCrpPwAo8AgSJesV1AhwfQsMyj2T9oZz9F0aYqXSxMTCcs8PIzBrIIiQmmFEuLvns6lr+tmuZ2HAPz5ndBhyMUnKIj8rMZJ9PqxlYFkQequ3dxl6IlXF++1D9q8iJieYUpT0HZsdk6VYoQWA0HU8/GsGL6mzktdMWuvevw+3Us2vN/P54yAGU2Ei9ANMWcAszvme78LpfkPsz8VXYPKd+Xkkn/+hQKsfpp8PA+z9Nge4oR8gZnxUxKIPCtnvSFmw43XiSzRCelJMEa5v8zOXxRxhOYe52wD7fezSm1i8iGd54fjzDxWgEkyyLAhR9B7S9twPxvBvx5N1o8rXGwP72z/gNbdDLOAxUREj0HnDc/KbN1zPVQmNUGwZRgAB4XwBs++gX3wDEYFdrYDkfxIUMp575W2P4vUDoUouoj1iB1LblgWYqoJud9DDkffRxC5lCDyTY/wn8xmkaehLAPq0poZ9cQU5dizG9nFPxwRE6groB5g3x7ivDMLvfAwtDJxXGGN4Jsc1IMc2wjPjc4yFC/fpJ/SDRoBu4PUhFsIPR0hVTkkQgPDtG6gq7LNnGZKb447dARpC7NYUjP0OR4SDPF4/fQ/742+BCKdK5/6pPxAjOf48TdZC/B7uk49ZOL1/+HBnI8YUKRb5ufvjT7G/kDLo7//+7+Mf/sN/iH//3//38ff+3t/Df/1f/9fY7/f4R//oH/1K7yOOEBQEfb8jIjHg9TGAf4exr+PIytIH8KA6DoApEVYzyGFqX4c2fkZ6GMYAVQXpOoQPVk3LDPXJgUOstua2X2zjskJY8oA9tjz86grqLKv43vMwDAqYuMg1cMOmantVwi9ruN0R6kPG7RkRoCxZzRtHaFDoooGfl5BvboChpxMIyt+NIx2KJWxLjj0dkvcR5uUYVPUD5PIcEEW4P8RbI8D5EmNtoRc1bFvAvblhAJ2coonwAFXI7gAdiTHMDraIFYhYxUmJWbpXobQMXFQZiIUAHFoGEMcWsphDmwKyGSH9AH3Yvr8xzlYIi5qdoMOR2b8PCPsDqzJVyYpk21Lt4Z0AJCUr6Hp2pFpWm2U+p9PoB36PsgBaHjbheATEwJx0JlKQYJKDTQGntTEJJQxF0yEQAqEm6Z5Yy4DrJDhhR6Z4dK254hHhWzzgpnvym1rx/LPyFclSl0K9ATRCqPTk2aZKkr7rT+QR3DF1G3In4N31cfp3swjDfHuTOwHZYuuerzXTZ4wT10u95xqPpkP8OxNfby0P5Pge+aPL2OUrYzXTB/KYyoL+0vscXDNIjkG+Br6/9+wuikBjZ1kKF9c9uzVmMWcHRAlPIeRsII/DOSYwhWOV8Dbeo5J7Voch+yPpeogW0/pPPlYD4CoGOs5CRVh4eXTfBGFR837cGKjStydYhNTE6b+L41Zrol8L0LoCnIUcGLiHtoMRgcwtEwoNE+Tu1GKlMhcrIrwOY4RNGcM9ai0TH2MQ9hEXfraavocnrEJE2DVN50PhyLkZ+lxIy5ylvgdcMQW3wQM2dstS4csaXnuI9/JUsT94Joqx4PGoUJfu7dgBpoLMGmC/f/ya3zD7s/YVADKiQsUAQv+hwJRkJotFjXTfdH987FODhyrXbuY8nnahRCJs2AKJexDX0tT1ZkdGihKmOYOWBbQpgHthgbQoIDZMRZZxjKiKWLRK50i+pgCMY0aCqCowDJCR1yJAhKJr/nvxAWoMwnoGGTzM9siEwaQE30BLB+lHdoJmM8iMgX9YlLB3hK37ykI6g7A/wC7m7Mzke26gzkIbJgt235ET+bCBPV+zGJGKeycF3dRJsNUZffxJ8VeLgglBXRMFUTj6EWuhdYkwr2AKx2Tk7h7qAwvBqYjXsaNKLp8B5BOEwiA0DuILFjswFSYeFawByNkaupojlA6wAvv2gckIQGjXdgvrzlkArSYOiUiE48XvJin+ethyvcXONGIHTXrGiLlgMo7kLolh1+RD3QoxEbIWr6coCDGN3EGdN5DeQU460HnNhpDjCylOEEW/ov2FJCL/4B/8A7x9+xb/+X/+n+Pbb7/F3/7bfxv/w//wP7xHNPs/YzoO0PsHOvGTSpYUJdvTbQcxfa7yyWzGSmNcQNr3kD/8CRTIfA4APNSsZdbsPcJdfMgxi0ztdR1H+Nt7VsaA9ypp0tQ5+UhVPgwD26RxAYTFDDCA3Gy4+M5XkM0eeredgoq2ZycAANoO9v6AsF4A5wvYL17zezQ1N+ByBlkvYUOAPOxhHvYIry4h7YDw4y9gLs5gPv+IQYsq5Au2uf3vfAoV4mNNN7BqEmEC47MVW5THltC1swXMocP83+wZHIhAlgugKtG/WqF8uwe++hbhh59gOK9hOw/Te7acIzRKQyDsrCyAYIHNjl2Dugb6Ae6bO25C76FnK1YQhhES91F4ewOJQZ9ayyoIAO16HsxVCeyPMPcbOpcYbDFoqXmQH1uINXSkkbR2WqXGOGaYWiZ/hYBwdwczm8FcnDG4aDvCLVLltypYUd7t4e/vHwU26gMQhQROIVj22RWT2mOL9GqJ10r8cMvgrnDA8X2yu/Zc1/Z8zX/npG9a12hHQN/7079w+/P2FWY+Z/Wv7xk0zxrCKA+HqZMEEA5xEsiKtUBR0b8gtrE/ZKrQ/Qe6TUXBg9B7aM/uZwpcte0Q/CG3ulMAof0EG5NZQ/jWZjcFwhoIlYrdNnt5wUNsf8z+SgF260pW0TK0aPTA2CHs9gySmwZoaoRFA3tkBy6TtK9vp6pbPBjDm+sITZpBnGOF05CToFWBUBWwyyXX4s1dDm7ssyvoYkY/lro0ZTFBzUZWbWV3YPAAsOM7DAhdn4sGcugYuK+XvK+RUxZu72Cqir4kJXZdNwVaaf85i1A7mAX3u312ySJGLExg1vDAHsfcddKugyZYS6xuJhildj3982kFvKmgpYOJJFy9ueM9SoUC57JfA2K3bL2Cbnbwd31ejybxUKJAgn/YTLCIYQTGkNdegtzwGY/vJVPp7x9BuoCpsxrf079+E7uE73Tmf4Psz8NXpI6pXZFT6uNZ9CF71z+Yus4FC76ZshiVXnNSQKIPGgDEKrkPLEieBrQisGdn/P/HllX6+y0TnkRoF4ld+fiMvOdry4LQ3K7LSAkUBZEAybY7vn69YnJ+H9dFUK75omBRQxXyb37Ks7RpIJ3JcEPUFVEGo4dpGpgXz9B+fsk4KyisYcxS/vE3PIf/5l9lYpNgnSFAvr5mjHY2jx1LD1ydwZ4t6Q9SYjSM0ENEJyTOhTUsWIweeHtD/7SYw1QlzHqFcLaEVpbvOQSg6yGHI8zbwGTRe/rAsoT/9DkwBtg3dxmiaZYsztovbqCzGu0nJNmbbU3IaT6LY3cniYtsd0DbwkQxIX1xRdTH9gReOo48y7d7FicX84kLk9bY/QNjs3QORDEL/83reH7NYFYsfOj+MEF31SMcDtO9K8oI/6um+DN9xv4AOR5jp9tAv/gaIaEt0lIsyW0J/QBoXPdiIGb/Xqz7y9hfGDD8937v9/5PtUwBxJuq7zuGRLJpO2bNsU2diJFADCQiXvrdv09EpXA8Zgc/VeoM3yd0U1BqyBFAEUml1nJDa3hcWBXhplaND83kliZ/HSsWCeNscFIZ1Fw1y90VI4Q8hRCvORDO5CwUJuOJEySAFYvEfYkOr7CQeHCJCEJhSTA7uS96ulDjNaAqWbWwBgChRVo4qDNUxjkcI/7b8ud1gXFu4XYFTFECzkANoEagVlhVefRd/eTcrAE0BkwhQKIYAKJz08DKBgpm5Ro7FGY+YyIYW50ZVhA0Bl5TAnJaXZBUFbcWUp5AQOI6YhdjIochko4hJ3CM2MXSEPh8jABFhOAV7r3N/8hiRUMjEVhHz+pusrQWDTso6v3UARGTk9/Hrw/TdSZL75lIZr9aN/XXZn8mvuIdEyORzGymJDR1i9I9SvwyAJAAHfT0Dfh3RnLgf/q7BEsioTLu10wi1klpy/vcSZiq7mnv2cknvMNtwimcLP/t5Ovk9Dmn90zrehi4/oqTDsQJRARJmCHzmpLPIywBFlP19tSfptemCluyoPQJKSCO3ZN0j+FYlZTRQo7HqdL2bsAbYSIaIZKnMAEZ4t6M2HEJk8gD78GJjzeY7me6llSMEKFfq8p4X6MvShy7REAF2MmxFuLe6XABmVgO56Zn5AOJzkXBhLDrIXzMj+6jpk5XCkKsmUQoUnfFCH15Xi/C9WKiaMvpwRPvQ15b71oKlNP6SPcl3V4jJLfq8P4z+Q2zP3Nfkbqj7+63ZKf37F0zZvIzpx1sIIpfmNwRSz5o+lzu5wTb1IEohbSecsKagsPUkXAWUi65prs+FsoipKcoqJAXwuSLfIj723BPhBNfYw3FJXRkJ0TYQYOnD9FgIfVJB7OqIBpylzEnBgKIV8gQ8rmtLVUmteBr1BmYIRBWGeMmGaY1rNZy30WEizrL5OYEZaGFm/apJJ9rMj9WrLLbCDDmScXOHkDbZhTCaQFKkn9IPjXtxa6HGAPx0ac5y/ub7l3iC3oznbvGQkcmlyYo1MrUEY0+L8Ul0MD7eYLGkMIhJAW92IGVmBhqgmnak/c7FV9Jviw+q/S6xIOlwFIqYESnFItg/mHzGNp5Cs863Q/qJ/ciLEIxkf3w9ji13zyG6q9g4XCkstU7ZtesxlFOL/InZjPIbIaw2SD0A9xHJLCFhw2rDj7kByFVlXkXuWIY2+MmtqLCsaW84vn5lDj0A7RvmameOpUT075HOB5hmxowBQP6lIiMhGBIlP+TXUs8YVVC9wf4L75mGzPJAwYl7toIyeXjiHB7D/2W8nXmxTNgcULs7npWFg9H6PNLaF1xs6uygg/Afn2TnZwsl9CqYAv2MEC+/IafCcD/tR9gOKtQf7VlR2Y1B0IgeSu2HGW7Z0CzmkMjUa+/qGHnn8Ddt6h/umclVGPFpe+hmy0rBgCrnc4Czy5Y4fz2LauT8zoH8/r2DgAw/jsfQ3yAA4MS6XpgzU5MEKGE4LFF6HuERCw8P8vtZ//NtwxuTqUXZ7PJsSF2sXp22vIa7DriMC8vuLFnM6DrMH75Fexyyfdbr2AS0Q8AOnJ2TNOwU3IqbHC25gGSZH8B+Ovr2HWLXZcEw0lr1bkswWqaky7Ho4Wn8PcPoAxfnXlNGdtZlb+xicifh6XDJuzI7TFVxQC5bScoQ1JBAZjwn9z3ZCZKQmqEzQHxOdoqd0jzZ9ZVVJiJghCzBtgfuKaiNKxGaJ05raSfSGMmuJPu9/DX17kypf2QK1GmaUiEDgG63UEWc4jEdTGODE4SxwVAFjlwDvbqIiq48HubHaEXspgRn16VCJ++hNkdYa/vGECNHvrZRzzkD92jwEyCsqM5DPSZ1sIsKF+suz10twO6Hv63XyFUFkXhKOv5Jz/lep81kNWSicrdhkmIKtfrrImFgCj5GRR49Zx+AYCuF/DLj1B8eYNwc/vou0rBIpDsDpS8vb4FNMBcXbJKfNLh0v3hPX6PFAVkOQeW86wjAFXo7kB/fLHOxQg5doTOffuW/ubijBDUanhMiAfY6YrkfekGhNdvIXXFztH+MMEqMtY7cO0m6fTlEsaaTG42FbkEslpCHzbQ/eFRl+R0P4hzjyCHAKb3fHYJvb59RH7/y2QZ1vdoDbCqnHw4O1UxSR1GdlWLEqYpc1HTvmLcoX0P3e0R9vtM0tb1cjpvup78rVkDbSrgzc0ks/0hC5STluUcu7/xHO7gUf/4hh354xH2k1fwyxrmeKSUddNA+57n1NUV1zLAc+H+AWYxR/j8Fcy2hdxvuHbGEeacCATz6gULA8MAXcwQVg2kGyAjhTCyUtbtPerDyXVHmKjU7NrYr28Qnp1huJzBXe8g230UVVHIT7+GzOcIlyue6cM47fOXV9CyYKA++iiso1AfEwgfKOlflQh1FQVvRsi+ZRJw9wCZz3D4G69QbAYU3xYU3KkdzMOB3dA//jJ2VGZM5E9juhjAVz+7YxJUlfDnc4TKofzRa+h+D70gAkHaGmHZYDxvUHyzgTxsY6HWsnsCxqcAKF6xIqcuq4XuOGZAzs9gHHkwXHNKH/bOXs5+IiZQpmmm8z6uWUhUH6tKxj+v30yx8mLBuOVsBQVgD0fGOUmkoywR2u7nCkRRvrcgdw0euP75yzbZdzoRAYAPyW9mbGCuAk1ZKlJ7OWGwh+ExbjL+HURYXfex+mBimz06mtSCl0hyxjiyLWkaLsITze33YFknGTD6gZ9TsgIpIln3XgFutKaGGGL8WJHwcX6FPMb7GQupYidojHKSdqoiCFhN1KSEoQrZxgrJaQXTsbMTLlfQwsLuyYOQ+Tx+AWGb9TBSdjcEhNRJMAZJPjO9VgtyIqqbk9b1sYccuylQS+T7uDEBQGZ1JqyJJ6Y8BQgyjOxi14QpmHaAeJ3gG7GKrMPI5G4YESK2nMpS5hGBz3xI5zpVQ9KMhNjpSlhIcQ5mNuM8hX4AbKywFPw5ovSd1DUPmNHTQR4o6ajes8plEj43OttY+X1MlAxTpeMDlittqUKW8PxxvWjQyMsJWbwBwATXeZcT8X2zVFAI+rg6nnkYAYJh6lSZWF0yNmPpTR1nAJzs57zPM+dneu/0pLQfotOvSEmLXU3ph0eVebGWe+yEb5E7qEB+beIvZUley+RSAISg0S/47A/R9Y84FVKD1a66yoIMCfalYiK/QqbuZ805JmY+i0TSuM+jDLGMI2AFagzMgcpaKCJB1ocMX+R9jV2oogCWy9yJMe3JfQyESUhZQJYLVjQ1djF9nGNSleSd9AME40QqTx3Iluo0porywJEI/K6iFpWD5sDhEDH1Q1S8s5COvlJj1zPBcvN6Oe3apo5H8OxORB6ctP0Ei0tV8a6nj438sSSOAmvp48aRBZg4w0GKWKEtCz6XCJfRYUSSM30E8wkK0zTvwUgBJrP0Zx6n0rx5X6SSpmcXIENMju2vTED9Tpqx+BBE9V3Mf4o7NJ0HOIFxApGHdvKasuT+6vv8vFBXce/EfdkPk6jLMOZuKU7gSIi8EyncYy6AoUCJGkF518MeByDOmzCzGVWddl1ei7m7VpaQWY0wqyGp+HXajbSGfuJADqUcOxY46pJre7sFVguolajmFii1G7hPCTm0E48kvn9GHRgDGQPsccxnbI6pWsKotXTsYAzI9yfMSiAANiU56R6e+FP1IRd3gdi1iJzOVAAotgN9j0iccQRyUwoHtB1RK5FPIhlZY3gdJ50FWAO7p1ooxWaa6IPjud6NMN3JuZ4sXgtVAWPhK6EsTtYS9CQOEZmUNIeRcYVzLJTOGu73/uSMe9c/AMhyzweqZ4m1jzv73vNeAYybksUujPT9z0Mo5hhDQjl1pn6BfbcTkVjdTZaIOGG7zZlgUoJ6ZEr5u3ery8mkrjNhR/phku9dzCO5M1CStSoR1gsSLbcj9HwFv6jgfuahAyutCI8HKqYKNNtWUaVp1sCvatgjFbOSJGZ6vf3oJdDUrGRv96yuna8JRTpV1KnisK5jS45M32es9AdVM0KA//IbciFevcjBmlQl1BrsfmsJFWD1//kaUlUYP73Kf2o3LezNFnp3z8W5mFFr3BGWkuELNpLXjgPkD392gm3fsir7W5/QaXzxFQeIvXiWP8Ov54AzMPd7ksXaFjYqS+X78MOPoaWD/eaWOO/lnM4zdoCw5yEcTnHX1WL6PcDv/eoZnejD1ImgPrki3NzGYVRRGrCaqt1SlZAQ4L/8mkvy8oIqP+vV+8/qbgNtO/i7u8frwVqEGAw+Wodz4u3D7T10HBiA+UD1o3ct4ve59g1MY7MMdMIFh+Mxt3GTZWnf32QW6p+BiSuAkcnYhyo5OvRQbzOV16Tn7By0Y6JuLuf0MSekvYS7zUnKCUFV6woSlJhbI7DLBVv1YOVLt1seuhH2IWUBXF1A9keqyL2jBqhDz2BjMeNcnDiDAmEkp0KEwhT9wPdOnLUYYLDSxkQ+XK7QPpuh+WOBHo/8HgBM32dpXt0fENoW7uOPoLMauDyLs5ZOgvlxZEdXCb/yr98wQb+6ZIKzP0QccWCnOh2GTQ2d1TDbPXS3h7nfUXyk7XOHQJZL9B+fw21amF07rdsokRnmEbogAszj7IHdgb4iDna0x+hHF4vME9GToZO6aKDrBcw9u86a5MljwSbLaBozqX9FDLfu2PGVosgJhLYdgwqlGle4vZs6ZfFZhwdKNOOj53xNIvU2NvMLzW6f15P6islhrCKHzTbyvnomzCVlWKWuqRzk/aOOWNjtofcPsOfnkOUiiqGEx9K87+wLHUfAWNj1ipXzb7790zfY98RM6Ti75R17RDxPXeV+4HDQ83NyMA4nQ3GthWks/UU3smMuAv/mLTuWL5+zuOjcBL+8uXsfX68KtB0DTlXygVxBBMNpQQmgWpU1KP7Vj/jM2hb2/BzmxTN2NI5t5qiY2SyfheF8ieGsRnVT5K6L+gBpR6gz0OUcpusRQkC4vSMX9IcfwYwe/v4Bbr0CMIcMDF7922v6gFcvSKivHPyiQqgs3H0H0w3A/pgFX6Tt4dpI0K9LckNEWAioOBKgHGMS1LOo0p/XsEOA/bafhGPeuW/aRtnwlgRwtQ542Gb/LccW7k++yaIysj1AvMfw+QuoMygG+jYti0k9LEna3t2zMBQhbwJAb+84QPmHP4Cu5uSydR07wcMAl5LMdK3eI9zeR95qBZytMJ7PYP/oS/jbu0kO2tZZtSqZLOaMu3aHPGRVVkuMz1dw/fBe90yaml3R/YGduMRdatu8nrNXD4F+8AMdOHFuIrL/nMJEjilEoOaXK3B+txMRfVxNSmZmsymotpaZZs3g0Szm0DGqgIyEW0hFCUqN5LAcHPTTxNBHyUysPsBZVuZVWVk7tHBHEiHNkuQ2VYU9nXJ8bOM1d1zgkTBsdj2km6pn2YLm7JsvjDrju0PEV7upI+M9hx5FQqOsV+yy3MWD0DkOHup7Vgx9gP3oBT9j9BNWtB8g3qN+05HzsVwwyNn18KsKw7JAfRwgrUDWK8Ba+NKRyL7ZT3yUY0sc5YxQN5nPqAQWSVIpz9bCwvzwM2hVoj9v4O6OMA87mLZnOzRWTkgUIwlLyoIdk2MPOfZsG/ooH3cqezqOkIsziCo3fV0jPD9HKB1CYeHuKfsLz66JDgMDuKZmRWkcYV++mAKAWMlWIFdOp+WoXDOBahfvSmamAMteXkT50i7DbRDb+2lGjaxXSHNqzLyBDvGQ0CTp6R8HqYdDxIuTD5Klm4HMlRJXTB0RkcfY9uE3k6z+Z2U84P8UXs6j18bK8HbH9TewypXkGKUsp1kusQiQZU5XF6xmxtZ4micCIwxUIukvD6IrlpxofTgA3kL+tAsD+PzHiT+UMNISZTUROwN6OGSpytwFjspwejzCbAuUBbt0KAp26oxwjwalj5rP4M7W9HfDCBw7Xl+UzzxdLmotYEDJdGOhDeeiYBhzdxIA92/DDou09IG4OANaKvNpTaiZmc2gTQU/cyzQVAX0s4/4XgcSdcUYSD/E7uiYuz+5ch+rnkk9K3ddE276hJemTcUq9u2ElZb5HPjoBWR7gB74X4ZExe8ihhwXiXBSgIo58vaOPqKpuf+6js+65B6EYdKkw0Chk5igmcWcayNCzgCwa388ZjXB9NrcubfEp6NwUcKbr0+CF0Dy/d20ZmKXRQxnrLwLzcrP9Z1glxdpfync93fR1H/YvyboDAsP9K86/inFm9T1bBoWNYIC/qTrl2eGUO0pIzRU31dcKqPSlrWwz59lblTaf7KYRxgMWB2fc9iwSfHBMEa0BPekOAdzcT69/+aA8vA4bsl/l18USfDna2hTYlwUcDqDe8n4wb1+mDqDwNThHz1krywkpI5EUjKN3KwUd4RFze7uwyFDu/TQodpY+rfRwzy7ApxFed9lWHmKe3RWQ6uEoIiS4KdFEwPg8oxqdbcPkLpC+1dfwHYedtvCbBlHubcb+qlYZDSHln6liyI9VuhXjYEuZrEr7IGqglks6JtiEQAA72nqXqQYy/spvkzzxg4tk4hhpOz2IQ5gbOrsk/PjsBYolHLGRZGVC93rB8Y85ZSYsSA9Mgk5HGP8aSfkRuS9pDlyjzcE12NKkLUfgN3+/Q5hWiMn0vhUcbPAB+qm79p3PBHhkBXoCScjbRhjeXBIGhAUJc5mDQ/IiPdn+55BO4xlhpj0uNupHZ0P/lQNj8G2pAdSuPygzXrFFhnwXmCh/cBDzZpHRGpzaCnR1vfvkV9zhTDh+ooiK/GkwTxIQdEw5PZmWM2gIrApaUnKMeNIsphW8K8uIGOA+fYGUAeUDLi0bVG82ULrgkOLRm7I8azGsLSobiz5Kw07IVoY4MB5IGkgYuaarKNzmzUkrseDUEJAEEEoLcZPzuAri2FhMO9GmOsBcjQTSdsaKgtFbLk8u0RYzKgaEp1EqkJmiy3OcLbg7+4egLrCcDnDOLMYa4O5ak4CMxSiZqvaHKMk8Ccrwk4i5E77ns8uEemBWNWOQ8airPIjgnFKFq2FrFeQwxEhhKx5TpJpqkQKwnoBs2cihDjjwUecu2lqYBRoNx2UjwYUpX2RfheDi9MhnJKIbslG871ORKjD/8slIilZ+7mDDBfz92UQgwdMBZyvmeSnOT7DkCV59Xh8r2uSpBd5mP4SXal0eMdkJ3fpkvZ/XTJwjRXt9G8kQYegTGidg0kwzwQHsFGJLeroy2zNdXjSZcgBRJKNTGaFRYsFVchCmhnQ91kdLBH8tSoZpBw7SlrOStio4Y/VnGTtpobWBXxpEEoHGTzaVwuIVzR/dCDcQoSfMfqoaDfBDQEGQxk+pcpDOPpwGPMI861V7HA+bCgwAVaY24+WqN5amBDgr2+mJMRYBph1PRFnAWhUYAtv38LUNTknw4iQ4FZVhEaljgrwSLpUmoYQuxOOmCZoVSLfW8MJ3acS3c5NELahRzjK9LfxWhOXgTMb0myi+LnOMXH1u6kzooFryT/OOsR+nxOROKStx6MOUVJOROoq/wK5c42vMWdrogXuN9NgOFUmyEne/XB4PPvh57y3FI5dSR8gm6mrJ7MGYd4QmeEDq/RlMQ1X7KkWqaaA8eQ/JU4nhhHY7jnH4myd4xYAj8/SSBYfni3hGwdfGQAl5Pk5zO0W4c01zPnZVJgL+qhLmL8b4vpJFfhhAMCBy2FWIhQW5ss3TNxjsViPLWFsZYnw/JzKc/f76foSxL5YELIFJiJiBTJGmGa04YJF6vLQQldzbD4vUW0C5j5AjpGv+uaG8dwPP+LQvttjlhrPMuoN971fNzC9h2wOTAjmFKzRridHKCoxIsUNSaWsH+LMEl6bESFnLhUOCpd5RSbPQTlZI1HqP6nthfUC5mGXO1ZpvhqLzEnGeczzgvJgx/VyEtg4yvuJyDvrMQ9l/ND6zOT5GGM4B7hfLqj4biciInlISzi2ME0NkxKCd7Hc4wiJQ+YyDtGYiaT6sOFCWi0pkRbJn5K4IcDEgQgcMAVHEmfCAQIR1nQ8TjKq0cEnMxFukwdznRw40jSQV89hvnmDcGzhPv+UlfhvXk9TUBvyJhKXRLe7qeIZhwGGV1cItYPddjAhIDw7Q1bCaioIzsnPCIFktIGJCcQAR+F9OFvzYMvKFqww2M6jvhkg7eSkZAxwW0Ld5PyMwU9ZAPYMEEFoCiDEevQwEo5xYGuP2MuAYtOhVEUDQEUQXjBBgmrkXzjoakas5f7ISmr6/KqEfvyMuNTdCZF7PmOn4/UtZ5UcDjBGUH7pUKauTewEdZ+dw3QeJcCDPnYswrEl/8RFAl1Z8n1jEhIWM8AK7PiMCdHhwES2rjJWM3Wvgg90vqmy3tTskKUEJQ6j0n7gPdrsMmQGACUkhRwcUbaFNYos2MsLVt2jHLEOPeF53ufqx2mSm+Y3ZPs5xLPvi4lzsGdTJyqZZsx1lL89qQhnCOWpBeWU3nEaKJlkuPNgQecYkB9aEqdPiOzvmr++mZSQioJwhDgV3ZQFpCTRGADC9Q2vebsDygLu1UsmNwm6YQTYkQdhry5zlVQPxyi/y4m/5uKc+2p3YEFmTtJ8ljiP05oxDJBv3wLR7+DyjIf/m5vpCzgHMYa6+ECc8q2Q7Q56cQb/2x9z/wyewX8I5JUBORiWMaD/4XPAAMXbPeGwPf/GDAFu00Iedqhi1wVBuZ7nNWU/DWBvdxOPIVYYsV5ieL5EcbMn7OLynJ2L23uS+CP5Ms16AoDwVz7lPYqDXuuvNpADu9hmuQCWi2nOUSrsJLGTxKOJnd/EG5FZA1sWhM4UDtKXMThIWPXJl+r+EAPVMa9LczpnIfrDfLbF18pJd9Usl0zGQuB8qKTIVTgg2GnAbz+Q+7RcUkzgYTMJHqQOQNvhPWnfP60T8B03BoDte985bHZ4NHNlHEnin88oAZ/kvo3h/on+GSOH7IbYsU5QXHQdQuqQDlRJsleXjEWOR0rAP7vkPJKTMwAAwqyCf7ZAcXeEvL7mudsP5GIYA9kfp2Q8ogIwn/MMSwqQuwN0MUP/yTlkXDNwvz8wqZ/XFJx5e5s7HLLkQFH30MLuDcZlBdt5DjRMBZmygBYceHr6d3j5jPHGMBLiGXmrGrmb2lQIdQn7cIQdfRSZuUD7YgF7jB2KskBwBuZ+xzP7tAhSlYTBeg/7cIRsWYAOqQAKdmy1Kvg9NWT45dW/sOSrbnZZyME+fwatSw5cLB36v/IqcuAE1R+/QXj9Fubq4iTpokIZygI6q+kjncXxd38I8YrZzzYsiHQd9PKMMPwbA2l72LMzxi+rBe/R0eT9bSPaBEBUuJriUHZkhJA7APKwoRBPP8AWVH5MMM0snhQLTjqwq4+qmviDABObJMhzQmmwZ2uKL3wIEn66d8oS5vyMsOJIkQjmLwNHREwk2RBLLYVjNTsq0JzKwWrnOQwrTrDOSgNFkTFxqWuSs0+JkognWt+JyJUHIsbDJldHo5NJ7XWpKmD2DtnnUbbaT5XzmRCrGIlkqROR4R3WMjlI5MUQePjGKqVUHIDoFyXGuYPdd4BXKlZ5hXSBSUVhYUb/CNbAqlckkdX1RCJXhZpIRBOhrvZxnIaKJZJm0ipfzfkZxkCKCVYFUVZM+0iejQRgjXJ65tDmdiXOlghNDWBkRSPwb0NdEAMfSfinymbjooQZA8xJIpIVTHY7BqCxvWlOtLtRFNC6hK8MFTBP8N1Z7jIEIAgP9ChJnNeWo/Sg1nFgZDo0knydMbEyxMBAgTidlgkfW6U9+UypQBv5K9r3kw64CBBbvFm2tCgyFEUiaR9RnlGHuDbVM/ixFiEeeNm+58nHI0vwFSAHaZruK4AsURpOqj2nAwajUSL3RMY0+iAGISwOPJJYBZAJjsD0LNP79T3nkDTNNNAyFRZSAtnEA6gss6yzNHXs6pJ8yeFnCnjO+5CIF5d44KsPsbtWQuuasKguQq0yiTR2O2JAITtW9qSuoWUBv6pgOgtznbqBUVLTGBYWEjk+DUUVgZ8XUGtgBk8fNHjCGMwktYsQMM4dghMUbxLpmyRd2xPGol0Ps2+nAo419DMSn52cXFPsGocEIdnGwk3iiKQOTUxaULg8W2dclghWUD8Q7iabfUwk09DHOJzRmKxsI233KGCAMXxmPiZdiUfyzlDdfM9PZLVzIpwgVzaKf6Sul2omz+f1OEQxi0ioF7FTUnmyfvOwxDR4chwgrphgGScy95IG3H1obsi7//6+2Yc4ZN5DECu+IpGAXnAPbsgFSMUIFouif08SutH3JjW8VOhMP09SzzxnKaiis5pw7VOfEbtTfuZg2wK2IOxL+iH7iQTRzTBEAHlSutUc72De8NxruPbstiM80kaOZ5LJByhpXReQQwcZBDYOLZTRTxCzuFalZgU/fWZoChhVFu6WNdQITDdmCV21ltzSYWQhZjlDmJXo1w6FAdymRCgdtDAwb4jWkGI9PRxjoJWDtIxnNEmArwkp1+SHVWHGwDk7GqBtD/nmOieWWRI5yQAPI1BYjIsCwQlCIaiMMEAfPVDEszQiGaQqs49B4XB4ZuE6RfNFRLKkOKawsFHUR2YNP8ux00n/MQJqSClIIhZBp0RXJMs4Z39xquoWJZhT4TGdTXlIspnOpzRe4BQ6CzMCY/Qzj9bldB8/aPG8ysI53v/SRYvvdCKS2lc5+14sKHt4/wANCnu+Jkn3ZMJn2O7y9Ow0RyQvwhDyhFwzn/Owj6pZSd5St1tmnedrLoYksfZIUrWEOHCgofewVclAoOvyFHXEoVp48WwKWHZH4Ju3dHJ1BbMhhMt+/IrycKuG+Mn77YTbbWpIIkk6h1BXsO0ICYru+Rx2CCh/cj1hHMsCpiimvz8ZaCRVyUpu4tdsONxMqzMGEPdbmNUcvmownDcQBYqvbrkp6wrDqzM8/JUZzKgwIzD/4siuzAMrFFrFBKqpoVfn0NqhfdFARoX90dc8/C4IbbHbQ8Zw68OGUJI6BpJVyQP+RAHEbdr34AK6O0yTo8sCLnYNToPCcHMHbTvM7rfxEImKQx0Vvcz5+QTDOz9jUHR7H4cWFTCIbdK7B4S2Yzu2H2D6gZuyrvOgzFxp2x/IE7lcwVgLaZv8bPBXX7DK9LCFzGawTY3wwKFVTJYdNE3zBngdzk2wntTyPlmP2nXQSDyFhknGt64mrsP33YJifHMNU1eQqkKIcIjEkzkd4JbsdE5FHihYliTwRmgU/3dgty+2pjUOuMu+4vKC+6jr+WyaOquuaYRNSVVmJSXRBlYDwrFFuGthUrX74oyBwv7ASmtMqGXWAC+ueKC8ucmKPojcoIQH19j1PX5+huqa1cdwfcsuRlKWOgmWdbWArJfQ2wfgeIRcLnjoth3M1QXGV+dwbzYckBi7hLrbQ+YN9HIFHDpUf/gtdBFlsN/c8tCsazxSOwxAeRtVnSK53Dy/Atoe1R9GknRZAEdeZw4UALjX9wiv3yJE3l744ScUuDj0kH2L2f//ga8vHBOGkbN9EhRJ43Tp9IztfoCxJqvr6DDwf09mF2HJboHsDuya7vasAlcl9O6BQUnb5VkgqUMstw8I+0MmDJ/iuM35GXTewL5+S3joklhzf38PifOhsrRv5CeYqorKbhUhqF0HUxQQZx7Lgqe1dgo3TEU5kUfCKHlQWSyokKw+POrMSlGmuXvfO+Pk7HeGk4rAffYxIYdv2cG0kSyMI9UPYSzkxRXEB/gvvqKs9/kZgzLnIF0HDYQcYuQQSbteQZ4vMyRHB6rr2YszrrNv3iIcKZ1qIqdSXr+FEYP6S0eO5PkKeHODcP/ALlZZAIs5i4ubLczVBfzZgtwQr/RBXlmwenOD2f4I/2yNYRV5nKOHffPATu6r5+ScDCP82Ry+KVC0PHPN/ckgvos1QulgDl2W8ldjoJWF2bYwP/4auLpAOJvnwmOoHIx4yBHcK/2AcL5AKAzczR5m16J5Q8VOud+SJ1mzEJAUQz8YEItkpT1tCu51ESIMvtnn+A4RLaGbLWS9gr9aw+xbmGOXpbpltQQOHZqf+vze8AFmvYK/viHB+5z3Vg9H7rM4sBHHDlf/P0PFzgd2sPHxC0g3oni9AW7vWZR8dsHuU4z7VDVSCWInsyjgn69hNkfgcGDHta5i3Blh2rELlwbCqicJPe1lmc0IBT0cIYs53MV55LxF1I73HPBduGlCfS62hRx32MuL/Bl8iOHxwNS2g97c5YHcdrmEOgVu8AvtO52IAIjQiRPJwTFinQtWEXIw8e6ArKHPsIs81E718YCgROBMk0rzvIcTHCSiZOO70AsxfLAij0itmVzFD57ae3EwIRKUxgidQKwMivWsQGQeQ0WeQqxIpOmnWrFTYjqF1JaKNiKsnB2P01CkSHTMSVxVsqNSOOJM07A+gLAKrxOW0CtQCNTG+yS8txIUZlTYjv+ZeL35M7wyC3cWWlmEysG2AaYPuVKsjp0O7XqgjrjthlWDEGeRqCpMR5lRRIiddGOurubqaJpaHHHV6ZkhsOqRIW4AE0nnJgwnwH+XJdANrKrkexkHCMaulIQQK1vKCmMigqYKqrKrM1UXIxl69Ll6lYapwZ9UJnzIa5DDkMgDyOGxtRPe/HQo2Ycs8VY0VjzTVNWQhuh9+M++N2YEApn2mAjgCiYIf1qFNw0cO5FfzcRDIA6PtNO6S6aBz8pSIlVVpp+n93AuVjgjsVU81JTZZ0nkdCRJbC1cHKJVMVnOz9xwn1vLzlryMc5BKjN1OtJ98Jq7NKniLk3Dw9KlapnJUA/jLDSckj5NrjQm4QkkUYl0KJWsUGbhCBEYa6a5SO/I6Np9P3VXgdhJFQAnMttxgKrkwWuxourD1DGuyF0TKzA+zlFZLsjNMAZwyPLbOm+m4WuRXGx6D5UwSaZGUmgeEpqEPSIxHieB/aPBryHKrwsluzVVqOPzyp3WomAimbph1gL2xPem6mJPQnleqQkyaC1MghOl2QEapjPk9LXxOk+HnurpeYTpLMzL+GS+1vTD7ylB5F07DXZPeTLRt+voicYAn5N4rpvU6ZDYBc/PIY4NQOA5kWRfs6R18jWIkCofCewnz49Fgzg0OE05d/GMTNcZhRjMYs4KvTPA4PNAUAD8TB+ghxYyLokuiHyr/N2NAQz9T96vnuvZX0TYUwC7bLHQKCNRFxCJQwxHDhfuesjRwZ/VhDLvGeiqNfEstvC1g7p4zwcP08bXrOa8Z8dIuk5olPgs1Nn8mRijEIAxCKWFDIDxkSCffKmzkxJWwZlJfl7EIc7Ke5GuTWKMZdjlQhpTsGOn1Oy7LBXOWGCK88xummSuNs4t6gY+C518cOokwcjk2+ABk9AZfoJN1RWvPRYaUoFcZnVEmsTxFcMwiS7F/SrvxAY57k0/OD0nxEBsRHV4HxEu7PZl7pFS0vgRBSLLSdupU/1L2Hc6EdFhhJkt87/Dbg/s9pTWBYPLRP4JbQu0LUk6dcWBT8LZHBwutYI+bB7L+R4OJPZ9+gpyc4/x29ccPlSUsRU2srr5ARNrWCXzJFJKUj9I8r81CWUKMLt9fU3Hcvp+Ayty/vaOAW5d5aK/vrjk8J37PSRwkYb1HOOqQnFzgBx7FCJQAcJqBuMD/Nu3VPBKGvwAs3VjgBdXxFuDlT4kHL337Mw4mzGX0g2Q0iJYg7Di4C2538K9fsDZcYC53VJfPOpi69lyOrijGkWo6HTq//0rtlKrkyFikbOinz3HuKqAF0uoEfiak0xtH1DEafDj8xUgguKnb6egIAkTzGcTLG70j+XvXj6DP5vB9WckpQPTzJZhpONdLUiu/8mXxGy+ejH9fdOQILbdsxKQDoTlgs+6LChdWDhIV9FZ7faAsIqhxxb45g1le72HvTjnJv/Z17wXyzlwOMLf3eU1G6ISDtu5cQ7BdjcNGROqDb2ncnNqSaqvqRmgOUd1lYN/r6P0fTJxFqZaQLsOfrOhrGVdIez2kGGIU84fS22jKCmxOZ8xIDupCqcBcnZFHO+jv0tQLTF01FHt7DSgE+cmvHZQ+LtbdmvmUXK87SCLOaEcJcmcKAsO52wqavUnGVqlkIRWBfyLM5hdB1zfQj99ieG8RvmvfoLwsIG9ugREUL3ZQwbPoYXVBX3loiEko3t/7ejFGmolCmx4Vt9UYXcdwqwCFhXMriOMpO0yBE6bElqcMUhwBv6TZ0AUpzDtwE5pstfX9JNpQORxAC7OMD5bovjmHrrdI7y6gBqBe33P6m3HboN9HmXFnc3DYQEAw8hnHSFk4WLJPRIUWpcYn6+gAnZ2fxI4yO2BlV6qXBV5IKwEzZ0o3D0APlYDE9+wjBKg1cTJQPDQ3vNah5FJx8qRGB+72Ga1hH91AXuzBW7v+VnWsJtuLcxySQnQwwEhxEnSdoIMSk2BBHNzD58EFFTzoE0AWaktdUZSscU/bN6rKmtJiGmCAYbtFu/aX4YOqkSeURIBGb/4MvtOWJ4TuHvI/hmlQ7i+nWBRXYdw/xDVNSeYs79/oEpnEplpu1wY0dWCwejdJiIHLIy1E5FdFaHrGAssF/y7uw308gz6yTOY1/f5DAyLGYbPr2APA/fads8APc4EkpqSsHo4RKgS6FMOR0rZA4QdxsDa9B6iAB52wKzG7d9cQQ1ge8Xs9YDqzR5+WSMUBqbzsMcB5vVtFtrxX7GzOfxHfwvDzGD9v+2YCFUlhmcztBcFbK8wQ9wr/QAbFMPLNTZ/c42z/30L+eOfwScp9PkMSbZX5zXGVQVfMnFofsZzflgWKLbg/SwKyPkaYTVDKBkky+BhAfj1DMO64Gw0VQwvGFO4TZsLg2HGZMV0Hqb3MIcDh0z/6z8irDaepQAm7lhMGhHnHoWahU85KRgpQH/w8hmHNvYDwptrhENETQSF/ORryHyG8PIZQsUikfn2LV/z8StoXWFcN7DbeM48bBC6Du7qknC4JBEc+R/hcGThedbEWTaPC+lSFhAUTHwAiuT0A0xCDMWfJ08r7xQq0t8nYZ9fxr7TiYgYicOEaJlgHnGahFtpngbJtnZPnfWT4YRJWQDGZAeUux5VNbXmgQl+kbojRYQznEINEjlQhAPCorIBqyhRanKMwW4acuemaZf5s1ZLSKhgI19B+57ExbompCBhNFPHoRvgdlHRxBiYfZczdVjDoCnyDzK84ZRwVTqEykG0eTQRGiLQusC4bnLnA6owHfGkKB2wmBE+Ni8hbc0uwdkSvnSs3gThIR0IM1BTY6wtyeFigKtzBlkDJTyNPWMzoA/ozwpWVEd2XGScKq9mCFABSXAnnBEkLgkEOqvINelP+DiqMB0x0excxIrusc1wDRk91FmqgYjAny/Zfr67f38t1u8kpGmwmudQM4wj3PMrBrBJnztubElrEJQAFGumimjEhULiXByA19gPQBcV1+IMi0fX49w0zDOp7cS1KSUDSd0dsjKcGPleJyI6emiUVuW/R2CIKk7WIg2VStAqTZWeyPsgfIqQuASDzPc4VaLToKtEBI6D5zjJNvqauI+Tcl2qkNrFnIFs2s+JEC0nnVEfOBdkWRP651weVKdZxS9Wz8oSOPYoAMhsBpMOyWEkjyrxsdKeSZVTIMrtniyGkQNQTelY5UykyXYAakBTR0h16kxYAUaB8fHa+yR6IZAB9CnzmrwJA5jVkoTbeI+gSjnLt6AcpuXgMzgzDTntOeA01FVUmGMApGngYlnQ58UCB4fGCoyh2pa73WfOHEwc3Ja6Gok/kjoSFo87EkCE8M6gyzlCU0KthU1Y8NMD2Fh2ppK0cKpyx/PA3O+5F+PkeQBcD0iQQYFJw2RPeSY2VZ4DNHUpgpJrlngnZQHkODZWW0+7Tu9aUhk7tdRFifhv6Y/fW2iWOAeR6blL4QAfz+SQCP4GcmzzmXo6SDO9R4o/3q1CmzSjDFOFWn0AhoFr+B0EhdRU6Qv3D8AwwJ6d8Y2O7ST/3w8wqizo+cC/6QcU1wdC+o5d3lOZq3g4cjbZC15/cd+yeLeYI0Rup2mZsIdZGTmmQ+6kzN4yfhFVuMPIoP6hZWOvYEFAz1f8bDGQRRyqNypcq9OQQgPY44jqTtgNCcrvFe+X3feYf8vRAKhr2BTbzSI8yweE2mFsLCNjBcKcnX535HXpch47n54cjdJCnYExAlM4SOdRvz7yevhgoFZisdTA1w62HeHuOyACcCTCS93ZeuLyJR8c/arOo3JqVAi0Sb4XYHHJTD4R0Q9ClbD8iArJM0YAmN0B2kYOWuqedlxjpivop+N5Jq7IXJnMcR5T987kmFbi+kucvjS0OQ+qFfNY9l+jEmHaL7EoFXb797qpv4p9pxMRCB9S3tCRgKmp5dV1uYphlgvKx377hjr6lxdc0IfDRP4TqhGYs/UUiIcAbPcZ9yZFQY5COqhLyig+cjddf9JaN4Cd8N8Ju59kXiUq6kgccqOqecH49ZyHtLOQhx3C27eQq0uE8xWk62GOfupcgFU72w3QuqR6ReKSJBzh1QWVIe4fIA1hWCgcOypxeNC4KKGFhfgIUQoK0w7wiwrHFyXEA7bnlHRz6BHqggd5U8DXDuOch6OtHI6fLuFLg/lPdhCj3NCbFrLdQz8+42sjef/w6QruOKL84g5hUcPPljDtCNMO6BcM8pvrAaYPMAPxrhIU5tDTWZzNpgRw8PyvZcIyrvj3RT9MrdOgkG10/HVU3eh68j/yADJWv/yrC4TKoV8XKO8c7JfvLEMRYNFMVZC4ngRg1SfKdIbf/phqYz/9avqMWZOxxlAhLjWpcAATZ8FEEuA4PhqIaFcrygEnrDIwwdGiVF/Cfib5VFQl9HCE39xO36GywPe40Kldh3AybVZTJTIWHUg2LSCLBdWDtlsGHp1HAIOLNGso7PccDjdr4N9cZzlEhJA5N5zXUEIKRznr1M7ueqDvo3LXNI/CPL/iwZrmvyQIgKbBXDEwWS3h6wWkLWGcQ+iTWEFBDf7dMR+CsjsAN3cIL58xyfjmmv6nbbOcZBo26NK08lMlqGiyowqhSZytWc35AEn9qkSW0UWUIw7OwHaeBNQh8iuWswgt9NDK5n0JVWixYjBzvcm+M9zeIXx54L2ezyD9CIyGe3UYIfsj/LMz9Jc16q88lbF2R3IH5xXCooaYy/z5vmIA4kSoVvftG+6d5ZwJ+mzG7z9GEnGlOekBkKG2AJCEOnS1YAUV0f9GKF4adAkANs5OwmbHdVZVEyfn2LITnwjxkadhri7IEfnqa6ozrVdZoliPPq8RiDkRG4kWJl6juGaaAZAGZL47Xf50nySI8KmJoYLbYs5q/iZ8fxORqoTIxN1JRcRU1OGASQbzZrkAVkvgYTMp8QlVNlPHNACEdSYeyXL5SEAgcc+064Dbu/eTwIsz+PM57HaLcBwhL68g3YDxRz+BPVvHAcYdFRbvHwAxsOslld6++hYhngH2bB35ihFlsdnALRdoP79E9e0W5tsb6HpJuf7KQYZIil9U6J7VqL8+sIARZ2DM/+DtRGDv4h5/uKFPffWcZPMXC7hdBSuCsJphbArYLsB2AX5GcRnpBti7A9ybEcOLNUJlOdncMcg29zvUr2+ZvC3nAOZQy5kjAIuvvnYY5oYdlVExrPje7r6FGgN/uYC9O0AetlDDjqyvDYwT2H0B87BH+PENzLNLhBU7oGoogONrg+Olw+pnAfZH19DVgkiHGdUGx7MZ46c++suArEganq1ZAP32Js/oMGdraFPxP2cQage1Br6ycFZgAtjNNBb+5pbcjPMzoO0Q3j4mW4hzCNsdZBhgUhEMyMV5f3vH7svlBZOLY8tuqKs4JHnoYWaMP7XrWCyPCoI6jhnuK2WR1/Oj0oUI3Ccfc1/c3k1xx7+FfbcTkWja9ZwOnA7x5TJioT3SAKpgqCAD4dwQKhoJqwdFQezd/QPCbh/nO5QcfBMDN9E5rLWsJByOEf9mYoXBR4UFR2ezmEFdVJ7yYSJJJnJphIQkdQUUDuFiBXPo+NqYOCRt/nC+gDEGtov40GGEP+fh6V4jHuQuYy1l8I9VNJxltpymDEdeBQwQzuYIpcWwpJNwu6hFns4iZ9A/m0OCYvZVC3scIMceYVnDzysqc4lgXFaEHQ3KNm43ovlyR2yhJ+zHbqPMaFWiuDvCtiP8y3MAQLFh4D28OoNpByp47AjdqK6aiB0FxpmFrwvUInCJPxMCUJ0EDJ3P1SUAKL++z78LqxnaFzPUX+0gr2+IrbRMpiTESmvJAZi6mBFeEtu4zVeRmPXDT4HdAfLNmyyBK0ktZzEN08zdo1iRNfuOFZB/5zPY2x3Cm+sM0XkE7fGBQUdKZssI94iqXVJVOajQke1cmTXvVd/Cbh91v8eJEP3uUL/IF8EvOQH1O2vGwjQnc1SiOt2p6TACcT6Pmc0eEX5hTOb82PkcGPoMvZCymIQtjseM804Bn7Yt0owOcZZk0mSJKL3dTdhzHwdSJrWSVJk6WwGqKH/8JhKW48HjYnUxxIQg8hV0JMTB7AitJEaaUCI9HoG+J5E+Bt/i29xBlYGS0moEmDVRAKHnvwvHTkbhGJAdWvqaWc0pxs7CbTuoMQjrGf2R18ewqWjiias2xyjxeyIpLbMGdj6HvrjEuKxg4mGv1sAcwArxwx6V96zaziuYIw9Ws5lETDQqHRV3x1wsEOeAT15NPvOmo2/v49CyT17xfR52COcL+CWVxmT0uZMszgGjR3ETibu5il3DzedxrXnIco4wqyA3sQA1nzNZ2e7oaxZzmNjltBfn9BeRc2RfPI8+wuUEMosPtIQN6X6aQ2Euzjhv4TZO6Y6qfKEfYkcjFZhClvYVax9JfkNt7AxEomt8vR6OTODC97diIdZC41DiRPCfBsU+No3D+XQfp1tH8YFTmXSzXBBueEOukyzj3k++HYA9P4uBXv9eEii7AywAuTiHvTjPCad99mya4+OoFJfm44TFjGILd3E9zGe5YwnQX9hnz4DCobw9ssi52UIu1uwUHAbAAP5yCRkCmi+2CHWB4eUadldPsvoAuZnpmi/O+Pl1CRk8qj9+kzkYCAGmH6GlQbAGfuYQgsIUBsZamFZYeIzvHUqH8fkcdj/A3u2ZbO0PCJ88I9G9I4JluJhhWDiEQlDfjCi2PfyMnRdzu0W4WGL3yQLlqkSxmcEcelTb9pGf0bKAfPwS3cdr9GuH6rqH2/VUF+09is1AmFZCdKROciqAG6JCpI0c3iVjABkDfRpYQNJXz7OUe+qEmB3nLLnEkc2FDuGcogRzjcmCWS7pv2O3BQ87dtevb3NMKlGqWTaUmkYXu1I1R12g6wgPr6sIpXVwH3+UZ9w9GnGRkDxtB38ao6R7F4e8QqPK1juvUf1LoJqVTMdx4nZIhADZOCOk7xHaPk6ujhsmYbOBPPMhLGbUvk/VzK6DTcNeLOcEKMAZI3H6NayNKgJ9rnRJWQJnSwawVUG522FkW/5wyA8XQQGJUIuGnQgHEIZVsbqZFqafO7ixJj4VALyHnxcIVmBvSWjSip0MrSzsEDF/ZZGhDxLlO/NAxDjh0zcFxplFe+lQ3XkUt481y9UK+pVDsR1RvX7gwXY4ArNPoXMDuWW7USOsw/QhdiTGXDHV1ZwbNyaKWhaQfQt76ND+4BxqBfW3e4TKobusUQ0+Ox74gGJ3CV9xaFgoLbqVRbF1sHtLeIhXiGKaNOs9Owwx4dI7YkblfA3fFDg+c6hueLBncrozUE/stVTEQWpdEE8KQIYAc/0AndXoPz5DtT/C394RHxqVbCRVlUV4z7sRCHGwTwgM5IoG7fMZmjEA11Gu72Q6eyL8PoJ2JFm/9P1ydd1naJAs5o8klwEwqQUYrEToxrvE7DSZ+/tOQM3zgE5JwOmepu/uPQUdIg5W+v7xbbGWiYS10OuOnZEI/UlVUHQdE+MEqQMho7ARX5s6WylIFpOHdiUSdRokhxD3e1DABEpEH1qMX38ziSKkqeE+xMGB4ZEww6TgZCma4BgYyDCwSDBv2OG4fYjE5ZK+IpFeraNajXASuAQOJHwkuz2M0GVDoQkTlWIOHTCvMTYlTGEjNHKMsNF4P5WbVnysKJ4OUDNR5rypMF42GBYO5R0gYyDHpIsB4uEIM4wYPrmEbxzKwUP6wKJLJPinxMnsj3kQpBQFwvliuo747NF1wKzB+NkV7K4jb+NiCV9buASLSuRdR4KybN7R169KFiSizwt1RSgKQMy3NVClWpXEBDVNm9YFlY/kYcf7v5xPVch02DexkNS2mU+U13VTc0r8w4bn0vGYYUXiOMQsD02LfoUByiFLfmuEdWU+SYQa5m5f+U4x4/tk1kLHlom3c1na9dQy0b9ndzN1FQmxDY9eL1UVu5N77vMqwrLaExjxrImiNCOfdRaWiPCurT4a5AdVzi9LFqG7VIRilV0STHI5x3i1JBIhDfazlkIwQWEe9tD9HqHtCCsUYRJTFhgWBYrbI8ybO/jfeol+XaIUiYXGIcrvjhllEBYNxXIAmO0I/823MJcX0OUlrzkWS+AQ+Z7xFgSFDhQEScgULQy68wJFwcRIDi1wbBmvLApUr0eojYXJShgLtYQ5hnJF33c4ABdLtGcmy+/O7g7A/Yb73DngbAWtK4RFifayQLs2qN8CphvpqoYAsz3wO1obyeR+Eq8BCN+NIw5kGOFnc8CZ6O/iudtUGJ7NyN89dIyXRCDdkUWfln5HZxPEW8ryBJkT92UU2QjLWYS1EUbsNxt24MsCcraiT08SvocjxAJS1CzaD5R/FzFUkC0L6HoROUKHqZBWlDzv6moalXBqqnmwdv73O3tF9ZcrWnynExEponzeadCmSvm1suC09L6HAXICEOLAt3wWthGSsdtDigLu44841TYELo6EEY6SnGItMdfnZyeBRk9pzMUc0jTE1x06mDd3GX+Xdd/7AeI9zA8/hTYlhjgYqPrZCUzmbkOZuLqKmEhCNtJEZAmK8gvCcxJfQ9od230a9et9gN7cwxgDvSDUTM9XhEr4gPFijlAaVD++RukDmkVDDHX1jnShKhY/2nBTdT27BM/PYfoR5m0comTpnMxxhE1kT2vw8Hc+xlgbnP/rLbGaTQE/KzEsHepvDoSRAOR+vL6FqGL+Ned6aDMtfjVUwLE7kufUAr4y6J7PUewGdkB2rOZq6bLyh85qhKqATcF9XcL0IxZfxSnsr57nKcoA4Jc1xr/3V+F2A9xDC9m3cA8nnYLCQQ4tyn/5J9CihPvoFaUKrYW52zAheNgBdQmdVZPKT6qgtB3MscXsqzesup6tcxIidc1D/mH7XlKgEaaVZVadY1cvyTQmMmqSoU5TXJuG6/nmFqFtuX6MyVUQe3kx/X33y5HKvqsmTT0FUnH2hpxAVHIVqGCRQNvu8cBH7ye/4H3uvib55EQcl7LImG+JMr1JZtrf3lFydUUCchaxKAvg0xeAV+ibW07l7TrKLVclxK1ZeX1zAxQF3A9/EKerx2uISm5QA1007G60fZxJtIQu50hqazqOJLI7QsZ0twe2O2A2ozR0SZLho6nK0bRwhGTdshOksUKIECBfX/MgnnHgaqoeul1Sw1JCRZ3F+PIMCAq36zEuK3SrAqWV2BUZofMG47MVu6+7IyTywnxN32fbkUnU5TmhoaWDPfQcfHhoOUvp5TkwxipsDBj8JYVNzL5DsBahtLAPLczdht0FY+jXywLu/ghp44yXzQHVGHhQdx309o7V6KsLfte6nLh+yeI91MMRpo2cvLqCq66gl2dcE2/eZh6HjGVeT2oFGnlospgjzzwBCwf69Wv+/6iKww4XIb3h5i6vZRQFwm7HM6uqpgLHSVAhqcjWD0Db5sQ689iAKJ1eQw+UkpXvKy4LmGbrREvc0hCTRvvsinyzwyHLdyfIXogJvz0/zwID/s015O4eWaXuzc0kl9o0kFnD2EIVsliw2LbZMjmNEGxtO8jPvqEPGAaExI9sash8zr+PgzNROMjgOXfjr/1g+l6FBbQAru8hziK8vIR92MN//S3s+RnsFc8CkzhqoycnQhV6voI9DKh7z2RiZKdQZzXGF2u4Nxvg+o7DpLUkwuK8wfAf/V8ggcUDd/RxqOl0b23LuCcH9SWRCe1Ldo1mXx9hDj1MFNSR8zXhnlbQvprB9AHNl1sMlzMEx5lBwBLuLQUWhn/3M6gzWP+4RygM1AJaOZj5DMNvv0KoLMbawniF6QOq2xHVLajW5RX24Ui1zvUMph3zUEaoQi9X7B715MlqMRUK7bc37NZ89gzGGJi2hbQNTBwAKW0P+Bm0MgirhvFLWm9dn4c945OXfObXt5CigP3tz7Oqlv32hrGLCLv0lxdIXC7d7ih088kzFnl+9GVMPhkbou/pD5yF1TMmwD/96jHsKkkCAwiv37KjlWKUBDu2hp3WuOYT/zHDTIuSkLEWv9C+04kIgAkXfyK1p33S6ydc5b1BUnH4U/77FIMt5qzoSZR0TcSclIwkIl+ujJ2Q0os4zyFWyRBCbJ1H+BXs5ODEQGcVfFNQEi51C4TQmzR8TPsoP5xaxPF7qpGM20Zq0YVA2ECfyJAka6fFpVZyRq8AQmEQrMSgdWDQv5zBLyp2NOLwHQQQMhYhCVpX8ItqOqhTdU4RCbWeUIjCYWwMxgYnlQODUBqMM2qM40B4nMZqA5OtiPGOUnm8eAV8qpwGuN2JXJwIecCpgpsO2VMJykREB9/DtISKwJ5Ig4YAwMKXBiZiyc0+4ipTddvZiL8euCnnDcKMg5zM9oSw6+ms37MoluDvHqghn8ixUUmDMqJxON3J8MxHa92fBM1R2QZjrOieVEczAT0Nv0zrYSQEA+ZE2jpVQb/HJpH0zU4kJQ11nKqS+RlbC/XDpDwm031KA68eVX3ETImAMRDLYFlTlTLJMyolntW5nGBLkmwUoTT14B8lR0lOkbK9AdhH/+bse4RyfiZIVEwBcRx+qlXJDl1PLpvGVn0iO+o4QtZuGjAorPZr6tRF8qaUFI3Abk+FuTTQKw0/i9echiiKCjLG84T7piIQRMEJg8dSvhHyFSpLDHkkY5uBMEdRQrzEcYiZlg6htHBJRjNdryDC2pJ4CbvLKpgGqIE+i3AJippoExWwIrwtd6+6KNFp47BAHwcnnvx3WiWV0U/y3Ok1ZroOEWFXK0oap3kT9B+YZgrEJFajmAJJ0IlHlBS6bBRGkWkeViL0W4vMDTtZL6r6iO+Sv0vskGryP0EnSWcbv/MHiqPfJ8uJHJCfed4vkUidif9JKlkE0A5QibOAAtBa6DjNfAEwQXN84GsAnvXDSAnetDas4f7r+YxCKrgm0QsNJDFHgR2VwE6cIzQbpSAUsWPnJz9HCXkDLcy0v1MxJEkOA1AJOXHQ0kVIEs9YDjM+2bOxo5i6+RLoQ4a5gR0U9sh9Z3IwApiOUtk83yKn9wSalOGaSZb/1B8hxjNGIN0I03oUB4rWhMrmIkqCaBWbHuO8wNhQmEKbCuOigC8NfC0wg8IFku7zoEWAsYlEQvkY+HnxPqqjX5dxBILke6w2wvVBYrxWNvMDU9EYqkiT2inZHDLnTIbYFYsDW2GiXLlz0HkNtANh98MQO2xR3OZk0rzu91Px0hmYWTP5oA+sdQWyUEYWYElJjoln26noSlyfKAp+/3i9/F+OztAhnW+/HGfkO52IhLYHZlUeYX+K6dZxhP/qG+TZDce4wMuS6kMx+LOX8wyvCrf3eZp26nygLqGrOWRjHqkd+dcTP8DUFeXbgKxiA4BE+rqCv1oxoz5MvwuWB6x9GAi/ihKOen1LUnlVsOXvLPyzNaQdYfbHqAtuEV5fk3QfVZD0bEkFhbsNVVxmNSRyRD6EzTa9B8Ri/PgyOw5fOwxLh+bLFuZ2i+HTK2hpYAGEZYP21SIf8u7uwMO5JhQpVBZ+NkN4OQ1EXP/xgW3cfmQScdjDWcHYWMrQnc8wNmybjn/3E7hDQHnbxhZuyFNYOfcAGM5quIcOzRfX/BLx4EzT5tUZEu1MJFfePnAY3JqynbjbcGr7eQ13swPeXJNPVDiYhwPsnaL42QhdNPDLGiZOjA+ff8Rq6dt76GKG8bdf8vv4gFA5OusqtlGrktX2u810s6MK0vDpJUw3coB6Goz48QuEeQXbMjnIAwkB6HaHcDzCvXjO9wWmADlCChEHpJl4P8LhANM0sJ98RDx3lAQ1TfNo+Kd2HfyJLOQHFXS+R+Z3B9hqBjNvKL18d/9YqvsDZqJzT9jacDwCYmDqeppoCyApLmWL6kLkrrV5iJZdk9SsXUdIwKKhXGw/wHzxhofSfDYpcm23CHd3sK9estv5g1fA7ojwo58SBpqgmjJVrwDwEKsKYoBrx+nmRuDKmGiEc5jtAXq/ITl3PmO3QBX2y7fArMHw0TkP5c5HZSmD/ryCaz3KCHsCMBUi4pA/TYT7WHnNkpZAnptg9x20dCx69AHVsSUOfBgRzuhHy2828XuUMIce5aGH2bXQwuH4w3OYIaB4UEJfu4HVSlWMz9cQH+B+9oYE0cSfKkvYm3v6rzkFImwqHCznebDr8GKNsbEYFxbiyXmrblqY+z38y3OoEdiE80/B2/ZE1nnBwpBuYoesqrKPkt2BQ+s2W8AIq9DGAHEOgZQF9OaeS+r8jJX3/Z4E8fksz46xl5EjMpx0JuJw1ZSc+M0OpixgP/mIRNcT6fJwMsBQVfPwVnt2RghWHKAJjSTWcURWzQEQ+l8ObvFdNKkq2OcX7IjuJsidqaspce96Dq4tGEtIExWc3jn77SVl/qeJ9UxspSozj0BFgP0+D4yUwmWVJLnbZL9sqopFjDjTTI8t5OoC/afnOdc3g4d0HvbtPTAMcHHtnypKynKRBRj82Qyy/CvQzZGflWbtnJha7n3TR7Wt0sHPDPRiBrdp4f73n2Y5Y43dSbM5wjwcsL62mT+QChyhXMJ4j/LLW4TVDNu/9QK21ahwxeRk9r9+AQAIl2fQpkRYNVQA7Qd0FxV8bTD7mmiK4eUS7qHD4l/eYPjsCv2qQNlU5G5tesjgYTZHFEMN0xfoz2sG50OAGQJ8bREKQb92KO9a2G/voKs5Ql2i+2gB8Qq3H1iUrasT6DWLSKFyjHHu97zWszlMLIj6xsI3FvLDj6YbWrDYMawqqAHqLx6mM/3YEkYV4z9zu+V9Wy8jusPBHjpy3OIAWbQdofarE97hfo+w28H+0ReQ1RLt3/gEbj/A/eT1JO+82bKo0NSQuoZ5dsGu2kC+Sdjt2B22DvbVC+ixhX/zFuKKac2n4ZLjmOXGpSxIW3COfmU8/lL77judiIih1F2qSEgazvJuB4QvzvKDuTocA9Y8VChVnmKlCsCkYJRa43UFGMsDzoTcuk0DxE7lz9KAxURY0kjuTNl+rjQGEPrkPYPZhPUOAQjEGspphhqrWxpiVcvIVIlP1YPKsirvNXYqWMGRqIpiD8R4Soo/o5ReKCK8qSxgBg/1adMZiLLNKvG9eB8pUWuGwEmfPWX4VARmCFGij52QcNZkrsdYWxhnYKLSxdjEDo1XVjtSFYGtKRJfXaxMty2nIqcqgAhCzYo2Sed8D2lqttUjntZIlLaLXao8BCoSN7UQJlbGwHTE88p6xWtCICztlBSvdP7TDySKBZx0pYxhZ8yHHNilSpp6D9OxtZlkXBP0CmVBBZLUkTtRzSK8Ij7r2BnhjTlJKGKVM3gfIRzRaenp9cY1LgD89xdukS1WNjWEx1wZVVYoMTzCaOfXpOepyiFP1kLMSARdwnUnKFOEdkFZzUdUUUK67VEeXCtCGMzoMzRDnePzj4cc4vwLuOjfYqdSmoZw0jSLJA3DS9ed/y5W2UblYvU6YX1jFyjJNGap73iImih9KcMY3weTdPY4AlI8rvBH/xRmJVA6KlGmzznGYLauImkeDBCAfE1alXFeiuHPgAli2kROSiTR285nCW/x/pHsJoxAYaDrJeA9TFLzGscpcE+zQbrYoXE230O77yHeIZQGEkAoiGr2yxJOnvHoJ7nl5IeTDwZI8pw307NxybfHPf3uv43Ja4cFiZ77F6A/SB29lNxFQQtVpRqSD+yopY5fhNgAoK9L6k3J0jkZxRBOz0AAJ5CuMEE3rf1eS32T59VnOGVa43lvtS1FLU4HtqX7lVTVkgKRc9CGWH10XXxOUfBhGDMUidj+MnM8JPp+HYapKGGEPuQEGQFPOHTiGyB1DGO1HEqeaFg00z7Z7CGjh4kqe3Cspuu8mQYZn8RPknhckcOl1rLOGL+7pOA8ktKD4wBUpAGoRgBIJoenua68XnDwclAES38VKgt5dgYEwC+rfA1+UQGooO4kXhKBmoKcmNWcXZchYFzzu2Tehg8IlsXSzG3rA8wYu7HpUluiQ0JdIswKEt59gHQ8h5OEugDRJ1IKGH3ktDYl56gA9CWHEbASBysySVRnAFNNc1my36Rkb/IV0g2PuVw+xmqniJzky1UfnVEoStjlEmnIrG09TPsOzyn6K4nvddpNpgBLSeiw6jTEUclvk6bm84zy6bDmcSc/FvNPKQm/yL7biYizk+xYVeVBKslMU2fZMdPUxNseOTchdF2+yZASggYwFuZw4I2ObWjtOuj9w0SEXq+gTQUTN7qcn5GQeP8wTfCNiYtGh2aihG5YNpFcPQLfvOVCePksDzSU+YyBb9dTpxygvvibu6l9evr945RiWBtnVUTZy1lJ8vtDx+vsib3GCQ/AfNtxWNIZcdPoeoTawZeCYV2x8vdwZMITq63Fpoc59JBDl9WgcmITQPWmzQ66nGeyfqi5xPqzCvd/pUC5UTQ3I7ozh+CA9Z8cIF6x/3SWiWHhbI5xWcJte0g/EoLhgFCReK/HFvryGYZnM7h7PsdxWU0Qj6Cw/Yjh1Rl8ZeErJlHFA3knpvN0cvNncG8egGFEuFrBzwscr0rMvu1Q/Mk38B9fYVxWqH56AwFw+J3nMH1AeX1SKWuHqZ1dECZih7itIlRPb24R+gGpSamng/E2W8j+MHXbmhqoOGzNFnHYYJRNlWXkhNyPDHjajgljuc7r+oP7ZL0i0Xm7g8aBdWleTrbD8L0NLgDuFakr3r+HY54nkozqYqCAQTr8kzLZu8MK60hMH8dcyeQAvBKmWGSsrCyXkLIgtyQGwbKuEM5X0IZCCLrbw9/fs1viHrtjE4dkpeGjeHPL/f6DjzO3J5wvEAqD4pt7zr0BKI3bFLDtCGkZuAMgCTV/4UiMvntA2B+AzZaJzdUFA5yffZNVwmAYiBUPLKCEzZZysuViur/HDuosus/WCE4gOoPpAmzrUX7F4X26mpHQ3nnIsYe5aXO3oPv0HL4yqO46iPo4CJQzEPy6wbgoYR4OkGFE8XbaPxKLPUl8QwYP3xQ4/A12es2gmP1kA3z7lpX+tJ985HxE6e6E8ZZ/82MYEdR/7XMWXQ4xwJiVTNaSRDHCo05I5oPFzgyKArqcof14hfKhh7nb8TnW5aSuFCcta99TOrgqgL4HYEk2jecPZrNYxIrrak2frX3PDsYwPVf1FcRN3MVwfcOu7+UZZH+kz0hS9CnJSB0Q4yb1rCi+Yj9+RbWi129gZjMWd7T/3kp9h+0O4+5EEr+qMkcEqsAByIMNo/nNDtBAnL4q/M0t79VqCawWXC+vr4nb327597s9zPMr+FUNt5yTC5rULAHGBNvdFFO0LeWcTwYx62YH1/X5vAWY4OPYcs9WFcYXa+w/aVDsArmPP/mSHNm+h2lqyuquaoRqTp5q2+XuIG9IgHSBYhaHI4x5zmJcO0CtxfiD5wiOUK9kI+r3yM0pmGcgDcrkqqL5ast4ZVagvXAYawP/2xXEA+UuoNgHVLcd2hcNurVBuQuwx8A4KkK1uosK4ycNqtsR7jBi/2kDNUDzdpLr9zOS0YsdfZLbUrzI3Z1c4/0W2nXonzUYZwazn+5ZKGxP/GbPJE/6mkNRF0vYfY9wdw9ZzYn0CPQt5dcKbSr0z+dwvYd92GO8WsLPCpRvdvl9w6zG8GwGuyhhdg3w9jZ341JxXUQgHeOAHGOmIH8cGXclieAXzxBeXGa11uJH376PeEiFrJpz8saf/Ixw8YtzjrBwDuHmFhAD+/HL6R41DWS9Qnj9Ng9dZEd+WjMh8qcAIPylUM0qivfkwoDY3owVJ+kHhEQ6HcesdWyrKg8RpMQZq8wJRiHGTFMnT0mIKfsEmBV+KABMcnpzydeZBgPZMfDvozpOltS9upgG4sSqhDZs64/r+hERHGCQok2d+RihKnIF0xwHFIOHn8fM3leUxtsc8kbCrOHckHUdq60lIMDs27g5SkKnZAycgNwLJ2vGqmy+HQWx5X5dQ3wJmdfQyiK4VG1nh0TGgNVPR5g+wB2oOuFLTnKWwaO644wQrUmqNG0K7i3GJSui9kjZO/PxS4yrCqGICj0j26xQzbhTLSx5MIWwihwxnEm9R0tCuRLePnWoil3E2M9IInPo8nOxLa97uKR2OLyi6MY8oFJ8AaxJFg7bXZaGlrKELUtOzY5ERynLyRkkjLmPg6YA2IcCst0jHOI09YjJxDBkHDhOEi/te6gqD8CyoLqZ53rW/QHYHx7xjciNmpyEWPu9TkQg5rHCR/pxcqDeE2oZpgqOSTLaw5D5IwAIxymngBKIkJgQmFCK8FmNIzR4drLqOioXxe5pB7iBQa1ZLIgd94Fduzj0VOOgVXZWTCw6mByga9vCBoWpps6gdD1E2a1InQKTJB4TnwyI38fQDyUVwbLg7I0hVvoTpKjtgcEg1AVCU8B89ILVVCAXInRGyEPx0MdJ4oR0BWeYBCN2mAJYTQx2wn07+7gqaQXD1QxmqNlFVKDY9uRnABmiGlYNVKOCXFLtOw6wxwHFxub9EZqCczkqch80dYpOh+FWlCouLi8IC01V0GHMwaGeKK1J5NHk7vUwclCjNQBip/jYof56y/uXKuyqjyEwzuZOpwwDkHgfW05xt+fnhN2Nnp0na6H7IxOIpNZ0ksCmuRemaU74b3yeGjkrCSLIBDP6lXdmi5j5nJ91OiMjdXG+z3yy2Ck8le/VfuBQt/QSa3L3AtZGzL6n706dk75H2O5giqhc+agDG6JU6hH2oWQMMQwslKhOieJizi58HaWxvYf95g2fw+U5zwzEAuDDnj8PAUEVZr7A+PElQmVRbD2q6yPMrmOh0xjovIGf1xjPKpgYmPv1HLKoYW42kGOc93WxxnAxQ3GYQUTgZxVgQBh5VcJXM5gxQP30/UR53ko3EMpVO7h2zMNWEQRy7DN6IziDYWVRbjzq28QjA9QK3MFTcvdG4A4Ow9JinFsML5cIzuB4VcCMCtsq7HHk3t+VGBuD/csC1YPF/O4AGQOKrYftGC+EmoMM7e0GYTnH8GyG0ivEGLjdADPYXES1bZ/jHKxmUCvwszIjP4isKclXK6JgiLWxS/SYI2HvD7A7yzXRVHF6fYA9joTvD1T0SxLvKQ7N84ysgcJNHdrjY9l/AFlJEADSTCF22E7i1HHMnVREFBAAnjvHI/d8RFv4yyXEL+AazspKQ3uhyjUvwj0S94OZcaZb2O0nQZVfYN/pRIQO+J1ExJhHsmNMRibVoQTXQcJ1AuxopMAxYa1NnN45eh4QySI8QCO0JqnlPLJ0YJ0SiKoC46wgAasVXp8aziSZNRhfrHP7LrXnwnqGcV5g90mJ5tpjdpKI6JKSuFqVcThYxVbi4GGvtzD3HfrLV/ANDzx3cChCgNmBldxlAz8v0a9JZAUKlPcDyq/uMF4tMS5KDMsCZghovr2LEI/HB1CSsNSaw/4eT3UkIU2UClfu6FH/a6rEsMMhkMZyNkA/oHjLpCMsqEFu9x07KoVBvyIBuH7TITiD8ZMzhNJADQg56wfIUEKGAPuwR5jVCIsSwTEJsm14lIiYXYuwqKGuzDALOXYwo0dpCYEJizoqXHSRBGhgDwP8vEB7SednBkVxI5NE3myapOr3e8hI6V5p6izjmLtSZUGcZ7KygPQD/PU1zDDAiCBstuR8DAPFEBI0q+veCwZCJCCb1QqnMwpQFo8kp7M2vuqjSqpU5ns7pCxZOOl2JDMVsd/adTH4n+6rLOa8X0mHPU1d3+3zcLccDFYVeTfXNzB1za5JJKaaZ5f0S/3A4OVElUrKEmIMxtdvkWV7T82wLQ/n2BGLh49utvCbDUzX02etWCXnFOWQiciiypkSXQdbf5zFEWAN1d6KAijjtVQVxmVNBbwkTmEt8ePjCFwt4SsH35zBdCNlNQcmTeM5B425mx2VX3Z74PklwiXx1inRFSHOPMOdXCSQCtFjEgeytpcFJABmKNF8s+dckJIBs97fQpYL+GoBLQwLDnHO0GzTQtoBpZCsq44S5b4p0F2QK1Pf9vQbTUGY13FAKCxCaWCu1jD9yIQuEs4FTPx1zmRL+hFQySpiSc0I3rOCHSGruj9Cv33D5KJw03qoL/MEd7UxIHnYkQ/y8Uveky+/5Tq9PIvQMk/4VOFIRvU+ik7YzGUCMBU3tKGvaLsMI0NUvDHna55v2x1gMM2jyAtfiB4ICn99PUHNbCRGf5/pZLG6m3wnHjYIQ8eBpSkJLYhOSPKqst1Bhz53RwFM6kJJje5UgS/6Xt3tWXho20heJ7Qm7A/kbq2WCLOKwwHXJUSB5sCZRN3H63zeu69uiciopy6NzmrsP5uh2HqUDz25D9sd9OMXDJibAuOcXYj5lx7m4YDuswvyFr56wy5Y28Iu5xjWBex+BiMCPy8o+HL/AFksWKwc/ARRFvImkCS8TYQvxQIuZfaVfNmYlGth0C0tzr5tqcB1bIGywPjijL5o18LsWjgjGP7mMwwzQXAVfAm0Fwb1TUB9O8DuO8ihQ7EpASmw+bygZO/PHEw/onxI8DCBbxxsUEr7L+c4XhWQcQZnBXbXwR4MhjPeT/sQ0Q6LEsOqhC8N+hWhm81bzlyRqqQPKThTzcQkRt9J8HF7z3Pghx8jFA6mH4DRc55IOhfibCqA/iGJjQCx4OJMVjc1CZIPUJId7OplKDcwSW/Hrr1EZUT0w8R7bGr6l2HIz97UNWTWoL0ip9pcNCiv95DXtxm2fLrmoaQ+yHzGIn7b/dIxxXc6EQlx2I/GqZE2zlLQ/T5WCmK1/6SNqnECtQxDTkS06xGOLWzhiNNOleKI238UsJ3MB3jX0nA5ndU8TErHQ+vNDQlagUEwuj4qYAhwviZZuh0hx54PLypASTfAhYD1H7OaoDWJ0ObYkffgqGwiYyCMKU4Uh7WUlXXEYbo4ibe/mqPyCjkcYa4fYG4N3E09BQPOYHy+Iiyr87DHkfjMl+eRCG4ppemnQT39eQ1RoH594BCi5XSo+ZqVThMnWvurZSR6CYYFp6H2f/Mctlcsfrxly7ayCHMmIPXXW7j7HrOgxHuqcqpqaVC9PcDeTVLBJuG9I4xFOo8y8k3Mkc8zNFEaM77GtIQ45SFtpUMoLGznOW31bEGC2K6DHHvYwUOGgEoEbtfD7jqEugQ+eQazoR64/dHXUDGwL55PeO/Y6ZCoLqQAdLdnQJs6GAAhbuvVdOA1NWxZnFTie8A5uB98ygpJJOSH7Y6YUCN8TXgcKeTKfazU27pisj6rEW7vEbZbvuaXkNn7rppYgUjBJK0fIjesjgpIPneYpCjza+T+gVLJz68AgNWfVHWKQwepyBR5Z2L49/F5mfns0TwRAExEd3smFpF7BQB2Mc/XIos5A9pT/gHAAzpBi5qah1BdE/4VK3XSec4NeX0DnK8Q5jVMGQdbDSOn6p7NM554+MEzdgKud5yefhgAZzA+W5JHdowywIWDvd3D1AWGyxnM1vMz5g20qeCuKZmpFWV9BeSI2OPAYkMIGM9n8I3D8apAcQiobsrMmyofehYZYhd29a/vkPknbccDersnpyVyu4q3OwzPFhhXDtX9AHsY2X0IAcZ7Qk8Lx4PbCubbKJPaxqSh7SM/0MDMCsDwtQGO8KZjD+wOwCCQzrCrUDjorKLYiDNUsRnG6VlKVMMpHP+LA07VGujZnBjyH78GjgFYzpnIdP2jMyaZ9j3k7oFBrAYkTpcOIwcPgkGxLJfkIPQREhz08XC8E3luKYucnIQkOR3nhbB7GwOgh038XRFVczzCbj/NJvqem3YdJXqHRNAfkKIq6UhMN1WVZwhZ5wi7EsO93Pex8GEZNEZOhT1bQ4cRYc9iRrg6h9kfGTfcPTD5+a1PqH652cP0A8wtYG9rrtWI4Kh+9HbirxSOxY4kvhAFU1b/ikmkePIbsZqzSDEGJukC2H4KZN0hzvk6tuzG/F9/B+2igK8MEMV1ijfbuA+mGRemHQlzbKqsYidqgcAYxSbZ2o4y9lpaDD94BnMYYN/eo7g5YBXP+PFqCdNxJtGwKhFKA/9bS8y+PsJeb1FsPGQEfC1wLbD80qN+06H84ob7yAe4WRWhYrFguDlgfHmG7rJCseHck+OzEuaswHL/CmFWoNyGPOfEHDifp7qjT8PogVnN+McrbB9QHAAZAbftodZg+O1XGBsLKFBc7yDHDsPHhOoVN4ccLwHsDKeOcffZOexhRPHNXeaX9T98jmHhUF+3cchrRMg4w6GJ/cnw180uJxrJzNma66jt2AUFokhTTd/Z1ERMdD1wnMjkmnhFxkxzsXZ71N/s2OHaH9mZxRRTsEgnmSstTc2OymYLWcxhlzXw5hfvt+90IsKKUBkP1aRgwymxuWWd2snpb6JUnikGYnA1aqsHPwVwibD3Acx9qlrws0yuPGr6eZKojMRpjJHsnmYUpBZ9IihGtadMWoyvTWQuGVitgDHQuoBpWVnQyiKUzPTFKxdoJFMR8kDiowFgIknK10w4RIRBlQbKrzkHNBV0XsMvHYcSRpIWLDkjHAhkuLH7ANPzUBznFqZXVNsWMqsomRdIcEuKWKZHhEmVkVAH+ErgC8EwB2wnmFse1sEZjI2FrwW14eFv4pTTULsswWkOPfTugdOmE9wiP2RudAw+DxmCNdA52+laniz7RNA1JsI2YtA38p6FhokIQgD6AKOKYmtgdi0x4q8u+J29AvsW4WFLZaaL8zzrQfsj10cfk4QI9wldB1uWfF4paEgyj6kKniarqsbAV6Hzholj6WA3bvo7Mym3cNJ7JDDKCflfJEKFKuLQ9wdgi0dyx99XkyLxPnrAxq7F6TA4EaBI/iNB4HSSjUzkO2Pi/0oOZAEwkbEm3nubSZwAMpxRfcTkF57dhjjkEFXFOTBdx2F7kU8mo4/KcfHvgKnqXcXOb+G4N4xQOaljlVV0yUraKfwqquNJDEj6VYFQCeyhjNAA6uL7OqrBqGZZ38x/wAwYKU8uixkDkn2EpdRxPWscghgV8ADCPX1tMMyZtLkDJ8IbHSGHHuIMhvOG8NWbe0qpJ44KMJHNYydR2g4S5vzeHSEc9K30X7B+EgCxFmZ3mGYMDbELPmvIzfMBMio7M5ZwiyxYkkRMjOH9mFWU37RRKjWJEpyYRl5XwrGrCPo1AysXwlTs8iGvs5xwxj2rUR0pKy5ZEGKYIF5AlNy00PGE7C7TPYe1WZAg/Tut40yGTZ/rmDzB+6nDmhKT4HOVH8lHfl9NNXNlACDL3qZfR8GGEKJYQlMz8NvtI28zQqzadhIhcA5SeBaAxABxgnVomOiJKsKxzXxHuzew99vMA5Kun1AePiDc3jH4mzU8D8oi7gflZw4j8OYaKKIIxKyG1lS0ojAGC4JJFhtADG7jV24aHF/UyBWFaLLZcT1VJWcORaEcDCM7eyLcG4hwx0iiT/OGAHYJhmWBAuDU+EMHFwC/rqnwVxAmGSqDYW7RngmKTQH74GCGANtHArhXlA8j3H07wW5tHJ46BKrejWCCYgRjY+AOAgyKsRIYiwxNt12cA2SQ53Chi/Ck1FkQKnhylhF9m+lG+FmJ7ryMkDTEYczHqcubYGjp+pJIBYBhGcVzuj7HAOPMol9ZFFsLqwpz9FChf5A0piEWqbTrSLA/HKiuF5NjbSrGPSkRSVLkaeDpwCKsWDt160LIs0nEWoTYNbEPe8LNN1sWKpzLQixZbjn5jigvHo5HuNXyEfz1T7PvdCJi5jPYZpmn5YYjp2/aj18SstSUMJsD/M++pMKUEZjzcwYgTcVuwnbPdnPSh084zzTQJVahxNlJuaTrgaoioedqzYDh9oGvdxa420A0QM5WVHBKUI0o/Saji+9NbB1MhfGyRjEGYHfA+PElW4C1he0D6h9P2W5YzaBugfZZA98YDDNBdR+w+JdfYfjBM2w+r7H8soO7OaL+eoukeS2DR/llB20q+I8u2Q1QxbBuEGqL9rJAufEo3x4RGgffOIyXFduQy4i/HhW2UziTNhBQv+lgBo+wajCsKxyeF1j+9Iji6zvobz1Dv3bYflpA4zltesC1VJ9xbcDyi4EyerMSvjIYIgzLdoq3f3cNX57h/I96vqaysK1H/eYAv6yh55/B1w7jzOL233VwB+Dsj3uUdx27JYWDFhbHT87hK8FYGw4vGqLjDUB128O0A8y2hVGFaR1C4xA+fw7Te7iHjkFJguyNHvbbO/iX52h/6wz16yOKNzuun6aE/PXfBgbPKepNBSwatsT7gZUKayCzOieJuppT7/2rt5nvpOPISbeLOTBrGHAGpbx028EEpUxeWSI8bNjNqyuIK6Evn00Bzf0G4eY2d/FC21GGcr2EHFqEP/kpRARmNsP4c4ju3xdTr5BZlOBMcxvS72IxIksTzprHgeX13VScOK0WHVuEzQ4wAntxnl8uqyXC5QpyvwO2+ymZ7HoeCM8uWa0aoh68tRxeNnrg7oEJTOlIcN5uIWdrcjUWMybI2z3fp2IyicIR8hm7r7JeYfz3fpvdhn5kQF3XCBdL8jxKA6o+AK71kIOyoxcrf7JtUX97h3C5Qv/Rmup3g4d7w6Fe1R+9hq7mGP+934a2HCiqV+up2yBCaMW6jvBOqs+YzqPeD5j9pM/6/PZhn+GpsAblngT28NkLdnj7EeP5jDMAnOHgsS/voXWBcd3AtiMWf/QwcVUKB9QWft3AHAYOXkvzYWacYC6HCNFbLaHrJbswg2fBAQzI5GFHWONHV5B9y+Bizms0D3t2OGYV33s5y4Ni4T1EDcaLBeFrr29j8GHR3NwzAKkrYD6LAyFjENDUHP7lAyuOF2d8v2EAZg2hom/uGAwUDiJFniPk314TTlRVkPM1NEE+YrCjuz3lNZNqJJCr5wCmgkiiEBnDDitiV6YsYOYNK6/eQ/tfTpLzO2nBP5I5N8vlY2lsICoXDuxsHA5wywVnKsSZWNpOQ5Z1GCjV/uKChcWvXiMR27XrYH789QQVjcIB5U+vpwHE/UC8fyqYRQWvcGzhzs/YWYh7UDpC/xDlgcdPLjNcuvj6Dvr6CFysCcuqLcwQUD5EHxE0S3WPf+d3ID7kfSXDGDudBfT1W0hd4fC3P4NvDMbKoFyXKDezDEOSIeTkRUuDsXGwxzrK3bMT0/zJDbQq0f7OS5Q3RGiEWQGtLIaFg1qe1yHemt0nJQ4vLhnYe6B68HD7EcX1DsfP1tj83+h/JQDzb6mqt/zCo7qPan12KlSaMeDsj05g7sJiLYzk7pUUBcYfvMiKZKYdUL7eMkmylmOIAmKHh1Ct5npEeXPE+PIMKue5IBvWMxaKDy301RV8U+Qu1OyrI59bXQGbLcLDBrM/bFAv44iJ5NOBSYXRGOhqwVhC11mExER/hs0O2Gw5F6+uqNppLTshxxZ42ECj6ps5W0/FkHQ/4j63qwX9ZhRIkLqeikJ9Pwk4pGJ82yFsdozLL84R7u7hx1+ug/qdTkSkcKw8mqhxHWXDHsmaATwIkAIJySow4sM70AwzOegwkQA1STKektZjZdvPS1jVk0E3Sa4zttNE80CtU9OoTJE4CL6ysLWDrcq8aTi0THMLVDyHlgGA7QMggI9ytbDESvtKKIUXpXABsDPjlZ/VUCEmFcw0DtaBckPmQV9x2Jsa0BkootwdEMo0eGhq6/qmiOTx+L6RgJqqBBCQnO45Gd21CttGGWEFhiV5GBI0Bil8fSiBUAgJbkFjtcPDz0qMM0tJ0bjheb1MvJI0Ih0HHsn0iQfUghyS+DPOZzEItc1EdOkiNKWIA77sNMwp/Z0MhHjovEGSD6bMZwCECa40dVbrUcPvAaNT1fLUkiyikSgBHSsgqZrkPYc+JnJ14ookvfYPmMbrySIO3rNT03UZ2oN3+D/fO9OQq5q5Apz3/mmX851qb3h/GvWjt/Weg/vSXn3nb/NAO2Caq5GI71E2NQ+jS4OpUicBQBoglTp29AmxPQ5MlfEhQq8ixEGdIKilpn0U3QhFPHzGMFWyVOPk8lhli0NJTzlI7BLaaZCiD4ROLBwKVZgAaGEeV/+UiQ6hSooAA6eEjsruwEGPZUE/sYyzhxKMpBSMiwJ2D9gjpyL7Ou1jQ0W+0lENbzRU3k2qQd0QZx9YaK3QoY4HdjwwLUVAOPx1mLqGXrO/BBCLGNz3p7Cr7ONjxxoGeUilqkLyfcKjQxo+ECahgdXkKMMuaZ0AjyF8SaBAXeb16Om5lNZQ9ANizMRJPB2EmrssPgoESP4scS7DvlLXRJOEa0rYkxywEcAG+rXvueUqcZLgFvP4BS6NAeiyv0ac5yUh0J8mknCEa6dnoyMTZnKmpns/rQGZugc+PBKGyWYipj91JIAocCM8xEOAGpPRCTLG2GUcM7zL9oEDQxOcO8rTKizGmYVrY8cxxT4RdWCiilcoUiEjnv81OxQyBpgjZWv9vMiiNaEmb2mcxSp6LBL6Mp6Z1kTxGMkxiQQAscGnwvPa9lHu1wkLKoZxz1hHWV8fX+cVtmeH058tCC8DcudUrY1QcJfPexhBcAY2BvuhtPE/gyIozLaFzkqEMnaUTYyfRGA7PkOK5PC9pZ9iIyscDBhKm9EbefBx2lIujhQ4tjCjR1hHvpmx3L/9AJlF9dTTPW7tpK6WF/F0juXBgiKUrm87QsKN4TpPkyajf8ndv4QmymMFGNukgct5WGpCBaT4O8cqIUNIf5H9mSci/+Sf/BP8s3/2z/AHf/AHaJoG/8F/8B/gv/qv/iv8zu/8Tn5N27b4T//T/xT//X//36PrOvz9v//38d/9d/8dXrx48at9mHW5+nAqsTn+7Eu2rJsGWtewH72E7g7EfB6O0N2e3ZPTpAWYpPrajg746iKSDjcIPXkd7sVzZpZ394CzGFYlFZvaFjKroXVFxRJVDM+WrCRu97mTIi0P6vHlGQDA/cENUBbolxZAg8IauIcj3HWsUJcFhmdz2MMIc7eDdAxAqp9yOM18Roy2f04Cd7mLVa6mACriNdtnFcrNiPrQ5k2gFR2h23bAvaL6YsB4tcDusxnmXx3h3j7AtnNOJK1LSADKbcDYCPqFQX3nYY+BzsZyIJA7Biy+OMLXDv1fvSJRXoHL/20HP3PYfFbnjsT8JzvY6wcMn15irB18TdhX/abH8UWN44XB7I2H7afnU7055EU+LB26M4vz//WOUnn350ha6qG2OHy2ym3l4mFAqXSW9jDCXW/hz+eUOL5vIcOI9gdnGOYWxwuDxTcjZn94DVzfwm92cB+/ApoK/mwGVA5YVDDtgNkf7jNcRS8W3JwpeWk5JAwGCD94masbMgYOMGs7Yq4PLYxjKzqTvMYIm+gH6OGAcNdBg3JwpjXEHsf5LRChlGPPCdk4UYYS52AuLxDuHxD6Ae6jl1x7P/rZFJRHPoLcXf9qe+/PwH6dviJPnU//jhWgXNU5fe1un4e+AZjwr5FroV0XoVFV4hBmsjIA4mPbllXSqsot7fDZK0IpH3ZcD9U0xVsOlNzUJXHc5mbDjtpqjnBaxEiBYNchjORwpY4LnIW+egaoovhmg/azM7SXBZZWYHZxaF7nUdzuM3wzzGLho4/D/1Rz11S8org7YjyrWSiZ11AAfl7C11SIGZYFTOOINx8C7NsIBzh2cOBhm8joSEWGKMyAmzu0f/tzbH5Q4vzfHOE2LUJhSSw/LzA7jv8HeX/SI1l3noeiz7ua3UWXkZlVlVX1texEUg2Ojo4ACQIMX8Pw4N47sv6AAQ8lAbZm9swjDz0SPDLkkSYeGAZswBMDso997AscXXeiRMoU+fXVZhPN7ldzB8/aO7JI2iKvxU+HPBsgv6qszIjIiL3Wet/nfRrg+hbqYgGJGnbP97d9uiQwMgYM5xn84wJjyfdo/d2WAtfBw60y9G8vUD1roa+TqUgKRDSNR/bdl5BDA3NsSV1JgE8oLfp3NkRcn+/4meZ21hENT88YdLZrT65AiTLhLmlpbF7u6Cb45IJuRXULPDwnNfb5NX//PDmt9T0kmZ8gTV3i/sgGKc8ghxq43ZHTrVIxCNAWOgVlSpqcTi5XMcbkemPn+16seSN4U/L8RNEaacscup6IfZFDbIH46JJAS9KMAIDKzOeqJ/s89wmxGdR2O+c1kSXxptueWi0RL87oUJnoKxhGqIeXbFLzjDTA10SJ4zBS6+M9xb0xAnVNR7TtGcLL1zQlyXPWLJslJ3CfvTjFBhTFTM2KVYF49QX4EGCSOQO8nzNr5O4AKXP4XMEeHMyuZSFZ5PClBWJE/vEdpvRuOTSI+wMn75mhs9SY6JSbxSzajkowvrfiROJ2gLmpEb79IeRnvoD2nRXy1x10PQDPXwHbDXZffoTsGJC/7tFvabHbXjAvrD87h2kj8lsHn2vER2cYthlcoaBTtki291COhX2+97AHT5q5Vbj9Sg5xGst8DYkRZ99xMDXX/WRgMZQKw9Ji/24G00WYPsJ+fI3w6jXCL/4MQpG0fL2Hbgb4Zc5g5s2C2WiOE5z2QiPqDOIrHN9bYFgKsiPrGN0H2IPD+r++RvfOGfZfqFA9H2d9bcg12ssMpjMwC8tgwX2HkBNg8JWFOQ7A6w7xwTnctoT95icI1y8hF2v4zEIWV7QOv75D3K4RlgX0xy8R6oYugps1xq8+JTPjk+eQy3Nguwb2NZvPVNe+cZ9P7J12N+ug4nS25TlUTpBflALOksueSDJaGYHVklOatJ/ErgecpS4vUcVUnkPZEqjxZ15/7o3Iv/7X/xq/8Ru/gV/+5V+Gcw5/9+/+Xfy1v/bX8Ed/9EdYLGhJ9rf/9t/Gv/gX/wL/5J/8E2w2G/zmb/4m/vpf/+v4d//u3/1IzxWH5P0f4imaPkYGElrSn2QKA0tcallypBWfv0y2ZebkcJHENuTtGwq8Rgc5HmcnrNgltwehriO766Hqnty6fuB4PaEOdJVJyGKMs1YBSiVUEpDtBqHMYI+etnFNojbYky1lVNRnSJVD+jQqBVi4VAXCskR3ST6nPXIxToiqBE5RopbZhvb+Jd04T4fUGFJo2b2pkI9QntMY5SJsE2E6ogCu0mnCIfC5QAL9xCVEUj6mRnuauoCIhR4i/DID1AaIDA2b7HchnDqoMfErAxsJCZGb6PReBCDbB4SSYTu6GREyzbwBH5DtBtLbckF/mUGNEdnNQEqaCFTvYMCGLBbUxVgQyDVNsiherWDKcg6Um9AT1bs5WX1CSWX0gIop8EloxzjRLFw4IRQx8UHHcS5sJkvpGa3tkohsCg9CQq7LE6VLFhVTco/1KYNkmnpIugdTMvyMVCRqkcrsie/9A0KsPq/r89wr/qxLbAbR6lS0GUs05/50NdGzYqJKiBKo9SpRLGkkIJtU6KWcHagUUCYCdUz0p2QjDpGTZmEYqN9J6NOMjE7FjsicYi5ZRhTee2C1SBSfiX+t5kmqHgNsc88xbgpWLex834ZktW3K/DQpSrQp2r6yKFGBjw0gWWSDYV9TsGCaVnKymKaKIskl5/SYnPaWdLlLCF5WR3K0R09K2uBRvuiZWVTQwtfuFfQUAnt/IukidEKA471+bQqOBcDnTNkhUSm+HwpzujXF5DJPNKMmZ1z1jqCA4d4f1iWR4Ol5pjCwEE/c+uk5Z+2OPYWJhQAEIX1i0hQqRSBgctYSSWsyoeWTy96EPIqwgRGh7kPUfMZNE7E31nKyH1ZVdZqGThOOyfnRJ6OGEBK9iDxvAJC9OWmjADbXwOfaiHye+4ToNN3IeX/eBximK8bk+hQCqZL3bJQFQJSRNcl9e+jEHFDL5WnqODEzihxq0iRNWTQtAdY5rLnI0z2cpheJtihtzzWXZ/ALOmsp5xnKZwW+1EAsYJue97JOk8vp8+1Ya8jFFiEFit4/rwGePffPbyBNQFYFzNVDUo0CWI9YDXl0yaiCIU1bI2uEYAS6BzQilJuo3qleGT3s3kH1NKOhyATQrUfpuYn4jHUTImAnwDUTqCFCtx4Q6tCUD6e6JBP4UqA8gD4irheUgeTJ3l8LUGjgLIPuAyMEco0YVNobBcoBuqORhxojlBPY2vPPY5j3Cd152EYn18EAn3R79uhZV8WYPrMBKrJWSL7mBCAjawucraCrAnFw/H0BTsfKIpkwcXIpIqwBVhW8VdBVRrMb52kesKq4H9zsUn1LfYqslqept3CyEb2nviRZ7841s9Zv2PxP+Vm8GYT/FiPNMpJE4r6G7Ye9/twbkX/5L//lG3//x//4H+Phw4f4gz/4A/ylv/SXsNvt8I/+0T/C7/3e7+Gv/JW/AgD43d/9XXzta1/Df/gP/wG/8iu/8n2P2fc9+nsI5X5PdCYcjlBiT+FsfU97wnXa2KdEaWCOo3dPzhFyA1unTI2ygLQd/H7PcdVqQfcHqzGeFdDNCLMvZooEw4v2DHIBYD54cQpvORyZ13D1AMgs9Mvb0yaWPvgpfEj6EaIU+nfOocaA4tmRjlpNi/Bwi1ClTjNtAL4g8pbd0J1JMguoHMPVBsPGon6sUV4HVJ+1p/AggNSM9DixsHOyKJAK/TrxYXPa5trDKQmePxgTxzumDJARqhlQf2GNfqVhejY640IQFaAHg+xuhD50MClp1ZeGjhIA9BhhDx7towwuz7H50wb6LjmJVTmGywXEAbYJyUscyD69RdQKzVcu4UqFsVJYfjqgeNagf1ABqkDxwS1EF+jPDapPO9jvPof/+lvoNxb1EwXdRlx9+5bTi8JCuhG67jC8vYXPNfIXDcR75M9PBZt7vGX40AtqbcYl0SJ96E5Upsk55NjR4m9DbmfsesiKY1eZkrNToF64250+g3tBldFo+GUOnUSqarVknklCLlEWmFxR4vkG3dUKxQfq1IhMouckZI63O/i0VjA1R8ZAnW0QmxZ+v+cG1Q/fh5h8HtfnuVf8Dy+loSanm7qGqiqoRYWw258yghLVYm7gAK6bp1c8fD99xanHdn3K+SjyVJQTpAifPk8C9VTMGZOQJIrUYyo4pCjeEBuG/YFFypNHnGRMeSAicA/XcKWGHtkw6GOPGFhc6P2Askkc8BiBhg5Y47ZMYX8BY2XgSwV7toBqLA0YhNa3zDwCD8cpqT3lCqn7tKNIGiO0gr+gtkB6P9M8p8sXaTKyuGef7CMWn3RQdzWLoyqDPg6IH3wCtVkjXJxBHXuGGabnQFwTdKgMTM3ARtfZE+0xku8ueYAaKcwNi5x8a9BFMCrBeLnkv2mBaTitdEvqsex1Q5BmdHzPc4PmaQlXKFQvBgI8KQRRjWEOcFPtyKlPkSOWlp9NrYkedgMQLIbHa06bXuxJ/3pwDl8x4NLeNJxAxDDb70pJQX0E2Dyk+2rKEogA77c2Id8TRStNAacQsnikVk3yPFEOx1mUPeWPTMV0aFtOAu52mCyCZ7taY4EfYln9eV2f5z4xOwymAGK1bzjdvndF5xBefs8EWam5WZycxWaRc4wMKNYacrHlvjE9Zj9wKq3U7HIUXt+cWB42gxQ5wmaJWBjo57cQl0Tpbce94a3HcOsC4yYFDyeKsc8EPtOQtYa9zYC2n0XeOjl3xq4H3n8b44OKOgmw4J8pYY7arimV3DQe0Qj6rcGwMdAPCtoID4EI/yJD+z73gPzWEWAEEA3graC487NGU7c8SydwNds3iEaje2/LBgEMUTavD+jfOUd3aSFBk1HxbESwgnGlobsIexzRX+RwhUL5cmAjYAGfIxnikN7Vvr2GGpbwhZoB1G6j0F0Kzr7tsfiUjA7+G0GH7Ohhdz3U61tkDxeAGBQv2nk/mUBfc+ihXJiBB3dRQBxru6g1Yq6pNzs2kCEnhXNkLktYV5DeQd8cMby1hS80qm++OLnUFfn8PerQ8gzSGv7xOWnxucK4KRDtBfS3P0W428H/2s8jKkH24hUfQ2TOpZEX1zQbKZIbW0vr8XCxnk1SAFCPdH37g2nkAGsP7xG6/zlk4sdefex2LLrOz1m4/8Ef/AHGccRf/at/df6er371q3jnnXfw7//9v/+Bm8bf//t/H3/v7/297/s6w8E4UsLk9Z+n9GSAnWEK7ZpEY+bTayJfA0WisqiAsoBZVBSP3u4g2AAxg6lHusMsU6JsCMle15/ErJaIPCJtJePkHOH86c8JjYP3RFLuDhQsK4X8LlEGRLgR9QPuB8upMcDsOqIUmoh/uChRfPeajgbtiAzggrkdoG/q2YmrfcIR/vI7R4zbAq9/aYvqlUfxuoNLFrmyfcwnSm5WiEB3tUBUS9gD9Rt64EZjbztmlmxL5Lcjsp1D+4C0reUn7sSLBk50DICIqhbokdzO4czAW2o2+m0OtUwHZ0I6g5WZDwoA9dcfIoogWH7NtBTX+QXzBqICsusCfpmhXyvYg4VZVjDHAaUA7UUO5TFTLybHKSAhqtHPVsjq0CbvbsvCrhkRljxQsv2IqARDosrpZqBnuhK+79OV6BYxz+AuSohLk4yRLmTy5BGLrgntHB2b3zLDsM1hSgOr3ppzECQFHeH6lhQa56CMgc3t6THuX5Mrz9SMToLL5KAzPQaA2doz9D8gD+dzvn68e8X3ZCWkdTuFu03UkylrBQALuKQfi/cmIm887s0uufORI6uu7+jI1A9Q3s/UK+R0uJnzZNpkt5rsliXRbd5w6vOBn3WyAQ5T+vfE2dYCNXjY5HBHvVKPWOVw2xLmuoW62SfakUZclpBIutWkn8ruBmCHN8AHGR3MoSeKWdlZszajc9OVmuuY6xPVoKQIVtdjQlfVLD7NbwdEI9wzPFFGIEAheeUDpDGNjoGr6yXcRUnNmwC6dUAEKRUR0GnqGqyaNS98EIVQEVXNb0mFDVYBltoMXyRamhUCC02iJliNYTMdiSzMdJnNKKY5+tmyUwYH6R1iYeEXGdTo5nT52X57cMjuIs+QNM2CVrA3zSx0nd5vfTvAuKTzEQEenKd8AVJ54jjOkwnZHebniI7UoKgVKXppWjJPXdU9jvYEUkz6hB8UBlzQ0EHS/T5/1Pea7/CD9pzP8fpx7hNQwnwVlyaR3tPMomnv6fG4LiXPT3lB/70rhSOHw5HTjxhncGF+yu0ZkGvEsxVrltvA6WyWUYBcFSkry8FfJQpyjEBcQB6dI4hAdQ7lnnWCWxeQEJksnib30ShgsyQNKEbE7ZqoeddD+gG6zU4I/mHkhDJEBKvhFpYF9pAmqkFBjYoOUS4iv+mh7mqaNxiFxccOwWqMa2rAQqag24AyUa6iFrQXBrYN0G2OcEEzCvGsQYaVRlSAL0+BxLpzqJ6F5Kip0G80lAfyO4cowHCWz7qS49s5EIHiziPfCapXgn6t0DzSGBcKeojJrjeiODiYVsN0GqalrfG4MoiajRL3C4XuQQmzfDrXLn5hIRknvLpz0N0w61cnsLd4XrOhWfB9CZmCuAVUZhFSDoiejC/KRJVSAnvTwIok63Gu87BdonlSwrQBuvfAk0QPfbWHajP4cgXTjKxDNIE19SrVJGk6H5cVwZDdEeh7TlSW1Wk6O7lDpkk8DZ2EetK0/tVmTWvnYz3TDu87ygGYc3gIaox/MdSs+1cIAX/rb/0t/Nqv/Rp+7ud+DgDw/PlzZFmGs7OzN7730aNHeP78+Q98nL/zd/4Ofvu3f3v++36/x9tvv83RURJTzRvDRNHy9xDrPE8c6AF+tweCnxOoY5nzEFtWkGcv4e/uYKqSos5JRFrkJ65mnvGgnDpVy0JUIsd+fl1A75LfcpEnAbQ5hRXe7uBvbumyIwJ/c0e0abOeA6cmdA2BNrRydyBiYg2GB5doHhjkzzJIP9AtJ9nI6UNHe731EjEr0F1oqBGo/s+XUOu3sPsyIEEjvxa4UsNVCv2Ki0YPQFYH5Lcj+q3FsBRsvht42DtSrdShgc9X9Lj+rIHqBrSXPAyK5w2iVXBLHvbhnkUu6V2kdgUjGBYnMf640gA0fMYzMzt6BEPBmek4kt2/Y4AIlNcBuovI7ga6cVQGw0oQNeCrDGNlMC4EbqERqxyqGWHHAD1kQJx0MZgFZdEk28+Rm6OIAE0LKQuEPKM1YwhwiSNr7jr4Ba36suSrPq4psi937UlwmO7HmBuMy/Q+BCDb0aIUpYVqBqijPiXd6xIxM3ALbtxBL08oa6ahWg18cJy1UGIMdGZ/8CGYCpepaFap2Z4Qt5n7jNTEDwNC+/1Fyed5/dj3inuTQAD8rDNL/msICK+uIVrzvZq+J7NAMHOAZLzfJPBFI+z2pF2tVxQC7g8nvQ7SfrFK+qE06QibCtqRez7xc1VFfvcbAanTPrZapmRfnShimtkYVkOm8f1IegBGh7gsMaws7PMDwusbyJNHQGYQKksnp+s9UBWItiR/PIVozeN07yF1h7gu2WgDfG0esynH/LVc077y3DJUUADdK1rhpmnDuGTTVLz0QFQYUjGgRkGMCgEBsaDgW44NaQhFAb/MMawsXEX3HFvrmRpCGoSfmx0knS6ARANRpEjUI53CcsMQVE1AI1jBWCnkLiLrfbIXpwthVALlDFROAS2nFC1M47iP1T2nMymgMiaKTey6pPFI98/I9xHWzI2WxAi1qzmRyO1MR8XdgdkSqbh1Z7QU1sBM1YyT7e7+MNN14jAiHA7Q6zVQUKMIrUgb/R4UU6w92Tg792bzBuB+GLCYfv6cow+zla0ACN0PUVn8mK4f9z4BUQhtQ9ZB17MxU5rZCN+z/qUsOUUaU0o10vTj/vua6NBv1CSTViRdar3imbnIAR+hjw0fF0DcLOGXOczLHeADhnfP5pwv3rOC7GaAPvTAi9e0Bt68xTP72KWGeYTfLBCWBvqOE0+/rWiyozUt8psB45LUrOyGaD8BOQ1Xatgjne/SpwDlSEdkTkeL+PwV5OoBp713B6iqwHB2QXMdKzC1h+4cXS5LjWHFNZpXBv3WoNsq0rGTsQ3fTK5pNeawtx308Qj/9hYhE3RbBdtELD4Z4ZYW/TrtKS6ivdQJHO2hO06Ex5/boD/jBER3AtsE6DbA3jQwtYVuuT5DRsZF1IBpSAOLGhg2Gu3lyYrdFRpiFcIkgp9odqOf17V6fUf3wHfP589KfAZlNUKeAJtXI+23y4wNjGhO4UaHuFmmGAZg2GRoHmiYVsH0nHbpPmL9nWeQboB6uGAtuKf+EEVBSlYSlytjEIocONTwr16dQneLFKnQ2WTWhHSOjMAysTvuswCMQVgt0qSmf5O+PK2LLJvPUfnBg5Tvu36sjchv/MZv4A//8A/xb//tv/2fepw8z5Hn+fd9PToPVZQnjUeWeJ194luvV9xwm5bIRFlQXBoj1GZNR4B9TbeIJNZUeY5Y1/QAV3peE7PjTUKK5gKkSEhXkc8c6u7pGlBCcfX0871PVpIa+uws+dtnUD//FW4Wt3tgsyZ6qYX86GfXkDxD99XHUC5AHwfY/YB17eDXBbAu6PLQe5hXe8TMIjw6x3hewhUa6++0CJnGq//3lxAssPyYblXj2sI0HvboUL2ICFphXGuYo4fZ9zAbA5c2IPERi//yKSkdVxSU9WsNny9nHjgA1O8vqUVRgrES+AxYvPRQQ8TxsYHyoMC9i8hCRLCJ661B9OJmIlmnCYwLKF6TAtFelFAOWHzawVUGzdMC/UrBF4BpAHOIsy5l8VzB1NwM1F0N6SIkrOEKwe4rK+Q7j/Kzmk2hwsmhbAzzqBXOQ/qBCfMLA1/qpA2xUIPH8k+P0HdHxNs7qPeewi+ymaYBJYiLAub9dxFHj/KTI/yCKKVqHcXKTRpjTtMyo4l+7hqsjh0FsIuMQYpNT6rGSDcgqSpO/YzhNOTe4SgTl7gfaPX7Pej9/UuSP7oUfCydCXDzo6zKP9/rx71XhH5AkNOGqaxl4ZvQZfP4EYu8cZzDBplbkVBrY2aRMABOLr3nPqL1KTButYT0PULd8lA2hoWj0sD5hgDHsWPxPz9YRLy9O3H3pysVI3DMGVCHpB3xgVyHxDlGIJoVMotYML+ifEGLVXV5DrddMJizoWB9fPuCmg4fqbGyGuruyMe1BmGzQHe1OH1PcloyAJBpjNuCCbsfvyD1MwBFiPC5RvvAAjkwLg1M52Eah8M7GYaNwGdLopFHFjJqDHOOQfeoBFCieM5MHgaa5QiZJBoZYFqimMHSMad5WsEeHOxxRP00hysE6w85vYUIfGVpJuL4e0wTFUmaiCK91yGbkt0jituEaMYEoIwnQEsNSTuWQlAls8Awwr7YszHJ8zeTlH2Yk+dl0gPFSTvESUjMLOKCQmTZLGkZrKiHCZlG//aWPPpupMVyd28aoRXQdiwKJj3CzY4I5Q9YA5PWLe4PmIMzhxGhEaj1Gtgsges7UjanBvle6nqcJoI/Iv/7z/P6ce8TUArmvXcQD0daHqcsCZW487HrWWckBgXa7mR8A+4TMbOQqkRYV1AvbxF2e7pc2Qxhs4C4kvrESS82WbSPnu5NBWk7scohLlGBk2tb/tmR945PDk0ZHdpiQZ0HFB333MLg+PYGy4872A9eQkKJqDTCquCUcp2hvSrQ//Illp8OyF43BPC0QI4t4rLE7S+e84ymeRt0p9FeangriMlJExFYFlsUqwJjAiFtAiGL1x2CYTOvU0aRjB66UdimfWVcTVQrD18wW6y7IJCx/pjN8rjW8GUFhGoGNarX3EPG1WRHjnlaUL0kcNFcZYg6h88E+c7jyb8d0Fxl8Jmg/Kzl+3qzg6yX0FZh2GYYFxp6jMAINA8NbB2x/NMj3FmO/swiGNY4k2On7idRf8XPw6g3940YodJ0CYFTEU6IuI7cWxecpEy1hwKGdy8QjIK96aD6EVK3KOsWxccWocoRirSX+4j44JxuZj31deHROe+jGOG21MDpQ4fYO6jdkeyf999NgNkIeZXs/YucetLXN3PoNMIKMTfAz/8MzK6G+84HCDd3kKZNDl8M1Z3pnTaDWi7eyO37Ya8fWyPym7/5m/jn//yf49/8m3+Dt956a/761dUVhmHA3d3dGwjGixcvcHV19SM9R5yEeVPWx2RJOb2RWgGeHZ0ksfnso54Qqli3s0OGWANkFVHmRN2aHi9GOzcliMnScxKcpq8BoGtTlpAKnQJwPIOPkARD0GrOFHDLHKrX0EeLsCzojX8coLoBsWkgRmNYJyeLIUClyYo7y0mtcpEj0zb575eWLhRGoPc9VGnRXRRQI1DccDIRjfDlOkC1HkpHiNOn7jWJxGNadGF/gFqv4EuTGgjMUw3bhiQkSxuWAK4AfClwuYJWEW5BQdmMoiQh2dSEKB9hWo+gKa6bNz89cb658epmJKKSC1wlcCVgGv5OSDakpkuBiYWhAHB08+81VgLTn6YxMQig2YxIYPEzUZgmu8KQKfgsid3S5yyjp+tV20G1A5Q93QcyekSlyOccmSirMsMNKokb0fWkC+ZJ5CcyI5ix7aAqTkekT4m1bYs4ulO42/Tf+4inOhWxMcYTUvG9qOd0iRAdTetiDnr5C7g+j72CN/y9Asp7Tjsc83SkKoFRTlS3SfAbWdSK1mwAp2sS5ZnUSLYtgQtr036ThMXCrCAxp/1htl4UwWQZHruedLGqPH1mWgEwp++3gbbSyX1KpsebHktT26Gmg00rTnMnO8mU5utLmjOo4BjgqNVJS5ZRq+BzgRpB4Gb6N8PJgy8ZCiqeIWASAlTH+02i5WRCiByq1tEuW8jV9lZQ3sTUiMR56udzis0na8yok5Wn4l4kEYk+SltOV/A12kP6vQScpOpkOQtOVX2pIU0S3YeYpsxhDqalDfBESaBRxUTHkEj+dxThZ+wjJJ4K8VmTEjw/q/u26/evJDyHI3I+azgcqXtRC2AJesVpL3EBYiZqigKCgZoF9/d0fsacghdjBEamS89Oavfv/+l1jbx31YK2yTIwLC9OdsCTXfX37h1/gQ0I8PntE3EKDI0BMSgIJoqlIoBgU+Hm/EmcG/zsYigqNRJpghm6HrosIHmGoBRgSIGjcYXmtDPZ7c/2yFOS9mQPnwIy7yfbCzJO2KeXPtv8s9EeSxq7AOBj+4iQmZk65HKF/kxQvlbpuZHWW0QwCsOaVCc1IgUJMwgwZMDkHx61YFhpqLEgYBEBXaag0sFDxUimedrDYrKwN4eR2tHKQPdMK5+MeaKkrbEPtOYtFW1+FfcPgKCmxFTLaKR8Ea5tUqyEr9UKXAFULyOyZ3sMm3NEURSY9+OpsRbSwYMB7CFAItCv2G2pQwNVGEg0kCDft76jSQyQaV3ejxDQCmoMCBHQIe1zRqV9k9Q3EYFOzQMC4HNNx7NderxhnJtWvd1AfAF1ewRihL/apkDsNBGepuYBiWoHqMFy0gHMJho4pClu0zIgtyxYN3Q9/67MfEb6tYX4AmKZWxSPR1KaxaRoDIIUk0HUNIXhcvrh9ow/90Ykxojf+q3fwj/9p/8Uv//7v4/333//jX//pV/6JVhr8a/+1b/Cr//6rwMAvvWtb+Gjjz7Cr/7qr/5oT5bChyQhFqHtEI819HbDcertLgUdMndBHN1l5mbEefjrGxYZmUV89wmGiwr5f/wOQttCnW3e5N2CBzUA4PaODUqRkRt8c0ee8FCiiAllsxpASkYPgZvXdG04jjWvDoiFxfDuJfrLDN2Zxtm3AtSxBb70DlxpoYfAsNxCwy1om9ldsGBfPP9+ak7x2SG5OClEF3D5hyNcqTAsuSlFEbz43yyGdUT5KoepI8rrAFdZtA8tXMEFGWsij/Fn3sWYUpF1H1G1Ds0DA58L8k8ddOegBg9fWgxnFlmdUINc4ArB6hPSn3QXMGwM6jOFYSMIFtj+iUvpqD3cJkezVmiuFLrLiPy2gJ40UEckd46IfB/YpHig3wrGhcbywwCvyAWNWiMqi2plYGuH7Bhgm+Sd3keMZ9w0p4A0CFBflMkycDlTPEznke1GhCxx2nctxosFbn5pjeWzNcpPLoBugNo1PLxGB3l9A1kt4R5u4LclNx4lUD7S9Uen6ZklcobhnjAsUoAYQ4QymiLZbXLBCJH0vRiT1WIOVDlHqMAcvhl3e0QfaCE9rUlHmsEbVtX3KYtNi9B8jurT6XV9nnuFyBuNRBwGhK6npbFWiNe3J9e95CYUDkdOPS7OSY0UmemTkwsOkvvZhJRitQC6jhbLMc7pxwCAZy+JpJ5v2EhMNrbOMeU7zxAfXzIQsx9mjZnckBMPu2AReTiexupTgvfoIH2A3dWIixLurJzeZOgdLaqnA4rCUoFbZfBF0kqcF/OBbGqH5X+7w3heYdxYCjM7h/FBhaCZxuwLA/nCW/Bpn9P1QHer2kM8YHe098TdHpeHBrHKcfdzZxhLQXupUNwA5ac1hosSw9ogvxlntxnpR6hXd1BvPcCwrmAautm0Dy2Ui1j/51ewVQ6JS+SvGsjza2yPPWKZYdwWc2bABCKYmk5fviJ9zC2IwmY7uhvR8pMHuH3BSff4cHVCKo1CyIuZmz+lEgNA2CwxXlYsvFyAfn3gdARALDL48zVU3THMbLVgQ9PQ7CL2PQQ0FJH9EbFp2VxaAzy6hBw6VM9uTkXc5MKX3NgAvEkXEoEsFpzwj+PsiBedox6kdgzha7s51wjWkILctqTxFTn0agV/OGkYvm8p2Qz44eIB/lyuz3Of8Ld3UMeB78PlZUqSJoU2jiPBJ+/pXNd1b4QfAjgFEY4O+vktANDYRnHv0C/5NYRAEKPIaSKTMfVc+gExmZmol2oGOtyTLVypkb9q5ryb/mqB41sZtt+sYT5+TWqgMZB3HsEcR5x920O3I+JmSa3RISK8xWlo+ScvUViDTZlxQtsPWAwjYA38dgFfGCyf8dwWF1F8eoSqW5juAkEL7HHEuM5wfGzhraC9NLANz1eAoIUrkwtcAiaQA89+bYFggYd/kAIfBRgrhiabNsK0AatPkgvfPZxtWApcyccSF1G9SnkiViAO0I6ZISHXsEdONXWuaK9713PCerWaAdPhsoJsSwRzwX2iUNBdQPViRPGNTxD7AfZr78wAxrjJcHhikO8DKWEfHAEt2H+JU978FsieH4BXNxi/+jaG8xzdg4fQrUfx0R10Mh6JqwohtykhPcAcWTv47YLBlF2P4kOCSKHKEHILXRZAbhGq7ASQaTbF0jmgMPDLDPZuhHq9m+/HfJrStz3iZon2a1coPtkDn72Ys/FC10O8hy46nl1PHlBQ3w8Iz15yT3zyiA3HF96B7I80cZn2wJQ5pM/PWCsXOdC0bHAAxPjD6cn+3BuR3/iN38Dv/d7v4Z/9s3+G1Wo1czQ3mw3KssRms8Hf/Jt/E7/927+N8/NzrNdr/NZv/RZ+9Vd/9QeKyv6H1yTamv4MEA1TmnkLKTxITQXIOM7OH9OYXF+cnyYiLiQb2cBpy/0goynsqyANRy0XRLqmcfs0PXEcPypQRCmSuIOTliU5cs3iUKOTNoCL1nRpWlDl8Muck42ODlJBS9Ja0F+brhAKukwCRJuQ90QTCgU5n7r3M71icqJSjroQNfDPEoBgweahJJoYElDuVhl8pjAu3nTB0dOmoxVTVisNV1BQrrsAV2iEZIUJAP2ZSRZ+EeI4jQhaiEhucvhC09ZvAHQvUD2gkmBdOYD2fInDmZBSe0xTkH6EJESFE5TETwwc2QIUnwE4IYoxzq4eatrIEmUsGE6zdCCXlNOcONNEogb8ws52xcFqqEFD3ZnThAMn1FT8CQmfAtEkBMQqRxCBvjvyXlJCoeJsJaoZchnDbMkbU7FMB638FI7nkgtKCis7rRNFe+nJhtP7ZGPq09KR9Bg/2vL7n70+170CwBzMJIIwodQxzl9nWmfgJu2Hk+bHM0Bwtt10iWozCX9FaGZhDJ1Q8pxoc6JxTpPaEO9NQwwnETJRtKbJbgozkxC5B+nTlGu2ik5NKowmHVSB62masKTfdQ5E1YIIMz/XJBid7W4jaL/t2awDJ2SenG0BFKA6T61N+p9b5dScdONMSyBdI5543iHZXCcLTklvu3LJaSuW3GNKDWUEegx0j1xW1HkkO3F1bz3FKu2hjna8atLwhUDkNE2iaQ0ekz1omG3Qp72QFAkH1YwIVZr4JAtdcSnwdgKtkP49cP1K+izmkNP02pBnKSyNn4UkhB3JACOKQHdDGjnH+fOGtUAZT/a60wRjus8AwNNhDUXOx++T0UFBcSjMpCESYBhmTQJtYZOeUql0RiaKn1YE2oYBkwUtjCElabL2TVPB+fre0M8f8/X51hTUc6iJ5gpgtkTWOr133E9FZI4KgNbJ8jdHUOp0f8wPq05rM+nNCG4kurcLp70hvQ66mGki64LZDGayw1U+prM00cKqio1EkZwcJ6oXcAI1JmtboxHzDH5VpHqkmC1vQ7L3zm9HBE2ggg+S7HiVMEdITwGDaYqiBbEQ+N6k2ABOJHyhYI/pPO0ntgXPWZ/JbJKju0Cqk6Q6JbEiQpqMQgDdRejh9G/D8v76BBunCdfT/OxUN8KvCrhiOncx73++1HOtgwQahofb5ByV9oDc8rEUTkHOk2bu3oSa+zMBq+l3F5f2FJwmpRIj3CqnO9++nvPosghmkKl7944Cn9+m6IUY+Zm6ZOPsPeDUKQA30bxJ2x3nMwMhmXIki28Rmh9JCnSN/QCxFlL5lC9j+HzjSDvpSec2OdTGwJ/73vWTzrwJ8Bf8cHvFn3sj8g//4T8EAPzlv/yX3/j67/7u7+Jv/I2/AQD4B//gH0AphV//9V9/I3zoR71UngH9qW2ekCKp6FIU2pZWnA8vEW/v4O92MGcbohB3O8hyifaX3qN16598ALx4jezawNft6UliJA2nbigKXHwRYVVAPX04C8mhNWS7Ob2O1GSEBacnCuAm0w9wj7cYNxmqP3kFeI/hvUu40mBcKuQ3Dtl1g+GiYmhXGk/mrxr4RYZhmyH/5MiuV64wbAyaB4mi8GkOv8gwbizGtSWFImdhkO1PFWYwXPjbP3FEEjoWv8EKBqPhc6A/E7hFRHYgPcGVTC7ttgrjEnDLiPNvRFQvRvhCYdgYtOcKwbKQX7wIsMcRQRsESwRjXGncfFVj+UnE2bca2LbAsGRTMSwZjGYPEatPBthGw71QKF4TJe0e5nNhMaw0Du8qmIab0uV/PjLosW4BnEFiCdtEZDsHu6e7jeoN/dWTs8dwUUF3RF/1rgV8gOorhNxgXBv4jEJWiEFoA8qPD0Sq8gyqddh+s4EvDcaNxbAsEKY8uTZi5QIwOKhdA6PULCxUg+cmI4KYhPAYRrTvbTCsNbb/bkehclkAVQm/ZSEWrYIalvcsOcPpv12PeHFGnv+3PkRIKKbk+cmFaf7g4xt2tDIl/BY5kBVQuQJe/shL8H/q+jz3Cgr4Tzal89fqmpvrgiFWcRwR64YTDUvnjwndma8QyK8vinn8js1yDh6MmYWcrYCXN3x8gAdgZpP2xM3p4PrQ0FY5fb7q5oREs+BQb4y3Y2YRL85msfr0e8wvLTMUvNZ94pwHjA9XiFbB3iTdyEAqE4yGqUlx6LfcM/KXDXxp0b61hOoDTO0wrjLIwiL/6IYo2qKE25ZoH2ZY/bcW8uIGw9ffwnjPltdVBrrJoPIM7tEGwyZLzT2QNQHZzkEODdQlJ5CHd1jYVK8DxGeQtyqoIXIa4vj7mS4gGMHhS2uCHa2H2+Twiwu+DYZ7URTA1gGm9TCHgSFrowPOi5QSz0JkXBiYfQ95/gr64QX8Mkf79ppT1xc1olHwCzsLXv0yQ9AKqk80hvRem8mFTCsMDxezMNXUHtmnd3CXKwznGWm0Y4TqhlPSe7r8ww1CYaHrgZ/bMAJGz9SLYBSyD15R5FzSICSmCQYuzxO9R0OSu1LcjfO0FJaTOkmGBgFgMdw0kKJA2K6hwHNKlgtqIgCg72n/rfQJzAMQfkiU88/r+lxrijKHEhpMhM0S6vUtQt1AnZ9Rx1OWtOgVQSwLaj82K65LIOV7pXWaWbrodR3kbHPS8Qwj9/rUvKhjd6L5iXBfyTOE1WIu9N44QwAgz2CvG5zdtJBuRCxz9O+cExAsFEwXkF/7+ZzpvnABVyks/xsR8+GtLdqHGfb3ztLlMwfdBTYOB4fsT57Bvf0A9TsV7KYAEnV6XGocH2uYNqJ66WEaCtEP75WJDkYWh917DGuN+kqjfK2Q7zwe/GfuQd1FhrFiTZHfRZQ3DsXzBurYIuYZYmHQPSzhKoVxyaZB9xHrj0boxqF7mGNYKDRXMoMepiZjIzskenaikOUg3WlcsVHXA1hEJ/veCZBpzxVcJbj9mXPoHrj8zy3U6OE3JfNEhqnpwGzzXVyfaiu/zKHShEVinIHa4eGCzqEDa62oBLc/U0Ii8OC2gdtW2L+XYfmZQtmzaQpWwd6RDuJXdEGTfjzlyNUNG5GyAHyACQyOdQ831Ja2PSngWs8Bmfa/fIf34JRNNgFt4wh/ews51pC7HeTyHGFRQm3WdNRM9vFSFKQPbzec2DsHNO1MKcdktDTVKBOd8YcgW/xYqFl/1lUUBX7nd34Hv/M7v/M/92RaA0jTi2GEWpSkm/SJJ2vSCNt5yHLJcDoAse2IHGsNu0t6DGBGIdR6ya5xURKBbhq6FJ1tEAs7065k9NAhzoLEKaxwQrrsHcMPY0JWpB+ga3I8Y0I0xcXkTEWh1WQrGazAJCQ+5BRKFp+xIRnPrzCmCUp2JCLRv3OOcaUxLBVMf+JgA5gtKbM6wGekS4k/6R6oYSHiEoxQAN4KTBdm3ig7fMDWQLYTqJEbls8VggZsG+GdwMcIbzn9cCUbk+6c2hLdcerSXhXo1wo+pxOWchFZzUnGuNRz46PXGqqn9d/9yYVpAITECc80aSqLAqG0KG6SF3qu0L9TIRhBduTXxvcXME1Afs1RLZGjkptSCjID6JaRHfzJhae0RD4HR3RZC3TrYI4BPudzFDceumfAoh4ccLeHEkF2z84v5hl5/LkBVBL21Q62dgkVNdQYpMnWhIa/cSmZ+cuhbqCqksicyBzOKSIck073Y7LrnaYnUzK4VBUm7vocEf45Xp/nXqGqEhL0SSvmHAcioyPHdeLHtx0nTsbMSOeE8Eze7W+44gwjz8Gm43/vBZpGRTpYjHHODQFAzneezTxi8Z4TKyAl4WbpMLaciCVdSRzYsPhVDtU5qLqH21YImYLZs4gZ1zntJPceYZEz4MsFYOAUDGkCGTJa2MYYgADYdL/3Dyv4jFSJ8jpCNwNUCkGLSd/m1zmD0gRw6wJGLjj9tJK0JRGZ40EPw33S1A75njdZtmdmh3/Mgjq/dVDOzDIliUj5H8CYaUigVShpIoCrFADqysaVxbi0KF8Ns5hcImCPjo543YjxvDqJS1sPRI2QCfozBeUqFP4RDSeMIH/dEnGcpk8J2UVmIEOATt7qUWtaeA4BuiUqLY7aFpWmSqpPTX+ixM3oqdZAmQMlDU6iUZDew3RuDpRTycVO9yPCqkRYF6QBLxekck5TeBEG1ck97FEYyIei4BkWI9CPsw3nG814CCxWp7U4hbQCNFYoinkaMNt4Zp+vnuxzrSmUIvVM5KT5SMYg0TNLSMqC+WNdn5gU6ftSuFs0996fzDIP53yFqBT0LR3P1NmGIIY1qXn06XywiBtqd6IwKFe8B3rM+0vMDdy25HRi9FCeUwpzHCDBYlzoxBooUD4LUK/ukN32UIOF2xRABEw9wh408tvEIEj3p/IBwXMCGleL2cgBYbrHKdDO72R2qQqZgs/pTKkctZhRFIquh60VsgMZDONSkw4Zk9YkTVSiAoalhjwsYdZs9uPswBdQ3Jz2237DXBTdR+gxQrzAtBH2mKasgVllEiJDDyPQPVnBladJKAQwjaOxzur0WQWL2QBHdxFuYSCBrI6oBbbmpNcVp5BkSUYYEjhFDkAyxkj1nGLzpiJo460EUSvkB048Y87pU3bga/WrYjbOaJ8sgAjYAwFZAXgmlBlUCKxNy3w2t1HdCH1MmWXpvuK0LRV6eT6HFDImws/W87pI2UKpcRWdzFpigDo/41RwJDgSyxzSD6egw3sMjDiSfi7J3EG+x9r3v3f92HNEfpyXZBnQjEDwiMED+RmkKhFv71hgZJZj6XFE3K7hNyXMhy8RD0eEvqen/vM7IsvAPAaVjOFYoci52dz0PAAWFXyVUcxZKEiwsFpBHxh2A5y4u+Ij5PoOsAbu6gw6FRpqV0OansVGEi2Znojb5O0/0Qd0M+VlWNjrBvjTjzH8pa/j7ksWxU2A6SKK6xGu1Nh9MZvdLPK7CNsEZA0F4O0jDdtEVM9HdJcWY5VobAGIkny1dw6Ann8+q8Pc0U+oQbBA+Tpi+cmAccXNjonqTDn3uWAM/Nq4EIzJWrcxCsoD2T7CW8Hhbdr1AsDmux72rofqRrhtif07BVwJ+EIQlYbpIpYf97MLhe4jsl2EqyiQdwsDxBxDSkYtPzlgvKjQXlrsvqAxriJWH7DI2X05YvGxwZOP9nDbEm6h4RY6UTjC3Hhk+xH2GZFMt8wwrjKo0cA+3wGaRVz2soZ6fQt9+Q5crjk1CQHDoyX0XuBfX0P1A9SiQtys2MBWHLH6XMOnYMb1t3ZQiTcsWcbDKTcI6bD/PuFrKjKmCZ0UxZzSKlnGQkGp+ZCL1kClYkNWS8RxhO+TMHq1QDzUiG0D5H8BncjneKn1mvS+dE0J6rNYXWvErkdIoIMYkxLRSdWgAUAaa0/TqchQOIzJFhwgcmy5h4i1zMPo0/6Sgilj00BWaeJVkmYj3TALhaUqETYVfJUaUoDuKYcG0RqMS4u8c5B9Df94hWFj6JqiGDSWHWhUMZzlGDYGqz89QJqeyeCZhi+4x7BBppjS3jAj6O4rC/iMTX5xA+rbABanGXnKwzab6Rr9ZYbhLEPI6HjTrwWmE2SHpFGzhraSo58F5+b1Af5iieO7FcpXA/LnNfLnPMibd5mUrfuAYaXRrycBOLD8ZIAEYFhx0qt3HdpHOY5PNPIbhWzXQ405lIu03B1pZ9x+ZYPjY42LP+phj8xGGjKD7pwaknG5ooatj7B/9Am1h+89ZsE4UjAblEDX44lSmzEfhbTNANXwYDYTRWIqApAKvDHMNDOCERmGbZHEwIF7y+0OuHrAaVeygQYA9eQKWBd0UQLYVLgkmpYEtOFUsEclzLTKLYarDextCzx/xXvVe6j1agYkKHB39yatqSmJ5H7LPTvrkGypJSGqP43XbOsNpADNRI1qaN8b+55hh4sSapwCJ0dOL6+5j6MsZrAirhaIVc7gXQDlqzvy/zfrGfyRruf9sigRqgzdw5K5Xce0bvqRwmrFKIFQZWgfZNBdpPtlBNAC+raGajLUT0il7rZAdmsg+wP0Mw21KFF/5RwSIqo/uUYRAqAqjAuex3qgIY6eQpTPF/BVonm5QLA3ZYks2lOBOWwMhiXrCNNFtJf8xXRzyjjrthr9WrD4FHT1Kki3Mg3rin4jcKWF+DQZ9hHZPsDUHvaYNFdK8PoXKvhScP7HI4HaUaG4iVh92DAJXVPvIT6ieF5juKhw96WMxhsTC9ZFZrMZBTzK54lKyAS+AKoX1KoMKzXTx0wXUNx5tOcGrgLGRYpGeJ10NEMgxTzX1MyOgQyMMsO4WkH8NImlTXjxemRtV9p0XzCgcTizsHsH+IjD2wYSgM13wjy98FWGUGgYTfpoyM3M5CheOMjNLsU3WLpzen+i5K4Wpxu9bQlsFQXPszyjPnV/oNbIudkAyT/YkFny8pZ6llUOc3fanyStkSmAVa1XnLr0w2kq+2dcP9GNCLSB/tL7wKFGuNuxECsyyGrFbISbuxNPdq8pGDIGansGlXI8MLJwU2cbFhqHGrIoqS94zkRKdbY5BcskJyXTeqjew7w+0Nr2/StMgXy6HqH6kcizNQztW2fQDxawr2rIoYE/I9ow6QuQUXyOlF6qO6C/yKCGiPJZDXVoEQBUH9zBHhZQqbsethkkRqy/OyDkdJhozxX6Mw27UlAOyPdMM8+uG4RsCW+p5ZAIlK9H+Ezh9isZTAcsP/OzOHTYmJP7hOE0ZKyA3fsZqtce2d7j+JT8yaD5u+gxMjwwaTh8Jui3/HN24FTFFXTwMi1w/bMZgs6gBzpgFbcB2RGzWE2SLmNyu2F+gILygqgi8udHqEMLcWuE0qB5Z41+o9Bv+LtnO1r3MRWWKEv3eDmjrsFw+lQ/yubX3G019JNHKF+PMMcB/UUBV2mEbItpVh4qC1xuiQ7twOlFAOxNi1Ba4Fd+AdFHeBdYRA4OyA0QIu2WjwPKwcMvc7jNE5h9GsMu89nizx6IcITSIi5S4NvgoW4j1GS/m4SU90OF4ugQ9wdStJIeagoyRAzMHEhCefQ9Yt8jjD8ccvETe8UIqZieHpt2fr9UVSXwIRlSTFQqgLacCSUSJVCLBakr6+Ws+Zrc9fQZQZBwuTlRa9L3zE44Qg0BlhVtX5/v2IA4R4RKyex2JKOHfdUTzbplkxPPVnMQpy8tZLOE7jyKIcA+u0tOU1uokWN6utEFjNsCssrJd055Gd83ATMMBbR1QHZgI5DdMkti0mQgcdMnnjgMIA6zFa/WAp+THz6sNIItoNfZTFWqr0jnuHixg2oGZPuU/bNc8fvNpF2LKa2cwEhxE2CPnonoAmQHBjGq17ewVwvojvbjUZXIb8b0e2r4RQ5fmZlSKj4yvycnJW3xbHq+gLEipSX74mMmI6vTGxStgs91QpwDjQCE+Q1RC3xlaME+AH7FXCpzzceIhYWvmA9EaodicReIJpt6pAMOAFmvILsjp6OrJTVkiQtuXx8Rc8sMmhd31ChYy8mGNYgFqX5T7oBCkxLiaxbUk4uWVymPJPCeS2YJcxPT9UCkTkpETnQigKhniPB/wZlDP9ZryldYlMzveH1gMZUASr1YkKJ1vEeNyRjch8S3BxLAkd5ndWxQpqDcyVlNHZs3nzfPOMG0CtntADV6qHY8oeYJ1Y42Wep/1FDvkXRSUw5PLBi4Z7qIzXeZwB6//gXEYze/Np8p9O9saXlfe5jaJyo3LftjMqTIeo9xodE80OjXS+hhifUHHcxxmAFTX7Au0iPBz6lgVj5i3BakbW8ZPmjaiN0XSigfsfxshFtoHJ5q2DqiuIsYlgKfc0/BmHRcVmFcMjncZwq+ZDTAuCDg6RZAe6kQTAU9AogR3XlykVKkt1evAlxJFzG3oABl8WCRDCZOQJ8EAJGOXPbo0DxiWHNx55HdjTC3LVS/gFtq6k1FMKw1bPCwhwHN0xLNhcb6Q1LeD7/4EAAZFuNKo7uw8z4mIwGJ7mEO3Ufk1x18wagAAkSC1SeO1PwPb6j/XfB+lLbnhG0yCWlG6EYjFBbDL7wNcxw5jc0sEPR8/0jbJ6DTzlNPmYyYBt7j6uElNW1GE0j/Xq3TsYFpupmuLFk239MMR+4Rjopa6WWFmAvw4s9edj/RjYhohbBdktt6rJMAVAO5TWIiz4Jj1OSyTUI/y4YFPjAAZurohjHF3hOlnJobWS1nqgUAINKrXrUOcmwQzzcYttncWeueo1REitx8qeAEwErD7HpICAgZkXXVJ41GdkoHnsTd3YWFVhFybNO4TAOv75DdHYjKVAX8o4KbxnVHf+nSoHmQYVgRQTBtRH4gX1rqDqYtYLqTAE03DlFb9OcC9Soiv6EDlkQ+/2TXF4XCcV8IxhVQvaarVNQWPqOASw2SHL5SQyYAEJkFkCw8g0HyJAeyQ8DtVxXcMkCNgvy1QvUqbY6tZwLyPXqSBPIsTavZiIgwCf3YQK1KhNKgP1N02FgCqgfMEGHrgJAJdEuEYVxpmIbvSTB8jmFDhEaNgEujkeyQ0uS10OO8MFAjX98U9KYcxX/TYlWHFu5yhfppCVuzccpejjPiKDECI73h5e6A8WeeoD+3KCIbriHpexDZdEjdIVyuSCMT8uDVXs/84snNZRZWAywk+mTB6U5LfKZtJRenmKgW0TnE+Dna4PwFXDFGUt9Gvl9xysAxJgW9Gcj4Pdvh/dwEZbgXlAX8umSRMNKmN8YAqQrEZYXhsoJuHPRBnRzRtD5RXxTFwVK3iHVLalSkHbhoDVQVEe3RcwLSNAj7I60RH2xnXUg0dFVRPWlOU1aJOVuk32uy9mYaMQDYmnSEGYmdrH9BgIWUhQA9BJjDQEtepVIYoCbVQE7iUoD3s7gAPQYErWaqhSuTlXCpEDQBiOaRwB4TZc0FajzOLYalQneuEA1QvgoMNkv3c9B8TflNohwYBd2Rkx4OR2q9RmBMz7P8iJOQaBR8ybA0VyYbYJ8mEp52ofnu3v2hCbj02xymM5x+pPdnMq9INxJCTtDF3HYIVQaXW5o/KIWQ65PdrwhpE2n6NAleXUYRvr4dIO0I3O0h6xWnY/sD75sUFCupoZVDg5hvEDLDvMQQgZwFQ0zn3pQrAQCqVoCnDgfAKQNrKipCMq0IgUJ1a2dq50xFVIr35GxLqni/dz+9e4UkGlrMDHxloSeaVUpIn217WwJHYjh1Jh1TAaA5RQQIYnQd3+P9gaDQ9ixR5VLCeaTZABPISYMy+473aXKxiil0kK9DABdgdjXXsgiwKBAmc5O0jvUQYT/bwV2u0D0oUKbJSlQ8g/utgakD8ts+0b8ixreWdKYCMLuNG8AtgGHDdb/+gJTDoAS4Z/yg0l6jxogsgBSmiqyJcSnIdxF6BI6PBcoL1t/uAeTwuYatEyNhnYL6EGdn+qgF3ugEFHAfmfYXn7EpwYqTBtOSqtWd87Xmew3TBWR7h2CZ3eML7il0zkvT1gnw9Px5e3QwxxHxMRsRU3uYfQd1fYestFDOwtTM+enOCSBLP8LlC/RbQXjG9V0/IqV086GHyzgR0oMgdgKVNCrDUiETuvOJUQx5TestuxmYF/L6BnK2QTiroJsO/uVrqPWCoNTAaZx0gFttUT+yWISIbAy8L0NIoApNVmJBMw2RZKgw3d/9wHutKhAKCtX1MZvBtOmKPad3MdW2U5SAiCCGxBpIkxKcrXg//hDXT3QjEg4HZM9v5xERUhoqdkfE4GEeP2KRdawp8jt4WvIag/jiFTfZ87M3Or75mnicoij6KSkgy/70Oew4Irx98ieXtkfxsoVbZXAV047hA8avvQOIoPqkmROAowjFQy6wgYqRLjK9Z0ecK5hmhPQexbWmmPx2h7jdYPjy1RwM1F1Vs9A7auDw9hrFbUT5ckT5OsAeKViLSlA/1BhLBXEbyBCw+LiBelJirBSuf6HiYvnTAD1G+Fwx3dsIhjXpFsqxuAhWOLW4ifT2znMUt9SR6C7A5wrjQtBviEBOBXVxTc5leROSVR8dP6ICLv4wwlt6lkOA/bsGEgy5nRdA1MCD/6RhGg+JOXTvUbxsuVHHiOPPPcKYkpeVB7JjgHgFPQCL59RftA8olN18J3CDrslZV92I9nKJsVLYfMC8g/s2EGoMcJs8FT6AHgPGpcH+/Qyrjx3KlwdEs0DMNFHHNALVxx6Lj7lhy3BCRkNOf3WT6C7xbAWz62HqEfqaImXVL8j7PXbz6zAvdtBaYXx8xqJztz/RflKo1v3wQslzyOOHLHbvJ3UnC+m4WUHqFuH5i/nnJM/ZPP+0XuOI+PpmRn7VouLm2XWITXMvCT1POUQK+uoREaTb3Uybiq+uIa+uIY8ewG8WXMPJmlH6AfnzhGj7QMvWe03iFIAnbYe4XSNcrmnZOSQ3vzyDf7Bhcvf1HYPOLs8hbz0i6qkwU7WiFoRMw9wQ8Y5XD1Iy72kvUyO1Z6PJ6PJmFSkPtwPDNesO/qxCKA1CQb1a+emByNp5gSgFIIDdJ47y4CB6Sjrn3iBendaMoq7NlQrdmUJ2IAiQNw5RgP17OVwJtF+8IGDhSIfKJMAkGmi2J8WsecjgMTUCECKj5vURsAb10xJRC8qnVwg5A8iaq8ksY4Fsz9DSyWnr/JsDTO0wnFl0l1sEg5Q7cLo9xEdkdUTxsqF+ZZlD37WIH3yC7OkV1OUSbpUDq5zuYUmsLqOHvfEIpYFfp2wqJTh+5QxqoEWwqR2y3UD6VghMTY8Ret+xWXnyIBWuIDULOE3bUt4UjIE8e80gvNUCWJSnQjTpGeTgUsJzhBxqTlPuO2EtqlPWxOgYyotUTHc9gm+YD1CVCNc3tBEHTuip1kCRQ8b2c3fY+7yu2PeA6qBGh3xXIx4bWh8j3eZtS61IsvfHcnFChAGCDkUOZEty+Xc1s8pA6nfYkB4j/Qi53SNc30Bt1pCigP30hk1lkSOUFmFbwdy1UHeH2aZb7dvZ+CY+OEP7dIHsdoBuxrnoW3/YI4qgf2fLienLNjXmFdoL5oWtP+hn3eWwLShCX1DvqYcUAHrboLIaQAbTsnm3Nzy7xnUGV9JJ0zYBdh9mDVT52RHRanQPExjXU1sRlcA2XOftkxLigfNvOdRXGtc/a5DfRtg6shlKznuuVOi2Mk8r8puIYIDdlxSiim+s4eNbAl9G6BbQPS1/x1Kj22hkdcDyUw/dmdTMCPozjbsvKpSvIzbfGbD+yCF8JmxChD9vWgLDfpHBv/+In12MeP4rK0QFrD/2tEPPLbIjp6ySGrHzbw0QF2H3PbJMoyhM0tEpAMz4ANKE6tGCjVzvSXW1AntIFsfvPoHPDUKuMXzpEfD+Q+hPbqBvdojbNWJu4RcZXKlh+sjaZt8iVDnB28kApaBTF/qUG6RoSR6tQTxbQuoOeP4Kuihmy2rECP3ijmBEkSOeXcBtcthP74C7PTCm15jntAKfNGUgiDK5h/5Z1090IwLgZEmaROLiA+KYrDdLOaETAFFQHxAlnAqPhBK9kYgLYM4dCPdsI41KScduFrJBKfJu9y20ISoXlQJyg3FlSY/Y0VWFImXMI/SoBNEqwDNJXO7ZXtJ1IS3uqkJYkB4UlUCNGuOC9CqAxbqrBL4mWmA6is7UGOGzVLRY6in0ECAjJxTKJRctiXNj4BanwmKaXmAStUda/to6wucCbwHbYBZ0TguL4nbcQ/ZpeXu/yA+adC9ueoArwWAgi1m06quIYCLGhQCikzVfhBaZx5f9hs2PJDti0/J1AoBpPfRxQHyYIQqQH5hxMFmKSu+hPNEcu/cpyOke4iss3iTyd9T1yLBIBcz2eOn7pnshClFU1TtIO0CGEXFRErHUfJ0yjBzTRwU1OMRRZuHXFIIY9wc2GxNfOQlnmezsEZUmEmLTmHVMjZBKguxUoLwh9JytXcOchwGlSTWQn9LKYrpETpkLCdmF1gQZvKemTOuTZScwo83kv8psuxlHx8ygKYQKmCmg6IdEJUxZDuk9ZhAlrRWn5iQadTIUSAJ1n2tIn1x5ko2iX3B8rushBWHxqWb73RAYVGaT8Dmk0E1RgJHUtMsJ+XMhpRxz+hm1QigNTwM1ASZpPRqBTfcen1NokSs4vQ6VCoVENxI/UTRTAxYo1lcJSPdlEmQnWoTqT8YaaqQF7zSxNX1ytykNdEldnSsEyitSxvS9aatm8YCoUaTJEdf2AH3boD8/h8+Faza9pqi5B+oh7bdpYhIpuiCPejojzGmKjADAqJl6F62CK7hH3Xes5H7tZ7qeOA/dTHa8RC1jblmYeqYjcz0ngMAk206R01m3WfFems6mSajuPWQIp3tvolvF6XdVp5+LyR4aaQoQI2S6oUJMhhj3Jig+Tfa0xhu29j9lFyfEPhkMhFNw6aT3MUSZp/fujQiBiR47a3XU6evTexbv/dxk95r2dBoHGO4FIdUcInM4arzf8Bid3NTS5+MCYsZpnG4dgmXmmOr9HGQKxTN3EqbPrzPVB7SrTyY2CnCXS0QtyPZ+XtesW5KhjqHgHODjBSOQqf4ROZ33qQ6ghT0nsq5QZBd0IU1dIvIbakAn/cg0BfGZJHE66wqa6vDBTYNEAQeiiYia9/EUxHgKaUzakD4y/sJymhJyamCpKwHMGJKRh8yT2WDV3EipgeCuS3ILGulE6kMiZkAlStL4+mmPc1CtY85RykOJWuZaJWghqDVR0j3SNJbOfdDJElgJkPOei86l+4K25BK4hyl3jxJ83wZcTfEGkTqm6X68/790dgGJiusD4HvuQwVpp2E6s7TmZFCp05Z3v8YIESL/N2hE1IMLQOdJ+a9PYyZwQ/GfPZ/DClVVvTFG0lcPeRDc7iji3a6h6vZUK98TrQGYUYrxq08QtKD4jCN05Bli3cB//Bn0gwvozQrDkw0zNUpOJQAeAiFPBWKI6C9yLoCM9KnqWZsctOi8Egqi57402P0/3oZpA4prB1dp+NzAWy7sch/oPtFxHDhsDEwTYFuPccWuu7jh4dheGvRbhWEFrD8IyPceZzsHt9DYvafnJmD9QUD52qF+nERsPZsW1UYUtx75dY/+IiciUrHDJ+0CWDz3KG4CsgMX+rQJuFLQn+uUuh5RvBaEGhiXnGb4nBqUxTMubOUjxBmMS0F9BZgOqF54jJVF88jSJjDDbAla7hK6s1LozxT6DVDeGKjO87V7vrc+Uxg3Bqbh9Gz57R1HlSHAVxm6iwK6pwjQlbRG1j0devSrHYq6B7BB/qKmyYEWFiBnJVHjLgWgFYbj85s7xHXFcaeACEHXA3UDf6xh3nmKuKzmey7mFtIODNrMMqg8R/ji2/DLDPpIhzcpaB+KtsP4xcfoLjNUn9RQhw7qWdI0PHtJ54wpTG+6nEP47kfzJERvN5DVEv7ZJz+OJfp/mUuWFUS5E4UtAQ+S3EJ0WZIHvqhSVohHvNsxHHK5ADKi3RL43/DqNeKz55Dlgk1m1/OxCor+wkTFMAayKOcAS9oqdpD9EabrMWWYhO1qpl25dQFZPoLe96nZTcjW82uoIgewmYGMUGTJCUwQrUb7MEd+NyK7PsI9XGPYWOSvu9nBichoMk1Y5zC3DUMQ3znHuDA4Pl3D1tyPQk5jBUlOSlMqe7+hg0xx7dIUBsiuGbTWvr1Cfuuw+k6H8axgdtCWOQjLTwOmjJ9hrdFeKKw+dSifd7T3tcwimpqQrA7I7hyaqwz1lQbey1IRw8M3X/KzyI4BeMaCon0oGJcC5SrYo0f5vIPqHGLONHkbMYvG9RjQPMrRXips/2SgdXFq+iCCUGXQbz1G/9YZmocZiusRpklBdUrBPzpL74nFuDBwJUEL3QWs/uAzxCLD+GgNX1m4VQZdWqjOMTNIBH67mAt9dewQDzUt6Sehc27hn1xQs9IPELvm12NkSNmhJq1nc7Lqptg0hWt+D7gmk1bs+g6h72fXHMnzZNCgafF9OEA/ZtAnRgq04/GknZLMfK6Bhp/nFeoWUTJS5c5WbA5T+KloDfWAgYDS9Xx/2+7UqCY9Wby5g4hAKYFvO8RhgCoJRkndkAaaZdSWPb1KZgGe+jGlgH6g0cmxRdhUGC4uofcDX0tuaXKRKbIbPjxyGu884oa2r6rnJNTuaBMdckP72N7R/U4D49pAdwGmHmE6NhrmQBDFrTIcn2b46P+psPmGxtX/cYfdV9fotoLyOjsxJFITEgwL+fbcwGeAPLUwPe39uwuLwztqrikmgwifETQYNqwx1AAUdwH5rYPPLNxCcPN1TiTyW7Ip7MHj5qsZXAVUz6g5KW49jk81Du8FVJ8pZDtgOCP1++I/3QGg7nJcWQzJvlc5QXdGJkn5nKGIN1+1yPYRpo0IhsGp539cw1UWuy/kjAQ4+Dmg2O7ZNFUf7uCXOeq3K0z5J8wio2g+KkHIBNVnLfQ3P4Sx78BP9rkRKXMtItsNc+OWv2qAAOr5SovuQZaszCncV+3Is0SvmFnjI/XKyUwjGoWwLqE+fknA68GWjUkyX4i5Qft4iWgEi2+8IOPmuzvIdgs8eQi3ymkX/u1nFK4DdMKKEerYIP/Aza57se8BUawzRkezl7Sf/CjXT3QjApdS61QKH5rSZn04UU6socAUOAW3ARxtxshmw2jypjNL3n2MJ4Rzmnpoma0ZFYh2iDVAP0LKAuZxonGADYJy7PbF05KNFnekPzAUL3JaMPLPIdfkLveeRUOMcJuC6GHqxkOmyI3MWQgoF2dExDaBrgurhDaO7OLZkKYAMyUUMo6nqUFMAnvSqzALzSk25aYVBYCm3KC+0mguK9iGzYLPFXzGRkGn8EHTRSC5ZwQr89en51GjMETRYZ6URMW/A5gF5BLZBOW3EcphRlFVH+EzDa+TuC2CNJEULMSwIz5OzCjehwIkELVQLs6N5uTZPbnjTChtyLjATcORtPgIf85CILvtWYA8vaRYT3FULY6UOJlcdJIeI+QWMbuHZiXrTVUWFEWucqgDD3qfayhLNFKlPBBJExbVDXNq8+TKonoHU2uozs0BRjFGhL5/g1YxXyEmC1q6QdGWz9Fur8NP7yXCyQR8mqBm5LtP1sUq2fJOTcgwJjTIU8BrDH3Up0sJG8rJkneivHQDEdXUhEBYzEkKosQkMp6sO3t+Zr6kNki3pxAqSSiVTqLVae8iR5s24jRJoLW0ihGmMRAXEfPshOSlgMzpfZgtaZWips6aWU+iRj6HL0zaL7g3RcvCR2JMew/gE6op03pKBQkUKKoNFMv7XCVqmFDUenBANMnmU+Aqy4AzDUTIPGGJInMWkkrsW4lAvmPwWZgMPuY1DZgj9xt7ZHFFAeiU8Mz31JUKynFd+IwgiKsU9DKb98U5kG1NkMD0gWYgysKsU5itj4iZnAS7PUX2JmUzTY8DF2iXPhJpnx5z+jyCVVAT2j0VtUlQqpIdJ4CTLeyMYHL6IaPj803C8ulcA0grUnq2lAbAcw6g4cWkk8oZ9Cu1SfsCz9UZtQfmyYBkGXDqS36qLlGS3PKEDYK1kOUCakKVJ8R4HFLquUlBkUJ71BSODGuAPIfSmsKEtHbjZPddFrMdtoyO5gAJsZZuSEHHfB1RyWwB7fN0rzWcyM5um0U2hwS6BQHXqISGJ02HUFiE0kD3p2JZ9eB0VBGNj1azfgkRtokonmlkR05BvJWUSh7ncGUAs8V/MJJiAzCnl49L0sCyOz7nuNTzZMQnrYfuCUyEEbPWcmJW6C79m6F+SzlFjUeOU55HKXAFnbckEjBlCCvQP6hmPZkszAyKSoz39LgAEFOgK1kVwXDviSJQPiA7BEQt6Dc026AFd7L7XRcIhvklvkh1S8P3pD/TDIVWgmxhYTbrGWzyhUq/IydNIT+B6JJr2n2nVHd79NCJ3cFvEIQ1AUYZuVZV5+YJiGrTdG1qFu7vHyFAmh7KLeBTKGpMCexTwK+MHmrKtJn2palujgH3jXHmrydre7VYYA5NHgZA/99gIhIPR8SK3VhYlKcwp65HdCNUWUKtVwiXW6imo2A9bdb+xUsiEk+uuOABBs1pTeHO9OFozamHopNR9ukOUrcMmhIDNTqEzQrdkwrZ3Qh96JJ9W8qzKAyax/lMo1Cjghk9sjuioap3CKVFf5HD7vjz0tGLufvCEj4T2OYe2r+mc8Tm20foQ4+7n9/S2eH1iPqxRfOIgig10gFLD1xk06QnO8TkisPF6BfketuaQUDlyxHHtzIc3lIY752XPhf0Z0B35VA9qmF/f4P1x47aDgCLz06OGdnOwTQOx6cLDCvagEqI8+tCg4Q+BOiR492QgRutldm+F6CT1uX/9w5RKdx9fYXswIDB+MUN9SwXgqiZLUKx/Ok1By1wpcHuy0C0EUFr5DsiNVEAtylxeLfAWAnyfZxDmHzBHIXq+QCzI783FBa7r62Q33os/uNH6L7+FnZfzFDckgNbP+KmW77WyK972E9eIS4rxIdbor2ZYmpsumRRQbYbtI+XGFcG5pWB+AC3tNBtomNtN3CPt9C7FmbHCcx94RgA6Fc7lDca8XaHkLRScXKvCHFOT5+fV2tym5PVXkyWnHiwAW5+yIX3k3gpBckNNSFdD7VYUBx8qElpySw3z2NNFHg43Uj+7g6qLIGHb88HmIwVefn9PQrMOCLc3DJlfZlQ6hgR9gecwiMz3hcV/d/1zRGIEeM6hYB9fI052Tb9vLpOrlllyiNqekhm2LBnGirGWWNU9B6xMHBnxWyAEQo988clMGk8GHr1h2UG8ZYmECGiAJvw7tKmFOOAYcmCP78ZIY522sOZRXOpUb3ysPtxNt8YVgriBVEK2NqheNWhe1AgWI1hI7A1kH94DbsooYclxqVGc2XZ0NxnEbpIe+7SwHTUmgCkWxbf+ARxs0L95fPT93v+buuPHXTrUXx0B3exRPOUwak+A5bPKMptL0nDyPe0GXcFUD/UcEWBxSfdbBYSMo1+nUF3HuVnLQ7vL7iXqjOY1qUgwwzDmUG299DNSA698wirBaBp/4t7VDgoQf3FLSRGlJ8c2dxUpJ2pNnmaK0HYVFDNgPjhpzRLWS1YnCpFwCFdcRipBVsvaF5gzAyAwHmEwxFis9P9BPCxQMaM+MD7vcgQixxqGKEs18lMT04XXeQ85MklcPsjrb6fmEuMhqxX1Hztj7Tf3SyhrCXdbaShjb/bQa1WLPaSRaksqzRJdZCyRLg4Oz1uP/Dzv7mDZBnc5WpuVs2+pnvh+QYAp1pSlZykT+t2JEDiFgam89CfvJpNdsYnZxg3FjoFfraXJmWRAWff9rAvbzH87FvotwbF7ZSzJQRwBwcF9lf9ZY5gBOXLHouPGyz/lLXJuM7ZANgkSnfUcZiO5jau0vCFpCyfgPZRDpcLmocaxW3Ag/9Y4/B+SYesY4RxwLAi06B64bmPGVLCfDLHQQSWn0a4kgHLUVH0Pq7j3Cj4HOgvBMMmImbJXCES3AwWePW/5ihfRFz8x9sTRSoBjRIBeCCrI8bA58wOAcWNQ1Q20dQNdOex/tYOhy9vsPuixvKTANswPgAQHN6tkB08itcd6qclxoWgfE1Qp76yiX4OSLSQ8IDUbhEMawUJwPLjjvvthZ1rxGkivPy4h25HFC92dMq620GeXsFdLNFf5ogaqD6sofqRE1VrEHMDub6j3fTjhwTZ+2HWqaqbA8JuD3u2gCoMwu0dwjAymFMUpBugu3tFVFr/E/ApJpknJMBTsoxUxa6HlAXUoweIN7dcHwCCerP++O9dP9GNiKxXEMUJhmq62UFoCiSciizVdLOQeHa7KEvmhWSWP3/sEk8zoUmSzSGF0RqofoR9NQXDZESqtELYVEmEHDEuDcblctZ2+JIuGPbA4nasVMoIUTzsEpcvCjvpKSgxFExrzm/dKQxPc8SX1RGhj+guC6iznNSveJ93DSB+/3tljwGLuwHtVY5uqyAHbiiTWVLoyB9tHlmOSkfqPxDYvAQD8Ogy6LoV8jHCFQqunDibRBW7c8HqY0H5EhgX1HmYxPoZMhYMSFx14KQV8TZRoCZqmgGyI8Ws7dMlNS6VoDEGY7UhynCI6M4FIReMC1K2bROQ3wL2kFBMw1yDMJ40Md2FgW1UCh0istKeC5TTKIXFSb9WKF8JpOkRF0TCy5cjTOspIgYRG90TEVYuFXkuwlcG8ctPZm64aRydMhyRM/feIyIY7YBsN/AxNTeo4pMDx/4X5/CXa/QXOfIQoacCJDUW0YfZHhKK2SKSZ6d/C8xQiEnXAABqvZ4Rjpm+W+QQa+EPP6UQZ7ri/ojoZJ6UTshkSMmwc3BhKhbn/ISkJwIAuTvQ639TEfTohhl5jvsDIIq24M4hti1pW9ZATSGnACchBZuQYDWk4r2lRtpTT0hoqHKobmBhs15wH1CKBW3dQtoRJlE0XJ4jFHbWPfnCMFdnCHSA2fUQ7xGqbH4/Qq4xLg3KFw6qGdC+tWKzcd1RvJ7Z5KtPxxoAyO64F00uXPmB+1y0iqnyCqheOkwBqKrzUHc1hi8s0D5QBCEC0H3hEsPaoH6kYGvAtgHeyjzB5UQZQJpqtheCkIA302rYm0v4haVQtg6wtYO6ZQ7Q8e0CWCpEvQVEoLsIKwF6kDl4LN+dUF3dAcU1rcTFR2Z8ZJoW2ol7rRz1FLbh45gjHbXchvtAcc2MB06OeEizwYt0xUq0uSkTyNaOk/Gmp4ZwWpPlqehXXVqzDy/5BZcC74wCukA2wDCyYF1VPMMOyf8/RoqsATbFVYFQ5LSM7XqK3UXoGClCShBA6k/fM7XZMoMrag2MKT/EGojO4cefYj2ZUrQmTUCNxMgmZJ8Ev+sVs5sWzCmbKLIxnvaJSYMj994naTq+h1VJMbuS+QxACECeY7ziGsy0ml2wlAuQloG7sJpglo8ID87gNiW6ywz53Yj8uqez4j0XK93TuUq+/ITnYBtmcTe1YnzcyWRHjSnwc6KvJoe4YWMgDrDHOE9TvJVZ80XnOkF/ZmftBUEEgWtIozRdRH5HFkXQzDtzStCBOpdoKNqemA9BA+0Dge6B8mVMRhQCcwQnny2nEg6C7E6QXxuokXSvqHnWZ3vmmgyXC3QXFt0ZqV4AcHhXSAf744BiF1DsOEnxhYJpOQEhQGKRLzmtLl5FDKsU0Jy0Nq7gpMYmu3TdkQIfElsjaiBkgKk5YeEkheCyeBAM0qd0dwAMR54mOR2dWVGViF99DxGTCUkEIjXG0SeNhuY9Ey63kHHFOuKem6a0PeLIUFxpBp4lmzWMCOJmhTn8cKqDjaFNu066sq5H7Ac6PG7PINZwGOBTMKJLie+iCPQ5hzj8cHvFT3QjEpcV/aZHxwaj78npPj/jv9/czW/OnIacvkeKgsFw1kD64Y3vicuSdKyJvpAbHhrHhmExZc6ixBq4h8skSKQ+Y1wIimsPNTKQSw8R+eseUWUIazYc0SqgHU9otZzoSCEzcCtLHcrzhla/pYUvDEZlUuK3oL1kk7P8jFSOYUXHCzXee3/u3dy2dsj+9DnG9dtwTxLFYwyzAM5IwLhQ6C+ScHNkMaAcOdhRCyQo6A7I70jJGEtByAEk8Ve/EdTvOZjWwNYabhHhC4556blNaphOtDSkhRknUXzPDSZYbjzFLdPKD08tfA6ETBBWQHOlsfgsorjzUCPdclw1jWYjskOAaTzpcIVAt4BKn1HUQLflCDxDGi1HhcM7DF3UAx28unNuiFK3CCsWpflLFuthyeLRdCFRU8KM6KoxwFUa3ZMM1SuH7K6HbsZZWOoXOZqnBfJbh+xFgNo1TEnNM8AB8tFnLG63GwzbgpkmXcaJ0u7eBxrS6HMg2iFnm3naN39XQ9esOAUaFTkpGt3JHkuyjCK0z179yOvvJ+kK+yO8i3NY4VRchZoFm84yIKbk5EUFKZO2xnvIwLDBcH0DZR+SPhcCUeNFSRpEP3A/OVtB3R0Q73bkmRc5YpGzCJ3sOMvE89YsWJGmFMoFuuaUGfwy48TFefjE2QVI3dI7OnRpBQzVglqmc67b4kULX2gMa4XydYA5DtC7mqiV1TN91eeK3/M8QpoOw2aLKED1QQcJOWRl4ZbJe78i/SkaoQvkgus/26fJgVWABcRFFM+O5DVfFiymb3cYF4/QXQDVMzYC+3cyDBtBexWx+i5Q3FGgGgzXqIps2oNlQdKdC9wipt9fUL2qEDLBWAmyY6Rv/i2L6vFrJfMFCousjsjvHCc0OjUiPiK/Ic2q39BlJqsTSjoJhK3QGEROHHjxCqbxQMSco9Ce57BHB3vdYLxgenu0nFq4hYXuPEwKNYNRiIENqTkMpF10wxuuMnFqCKZ7xWi6qB072vcKDVOU86eUdBGERQ516DgZGR0/68Nhtp6PeYZYWuDWUbuUGpFQM7wTi3Svp3M0dEn3YAyDPkcaW6hkXw13DzH9abtEEI81qZnjAElJ9Aw6tdDnZ4BWUODEc6LBxmGAmgxsQDBobkRiPGUXbc8YHQDQoGDHBkeKHO1llvQFK4ZkJqG56qkNiVqgu5QIflGhfpzh+JbCg//kkX1yRHy4RkgUYDUC2dFjrBTa8wLljWP2xb1ryhsa1gbDSmH56QDdvlk4ektnTuXSuS1ck9FgNpWZTB7qx5aTjoHNhi/ShCNn7kaR2BnICQLELAUXawKZPjsxGoIFhi21pNUrj/ZSw5XUkYoHbBtTbACp24vnHoe3NMY1Gww1RpTX3J/6c4PuTDCccUoEAfq3BkitIX/IMGd706B7vMSw1nTu04Lde5bNSc4mbvHS4fprFv052R3S02RHj0ks7ihWr68I0IaM75HP4gziMFkddBlzMaXIn2jbEoH8dQu1a8jQGR3vnfMNju8vUb4aYO46UsmhkhurTmZBbER80s7Zb+4ZSlgWnPa33Qw8ouloUrGoEIsMw6MlzDG5d04gZ7KVjkWegDfe56GuoR5cMNV9MnoxhnvP6PgcywX1seMPt1f8RDcicqgR+8BNIxULcYqinziZ6QPQDy4RzleQbmQi6v7A4qEfyOvue2ASrN7uAWPgH5+fDrAk9pTRzVxvOI/sVQ2/ytFvcxQ3A6pPHRFFrWCPXAhuZRkeeOPQrzXaixzZ0cLUAdUHdyxCRuo43IoIqx5ODhyqcxjXFGzahlMCSc4W7QMzd9p6jLAvIvoNdSSTA5QaI/qtRfOX3kN7oTAugOZSQ200mitJ1K4IVwlcBZTXEcW1x92XLNoHwM3PKxSvFB79nwPaS4O2YK4GIpDdctM4vMu/l58wefT2KwblC26IU5K7rSkGy44BzaVGf8apBiJQP41QKwai6ZEuWz6nLsd0ERIEQ+Jzj5uI1ccR+XWP7KAhkeiMGrg5RU00Rg+cNo1rPsdEcdODoHoxIHtxwHi5hCwM1h9wNJzfjMiOBqah2Gz40mOMSwrN7YH0KTUGjGuNbqtgjwGmp/VxVIJxpSmev6EXufQebkO3CXtLG8VhqZDdAepQwz/YwJeWlI4Ygbeu4NcFCzkXsXg2snAZPeKinJF16alBiU2L2LaIBV0w4rIkin8PjdPnZ9wo2haz/inPIY83QNuTClCWP90aEQBqtQLGkaNoayGZhl4umJo+NRvDCL1MfPuuP+k9tOb3dD3MXccC0loEa5jZ8YjItaSpbBhG8soBTmQnBxNPjZlKHOSYsznQ7YiQGTRfuSCPOgC60ZAWTCafpiHep2Ymg1/QWloNIdGwgPEsZ+DZs4FZIM2A4ekWwaqUA4JUzFJs7kuL8PgMug/wmeD2Fy8oPs24XssbD38kP/zlL/KAy+8mlG3iDYOasRHwxTJpqzz8OoP/6tsobgNMK29Qr2Y7zyOb+PwuadyWpIQOK0192D4kRxuhQ06MuP2KhRo4qfWZwrDNoZMRiBrJu1593KeGTEN3KXBxCDMSPGo2WVCkeWw+GJHd9nALop92NzLIMFPQY4AaPcal4ZQoXwCKwMi4MvDFKlG2BOM653Olgs6l4jBYBXOgS17I9ClPMmk8Yk7Kg7478r4bBppVAPM0X7wHRkE0eg6+jHVDmk7KwpnAM6lKQBQnfyFAtz3/nOezXkkm85ZjQ/qxNZx65DlUomSQ5vxmcRqb7wnj+2m6vEcYO6hFBX2xJZXTB+jLS9I3lbqXN1aQjrJONMxX14jDiND10GXBcOWbHcLhCLVaAtbOOQ6qc5xQLh9C7RqI8yhfD8zi6U8uXTFpe1SyfO/fOoOkZrYSge4N1/2TDeyrGuYWELcicNU5ZLc8Q+snOcaHLPdMH7H8KFHI6x5mnTE24Mjg3fq9FcQD2R2dtrJjgO4ClI9oHhq4ZLITNODyDKaLBC8HWvtndaD2qxA0Vwof/L8sqmcK+e3JbjffkWXhi+RO5SJMx31vWHNyUb4CQhZx9yUzF/b2SNmBt5JYGkB/LsxFadiUBM2CvjvTyI4B1WcdJBSQyGYhKqD4OEuMhhGu1Bi+sMbhLYP+DLC1TtMKJP0p3TjVyN+PYcpsMrpLwbgSDKtsdiKtXoTkQipJ3wtAIurHFlkdYGqC1BKB4hUNBXQu8yTo7qtLBE17YNNHrD5cQvUO6z++w/Bwgfq9FfKbEXY/cIquAPdgDV33MC/3GB+fwS0M7HrJkO8yn+mcsqgSOEb9kdRkC9lXDWuKfuBeUBXcm5IVOPoB/vYOYgz02QbxWEO6HuqdpxAfEF5dn87WGGkQtSihKw3c/dnL7ie6EYldj9ixI4vjkMSoQBhGiHKz/W5MFKtQWNIkBk0P5OAYFOTuicWsAY414NxJGDZtxNNU5Z5lp7Q9JDkiqd5D3zWIZglRpBpFRcGlhAjdRmCjWUyHZJM72Wl6IvDOCkztE40HmJRbHPUlkXc4iTNdkcTmcZpeeAzJLStYfq8ZKOpqHiq4igt6Ep71W04+8luiEuSBkovtcwu3itBXLYYhBbUNerbEm0akPgi6BxGmFeQ3wLAC/GKiPET0Z2x2bE37PN0HQPTMOQWSlZ7ln7ODwCYhfpQkoPfxjRGPeLCBGzAjIMqxuPEKgBVInKyXMU9gVDILMPUI2deQbQUJMeWPROiOaEiWRqjDxnJaEznm1oPMNr8hk/QZJeMAnegeLkK3KehQgaiHAgXDCvPnBedps1hpmJ1AQKtWt7AYl6TmmcNA8wIfEXNDWluMTFY2BhFg852EZpDTawKoCZHk8Y1d0oOEAFUUpCXWLcXYxU/0VvBnXylPgUJcP0+oYJkEHodkXpGsNqNJVJqQbEuFYvEYk2NOQoyhuG5RsQGYbZgTEDLbgPp7n08yFZDkRAUh2BCtxrDUNLq4h16KC4AkvY/nFDNq6j7EBeZlRIpK3UJBTw44yUHFLcgZny14NUEDPUxCcj0DIc0Dle6fRI3sAtQgUKXCsOHPm0bSFHfenij0FDYQpmfh7ko+r2lDygdQs8237llUmCTwliAQL8BKzXbkyrG4UQOgDRuPqIDunAwldcu/+0xhOsqmgsjsekRdYCwNlPOQ4URHYUOn598hmJQW346Ia1p929ojAEBCmONkk2n4u0+mGAQ+MNu/h4wGAbrhFNkt7bxXTvS6qL7HLj7QlQxGneydR8eJjPOzaxl8SLbMMmdXROcQD0eo9SoJ3Fm4zkLVfkAMnKCcbGY5mYrGcLLaM0xTNIMR3wgxTHbnbywl/wO4vz9NV2AoIYqc7zkGUiinYNJkayrCpjAuCtKibzQQ6EY2rUd4AqUwZjYgYKitR7QZfGUgrQVCoCviJA6erHvTWpRp0qUAxCkQ1NHJVQuDAR11SHZPurokrRMUgCc5WQX2JAYHwNfjaJgjA8NRx0ol85oUF+CSLawPCMYiGQciGsGYsWbQPY0o9Ih7k5fkuvm4xdBUMK1AJbt+3QFiU70xkBqpx+n+JPhbXnt05xrNIzYFQZ9iAsI0kYlJNJ7Tylf3QFjwHBbL/UH1js+bGB4EFTEL931BcHBcAuMyzjb7epx+T77HUQis6jYZWWTAsI7JXIMZa8phDjIOVs0sif7MoDtXyGruu/2ZnveEmOqSIICopFur+HyuE2SHDPl1hP70NfBwgbFSKF94qCbRPrXm1KmRU1CmYDZPikUyrtBpIm7uaQYj6yFpupPIXCu6cvUDz8MkaI+jo4FOWSaAokN8uAV8nGMyRMlcc9MK/0QH/h9dP9HVR2xbhM5TgFtVUBfnJ55tCMChpo2etRSm3zVzMJAUORNPU1EhRUHB3yKH7un/b/YdJyGvbzhq2q4RciZ0ToKeWObkIvcB49JiXG+hG0d+dOL5WoCc5rXF2Td2ULsaw7sXyZWG7i/DOnlm58D2T+iQMJ4VJ59wRfF5e6FQXyk8/I8tzK5Hf0lqyISKBssOvd9GAAq2iTCd58bSc+oRbMTmA4fsdkD7aAFxpHi1Fwa+FHRbwVjlaB8H+CrAflihuBF0D3KIP70OV1DkbptI2tYQYY8Ri2cszJtLjeZKYf8zDuZO4+r/w4lF99Ri8cxh+60R3YMMY6VQvVDoLiOGn23QXefIrzWWHwHZERgWaeIzRFTfiVg87zGsLfZfXHKjcRFuQb53vg9sCIyg21JrsvqAG/DrXwCKVwoX3+iJVJyt0D3I0yY0uWgwPV0PyRddgOV/2wEKePXLW2THiM03W2T7jML6QiHYDLoNsI42etD02u4e5vBZgfW3dpCmx3hFMeLmuz3U4OGvttCHHvrQo/4iHbmqj2rkz4/IPxySs5KmeUEIHNV6Jm5PWhG1PWNznQ4w2dc8LEPgSHa7Bm73iA01CxIjwm5PWkY/3As0PFlV/zReYjT57z+I364VEcvpqkrEzNJ9r+v5b8ZANisWkkg0Gq3m4Em/WQASIAMQry4QvvQEsus4IakKfib3njvmGachItzI7w4wbY+qpM2sakao/p4o2Wr0VwvozsO+2NMiOlMIi4Ryto589pFIqNq3OPzsJeorhYv/2sIcB3SPKkgE7H5Av83RXWg6PTkg2zvoPmAZ0+HkkBoCjfJlD/Xa40lb3NOspTV2Tie/xUvylvfvGkRlIFcapqODXn5LAXn+okY0Cu3jRQJTkETeDsN5BlckK8pRZldBnxHE0ENEfvAMCaxVKmbCPFkxhxGqc8huOX3oH1XozjW6S1JK1RBh6pQzZTX0GLD+YMC4Ii2lfmzRXJ3B5SyoVmOAtwx3dVVqSiNT3qv/9hqxyrH7+hnyW4fi0yPpc4WGKzR8oeCzDCEX9CuGqdmjnxvBNy6luM4zptfLdglZVadCwcdZxyiHhg3FPUtuyXPel8meM2oFyTJSDr1H6HqoRUXTlrsdYt9DXZyxAR8yFhhtzYJjaqIzi3CseWZuz5I4eyCtsSig9Rnw4v+PRfiTcGkNVRW0N/7kM+irR4iXZyys/Jv1AoocyDPmRaUi7nuv+OQS8uQSccqUut1hMgHQjYVKJhkSIsMKJ2pXlWM8K2B2PVTdzZMUUztEo9A9qqg3zQSLj2romyPaL1ww6POjHbn+MXJ6qjTO/ss1ota4+V8Z6DmdTcOS1KfyZU8HLq1nytO4NnAFJxtyQSp494D06s0HHi4XdBdqFpj3hgDHEpyaHN6jxmPxvy9g6+Q+OU17h4CxVMlqm4DEZMnvi9TYDAG2FuQ3OgGIQH8OhiWDLlf2EJEdI/IdqeVjKbj9BVIon/w+19Dtz67RXQiGDbD+DkHHYaURMuD65y3sIaK8jth8hwX8sGajo/u0BxaC5qGgfpRxShKA9QeeQESuke0j1h85mhUde9TvrVA/ybB/n5Odi29wXakBc+bRuCCwPKxyTn+uHXQXYZzH4hPa8LpVjpApDCsNVxmY7RrmOGL5cYB+fYA4j/EpDTvsXUfL4KstVO+QtwnIKDNGAoyeFK++B+4UdJGfdJHJ9OB/dEmRwywfkyKYWci+ptvWtz9iHa011MU5woMzqNc7iuD3R3j3w9EsfqIbETEGqkwdl9AF4n7KKUfPipzMZN+IkWI+aE2O3GTZef8KgZSMMW0uk21fTKhk5OExCc3J+zshXCHTUD5Aag8oBbfJ4ZOVpjhuZqrlhoLMAopirolW5AsFVVoGhyVh10S/mtC1oFXSbQDiA4VNXjNVvI3QRRKuA2jPNZE/zY1BQgogUyzepymLHiN0y80kGECNAjQKdkfe5bCikMu0RP9pe8kNwbQxWfQJcARHk+n1qoZJ5z7xuoe1wDZ6Dg5k8RShBoEHEA21JT4H3ChzQCKpZgwWDOfZjBwEe0JmlTtZ802i2fK1R7CC7lIlH3WBXzDpnD+Thi1CO0/xMrv2wGC23DvdWAwryjV90F0pKLt4Qhyn+yA1KgBSEF0EQoRuHWJOLqeWEfCcbiEVgfPjjGliN1lIAzRhSN7eTEzWJws9ANDxDfQ9JhQvOgeZQjyT40Wc9CVa82d+mq8UwCQhIPp7oY8+TR6TjWnMSXGJIlApxAnpe6PRKSzQJV6umgXIALg/pKyGKKTSyDCejAGmzyXG+fOMpaXA1JqTwLtzUE3KKbAmBR+S2iRpsjdd85QjIagh2YxPNphRJ0Gj1UTo7oUMqpE/N4WDTTa44omAuoqI5mTpaFo/TwWiT3aXPRBVPGmlPBAkztMGlwvM1GDkpAIpFxGSmNXXCjqhgkAys5AI3fP39XkKJ5uoxpIsL1O4py8UfK6gOwOjGPqoJpQv8HeavPyHjeXvlmivysfZPn3aYxj6iJm7PYe0QmaK12TJa1pa9cowQo2GZ0CRtCVpv5XA91MNNBXhPpPCKqd7zWrABWrFAienoTpphxh0B8x2utM9pJMtr1Jpwjd9jmktaw1V5DSxyCz1HcDpLNSKQWWZTWh/mNcBRJ10lWnKMq+D79nnfpou0RpicqBtEaYASR+4dkOY32sxel6HMqQcjzyHCKlbCJHBtGWGmBlSYKa9fNp7JsBIqTQtS+93uFdX5BrR22Tlml6H4sRASTyFl3oi8NGkbKHk0hanKVcKTOb9yEbfW5l1HogxxQywQI8CDOnmVw60yDVsQpTHbC4x1QJxcr5MjzXZbyNiDjeVwOkFkGoL4I1w1sm05hR+OMUgpFpCp9dhI0wt93ND5/UbNaCbRFMtOamYJig+S9EJA235p2BDZoFhppipIf2eDvCC2Rp4qosg/DnESLONGjA1Bd7R6hSVgJmGNiwTs2akRiZMWs4w5bHw8VSMUBEMWh4c90sAuueEKiSdkETM5jY8Z2h8gcwi5joF2MbTuZam/1KVp1p3omhPEz6taP8rwomJ1VBNctTzvN/nOtqd6uU4OiCGmQEQp/t6AjhTZMSfdf1ENyK4PIdUK8i+Rri5peD8vu1u8uqP6QOKWsF8eo1Y18DZJtmdZRSh76+hugqiNZGjYYReEBnFo0ug7SG3e27OSsE/3JIb3o9poqFRvB5h7zoc318hWMHmVQ13luPFL5XIdhHL5w7jZQVdZUw0HgPGywqq91j911fQX7rAITM4PjaQRwblDT/MYangcpnpCqaOOL6VQT2yyA7kPusWnOA0Pc7DGYa1IYKwUXjxawGqVaieC1YfBSw+6XB8u8DhqUH5iot9XLJYWD4L9PjWgrNvAoQcaaN3eEdQwHkaigABAABJREFUvVAwrUe/FfSXAe0VYGqF8z8OqB8r7L8+wr4yyG9NGmMCb/8rD1cq7N7TcEtgXAUc3wcQNB7/HxSXT5oW91HJRj2L6C5IJctvuKj6LZsoeyzRbxSGlaB+KyKaiMXHivqTncO40vCZpnhsjNj84Q03tfECEOo4jisLVwku/qhD9dmI+KVFCpgk+prtHI5vZcmeeAU9RCxeJj5+YWCva2QfNKj/2jtoHjGU0mi6l02j7sk5w68KivSPPQ+IuwP8Ww/QPsiAS2YXFNcDpykhwK8L9NsNqg93wCfPgbcfwy8yUrQ6D399A1WWtJm8d0WjES5WkH6Eenn75lrxHu7Fq9m+V4JPwWeWBXh3+HGv1r/QS4whfcU56GFkcab1bK0LEPVxjzYM/uoc7TRjBA73OPH9gHB7B/XwkvtHynyhp/9ImkzbIbu1iMcaYRg4ok6jazhHqgbAw+Rr78GtMvj8HMoF6LqnFeP+gPjkAdw6hV/5iPyTHQDMduNqCNDNAPER3RXv37FiUaPbArYOqF4AzaMM8SpjEd9H2KNGdtujeF7j+IU1+rWCrVVKKCZYoYYApHDBkLEBG85SszScCtHsGGAbfr/EiOImzMX7sFQYNoJgNdRWAzHjOno2oL3QuPsKMFYGi/xEwwJIf8h3Af1Gob2k6N7WAf2ah11x52d6U3uu0V0I9FUONURcfEOgmwH5ixriKgRjgQgMC4Xjz7CxOP+mn5Pco2GBYFJC8pSc7Mt7qdUApyEt1//4+Awyeiy/eUMKTWYBz6ZBIm04fSZQPqJ87ZnlcOxTkaKSuF8hpgkpAGSf3iK8voE6P0Osijn7RA0euh4hbcvJ2rKipsMly+mp8DWajc2xJoVitSTXe1GmJlRD1hXEkb8vMU1aLMXq4vwbEzu1AQuUkU59Kk9GF2mi+tN6SVVBqmSt23UIt3eQumGTMQET94GAtkc8HEnBevcxG8opS+TZS6jLc4RFCeyOpMVeXbI5uPecsSDYMGVJqN7PJjL9RQ7/pMTqj28ghwZSZZDBI09nCbNODMJmwVwvI6jfX0J3AflNT1MMqzAuuT8A1EqWn9TIKwvbZFADg5P37xLc8wUL+tbQYGLzwYDdFxgkuHjO9bF/nzrH7Z/0GDYGw1LRZtcA+S2dB8cFgwmbK0F+TWOJ+jGL9MVnBCumvcRnArfgeWmPMenB+O/ZIeD4lkb7IGI8d0AEypeG+RuZoH0gqB/TlU854Mn/Tkvgl/8bHbUuvuEwLg36baKdNx7rj9i4DWuNbis4vJte4yEmUBYEDgzgFkB+A1SvAnbvK4yriN0XFEwNrD92MA2NBdqrAu05WSjZMeDyDyPGUuHwtkJ+R0H9/l2DYQMsP4nI9xOIBPQrDdtywovzgq58hYYaA6pPjgiZhjvLZ3Da5xuC3UOAPvTA81dQVUkDp8yeJqousAnOLPy7j7hHjczJEuc54VMqOfIRnA/LAr4y0M+vORkNAVguWCvvjgh3O5rraJ0CgRMFvmmhnweE/QGh66C3WyhTAS//7HX3E92ISN1CRk40pKqAGLhxGkOAeeo8+wGSUDRYA1mtTuhlzu9T6/S1rgeWC37vfdRiEo8lxyHxa3LiUujM3JkODnogj9ttK/hCI78jL7LfsIs1RjGQKEZ4y6DDYXOOkEsSYBKpGBZqHmUqx8kBeYXAWBFVyPdxRjmjUpDMwpV65nn6TKBaBXsU5Nf8vv4ygyu5aeiGXxsWDAsal5N4jAJU8dN0gwWK7mnXp3vDCUYZ4fOIYZkcKUaB7jhp0QNR13Gh0a8E3WWE6QTlC/r6Rw3UjwB1rpJrGGA6gc8jAuigoZOALQKY3MVcqeawxWyf+NZCb/LbL0/OM/fs+65WpGusFfSIebNBTFakEUkQn9BTS6eNqLgR6j7OfHoJgmAUZJFDLH3S9SCwNUXsM+LsI7Kjh/IqoVjgdAJgMTF6lK8G0nIiR7yxkBRQxCT3mBmoy3PEEKDrYQ7G0w8fcBqSiuAZfYhEasUFTkCaFioh8lKVUNP93PcnVFMl4Ws4WYf+tF6xaVlMJdoVnJsbEllUiEbD3KYiz/nTup/+d6CbzqT5mCYemKw7vWeR4QPg+FxSFvPeIQXdS6YQRIiCjOQTc5/hVCHmFrjYcvLWMbgMMSKsivRcDOobl8k8YfCkZjk1m2uEFCioh3gKJQXXZDRCt8EkKp/ojWoIsPthtqKdCvEJnXQpmFDptCf5ONMg24d2BuSnScOEZBIdxZzq3F1YOtE0fHxXCIrbwGmmTmnElhPdbBc5RV1pCkbvhbhi/p2QwgSBYWOhSw01BLrlbGl2oUbM+7DuTyFsQdOKFFBQNkKlULhxwQl2lPTeeGpRQvp3NaaJbsoI8csMbkHhsLgIOyaBfOOgBsdJR7LXnITsbzhmaUV6cJGTSuEiRMU3it5QZYhWwzTcFGW1ZBExBR0myjGMoXhdUjieT+dg3fHvk2vTseHjT8V1nrGpSeFkDDslfTP6wImqMUx/Pxnv/VRdse8BlQHGQF+c01XQGHLiQ+AEOlnzTqJf1XaIGOd1iqKgTbq1M2ggVUEkue3vTZpkbjhgNUJFowQZAifnnYPyCrpViJkB1ouTtkglpzqh02a0p8aZGtNIp700bZwsdzl5jARmTZrYpXWrByL02QHJ1IJrq9+aBA7EZIHP0V40wHBGq1pSp4h+T0GqEpkDpluKvSUk16wkwp7qGk5l01viTzqO9oGdrbzVAOhO4FuVKFGYJw/Uj9DBCgLYI2lkEeD/pYbGNJz+jqtkSS7cm0wDVM8nKii1ccrHFCkgyHZ8vv17CqYF7IG/AwLQbjVMqZBbajtCBqh9nDOYxAHFjSS9nUd+R+ONYSUYKzY34jFPS13Bz1G5iOxuhOpGqF0NrEq45cTsSQwRKIQ19SFZfDw3t9P9ELVK4FbL2mOeuAXERYEgAr3jpN+vcuh2ZC6WY4MDgBbegWfbBPJPjrMwqRFxnoBesvqV5YLULwBw92xc/wfXT3Qj4l68BMRCn20g51uiiF0PqdLGbA2Lt0ONcDjC1zX0176MsCygn93MdJRYZohlBrVvIMeGSKhSFPH5JDRNlIvQNIijg35wDrERGEaoMYW+ePJsTUOL3eZxDuUi1h8M6C4t6iveZLYRZFPBkGwkD28rLD6LWH46oLswGCuFfquSaGuiGtDVyhXphh8B+RQUtgOk++Sa3Ohzpn0GI8hvKSLffLdH/dhi/046mDwtaIMB2kuF9mHE8FYP/TpDthfoETAJ3TcAsh1Df0ztqJHIBW4REAqgfcAixe40sj0PfT2wcWoeKvRbIL7TAN+qcPGNEcNSY6wEtz8bEfKI/JoTDN2CKzKPMEc2DfevaICxoj4lGqD6jBtadykYLiL6t0boa4vitWD9oUP+qsHrX1xjWAvGJUX55XUKUhzZHLpSIds5aKvgMwNXkvtuGupf8tsREiO6s5yuJq1m0WEEy+8eIHWHcJZCwvqRxWiukV975AC1QpIoMrkGqgx61yL71nUKDlMYfuVLCLkkAb6HvWngFznG7Tmyj29ZNABAkcO/+4j3w+Cg9s3JjldrFj3DSBvOZEFprh4BqyXEWsRhgL++Id97QvkyCzElfpqvGCP87S3UagW1WSMej4jDyMlGmWM8X0DvOuDbH9BpxLL4QIz8fufhX70ClCav27mTbfhkZqE0JM/oYlY3UJcXHGfvjtzQN0sWKtNERASqp413zAwpeqNDWJcYtgWy6w7qrqbWLctQ/9xjKB+R3fYJ4dOQYGFqgbnroI0CUCQhMidzpv5+3nrQApUOpWw3wDSJOtCOkG99CPXgAsevP5xpGxMNakw0SOXoSGc6pCmioLskTWDxWYRq45xZoEfBWFKrNWUIHJ+q2akPIPixeB5g6hHB5NxXSk4ZixuHV/9LhvZBxPk3cGqslMBb0kTsIcK2bNDaCw0IxffdhUL9JLIQ2EWsP3QwNT8r5jmx2Zp48ACnI0x7BwuYEchqCk59qWYahXgNX2hkhxHmukV/btFtNapXtEk1x4HoY91xWqE1Qm4QrEL+/MDz5D4vW2vgbAW/ZYid6okqh3u0UL/MMC4M9DU1K/5yfaIHjSmXarVgoQEQaNvtUwOcAy+v4fZ76AcPIFrBvXgJleeztjIWOVQ/MGsgNc2hHmczmDjQPU6qCvgpHYr43QF6pPYuPDpHyKgpVR8857rNLKcQ/YC4WWA8L5E1PZ2FGoZAYsWwVL/KIT2d7sJmwc/o0xcnXV7G7CcZRrI2LgpEo6ABZkUMjhpV7+m+lmuoznOalWvE5FoXLHNvJlOc4kWDaBTG9b0wygQYACzg3cK+QSdHpJmMrSP1Iqk2qp+WOD7VqF4G2NeJuZDyynwGHJ9o6jTqSPo1mCc2NTf5XUT5aoRbaIwLBVeR3ZDtE7sgV/j/cfcnsbqt6V0n+Hub1X3tbs8+59x7bhNxI+4NO7AD25mJM5XKTKCESgxKwqoRI8SgBgbRTBBDJCSYMcFICCEmBUJiVAMGpJIqCoo0mcZO2+FwOJrbN6fbzdev7m1q8LxrfeeEseu6cFwTsaSje88+e3/dXutdz/s8///v3y6M+FCCXG+6l9e7fU2TryPzTxzZPm20tMbnETdNm5aeEf/bXnpi5SHmUhuFI6XLNpBvpDHbnBr2D+X5Jo8lBqD6XsPmSxPqc830qeR4dEuLdiK/unvb0P3EgbP/ueLkezW7R+Kv2b8qm5VupUYQgOmiZBs1HqvAHiw6kffmbcBXhsf/bU7IYPr0SEjtJ3rMbDJ9ZPKda1jvCIcDWl3CxfSlczWm8EoAcynqmHzVShPJCPXTNAHzmZMNNMga0Tv6+3NcaSgBrKY7zcm1Qm8O6EZAJxgDWX7E+W52kOeo+VQ8SzYBoFqH2qZMojyD+UTkgE9viPXn61j8SG9EVJajVDZ2GJW1wj4+HKA1MClRTUfYbMekZLXZC/3hfDFSjI4GsTIhEEUf7JcL0RTWPaqRADRzKZjOmMgDcTITYsU+SKDQ1RK7arGrlv5U0o27EwnAsYekQUyyHQ2y620DxAzTRdzUjDpAlQxaw0Zh93pg9qFm9ljkD1FBe2JoT1JwYh3ItmJMt7WE7/gC2jNBc+o+H1M7q+cB20pCqivlxqt7RfY0P+qxkRv+UIC4iWL3imF/NSE7yHjRl4ZQRNwsYneKxXtps1IHCTwsFPUl9IuAAtpzz/OfSjdgBdlG3qtpZWFrz4S+lW2lizAgd7WXrw2pqSFLus9KpCLVs0i2A8gobhWTpxJm2FxNOFzJxq28lu7m7qHFNDIxGTpCpg9jx8C0Mn3yhUjblBdJyYAxtLsu6fBBdcfChgh244iLjPa0EEnGPtFqfBRYQtJgqsGI/OAeYVbiJtLpGWQwqgNz6DC1IiZTZMykG2f2EnQ3GKHjcoq+3Y7FseqdFCJGg04/W6YORpeh9wcxYrctYR1RdQ3FD/hgfswOoQilJPn9YcSShps7VJFjEZlFACm2skymH0PRYCSkSf7/BV/OC1IrZaN0lbWRzUyfNhl9R3RaZByZJU6KMSl50J8Pgarx0KCtQc8l0FDVkrgcjKF6fAyd1H1AOym4lY/4WTF2S6NV+FRkv2guH/IA8o0nNvL1bpnjpobirsdXGfFnvzIWLN1UpFXEEttEpk8cKMkgGbxqwySiT0Fiw/TFHBz9tKA5ETN71FDepRvss4grBKrhi2F9y7Azk6bGjOnNrpJrtbxOKeWR1K1MU4QgSc19JZOKYYIMskGZfSwbGtNG8tsG3TrqV2e4FDDbLRXtEhYfBMqVZ/dQ7iWzzzy+ULRzPQaVCnksUXHaSPH0AFbjl6WEyq16zEZwnG5eiAdtCDb0gX4u+F8VZphDj7ndEU6m1A8m5Jsek9YVFUE3g3Hcog8t6tBgdpXorTOh5ZnbHbHICLMEEVBGpv9Jwx2tIT66L4S93qPmM4wx0nzQWiarySyvWkloJ8YRDTxeOwPWtyrl30rNj+thlnN0NZfNx7Ye/VaqkLyloJT4zNoOVXeYffqsskyAIFlGOBOohWq96O6BUGZQZtiLMyF4zir0ek+8W8vUNLPkd83oF3HznG45objrsatmnBTWD8rx+iivO7JPbugenUuGjZYpRMiP3W+ZGIhs2TYClIhWsX+QUd56Ju+t5PVrja8WuErTXAqKViV638m7IousL8w49Zw8TfjdQu7F7SJBJdqE3dcJ2x9AO5tANoHyRmqhfmboppbtG4kE6mQyYZvI5KkTItfcYto04TkxQPKzKdlAoKBbqpGG5Xca79S4+QBwM7h9x4oJvoDtl0TKXTwTmIaroO802TSjnyh8JWurrT39QuSRwYoyIz4tqS8VvqhQjnGKExLlz9YSaNhPNT7PKNbiVXFTQ76SrJK4LFFeM/tQGipD0vuLx0AWVT78rmzqdmno5or5x9LwnqbPIapUwwC6dmitcBOpP0kSzJAZ4rxAV3LO2sZjnt2BUpTxVCRbRSaTeS9yT4Xka2HknjYEfbLZopTGnC2lYVE34p9WGnVIvlNrBJn/ObKSf7Q3ImWOivZYFFiRqsRuR6TH9E7YxkN+AiLPUErhLudEq0SXD2I0yu3RRKo13TKX5FulpPfgvcg6Bgyr1YJnVEpwt7nGlxmT51vBoZlT+kVBf5EkWU0yRzrpCsSAmCuTGclXOiEu5SXpNLILRogPxRtbwqdLymu5SYVcs33Vjqmjfi0X5dBZ8AW4WSTMHb01HHq5+EwNxdpjD57mzWIcKSoP+Z0aDVkDAztk0knwhRAlfAln34qUt57Dg4xegZtGso1i+ljGwsoFkVDl0C8DYeIxURFnnsNrUd5zr6ieiuQLJbxuPw2YxpDtpcgxbRwlGFkKHhtM8COi2AstyzYSLFRdByZPe/qFoZsYuhP5uWyXFs1TRfU0ku2DIHgjEJK0LiY5Wh/pp4Z+RkLzKWafSgr6gM170bg1FEUizxEfSnZwY2ililFu9EPXIOXRuNMJ3WkudKCYxs0DAauTjUWYTwiFwZdWZDjPNoJzbDvC2Qw3Lyi2khCu+iFtPT0GiBfBGEiBdirPoesITcL5HiCevNxt+bE7BrO/90Lb63oIXoLfaovJMqLzydSuRd45+DrgKHt58e8hSndzMAAOvzdriFFoONE5Ie4YIx1Vk2QWgZfkX3G7T5uaDt1Ok8xOfn4oNO3jO/G1zMpkqh420hFX2KOxWqsxIHVEXFpFeyJT0myv5PzVQsVq55psI1/bvZJj+ki+CXK9zwE0dh85/+YB5QPdaUkoNK4UVDCIuTxkL6DEOy8S0pmsGyiI63StrhxqaWlPErY7F1llyDTtUqXrOeLSmqO7SNGk9RB5DJXQwYNkNczEkG7qiEJeQ3aIFJswSjDMrgXn5bquRAvfLaA7C+jvS1PIv5GhgoTQ9ouMdiENBjH7KjGttxKiaK7XhLM57rQgv6nRm1qaA5klnpYi5cp0Skn2+EImucqL18Y+dYTMyBQnQh4YpXdDbhUgj9k06Fqwz9FqVDTE1RYVKpgmaZVJU/nBFF3kdOcVpnaYTSvd9xdkQcynx/M7hZ+q6TR5T9RRFmaMpDFnyU9mf3w3IqooRKrmPNTN0RCdwt1ArrvQdeimQx/ysbnEtk1EPcHxvojPDbkY1MO8IhSW9qKkCgGePpd1RmuhZmmNP53gSsPhQvIsdOsZMOHtQuoD3UNxqwjXt6hXz0f/R0xI8EGKGa1MEkzzwn15ammXlmIViJ88GaU2yi+I+rj5Np0Q74rnB9qfXNIt5NzXnYQN+1zTJmljtGlCEVLGRwa+AhUVndeUdx679xQrI162Sqao/ZdrwiYjWxlsI/VLvu6ImUb3Nvm2/NHUnk69ciUbofZUJZS/YMUH2IT8nsCVkW6RznIF0zfWTIuOu5srWRfTGuMqeV0+S3VA74/1j5UapbjVdItIt4TJ40H79UIdshX/TTfTxEqNErN+orB7JU3CIBKw6VP3MsL7hUNwyYPOVR3vXUgMg/hWwTQOuxG1RUj4/aiUTNNCACXU1ZiAGNGKUd4rkmk/EO5W8ljJ7xjzDOWTf0RriUFwqcbOrASpHg5CoAwRWxZy/3K9FLQ6SbkAfXYq95nPcfxIb0T0Yk54ciepyFOIy5mMNhP/G61hUmHffF1GqU0jwW3WkD1eSZdhUsgItG7le3oJfYpVgbqaHPXSZUU8n5DfHFBNT/cgBVUZhW08dtNi0+IdpiVMy5dONNsEsl1IJ76muOsTcteMhaduBQFrco3PFe3JEI7nmTzRbL+9YJp8Hm5i6Gea/atyIZbPI76UUamQGRhNZ+pgsAdNtmfM3Lh9JyPajDDIL9xwUxc9JxGacymOZ5+EtLMH5RTZTrF/oDhcyaJoaoXu5HXsHprUFR26s7Lx0Y1FP7XCDi8jsw9kwyAprDLxKW8js0803VIQfW6tUFGzeU0+n+p6CET0TJ4nfXcuBdDmDbmZmyamjZulXWr6iSLbk7Sr0r0duin1uWH6VNjpd2+LKXjIKvC5op8LJ3z+UaRYp8UwRFTbsX/7gs0blotfP5A93YiUAqDI6WcZ9Zki31jsHbjTimA1ZlGiey8TNi83uuzJGrMrKSa5GFnzlDNQZKIJ14rs8UqK2FfOx+cIZQGnc9GBdp7+aoluHOr7H4ns6v4lrLYiw7q+RVUl8cEFYVKg71+ieyf+kRSI2A/Srx/TQ1mLWSzGjYOuSlkf+l4kl7u93JBfuS+buRfIIIAsti8k0tOLjv7FRHsyi58WIxverg6iyb93LtKcKhMP2e0Ov5ziTsWsrELETMX/EY1hf3/C7qFlXhqKm4msEQrc1UlivMvYHaTb5gstnP9O6Hm+yuiWmTQ8nHgihsnmUMz3M0s/k9CsrBaJKMj/E8UECoOGOzUjppk8Ry+BXaaRNOV2mUAR28Ds45aQaQ6vTthfGdqzyOxDaRR0c00/Vaho6aayRlXXMUlC5ObVLsWrtl1q7CEZV1OAa18pVKnIt+Inqa493Vy8X5PrgO4izZlMieYf1uP11C0svlDUj0TK1JzIWlXdBCFU5ZrmLOLzSnJIWmkcuIkEvppWUd5IARGNYvuKpdho8g/BT3IOlxafT7HLkmzdSKDjpkUXln6eka879GqPigt8achuG5FQGoNd15x9S6bpIdMUn65RXY+/WAgFKdMYYzAxaf5JMiwgvHYPfejQHzxOBL10HlpD86VL+X2uBcuqul4mRj+A6VROAn/xYn6P+z1xD+r1V2QqMHjJXiT33f2Y6rKAsFoRu4hazgnn5+jnK+J+L5tbI5PsWNfSAd7txSqwnBGmJTplL+jvfJgoZUe5a36zkU3kcobGUT5vUHUHk4nc/zWEWSVY7kKaWKe/02NSunrIxLi8fLchWrm/6X7wxr5QuALNhXiABu9FsIr5bYtuHZ/+qSVRwdl3nGRmvfMG9UVJPxP0fzAiYTatBBl2S0t9b8nhUsAx1bX4Ya+/LgGC08cBpuCsTAQk0T3QnGj2bzihOAInv56x/OBIiWpPRd0w+4/VSLvqlpIR5MvpSO/rp4q7dyZCw2oj+Ube0+3XlMi8Hh1wm5zszpCvFdkmySqB+fsyqWguRW0Risj2bsLelpgi4ntFtpPX1M1FBm8bxbOfK4iqkI1ETPLPXaT6fmT3isZXUN6JKqW+r8jXipN33bgxyfcRn8PmdYPuYPbYU19aVm9dMXvsydeO9sQkmX6QmmvvsVqy3aKWoEd/sUB18vv1Ca9/9ltb9L4VlHeM+Puncp02Dj/N6WeWonGopifbOYKRprvyAbtpae5PqM8sy3cP2HVDePtNdOeIT55LgzLBMGLXoWbTlxp4Q30MYO5fSUM1ecrM2amoAGYT2OykrigyySr6HMeP9EYEowUPBukmngLChglJCNLFyDNZSCBNNJQY3a0kFOM8cV+PZhu8mFV1l7ppTjYMvhCzoeqP1BZ57uPNAaWIeUI5pm7lkJSsfSR6MYspJwbQmDCRg2RKRdmRa8/Y9dS93KzLa41JeSGye1e4UrSZR61kYnHnEE1Mhq00Iu2P3QJfiD85asH52YN8QL5M6aVtpFumkJqQupBejZuVcZMzoH9Tx9IX0mkUKRpJdiXdA3sAN4HeiHQsO6Sbu0qeFwfFNtBPJeww5OCSL0aQmsM0RI3M7X5h6bX4ZrRnfB+yADN2aoY/A7PclWpECaoonQYVQK8CgSPWUHCp8mfAoZJZ3ETTzRHSiT1uJgcMo0rms2gMPkuknCjnheol+2aYjOhdI+dUbomL8nguD7jOkMznQUKyQm7FhKiVYIH7gJ9mxEyj+iE8K5dwrOAJbSsJzS5AZiTgyGi5Hlya2oQX9Hg/rkdRoHoJLlS55IBEkPff91CWsj4kkMWISx0OrWXKMUxBUpdoyHeJmXi0ht+NYFnNaDKORmMG0g2kDtUPFJeFFS9CJhNP/0LQZEgkpQHOIA8i52jUEpA4oBujSed8wscS4mgQFVOmNDtMH9FpozKiPJUimDiGpGrHaNYennMI+PNZmqbu5fuUD5Bruqm8B6ISyehOKFgiERM5aDTJg7ENIhkZumeK8bUIWluBiYIxH+pizxjqOoaiHTx6ocfOLxGUUS80FmRDFzKFCUPmCtidPKYvjo8bX/y9p+t/+DzjMG2qinE6IB1pg2kz6eB2TjyECRCheoEOaK3QjUgrozXgvPiATqagrcBSOiExhiwR0KwewSv4KE22ZFJWbfIMOJmEKmuSDEM8iKoZru+EHX4RvavS73PwOBlD7GuIQ1ifTiCLwBi6qBS4H9+1InrBmqshkFCpEWxBTGn0YzCkfC4qyn02ZlZkKsN6m3w2MQSoG1kvFlMhrO1baXgYgQ1EY8Dq8RpQfQKUxJimp0J8sKuGWEheDTAS+YaAUhA4zKBoGMzNgzHeTRCCYyPXW3NR0p4augSpgXRtJwS3ZF3I9FT3cg1EK8F/Mv7kpbVoqHUGjwg2YPKAm2Sj/0E8bNIULdaBfiLErKgjIZMNiXYCvAFwinHSodKwz80ifhY4mdWsvcIfRKs+kLNUkPu8hDoLwY5WEXeWYJK7Rg3ri9z/QV5TcxEJWSRfSxK71IBQbDzNuR5Dn4cm7vC+B/P88LWQy3+1EyhRtwB3J43cIRneDgGN6T4wAAOiVvjSotL6Eq2gmVXjUKutxEskieVwzoShzgDwHlM7VCF+VlN77K4bZWvDWuAXObE1mGfpfEqBqrHrE7ApjmAbBSI7zmxCBWdHA3uWST2TyFvDr/+ldfT3OX6kNyLh5o78lQeyMNcNOkZBmD55JotJVclIOc+hKokn83GEZZoOUudZNTL6ju+8QX1VMflggz40FJ+sZKFpOuJiijup6JcF8awkv2shBEIhRiRgLDbQsgnRrZPioxN98eHSMn3ck60b/CQnpMWkn1oO90y6kUs6qQqR2ad+ZH8XK09562lPDLuHNtErSIhcxeQm7cgVbF6z9FP5/2gj6qzFqZyojGw+jGL+sZBjnv4J2YhUzxS7R1B8bU33Kycs300yqDSazA6Ri28Guqmmnw4bjoibSPbIyXfT7yQT3Wa3jFTX0kkwbbpAo/hQdKfoFrJgmi5pN99ymL3GTQyuAl9E6gshZ+VbeR2H+4qYKXypmH0Ik2dH7G+2Z+xIDMdAwjrcB9MpZo+dpKXPdVq4ZSqiooQSDSNRZWWkPP9QfCartzQozenvBExvaS9ygoHp44gvNN39uXSoukh16CieHbi8M4LcWxZJO5t2gEZJsTldEh+eYFcN+tAImlEpbEws8sxgn23gbk28uiDcO8FPLMFowkmB3afAzSc3hNWa7I1HsgicLEWv/APXSvQe9cljmfZdno3XzHBtmFDBh3/YV+h/OUfsOtTZEtoMVI2aTlK46UHIQEmqxYA1BJFnDWm0WgvBbLsjXN8I5jMVAcp7QXXOZjC/lITkXZuSaSMxm8nmeSfm97iYopuO/EnH/sun+FKR3wzFpUxLq6dDdkG6Dq2mm2eYNpDfHOjOJ7hSU320RW/3bP/4A4K1FGla0k/0KL9szyTde/axTHR8ZehnlvpCc/L9nuL5gfrhFFdoukXKBWrkppyv4mjebE8tKDFwtnNNe6pSgySOG4z6pybjpibbRiZPhZ4Vctn491Oh50mDJeGtcwUpQwklXrrpZ1E2SX3k7quW9gymHwtVsLhzhFzTngjwIuQqGWQjxZ0nWsX6q1O0kxt7fa4l5LUziZolJJ5+oqnuPPOP/ZgZUp8L+SrmArC4+E15b+1JRrZ1Mr3ZSTdz/dMX5BvPye9saS8nuEmaaCpQuRQA7Ykh6oo8NyllXZHdyHQhzIpRBqJXe8zzJKssCyGiRQmfxIXk43CoIMF4APZGSGrNz32J4qbB3O5kk9s7Jr/1GWOG1nANbPfinwS57u9f/K5MEDWEJ6534h+JkdiJHEOfnRLnE1T7OUTfP6KHuTyDTUPc7TFOGg6qLCUILosCsqkKjDao2YQ4KVE3K3TfoxZzojXoL70myOQiQ9/tYPvy56V6J/CRJOl0JxP6RUZxXUuYad0nnK9FH3pU02KHgu/QECclZimI5/DGJf1CNp6zbz2HpiV7/d5oYI8K0IrdoxJXKM5+Wzak/VTSxJtzNXoi3UQ2NOVKFBCHczPKvhcfSCd/90pOPxMZVDRCktKd3EvFTwYgpLqH/0+NK+R+3p7C7U8YJk8ixSqSpwlosIpuLgqI4lYand1ClAjdlzxma6ieD+tERDuRb00/EZLeajojNgZNSkXXitPviXrh7qvy3G4WKJ9ryudRVCxWmptSW0TaheJwqShWUq8oD0orijukYQwjWjzbStirKxXBgN0r+gV8+j9oCWFsFeU1mDoy+0RqLF8o8n3EfiA1Rrcwx6YPMo1p3jBMPwvMPmnoZ3ZsUqnk13MTQ3Ni2F+dAqeUd7Imax8FUHRqxmY3NnnnPr0lzir2P3VObhTZ45bqfUf1scEtSvrLaUKVW8Lbr2A3jWD/U2ZObFKWVd2M9fO4Cd/XqFXzUmMj7g+w3hDSz6u2f4kM+PsdP9IbETV0icbANivdiYFr3HVi2LV21MkN4SpxPpHNwqGT7vD9S7p5PmotiZFYyuKPE6mG7mVLHhWpSyQbhmA12ETOShrfAfmpfJIfZQAiy9KzHNUHVFDppOOlIlomIiIxIkiXU/kBLyuEiYFIlW+kcxBSqulgIM23iriT9M66yLGHZIJs5fGDUSgN1RPNwLkzrWJ3NyGfRHavaplyDJ4WhoAg0Zi3p/JcMQuEqOkW+thtLSKhCPjCiLk8XUxDcFhI6N4h4ChqMDvZlAy6b7tXhEK+d0DrgZKGYC7FSzcTqUe0jFp4XyiiibhSjxMMW0tRJd4ZKYx8Jq9r8OGQpS5EMQQ0Bunaash2xw60z9XYGZYpS0T1gXydJhaZSQFqJnU11Uu/14CGwh4nHlYwe2oIJlOpk+lED66qCl9lsij1SRbTC1VH9V7yMSYTKXp7fQQ3JBmRnkwSbtYfp31dL904GD0K+KMm/cfyUKLRjU4CmEZ0ZpBiQC/m8vmkQi4OXeJB/z2gj5UW6VvSzEeQzULqlJr9EeMZh58LybfQDfQ0g6oFKqD7MBYdKDm3TCeFwBCkaRonSMWQupQTMZh3M02YyTQmDFOY4bwChmAw3cfkGdGMYVwwyjnknD1+VEOasBCj4rE7jFyffSXdvCFo0LaRdp504hF57yTzah+Td0SaBXqYfLzQKBvMrcGIx4QkD3EuTWz6AWohkofDVTZOKGWtkHVlvOa1rIVDiCuK1ClNRUa6Bwwo3hFriXyPdlH4/EkmEYrjhCr6KHKZoPHlEZtLmnwP6/jwb/nGC0ygsul3IdQa0XVL4rF2gZhkOXrXjGtANAo3yTBaDNJqCDgdw03lHjT4RmKRiQSrTwhebUQxoPXYIFMDxtPK+TZSsIY1YvC5Nc3478M1Qt9LIex+jNeKZMwfATZu8Ny9MB01aROSZ2OA25jLYFIY5RhSKOtFTKGR0WqwGpjIWpxgFaYNcr0rhd42QtnL0nR1WgqMwipUP0+TDTOqLVwlEvEwr1DWCKUxRNBH38BwXppWVB7dVI+NzDEUNYEmurk6Tg5b2TiYJozQBu1UmlpGXAY2HiWfIMXwMD0kqQtE6UHatCTARiGesOGeOxwD9IJMYhCUUygDhrQ+aEbfGVs7YsHztUgodVpzBPEvjdZgoZ+rESU+rF/D+3TTFKLqRcEh0x9Rm2RDxMHcCLW0ElM7QYA3ziXceCebJODlCeqopkAgNF3yrjGswRpTJ/LX2REopNsA4biWmx6RbimpM9FKsktjavakQMgRUFJkEkzojtEVOI+qHXqSE7SShjyMdDgSbl7FMHoiw6GWZpvzY9ghVFDkcs4n2ZbkDjk55zMr9Xf3+daKH+2NyHIx6tbiCwhTlUsXKDSykwvLmeDuMoNZ1+ADzRunmNqT/ca7xC+9yt3Pno/GR5WyApoHM0HVrrco51FtT/Z8Db3D3z8VFCvgK0t7ZoWMsEuFyBCS5oVkJReGpjk37B9Yzv+PDbpz1PdOCFZ0lcOR7eWi3z0UnXf1tB+LW1co3AxCJ2nnJ98XU2hzeqwkyrtI9okj2zhCpll/SczQ0Youurzuuf2JAl/Co3+1JuSW5z87pXoamX+Q8fznPZc/d83NL9+neiavp5trNm9qpp9GFh921JcFHYCNhNyx+arGHDTZRuPmkTj1NBfmyNbuJRTITaC5cpiDHtNVTas4/e1UAE1kbGxauP06+Knn4jcV9uDpFoIAbJfyXg73FfVVIJq0oYLRGxOKiOolQXb+kXRZB9Pe5K6jvShoTsxYKPSvZNJ1KTXlbaC4bnGPKlyluPyNFu0C9UVON9PUV2pEC9uDJ7urIWks27cf0s8szamRImqgYkRZdFSML4UeRquFalXk47REH3r09R3h6ozu1RM5j0Ike7KVc7NpU1aAJVwsifk5+qOn0Lao0xMppJ9ew6RCX10Snl0TDgfMbCrSgs1uPFfioSZ2He6w/UO+Ov8LO6wl3Nwer8upZAX53R5lLe5r9yUc8JOn40ZE5RlkudD0fIDbFQPOV00moykVpeBkITK7j5+gZlPCbCILtk1ZQI1D7WrBHk4LIfJsdxTXAhvoTnKROuUKX2p0nzaxCqYfO3TrsHtBxh4elhwuNe2ZQrsJxbociU4g54rp41hg5KueaBWHe/nYiTNdZPokkeUuxNQopD65yfcnitkngenjlvpC1o/sEPA5NJcG00bKmyAkuTZyuMwER/lYrsd2cTSXNycytTz/7QZzkG5+f1KIt6JQtAsJax1MuK6C7ZsyMdGtZvn9SHXt2L5mac8Utz8lYIzF++I9yTee+tzSnGiaS+nwLt9zqeMrRvtyFySkDDGPDjkJ3UwM5MM0OjukxPTbPbHKcVU1pq/XFwIEWLzfpPDRVKCciC/IdJLpAtAtLfnaMf32E/pH5xwelEweN9h1A5sdqirplhn2oNGHnu1bMw5XhuW7pdD2WjEVb1/LqG4MVR8kPdl5aaIpJdM777F7J/LWaYG+XYvpvCgAT0zeJ6pCCoskoRAKk5b8inkp52cjhna6Hv/8mjgEGWYZqiwIqzWhaYTE82N6xDxHlcj6mmfEzZaw24kGPsug7YlljrtaiiyuP1bQsetQ1uDmRdp0ein+CsH0RiObRV9a+rnF1j6BBBrM6kDz2olgrR/fyiYF8I/uUV9VrL5i6WfyPHIvjaNMesjUWn/thGwfmH73BtO9QM5SKefKq7FD35yJr2v6xNNP9Ei/8jnsX03Spj0s34ucfnNNf1YJ/WkbUFGztdIkDFlMpDpRL+hOoDJRQ3Mm9+r2LFLeCGmrXIdEpFQ0p4r1VyPZWrI6hnu3L+JIpNLJx5HtAAXNmTQoDw8C2ikmnxq6RaQ/9Vx801H9x/fY/fdv0ZxofCHXp90r2vNA/aYje55hGkU/C5ha1ls3gf7Ugzb4SiYhupdNXraPLH9nzfatBesvG9qTiK8CYeYxG8Or/4sHJRSwYKXG8Mch5Hi4Ukzmiw/FH2TWNYSIX1aE3FDeGDav5zz/hiVfSb1iD3rM8zCNEDt1J/UKyOcRCoPde8one+pXZuxesRJiaTT91YKYaYo7h/YBv6zQuw51aND7Fr2H8O6HKGPI7t8jVhLoa6615NOcL8T8vhUip1pvics5YV7QX1SETJOvO8yhRz+9Hd/rEJIcble47vNNT3/oK8rf/bt/F6UUf/Wv/tXxa03T8Iu/+Iucn58zm834hV/4BZ4+ffoHfuxYt9L9CUnzreQDpCrRJ0vsKw9R8zmqadFb+eWrXY3a1xSf7chu9qhJhTq0LN5vmDzpKO4cqu2ITUv56U40mcs5MbOy6LRJxjF0mRimIEddZHtR0TyYjTvSaAe0ZKRYBSbPPLEQ7Xi292S7gK0HVK/IDNxExpvKw+5RRXNZyK7bix8j28quepD89DNJGN2+nrB5QHeS0Z3Yo54akU8c7otUQ3k4PJqyf7VMcqiEuf3M8uRb97A1CV83+BHkgqovM/oF+FlAVyKynL1nKW41bhoprjXzb+XYA8l4Jcns/UyKhMnHluqJpnyeOpdZxE0V3VJRX0XaU1kcpp8q5u9aVl8x3Hw9pz3R9DNZiKSwh/K5pnoqQUOmI+FJFdUTTbZVmC51d6xkE4RcJBwje/zEjIFNAIcrIZOomDTkrWgvXZk46JV0UfKdJET7QtNezeD+Je7RJbdfK1h92XK4L9raYBV2H8i3PkEElHSXfMKBNg693Ys8q+5QfZAu2GIm3bHGy/TMRdETVwXh6gx/scQvp/hZgZtmcLaEizP8+Zy4mKZuaZRJ3ukJ9uEDKUiMkY17jGOBoWZTzGzy/98F/od0/DDXCUDWiCq9f+dkA7Y/GvTNIXVvrE3SyiBNDaNlxJzM6cNkBSMbSBXisVMNIn3LrHQ9jXRL9aETk2uREScF/SKnv1oSX7mHbhz58z3l84bitiPferK9x3QhrQ1eJmtVhql7aYxs/SjNFJqdSnhMT37boFykWWrqC8vhfk53ksnkNV3z+TZgD8e1I9pBg518Ib0ECaoopnafq3SDlf/qNKUYw8gy9dJEZTB4uhLq8wTicJG7twuuvzHj7msztq9m9DO5/vNdHNOURzR3ETGNYvqZYLQHrK5pZUJpGum0NkvN5lFGc6ZxU5VgHEnupVJjKcr1v3tFs3lDyzV+miapmpEwJI8vfpr21SXdWSWT6SwFKjZiyJcOp0whfGXolkLBIiCm88LI780q9l9/QLfMsQcxpPdnEzhZEPOM8umBbCVCeNtE7D6SHRx215E9XlE+2VOsA6ZOZL5JQVxMxUumJKxQb2uym73INDsHZ0vUqw/g/ETMpsOm2vkR2DJM6/V6h17v0esDersXuZAxxPkUPZ9j5nO5fw7ZGZAw2H+0xw91rfD+pb+qIpeJcwo2BKDrMddb8foAKk09AOgd+dMt2bMt5norn39mZdN4aNCbGrtpyLYOu+2kIFWKWGZkux676winC+LZUu4BMZJve8prkUDaBJzxKfvGl8mqMawHhSJOCsJU1pn2rKC5V3C4NBwuNPv7huZUjxOIoQGhHZQ3kepafFNEoV3W55r64Yz2JMOVOqGoo/jCopCksq3c1+t7kd1rsokYaiGdJgwmST33V5rNa5bDpchAZSIRCQVJfsUYiCwfrrxGXyr6maI7iXTLIFOLLnlhLWAi+/sZ/ddeoz41IjNTskHzhUw77PMMU0sd4yeBfhFpLmRakt8MMvmIKxnXun6q2L8xl1yjvcjHyucaVWt0J82HqJVsuNIfkYsf1+d+KmtgvpZcJ9V7QfafTekXOd1pzj7VZMWtZK+UawkmHs/DEMfpua8szb2C+qpMXhJD/XCG8pHF+51EBliDaT26SV6R7igNH9RBocrgj30FvvqG1HeHBvv4TsBNgGp7dOckALwoCPuD4MF7T3FdU322w65q1L6ReIzh2vFJ4mz0514vfqiryq/8yq/wD//hP+SnfuqnXvr6X/trf41/+S//Jf/iX/wLlsslf+kv/SX+3J/7c/z7f//v/0CPH/d7osrHYKDhUFVJzDP8yUSSKZ/dHX+maWR8tFpDnsPJArXdYz59QnZ5Lp3M/UFIIrs9ejHHvZ7oJLtmHHsHK8YgnRCaphsS1iVl2BXSxSfGl+Q5xU2L2be4ZUUsFXbbg1b4whAyK5pJK5uWfCv5H5s3jAT7fCoFrK1Fx2lrKSb6qaafQXMRMJcN3dMJ1Y3icCFaxEHyBKLjbM7VaHDfvCZcb1elOisq5h9Gshrq8ziiQIcixleymHTLADNHUfXUB8vFb/VsX7UcHnmW3zOc/faB65+a0J5Kh0BlkT6o1BkZkLeK9kwlfKcggLsHPcFmqKg4+20he7z/50GZSPVtIVuFTMKJ7CFSpF9tyIfFI13It4HDlYxSo5GfcZXkKIBINkIGzXQgcgUJMnzgyXZJEtMGMsM4zeoWR4N7sfGUH9yy/9ol7UITMvGJrH4iddx7hQqJJrSWcLP6fAa9ZCyE0uAKjWpawu3qiFDMZfMaziQAy+xbKWCTVCfmluayTLKYkChboM6nqCjJ0vmdwWidckU04d4pocwwK1lIYtejdMLxZVZkQ9r/kYWU/bDXieFQVSVm0v1eKFlGGhfKGNQ2Ib6z7Cg9GUhEQ05IlknKdNeBTZuDQ3MkbKWNYhwyX0C0simfIcxl49ieWvTcoPtcQqtWG0xRYIocfTYT3rvV0lENETfLUUGT3+4lY8QFzP1Mzut03hcrL530pyv04or2TNH5Yzq5fkHrnK+OabdDWrhpIyHppUwnmUTBKJpEd5E042GCKZIr7WVD7+zLUqthstKnENHJM9m4XP/xSCwCdm0wjSLbQfUsUqxFbuhKWZ98EYl5wB4My/d7bt/Oac+hepKoeXfSkAkG+lNFP5PHV07WBdNFmQCrY0ETMtg9CoSpR9cGuxPJpnq57sS0InPbPsrJ9oHJk9RsWGhmj1MgolKi4bYKV2m6qaJcBbJOQg8JUNw0tJclNz+RMftUaGLdSUbILMpPMbsW/eETVFURljNM7Sk2Crtu0asd7qNPMadLylk+Trb8VCh6uvPih2xakU1ttnJuVwX91SJ1SXvMtiU+v5EpapYR247YtqjpBBUj4VYWT1UWElronNCiZgWmm4MPIveqW8JeOp7KWlT8ozOr/7DXCvWDG5GylGKqyEdJnKpbwmotnrH5VPw7QzxA2xETEhVAp5qCppHsEefQZYH1USZQu8Nxfb7dg9F0V3NphKWJi72rmVlNPxOkr0+qCDGOK+whvtAUkPMk5BKU7EqdPBoJo43c98vbyID1HoI7q2vJCaovMvplxJ06miZjW9vU5JNwP4kaCNidpnp27M67Bx3lrMX/5gzVJIOzk8ap5JhE1m8pfBXIdloyQZCNhKtkQ4KC4kahvKKLSYqUPB2+BHfeo7KAuSlFljaLMvmwkf0rCl9WCQXOC/EDkXylKVZJ1l2Amnhi9DSXOXYvHtnDg4hbetzBijm/hd6KfN40kXwTyTckmZfGNEruwQsrk5okEZfogePf+5ki30Qm17J+KBdoryp8IdChbibNkeIuMnnmhQrYHTchcl7KhM3lGa4y7K+ktrMHqU32DwyL9zuq3/qEuJglW0Ev0QjAELIsCgxLzC2+tKy/XGLryMmvNcTtDn99g1kspEFft+K5Xs7QuwP+6TP5ej9BPb0lHmoBMkDyWKbG1iD7Ngalc/gc6qwf2kZkt9vx5//8n+cf/aN/xN/+2397/Pp6veYf/+N/zD/7Z/+MP/kn/yQA/+Sf/BO+9rWv8R/+w3/gT/yJP/G5n0MvF2hdHHXu1oqGrciJhcXNc3RhsS/+To0CH1GfPhWteEpL1VeXEAJ6dyCencjC8vQarKWfZeSt7PI4XUJmZacYI/1M5FP5bSfJxJ1j+R25WQ2mM4yin1q6ucHUFuUD7VkmJ2IuF7bQEkQTDfK1bOcxmaZYCeHm9p1sDBJrlwbtDXYvRtCo0gLRC/5291AM2KaPmCZyuGfYP4ySsr4SI3jMYPqx0GjaU9mE+By2ryfyVS6LVXuqxXz+1ordx3OmHxmKa01cFeAKSgOf/E9CsbDLjvVXKrrldEwnPv9N+ej7WeTwAFY/67BPcwkoTOPckVJ1MNiDULyaU4OKmuypQvWwfF86NLvXIs0rDj1xTH+9IttGQQ0HWQTcRLFZGnQr42XTyuKxfU2Rb0Tf6ItjOOIQvqQizN41FHfye91fWQlMCrKglrdSnLlKCrjmjTOZUjnJgFEhcvpN2ezYOuJzKYi6kxzTBKobhzk47PMN4WRKyEritERfnIncymj8XGQeGIU9dOjNAXdvScjN6AspblvxDXWOmEtQkYrSyZ18mArqV+9LZyNJFlVEChLn0Yu5TFZmFWrfiO77RTTtF3h8EesEIB6YF411rid6jR5M60Pm0GYrC2hZiFYeaWyM+vBygTo7kY7yak/cHWTDlyYpapiWVhl6L1IaQbEaQmlQLjL96ICfyPXv7i1QZzP6RS6EuUZ04/rQjSN4FeUGHfMMFQJ631Jdl/jcku+E998tDP3c0Fy+gi/kpjYQbLI6BfKl4nn3qKBYe4qblm5R0C4U02fh6FNTxwJF5EzJr1CocWLic5U24IBOKekK7t4Rb9n8oyDXllXjxGH+XvJDJYKfSBXFrDlsdoTYp7CHDCLcvpPTnkkewKBZP/92Tz/RHK7E82dqJYGmdTwWVo5U6AiRxxfIBPY6TWgSxty0x58LmWL/IJcCRonn5PCgoJvKNPVwz6J7Q74T+Vk/0Slc7viZDU2n/kQCJqtnRzRxtpVCz00sMdNk7hxfZPhpNsqdYmbEjPz2l6SrvczQbcAexE+EC4L+DQGWM8gF8636VLRuksfEBSkkkK5+OJmj5hMxj252xKTpVtbKBlsplFao3QHTtON6oJwTQk9ZEJtW8ncGb8wXfHwha4UPxKaT6XGeEasCVDkWWWQWjEaDhMmWlmBEM+VOSszBCb4X5OfrBlWL+R1j8K9fyUbyyQ3h6oz6y+dCu4qwf3QhVMXRV6Aob3rydSfNzlYSzEMTKdZSM9h0bQ8dc/GMiIQzZDL5a8+guJFN//zTHldpbn5CSr8XpV3am+Qvlamj+igXgEvyV0atuPtKRrQw+0AaFrLpl3N/8asFURfsXpW3b7rjf/upTBd8Kc0LU4P1gr7tlpH2wpOtNXYvTdKhHhDinZjX3SKgDibl8DA2P7SDcJDCvJ8q+kUcG4bZTlHcKNDHZqwKwNaCjfRLj+4Mdg/VE0W+tiNi2CZ87zAxNn3kcE/IY7MPZWPVXOb0lfjf6nuR7iRQPdNigj8R/22RMk82jyzl3GDrgnZpCIYx4Hr2iaCKd68YZp8KoAdk8rV7YCjvIvMPDmTrlmwVUXFCsIp83YkiggQnWMwSoc8RltOR0imyb5mSqNbR3p/RzySIO98KkIksw1zdO14LvdS4vNjkn07ozidkAfS+Jm624kV7eCVN1eujROsPcvzQpFm/+Iu/yJ/9s3+WP/2n//RLX//VX/1V+r5/6evvvPMOr732Gr/8y7/8n3ystm3ZbDYv/QHkA8qPyeoDCg+jhdtvRYoTZvn4xy1K/LJkCB/Di/kvTGRnR9PKaHNRjR3jkGs5kfueWOX4RSkLfe8FsajVuAmhd5inK8zjW0hjLN16BiN1yMWEJsm+cjMfcZaDlCAZkLSTnbGtRXPZnkbcVHb03UmkOY90J0oIWaQOSWfwlaB3dTJdD+ZXPxf2te4gZjKyfDEASB4EupNAf7/Hnzj8wtGeB8Jlxx+//wmc9EQrWSPFrZCj8g3oN/ZMHuwoqw533rN/JQjFwsDkWc/kucPW4CaRt19/grvX0y+POtdo5LnF1yE4TleJcc5uFcVKka+9bNhMZHp54GuPnuCL5C2ZxuRFkUWoPZHCyKQMgqihW0oYUbsQc98wHRlyEggpq6SJ+MpIsvNEKB5umpDDdUgGfNGBByNjU1dIUTJ77Jl/1DH/oJaCRYnvxBcau+2x2xZVJ7a/lxDNMK1SIasJZTK5D+fn2G2X0CtiRO86wT8eRHJoN41Ij0Ki3TQdfl7KTRR5X2JGDS9dN2PX3vujIfULPv4w1wn4fdYKn7iPSoAAgsX0CRIgn0P0QcJPB2M/iLwtGduj0VL4LSop9ppOiFuDAT5ECUUcNjy95Df4KsPNM9wkTdpud5hDP5qY+5OC9ix7QeKT8LMJmzqEYMU0KSFGsr2juhUsrk4TgG6mZFo5FZpVdpAi23ThCJ1QcrP2uRaNci7+jDBMNdJLH/OFkkFeEpqP12mwMh11UyHeZHUgOwTac08/F/y4+C7S9xvxp1XPBxmWXGcALkkZxHwu0pBhI9Wcg6skDTmmZb64acl2spapkOSYO8n60WlSI8VZeu6kfc+38rjZVtav0dhOMq0m8lc/U+Oa0CWPG1rWonap6CcS5ugSsW/ohjNItrQa0+fz9PtBC3TA1EL86icWvygJk4xQCOBiMM/GzOBOJ/SLQh4nYWRJ9xyG0NIiJ0xy+oWkuEetUU2P2jdiHh3OeWulYJ7KfS36IFM9lYz6xox/YpOK5oSojl0na8NwPcQghvc/guMLqSlePGKUKUh27NfGlBhNmnoOoAk/yekWGf08FW3GiKdkkIHGiMrkWvfTnNg0hMJSX1hcaQSle6qpz2TD70pNN1f4yhASBUn3Ydw4F+sgYYM3LdmmE4riqhVpV3bMBPGF3HNNJ3Kf8r0bJp8eBAST5FD9PNItpRD2hRq7/4uPHeVqmJzI97Znol4ob+R7BkBO1HLvW3zk6ReR9lQklWGAyJSyTqBTg8QnatVazOSxDMf1JzVQcHo0oociEide5FC1Sob29FhOoTpZQ+R5hOZ5xO7K+hcNY8WrGwlUFkM8qVaKZJtjPTSExb4EoUjRCOWdSOPbecKgNwm7W4WxsRySbEx52Yj0C1k/mhNDPxXTezRSp5Uruf/2c2nyDIHNPhc6YTdL8vjeow8d2bon37ijXySKwiROJGCQphVIwQthiFGltcofw1WzQ5ApbwhSg8ynct5CWgPCKOUEiFbQ0bHKRiKfMhLCGYcaWuuXaJOf5/ihTET++T//5/zar/0av/Irv/K7/u3Jkyfkec7JyclLX7+6uuLJkyf/ycf7O3/n7/C3/tbf+l1fj0oRVxuRZaWupQoRtgfMJjJZ7Yhljl9W48bBXG9RvSMaI3ruxZQhpI4XUGMxM7ivPhITYhuERFE3qUCIsuBbg2kDvtRsvjLH1hHTiH4OF+gvJ8lbEaUYzcWT4CohVpg2MvtE2gbRDNrrwO3XSrqFBlWkIldS2ecfQjCpOzmVzt/8Y5Fv7R8qzLWGa00/i7RnkXqr6GZJejVVZLcaN4usvwLVM1Becf3fOHStOf8NWQWihm6h6CpN+diOmSGhzfn/7L6G6sV8VtyK1rK+FIJEtyrwM8fZyY5dFIKEryK+jDz+70Ra5KtIcau5/mevcZHq3vY0jVynMmKNE49LtC9g7Hz0U3j2MxkqQPVUsZtM+V5vmKUF8fDgmBegPGRbRbaVYqxdKnylErFHghrLm0i59hweWFzKTpGsBPHBNKeG6TPPyXuB9sTgM0VzIovC7k3P8tuGi2/W1Pdy+qmmvpRConoWyKw8V3nbU96CK01Km5YJRvP2AzkfSi1mxRrifEIopBhVDkm9fzAjvjonvxPdZ39WoltP/uG15FdUBVzfEXd74je+Ql8Zck6FU98mckpZoK/vhIU/KcV8XRWoukU/u0lG1lIyD1Z/4Ev9P+v4w14n4PdeK7BW0KOZxeQZYbUWc+l0SpxWdPfmklQ7KUdppr48F9rNZjeuDaos0D5Is2MxhWkl98/CjlkAwxFmEmimWxnHo8DsxS+iDz1ZurEA2H0GIWLqHj/JaE6ngvPcNmSftlDk7L6yHBsY1a2netqOWQOmm9LNDfsHBt0I7js7OHTt6E4LQqaxh0C2i0yeyGtxs3zsgLZzhXaK6kbAGoPPLCq4/UmFWwTm35XzeP8Qyhs4+b4Ywn0hxXnUMH9ProN2KVNGV5FCDKF6niaTb4ikoLxORtRDlJT1QlCeQpyRG3S+gd7LZsBVcvPefGmKPSiq51EINhbWX9ZEpVM3NzJ52tMtLd1CpCt2z+jjsweZoK5+roPWYPaaxfcU1W3ERfBWESaC4KxuI+ZWNhM3P5mJD6WXSZHp5fnbmSZ/35HfdSN0YMgPMK1MW9rTjOIGlAvU53bs5trak902ZJpx6ha1xj7bYDOLaaciLz50MmlLgbkqRtShxexr9Ic1alIK8OJFHK/WQoMDzPVGZMelhctTlFvI+dw74nb3EuTlpeK7d0fAQ1WhlaLf3Pye198P6/jCaor5lO4rj8if7+HTJ9K40EqKMmtRJwuZKjUtymi0UtKAdJ7s42ti2+F3e8zpkni6kKkT0F/N8YV4LKJWxDdeAa2Yf9KSPd+L36c7BSB7tiXMCpp7E3QfjlK7ENBthp/IBiazco4d7ud0M8X0aY5pU+MxkZMECSvXYH2uqa4k0HDxrqglbB043DO0J4r9KwCK6qkU3908mc1PFIfXHHrek71Xkq/Fk+YqxeFKJI6miTz9OY2fBrI12EbkUWESR9WHdrD4vkgm1+94TK2ZfqKSLyJj87Yjfqml/3CC3Svm37Vj0+OlQ0uzVHeK4k7hKin62yuHKj3vvP6YPhje/7VXOTxy5H9iw/puiroTo7oKgI6yqdlmKC8qkH4eCEVg+W2DrSP1VfK0Pg20C8Xmdc3Ju57izrF5Pecw1bSnkK9h8ZGXRpOyrN+ObLzm5NuRfqZ4+ifFJD/78Lipq24iKgiZU3LYQsIoQ74P5OsUHNgG5lmG9tDcK+gnFS7hgKOG9c+XmAaWHwi06PBoxrT3EqzZOWJIE+C6J08TepD6QvnI5N07iBF/71TIfC7I9zgnskOtUdvDiP3mbsPkQ4Na74htC6dLwrSkW+aUdU84HLCvvkI4m6NvNqh6B5+Dg/OHPhH5+OOP+St/5a/wT//pP6VM+rH/3ONv/s2/yXq9Hv98/PHH478Neu6YWVkwu17CyZyTxaLtRxmLanrJBGna1AUOUjwM3edkQBWmvBplVTqFhJHZFCxz7Fab1qcdr0rZGtLRxuoUDMQRVxlTx2vA2b1wzzgiN+Nosuonim6q8aX8W7aP2CaN89pBeyl4YJmmQJZ+6SFL3c5KfBiuFBMYHCVX2kXIAzGPYzfOleo4mUjTCt2BOSiytbCygXGSMoxQ7Z3FbzMObQ4udfeyQKw83akYwwbE7tAJDZlQstwkvZ5epFkDTSvksklBIci+yXHkqnpN31hcMrGJOSx1IVKnNFp5P76SztCA1hvQfwNOONpj0NsYpOYH6Yb8flWMiegh3z9cOUIMkS6uaaQTjJLx+DAt86XGVXrEOodcy2ccIjETGY+fFRJKOITVpfMm5NLFUE4IRwxovnR+qjHBXo3n5fD9w3URnROTatfLeT8g94a//0Dn5Is4fhjrBPw+a8Uw9bAGVZXookDZbCz+xmvRGNGEp+nTKMmAhPF+QeI1dpRlAjuupiEcsYVJaqH7hP+OUb4/M4RsCJEKUmz2XrpaRsKrjjjnMN5Ahk79MDkR9HKUxPM2orvj5CMOry+9xwGWMP6bGs5zuVZCxlggg/y9n+iE9Ywj6jpkyW/SBGwbx/VnmLaqIewrNRFiMm6Owa79cVKiYsJ9po95mLpoDwNqXdYhNa6dvmQMFTNdxNTy2IP8Ygx2NYwkLlszhsSKHALwanyOqI8+OO0jhPT9KUE+O8hE17TpPQ2SrOH0SOvA4KmTIEnxcQ1fH8JOXzwEdOLRjUMfOumwVzZhcyNmm8JOMyNFrffHCcyAmW3bMf9GOS/NOGMSNEGkRGgtPzuely9c72nCEUMQ9P0P+CSGfyNRn77o4wutKX4gVwWfJlAhgg9i+nde5GpdP5LMiFHWhuAF/5vwyNGIry/kOnW/5Zod12oX5ed7h9l1mF0ncJ3GjRsKV5lj0GEKKB29jrnGZ0eQhNQhWuTa6TrKapFsBSPwiVAY8n0g2weynSfbSTNPpetyQFy/BKDQEWN9MmDLdNBNjrWA9nJfjJlMOFS6NnSvsKn4H+7/KkRUUOOUYTxsIMsdwcp6ku3i0bQeFHjxjryI4I7DGtLL/+gsYHXAqCATEwUuaJQJhDIkb6VCt9Is1b2S1wIv1AIJ1DGN9BNB4vpC1BG6j5LtE4/fL8qLILCJbZqm5knt4SLKhqMsLE2K5flUwq6nt99E8lXE1NI0V14UMYO01mdqfL8hwXaCBcleCug2Tc6tTO6HScY4SU9BqBiTziGZjqjx3qJTfWtGhca4Xg0xAUa/gMEfxkQR04YjQU4n9cYQS/A5jj/0iciv/uqv8uzZM37mZ35m/Jr3nn/7b/8tf//v/33+1b/6V3Rdx2q1eqmD8fTpU+7fv/+ffMyiKCiK4nd9fcDsUhb4kwnmw6f45zeYsxMZLyUOsl4JEURi5xMbebVGFQXqbCkfWpHL2NqkGwFg1+1xJKUla6Q/n+ALI7SApsM+22D2JdpVSZuZ8glcT/HJiljl1K/MJJRwm0ztQ0GcKe6+WiRCk+Bg862WcL0uoepyGTWW14rpY08/1figxoJD8i5k0qHvpMNIlFFmKEQ+cXinhXXG/H0pbKIWSYUvFdlT6QgcrhKR4rJH7w32IJMV7aC4k0LfKVlgtJeRqmkh5EKTOP8kUF8YNl9akPegncIlM3uzy1Fby/RjQ3sWefrfe8gD2gYmsxbXWrLfmgnt6jqIt6KAw0Nw00C+0tIh7RShiNSLCDoSa8v+v65BRfwmR7VSNJlGOhm712TRRAWUEz1qNDKKjk9BtyFtQIR+gYIu11TXgflHDc1lzu6VXEbkhRhviTD5SMIL63uioS1vAmf/+3OIEXcxpzvLE0ZPNgj9TAq02bsBfXBk60H3At1JPuJRVTyim2VaEshXTqZxUS52AoTlDKyWcM6rM7g4xWca5QLm+Vp0zmUuxUiRy5jUe9zT56IDr5IUrCpfIsF8kccPY52A32etyK3gcycl/mKBtgazr0Ur3zTYu82YOYQx6MWc8PyG2DvMwyvJC7rZC4Yzz4Si1XeyrsSInk9RPohnZHjOkzmxSl1mpYR2lFv8xYL6/oTmzDD/WGG3QuyKRUZzrxrzbkJuYF6iOgsBpu9vCVUmuFgF3VmOnmeCgvaBbOdYfBRxE83hnoVoUbEg38q5vXkkmyXdZ1TPA9PPWmwdAAlAjLl4ywb/xuGepj2PTD5VZHszwjN8lcztWSqCMvG2BWQ6qoJowAnHmy4xSR8OkeW7Djcz1GdmNNFne1kD2xOZOEyeyCSzuRgaLulxAszv0vrXR4qN3LjdRCQS3Vw2IJvXk5k/U4LjXnvqC0MwKen948Dss7QRjJF2IcFmxSblQKUsjyHzgACXv34gZJrtI1mzs70gRG0rrycUhuZMMlkWH/ayCek9kI+SrWgV1a0TQ/tdK3K+IkNtalTT0r65pJsZ8tNcJqHffA/efIXdl5fMv7uC53fo+ZRYFXT3ppi6wCo1NhZi36OUwr8mWm8To8iJ5yXZp7fET+6EpqW1+KHyDLVcENcbfDKvozRmuZDNSsrICLsd5uJCfClf8PFF1hTcrsmfrmRSfHoin+mLuSlNK42dtiNsNsTeYV9/lTCv6O8v0S5gn64BxJyeWSKG8sMVaIWfl1Jgrg/4sxndWYbqJ+g8E6O8Uvh7J/jS4ktNu5DQTpRs/H0hMq3ppw1uaukWBu1lqmmadJ2/nnKqkiwxWJ0meFBfShhytgupuaYp7zzV88DiAzlH3VSnLJ5IEeTas01GP82oHzr6q0D9TkA/Kzj7FrK5iLD8niJYi5syNhar68D8w5brn67YvxLZfkkaFfN3dcr1EZN5+7AHrzg8m5LXaerYkjpEyTeyM2Q7+Te7k4lLdxowjSK/U6hgcY3hm9vX5OfKQPWZ5exfzuAdy+5Ljslnsh4MG6nmUlDgk6eR+kLjZuIB6Rfgv3yg7wy+ymVzlEW6uSab5yL3cppQiAzWNIHJtSffa0w7pK8H8i3MfqMUH+pcvHPFnWP1Vo4vk0dnD/lWM/u45uQ3D6k5Lij/4b4f0jq7/N4e+2zN9hv36aaai9/y2EOgfLIfZZtxUuDvncg9xWraS5ms2e2x3JeaM+Av5ui6xzy7I04r/NkUrZTIt7seAkLqs3Pio3sEJz41lbwo8WaF8p78E2mM6YnAnkzX/+5N/e9z/KFvRP7Un/pTfPOb33zpa3/hL/wF3nnnHf7G3/gbPHr0iCzL+Nf/+l/zC7/wCwB85zvf4aOPPuLnf/7n/0DPFRu50HEes20SMkwkV1jDgDBVIcjC0bboFOZkLs6hyPFV9sLERGRPoRBqwrgJyS2q7aFx6MYfd51FJrtMF7D7Xm7MSNcrFgZ3Wo3d76gG6ZCGLI5o3mETMqSZ9lM9BgBm+0hoZcduUjpxcyqY2/JGNgm+kOJ7MHkNTG+GzoEDdZuheymIRbPI2J20h9QVjCJnMk026hNNI9/jBulfJ1OKfiJ0MO1loqEcY66BO+2xK5F06acFXZZL49gNHheZwuA0oTXsWgO9Ju/lNbhCpjgyCZHuClER8kh35tG1JttqQh8F+9fnoCDb6fR+h0yAoxTDzQKq09gnib5RyYIyoo07IVsoJ5tB00ta6aBjHWgkbhKxtaK4kd9dP9GUK49tpKswTtGQRVQFCCFiDyK7c4ty9AUMh5BIwnHSNGg+BzNeCivDR+yuS+dqj59MaC5KiltJ7B4KuljkYlarW0laT+FpVOUYYqhe9Ec5J+dr+8WScL7IdQKQzZlr5XrzXoy8zkOf3neWi3zNHz+H2DviMDEySjCmILSbNk1ejZEE6iFN1hrx3+SZfP4uSMCZUhxDUAP24CmsdMxJSEw6R7bpiZlO55+sS25RErNkZtYvoHIj6IR2HoIMg1WpQyrnoHYpkDBNRXQnXg3bBnwlBB6ficfCZ9CeySZeeZEwqaASkef4UQ5+ipAQuTJNTf8/dPuSB0t7kVXKJEeltUQmmT6XhoXyct37Uig4uj1ONqSrKd3TsVObpi/BKvoJuEKMqkOiu7xXuUZtF+nmim5hx25iN9PjNCUYkWJJkJl0eomS4E56zUTpKCoXIAFFgkkwjdSdNl1A1y5t0KCfWozxZD5IEXBAJH1pkwmM6de+1JQgJKwBigBEo9EnS+m13XZyzkYhWUWrBe3dSjc+TitibtE3G3AO3UgRMaSwG6UkzMxawcIajR7O7RhBG3RVEZoWYhi9I3JuHzv+qhVc/hd5fKFrhffEPkARZdqslPw3y46Tpd6NgIrhe3jh90aMxNTYHBQZ4z8NiorTGX6SpWm/kon/rBgnoCrEJJ+BfCd0JilmTerK92PI8eArHXJu7EGuG5/yu3QCTgwyJ6FkKlRU4+QjKiE8qpg670aaryDXXTByPWZrQ7AGv3SgI82ZwClMK4njxovsIxqpNXwm1ClXyX03VB6iou0s9qDIV9J0VQdDrKRBGY2RjJ+FNDb6hcioisMwzRUvZzdXNA8DfgJupseaBp/8tqkxuX9g6E4jauqEgPWCqiMkf+nhvqgmgo0jijtcF6Dl302jyFYaW8tkWybXjJMR2SAmgMAhefYSnlhqAVknXKEIl1Zeq2P03A1rQswk9TwUaQqWzgM3MXRTLVATP0d3kRzJqNOtT+uvkoH2MAlJHg3dC22VwX8YJHh3OB8BIWBVBaGQSaxG7lP4MNYSqCLVyd3Rc6oVeI6kLBBZ1/Dfz0nY+0PfiMznc77+9a+/9LXpdMr5+fn49b/4F/8if/2v/3XOzs5YLBb85b/8l/n5n//5PzAJJ6w3cH5JrOsRmafKgjibyFjobiMG87ohdj2x78SwU2n6tx/gUyBhthU60RAQpaYF8QWKiZtlZG2P2uywQCwzScUtsnGhsc82+PKMfiZY32hzbr4mmNXZZ6LfGwoElKK8ERJGfVZQbCPz7645vLZg9zB16QJMn/oxuyMakWlt34Dwao35jxWmheZEbsLldRrXphv2sACZJnLyOyLP2r/usBszblrGrkM6qk8D8w9qVm9PqO8ppp8JI/v2J2UjUT5T1ItIf9Uznl6dLAD1K2CWHW9d3fD9d++TbTPOviWPv3+oxbz25VrkEE5j7yx2JwjPYcMQLdT3pCDxpUx2TC2Tgn4S+emf+JDfeO9Vpr+Ti8E2l2DBoQgPWZo+JElZqJMe7tUO1xryTU7IFWHpaC4zVJTub5a8LtkOLr7Z4gtNc27JdoHitmd/VYh3ZBEwrWH+iac5M7SniupGLupoDWQSVAVQ3bqERj1+vocHv7sDN3ncitkciMbgTkTPH1JRSTpHdecFgJC6c/7hkvWXLCc+Uu1a7L6XQLyzqWA7n12Pz6FPT0SONCQnF4UsEnXKFAiB8ELI4RdxfJHrBEBsG2IbCXcJU5rlxw1ZlqGnmawR26OgNboe1OBu1KjZTD7/uzV+tyd2HfbN14lljtoeZEM3rQgnU7qTguL5AVV3uJlMRbLbgxQlvaPoHPmzY0eerkfXgfxmg788oX9liq579ObA4e0l3SxpfZ1ILUwjfjS7FSBGf1bhS023EBOiqyTELN8MEj352WIdOPm157jLOYcHBe1cunfLD4Sms/6qSVhKmDwPVNcdt2+X9DOZFgyy0ZAr+iptblwcs0RMG8eNe3YYbspaTKRT8YzUmR5zfAYJU5dQv/5+g9tb3GcmFQbHTZBpkWbFVCaNEHFTwf7a5rgJGmSjtobyzvP8G5b6Uc/kgwxby9TFtFDeCLK7nyqmT0Xadv3HZGpk3pXH8ADVIN8z0rA5BPqJZvu6TFmnT71o+FcHyptcpj0XhuygRbPfOOxdL0Q8qzG1J1pFt8zoFprDpWZp1fA0EkbpZOLUvXFJdrMn+60P5eauDWFWEqzG3uzSZM7hHp5yuF8wdwG92qJvt0ezOaBu5TxXsynNK0tCrikzk8zt9YgO5+aW0EpgqsrzY2gniCZcK9mcf4HHF71W/KeOOJON3hg42/cSfAgigYtRaFidh7YjnM7ZvjFh9nGNfbYRrHcmsm1fGvqZTo2uQX+oaS4LUFA+a9Gtw2wdxbaGpsW9fo9umVOfS4ZO9YRE0goY5N53+zVL1JEH/6sDDfWZxTYCkQDZqLcLaXS6EzXWCd1SGnSTxzIB7KdJ6pxM2AKZEWXG8vtyXWxft/gysv2Ko3hmKW9EjWFamVK6QnF4IE3TkFma80g86VmcHLDGs11WtNcl+Vp8Xdpr9l9xlIuWfmVxioTsjYSlY/Y7OYsPAqu30nr1bsf+YYb7bw/MqpZl2fDux/dQd6lZ5BX5WuOqyM3P95TzlotJw839nJBpypsky84i7UnALzrcJsfsNWwUpobTb2nxzrzdka9z5h9EqmuRz7lCstcGWl4/04I070Tm5irxwikn05ZiFame99x8vaC+StStGpoLuejtVu7f3cWU/YMMN5E1KjsE5t/bELIp/VSw4uZ+xvSznuK6Ey+oUqKO0IwNdNU5QpmBVtj9Ue2gfEC1Hr3eQQj4B2coF/CrFfZ0ST+zMmHVCp0eJz55LqRYt4BDTdhKIOtI3NMGDkclQExrUqgbvG/4PMcPNUfk9zr+3t/7e2it+YVf+AXatuXP/Jk/wz/4B//gD/w45vxUApy2B2LTok9PpCjoHbSix1ZlCScLdO/G0TWAvd1jMkMoBbMZ94ex82PXNTEz6NutkADmOX5awNUZfpKnm0lPyA37N0/Itp7q0y269ZTXSdKlobwTs3m+Eu1vbhWhkIWgW9pRwzkU0m4iU4XyJpGbUkZEP0kLQ6aonkG4E/lGt0h3rtShtI1MV6afReJT6XQFq+hO5IZePLNEG/FVFN1my0sXje4VixjJd4FghQojpK8gndFhJJpb/FlPVjqowDsN1wUhFLzbX4p/Yy5dBuUU9YNAyCNxm+DeaQIT8sjujUDM0pTEK1SvMVuNPSjcLKYOhRQj792dYQrP7Tc8xXNLvoFuyUic0f3wfsT06mYyNYnPSrL6mDwN0J8GfCkEDt0Lfs/WcvNXXgg87Ymln9hROx+tmO+7hU7UC4EPRF2hLkpCrqjPDMU6MP34gJvl+ErTTw1RQbH28vaLY+d66Kb1p9VocjUHR7HrCGVKSdVK8L2TUvScvcNuW5bvW3QfcIuS7HlaWE4lzDB2PXoxExlG1wvf3gcpNk4WqH1NWG/QJ0viYorBwe/tAf8jOf6w1gkAtEFNUyaD91AUKKPFOwOj/EJNJzLe7jrMyUmiZE2k+3ioZWoC6HmSqHS9TFzLXBb5ukUXOaa0CakqAXXRallrmh59cElDi0jsjMKfCVrVrmpUjJTX6XVNK/Kt+MC0E4mQ6UJCxWq6k0I0w2likh1kumZr8U41Z1amfF1k/qlD95H20Qn9zOAK6e5rpwT/O9GETCZ4xSZiDwHVhyRXOq5Dg0xqXH+QSQsw+uFe9E90J5F+Fpl9rLBNyj2aCu2vvlIctKK99MTSo3WETuSppk0T2zQBOdyXjVBxJw2dbqnIttId1b0sLYf70rgo7kh+Emm62JVNHg+Z8kg38qj9rs9EKuJmMRWIMYW3KibPItWNo5sZgpXmT8jkc1Ah0k01ZWXRVT5CR6aPZUK+e7Ug32XYfZ7AFL3cb4xBhQoVpDvaTzT9W9PRe1K0kqKs+yCd8sWr2GcbqBuZvHlpiMVyKLxk06i8Fy9jmcsEZPvC9KKUsM382R40IuXQiriYSpez6wXGMExCYpRJ7+8K+Svg8wUmf2HHH9ZaoYocpWSNiPsDajqRJPuERDUul2DIthNITpal30ekuVdhukD19Baz2rH4XkTVnazflUyx7LrFHLQoD4w0GM1GEOrm/hRXaer7JcVdT/GhwHbiYpIQ7QJVAagfDLugtMEvFdXTRKLa9ElalRoGE43p5NppzgcFRQovdQKKaK489mDIN2kCUikODyOmFum1dpCvRJIJqUGY5NLZTu6d/VSkkaaVpuj0syA+14WivIWwLth8SaNLR1zlmFogL8P1rXOPtR6XPCbRCspbP8/olpGbryu6EzkXb98p8CU0T6bM3mz5P199i//7fsJdt0DVBtMK8l9ngFN0jWUdKoHYpCwU7cDuNASFUxlmazAN7F8JoCLFtREAzXs5uhfIjS9LCCX7V6Xxkm/ktbcLgXaEYpj+Mio4eCoQnW5pyXay/kg+ClTPZW1uLwpe9MxIA1pkdby1kDBmm5pLu0CW5LxunuwHL0zd/FQiAOyuExrb/cnR26I1sRB5t/Iec7uTJthsRtwfmHz3hlgJEa4/rWSa+8TIPXF/kMy+B/ekDvFBVAFayQCg64l1jaoqVJ5hjCEE+7nM6l/IRuTf/Jt/89Lfy7Lkl37pl/ilX/ql/6zHjfMpfllhnIe1FvLQrMQ8uZMPCCDP8BdzVAoH0tu9oA3vNmJKPZmjDg1hl1ZWrdH7GqUUcb1J3s0FvrKE0uALKSrNoSMazfZVLdkcdzm6c5h9i2p6UIpiVUkA4TZ5TZJOPGSa9Zcn+ILE6JZ/c6Win0fKG/m6z9Noc5oIFLl0Lapbz+Z10WK+mAqsnWgPpk88pvHsXhUdYnsmOsryuaI7VXSLMC5Uw6ajv+zpVjlRKewhkBuhbLgZyZAlRjvbKOJG48+gKHty6zg0Ba4rUY2CTYEvI34aaJN7N95rwWv0XfbSxRYyqF7ZcTKtuZps2fYlTzZz9h8tKO6EBx6LSNCAimxvp5Tzljfffsx7zSsUt5r+UjYbuhfM7+RZousMCD8bKR+bVDzF8fNSiw5OI/1dgdlrylvpQIjHJGIOjt3DjPpeykFQgJbn6mZJPlZAu1Ayqs6TuXcuRaC53aHiDFRONxPduN3JedFrOxoLpXBT9HObuOAO0zj0kxvU6QKWFaEQnG+cFJCKB71rmXzo6c8m9POM/P2DhJUtJ6I7dz0qywjzKer57ZF6oQ1hUaG9l+I7z/DLiuhnf+QbkR/WOgHIRqSqjn/PrHi5fIAwSNTkeyK1yFCmgiT0s0KKwhcMeqqqRCKz3ctaMzkh4sQ43BaYNmlsneAWY24lmLAPRyQiJCCBpT3PxH/VBwmiutkJRnySk217mfx1fjTVu1lGP7X0pcgxBi+DPYRROlNfFBweSlMiX8PyuwdCYdm+VqbzT5oXxkmHv5spoonH9PVGjM/ZTvQb9aUgqk0d0/QxXUwR8iQTGeQKL+Jz+3kknPTke0u+dqhgZVqYi+wiTD0n97YUmeP57RzTKvKdhz0UG0U7l9T07tyDhuJO/FfthcfuDOVtQEW52bvk4yruGCl6poF8rSRzoWfEIUvXN0k1EamKn0jxYHq5ztsLWY+zncNVGp9r+rkaPwdI1L/KYAqbpDVQPj3QXlTUXxIZWpErJrUY0lW695jSir+nC2wf5TQXinwdxS/T+TE3yJ1NaM4z5o1D9wnZqSEWmTQqjJKpy66Taz+zki3iUj7AKDHOpLOZKHpqPiWWOWFaSPez7SDLj7AGSGCLFzo4cKRr/REeP7S1IrMyne97kaucLfHzEvv4LpnRZXoZnEsbEckFiyHQnBpso6i0lnyFZ9eok6VkNhWC5s5uZCehDzlhIhkyal8TNzt0dwmVlk1xZykONXExoTuTdUv5SHYQn1Z9rtGdZAS1C/E1LD5MYXiHFMDqAu15gZtrkQUyNO7EwyXFuDQJivsH+k/nElaa7oP9RY+rDb7U5CtFviflnYHpRZrNYZiEJAJmAb6TBsHig479g5zDffF85dtIt7T4iSa/M0QTac+DGMY9aBOxOhnKvcIbkWTZGg4PPfpCKorgNLs3NLqH4rnBv674k9Nv82+XX2Gzq2Br0nWeZOheERpL1xumB4Xdp0U0SO6YigIVyPZKZKFvHSirjp1akN8aFu9JHEJ7As2FbJD6sx7Va4qVASVU0vYM+rm8nwiw6PHaEpU0LrqZJjtE8l2kPpf1d/Lcj8Gx2h2DZ5WHMFEJR3zEZZsukq+dZFTFiJtKkLHa9iNnJJSC2M3uhFHeLoUCZrdKml/GEDMj9fCzG+gdejohHmr802dCvTpf0M+sSAS1InYednvU1QR/McesxSONc/K8WSZTkPR3lWVEa1FB/5ezEflhHapOXcNJgbq6QO1qzEoMeINRnSDmsZhngticlFDkqK2kmMbSEmOFdifpQZUEkOUWfbHAl1Z2shuP3bRYLQt/e1ERteLiN9sR7xtyI56Tmexu87uWaDXdxYTmzHK4NMwee4q7HtsETK8ScUax+9IC04qMqrmQ9HMJ94pMngX29zWHVz0qGFSUxOGoFc9/2qbieUgnFcqGcoZ+Jt2+kEdCEennCnQiSSSfx91cJBA4GXkeXimpzyVF/PBQyBOTT6Qz0J4y5gvodcb+YIkfG7QG92aPOhjKZ5rqqYx0JSUZ2lUuxUmX+NgmXWwRDjcT6l3BdTnDWs+k6NkjG7HJY5E21Q+CdPD2hqat+P66oLqTLo/ukub1QYurciZPk9Z8OmDAFPWrYg5tLg0hC9Bp9HWG3Su6ZcBPApsvK6qnmov/fY07nXB4RRJHZ59EDlfCM198O8MeItVtQHkx/tukj9Vp31um/IP1H7+XXl98SV+vQpSAsiSh62cWX06ZfLyTXJrSolwgLucy+Xi6Jsyl6O1PS6FsWC2ynH2PXbdkd4FwukCFgLmRq96+8ZrIBdY7Qb2XBWGzI7oN5mNN7Ht0WUoxDoTpH31x8UM9upZ4cSnT0q6XoMcQoG2F8Z//AA0oBFlku142AIkIosqSOK1gu5eF+WQhZDKtYVoSzmcjrUon6kh/Ph3zILrTHPfWjMnjluz5Dr8QXW629dIxf3InXdBpidrV6JWj+8o93NTgc/Fd2IPHdIF81Y1FNTpNSJZWsgY2HYuPDfnG4CYCf2guK7KD4+S317RXU/ZX2RgkuPz+AV9amosC5WF/3xCM6IJ1n7p+p3LOVs/knC9Wac3JjzSukEmRU90EupmmOdPka/BNzt1XFaaRwNBgkyn9U4VpNf3kjE5DGSUArLjtaS5yWYvmAu1Y/o4dpVnawfRDg5vC85/VTD8SxLmgfxMlq4/p8xLduj1I4eWQiUpzplK42nGtnX2ScOuZFFrVU5GA1ZfyWoJVlDchEcSSRt9HfKGpH1bkK0fUirufXOAm8jxlHylWDnu7Rx0auq88JNqk+1fJJ3aIhDUsPpL05ZAb3MTipkbCUJ916NWOuNsTXjnDTTP6ucHuPOXj3egtCfNSJsRJux5nsnb4SSbTtn09TgFhOp7uqm7x1zfoooCiICZTutrsUWUhnkrniE1L1F+sNOuLPOJmRwwGtZgTH9yDEDDrmlinMeDJHIoMlSZOtN0YiHqegCVkFmWn0qxYTAmVoLl178eNoWo6VC/G9ZhZ1OmSw325Hk/ebUXuu5xTP5yyv7KcfrfG7Du6xVxIWLtIt1DsH2omTyLTZ4H9leC786vFSKIbfAv1ucAcihvZZHQnKhmqFdPPFP1mLsTNKNdNeQP61/K0yYbZJ4Fy5dm+akWu9JUOtbdMPpONeT+X8ODiLlKshM60fS0nZNIUqC8Vu9egWCm4M/SzlDMy9eiVyLSb24JVbbGIV0P3Aqc5nEuKu/mdCbZJk89HHg+Yg+b2kxP+r9v/G6fLPY8u7/igvcC3hu4iQhbJqp6i7Ckzx+3qjGA05W0KgewUNoBpJIG+X0bihxMOZkI872lNZNcng/8e1DbR+1LpHBJ4UaTrMP1UoELKR1ZvlSnzDbINVPsgsksfKVYaVymef8NiasljM534RfdXNmW6yO9DYiEg30dmHx6wj+/w95aE3EqNmRncPEP3BtUH3MRIw+RignKRyZNeAEXzDLt3gpDvhRrL2Ymc91qjihxjzEjcmnyyk3N1Nn2piWfWNerQHGlxP3CoSSU+tGfXhN3mc113P9IbkdgJ8hIQg+h2T9ztJalaa8bE9cT9V07MO+iENxuwhUZBeaTbhNwSc423EkQ3mMdV6wGPspp4LpuN4vnhhe5mRsjNGISjN45opDhoF1rCam6kC64iYib0KReklE2J3QTqexZfiuls0CRrp0UalEnXwe4F46iCfQlX2xfyfkYjFMgoMIvEwgsGL3UDVQo7CjaierkptwvZhPTzSJg7CApbS0e/mzBuJFSvUL0i20hHMJu39KFABS2BSNsoBDENptajUTTqSMwjOJFoqUYTvaJH5CXGhPEmag/yuTaXEJVoY6MV077y8jXl5L3nVU/bGIJNtKosolt5r5RiQnFeJRO4jJyLOyFZBCuBaSHTcqNggitTB7UZ7uhQ3A4UHVl4TMsomRFTa8oWKBTdXCdJywvovsixeHFyAoRM4Y1C1R2q7VBmIuPTKpdgsq5H9Tlojc/FP+KLZMbrvARptp0Q34LBrHdgjfik2m40qI+o2RAJ+zQdydIqmiZyP85HjFE+F+9R3otE0zn5Oshn8AKg4hjgllDIKYWazAo1C0S+YXRKW1ZyQ5hkyUB+nHqEXBMKkdi5StPOFeWNeQmTahqPrp1MV8qcUFrsOkjhZ6WIcGUizQQtaOkuoVrj8PuzycwuxC17CFQO9rlIikKhiI1C7RtMW8rakUzuZteiO4+tRacu3gm5tssb8V/4Mo7dS9OJfDRYaRbEhMoNAy024Xl9LrIt5WVN8YUU/cP3272AOnwutCvxliTZVK7GG3I0skFRIbKd6ZQHIgCM/qLHXedHQhfSMFE+mdZTZ1S/MLUJmWxuBomGaQWNXt7K76Q+tyNCVPsjwjMasAmTLOZ8oc/0c4srNHmanvYzef3jc3dh/H33M/ncMxxCHBoyHRTZVjJm+tNSrvVciTylP04mYtp0ulILsrOTTCu0eMui1ahWUpFj6n76Mmm/h4BUpY/I+GQ8jb0TqIXRgpaOKdBNa9mAJ/lyDC980D9uh/egjKwVVaKZtZ2sE0lGG7WGzKB2TZJ5JhjFzZ08xmwqf7cCOYhGp3t1ZAgpJU+SrtbLep8IdCiwm1aaUWWWULyDtr8/ol7bSKsUbirntN0H2byWJJCMSATtQTxlIuU8pnx3CzUapUdMbpJIkTbH5UpIcr5QgumuwyhlzKY9vdNop2VDkcu1rHuSrBxcqRmQ5m4myejFnUwr2jNpkKJFpaAC6Fbhh0mckloh2EgsPepOk2+SfNrKGocGX0TMzqBvKnbvOC4me3QWCFFhCo82nqJw5NZhjSdmgvj3haxjIK9ZtYkwVgi0Rzw2gBG5pt2pMeeDmCA26vj3qMD24okrrxt03dOeLOnmivpKjZENMcEJTC+G9n4ejgCSYcBsXqzdGNfbbO/Rh57YdRKiWVqydUM0Osn4FVpJUyhkin5qBf+76QiVpT3NMLUCF6QZFyOxLMZIAGIUKmTKvlO7VNtqLVOURNFTbT/CWca6IX0PSgkQw4rpnfjyNPX3On60NyJ1jX7vs/SXQNjXUmhkMloOHz7GXF5Qv3Of8rMtPH6OWsyIZUH7pUtUH8ZwuCFZXcWIvd3LItH1hJMZ3ckC7QOqaWXD42Dy/lqeVmvReecmbTCimINcwM9y6ns5z39GM38fHv2rFX6a4yrD4VJuMuWtIt8HZh+3qQNoqJ5Hpo/Fp0AEV2mqm0D2ywZfinZ5+6jA9JH5hyHRcmD3mqJ9s6X4oKC4gekTOQnyjU4yBENzGXHnvUh0skj11RX1oaD89Qk+h9VX08RCRcydBAjWl3FcpPpTT3ba4O9KlFOc/bnHPJhseGNywy9fv8n73QO6pcY2Gt3KxWf3SnJNqki46HhwteLx9y8prg26k47txeu33Kxm9P/HKWoe2H7FcfJNS3kXmH4iG4HyNrL5sqb847eszAJfDjg/RfPAQlAjPx0YTbc9Qg2bfCq4Pv32AX9rJWE+fe/yW5ZsH1n93H20k+TakAmTvT2VRXH2qSweh/saU0eybaS8lSyZ598oR7pYvoXqeRhJGO1SS9HSS+EYCgOJMJLfOXTvaV9ZMiRLiydEY/cFpp5I9yJh/Ibk6WgU3TInMxpTWxnVOn+8wa22xNkE/+AM/cFjwnqLefRQcjSSZCi20p3TTQ/rzzE//RE+VFXJ4rvd457fjF+3D65krbhN0osYhJm+yFOmkJGsAGtwb1yhG4faN9LxWcxksW46+i/fQ7lI8Xgjm9m6kQRrrTAHR1SW5iLDNoHT73RkdzWq7bHPt4nwF8fn8KXFVQa9q9DOj76B2WednI/LNMbvDM29Ap8rFu/u0Yee4k6zezXn7r+1nHwX5h+12IMeN8rdwtJ84x4h3XzEMxHZv7kQDXLCf+setm9EZl9aE/7tKdVdZJsDDGntgs+NVhDh2U4mf82F+DJCZlIwJ7SVpKMP6M1gJWW5eeDIdhb9PNJXSX6aKQ73YPXVYqRm2Z1MHn0Ow916SITuzx3lsiXaXCQKTv7t9huB/NYw+0TM6b6UkDUirN+SdT6/OxL28mS0vf1aNm588hXMP5HpEwGaUz2uF0NWifUR0wfYOkym2b4qk/jFB70Y0ucGWwdCrukenaJcpHxeEwrL/hWh6Nla8hzylcMXQtLSPmDveibf3+Eu59T3S6pwitlW6M6TbXtClrDjeTY2HUwn8k+13UuBOylRXU+xkw5mLHOYXoLRhCJDhYDeNsQiw772isAWMiMQlqYjbLZiSp1OiM6Jkf3HeXp670Km3TFiHt9K0rxzcHEmDYdE5ozFsXTq7y9xE0t+MhX/z2dPR3mkTllAMT9+fzyZs3/rlOK2E9RvZomZYf5JJ0byeTFmxVTPWiafepnKZJb9lcG0kYvf3KNChZtY+jlsKkt5ne43J8dwX3uImCay+FA2jwPmepB/my6pHCwCgDEiLw7puva5yJHXbxrsPSOqiCwSPpkwuVUs3/es3jLUDyVaQHlYBUO2VZx9J/3bNw74g4VO0y0g2sj8a7fs64Lw4ZRgI3VSX6ioxlwj90pHbAz2JhNgzRx2b0SiDeR3IoeO9xvUZyWTzxSb6Yzv1BlcFxgPfqYJpaYoHLefLcluLbNraV5uviZNgPKxJd9KHEF1LZu67WvS/Jh+Nx8Rwf0sZZqlPpUvZcNy7z/WNBc5q68YNvfBzSPdfEq5islTp44T5YVkigUr9YFtIiffloZFcw7NmUEFQ7YXw7sZ6HpWjU2W3VeWhK8tJasogi+ltvCFGs+Zdm7oForwQJPtI/d+eYefZGwfWtmcpv0yShFLS8gMMdcYqzF9IuPta8nbi0F81hOBsKi6Rx0aUQUkNUXUmlgY9GGKMULZU+sd8eoCHZfwvf/fl92P9EZETLmd5CQYkzYgL+zujHR1bO2PnaChgxhFJhO7xPquMgl76o+dzJhnEiQF+ExjlpOx0xmHrb7mdwWHEYTRHTLp3Ik+OT1u6oiHTIxNvoQ+KOzEjOQZV8oUY/JEHsdNjmi4kKUTMJdidMDqyc0/EpPRS2QJ8lz5RsL4OiMXhWrE54KB7d0EWjMaS9GyUAwFgPLyNeVFwhAKTV9mqE4Wndv9hBAVXTAc+ow49fiQJj7Ijd9X8Yjj7DW326noNlPgULSRk7LmVk/IN6K3VBOHqyyuTmGEqZPpi8jFbM8qnxG1GaViYZuhelnolBdjvu7k54TOIy9H94pmU1D08jsQVKkeH79dKPKdTJxcZemmA75U0KMhS78fp4itvK9g0nRn+OOHBYQx3AwkyVr7IPKqoRN9QPCtMUJQEnpH8goE6WzrhH4dyFihMHh0CjGUok+HOIZtyRTQjxNBVZbS7C8yKU6GTifIz7RCufixPrzIIqL3si5oJf8dAg0H3XuMYtRNXU4V4ujjIXU0Ve+k4zN27xT4OBYfhCB5DpMJscjQvce0co4pxzEg1WjCyZSQG8yulWlsmsK6qSZMMlQreOoh4HIIvHSlhpiNUop+no/BeSDnuS8i7Vk2Ij67uR4nAHI9KoIS8+Qg0Ro6fNpDttVsns+YGUHwjsGCWqZ+lGoM2eqnQ4c1jhItUohhTHIp+XxTBzICRuQZ3Uw8IMGmrw8fq+N3mWFRQsgKDnxUKKfxXjGqqGN6Cf5lOEVUUmiNgWpeXtMwxRFSkErr6rGzm28c3cJKUZEN36/QMTUNjKKbDymrHMMGh9eSkrRdNdAQI6aWbqQrZYOlXRyzYIZDDTjuSZE6kemzSfcv5QOm9mgXCKVFx3T+DSFkaaKn0mZYHlPWhEHGpXwKax3Q40mSoTo3TklVkTwj1giq9gdDPn/cjigeGwk+blIInKwHIbeysfjBQyWvn0v+L2PAqpe6yCFhUvWkJJS53OtVqkFCFAhF7VCJqjV0yO3BY3wQWXlux255sHJOmEaK9lAoskNM2TeMXkhfwuHSMHkuvlF3agSdXQ6oaylio+UF1YJcG9kWmAmsJhr5npBHQh7xk0DYilQyGIh5IACqV8fgZCto8Krq2HeG2EljISrY7UtC0Pi5Rzcau9f05w4KR9wm4/bOiu81yv1WCnqpTXQr087eH+uwF8NYowYKUULsNyVmY8lXaoRaiAJEph1oSXvXKYjZl2kNGGyVnTzwMMWVtViu/RGBnpMIf5H2VCYSg9/DNIyelWHqK83jOIZV2738vy9EypbVMrmK8jbTe1JjTTE0lob3rAKpBonYJhCNSO1tE8eAbhXSNKnKUr0h17FM29LkfwzpTRItkIZcJt5mHQwx5Ee0c9ejTCQqaf6rF7N5rJHJ1ec4frQ3IsNRFKj5VMx23o8JkurqEuoG9b/+BpyfoU6X8v0hkF0fUF0ypJ0saC5Lyme1yGHSotNeTcYFo7nIOFxl0mHcNLQPpxCiSLN+jyPkmnzlePT/uMFdzNi+taBYOeE+G+ncNWcKvVA0Z7kYR1u4/Unwk8DZtxzm0NGcZfhMbqQiyZGU8r5U7B7JpCFOe/TWUn6cU9yKnnGY0Ewfd9SXGfsHCrtX2J2hvQgEDff/Z8kN2bxJkkoo2vNAnHjMjREPRiaPN/sk0M0U/aLAVeli/ZenrPUpT+4rmnuOy9fveO5P4GBpzzwxj+hZT/SKeLBkzzLyb+WEc8kUiUWEWc87y6d8sjqhuI0crqCattRXBW6maO6Lx8NVFvdKw3919iHvfnqJ7mU0TYT59y39Atp3aia/WfHg3x/YvlbSLmWBCRk0lxFzUJz+SkY/F5rY5DMhe7WnAEqCn1rINj3b1zIOVyLhIsL+gUobT+kWoRRNbzCtaE5BRubBMKba+0JR3gW0g/WbOaYTtK+rBLOqfUbmA9ldI0FBTSs3wc0WHj2guzclFKL9zL7zKcpo3Gv3iCojFCJnI3IMH1tvZCEpClTToWPEvXpOKIzQ3EIQj5TzYmAPHtVkYtj+MT5iXRMajyoKzL0L6W5qLXKTEGVt6J18JkVOmE3Q+xq8JyxFS29WB8lyOByOTYfZlJhZ7KqREKppgU5Nj/7ROd0yZ/LRBtU5soWYk4PVqEmOsprnPzOjmyvOv51hasmccBNDfa6x+5KCY8OhPrcMHP3mVOMeGi5/s8be1Tz/r06FwnITyA6Ry193rN+0bF/XnH8zktWB59+w2ANc/EYnctEl6Sb1gp+ijuON7/7/Jrkmn/4PGYe3I5PPtJhSFxIG1i9k4qF72L7liVmg/DQb/VLdMtKfBIrnMrkcwg6rW8kwAWjuhdSBFYpPcSvm8vn70q21bSDfeJQLfPx/yok2cv+XY5oUK6IyNHlB+UIep27FX2bqI9M/ajhcyRubfnqUp/YL6E4C7akUIdlW/kwfB8o7R/HxitX/eI+7r4eUeqzGZsX0ccf+fsH2kSbbCY6zupHivj21o4zGlccprfKQbSwhl66laSPFkx1+XuIqQ75qxyT1flGwfXtKsQmU1x3mZkvc7lHlBShF8WxPKDO60xJTZZgmlxBMpTCZEXnWvkblCTe/2cmEoyhk6le8MNkoU1Dn81vioUY9vCJMSlRVEIaNSwK6RPdjvFasd8QHc6kN6gZVFqg8p19KtgMU6NZL4yAdqveSFfXJM1lPF3NiVeBnBaoPqBBwUynkQnlCMEqSqFPDSvUOvMcAapazf5jjk3TQHgy2yci3+egnilq8nMEq8p0Ef4YyNQs6JRLGdA2v3tIc3uy5/PeW6ZPI/qGmnyUP5VDE9ox+KNOKfDJfR85+c8PqJ+fc/qQoC3Qv1Eh/1vOTb37Gb08f0L1f4GYRM+vxuwyCZvJYpKP7K6Fnmpc/YexBYX9lyuFB5Kf/6/f45q+9ycWvR67/Lx0/99pH/PLhK+Q3hvNfS/jcVwP2WlFdRwl0LqUeCZ3C3cm0pDmDeNZxfrrnuhUD+euv3PDp9Qn5N6XBme2EEBYKmL9n6ObAH9uidcBFxdnswKJo+Pb3XpEstFaakNVTkaP1c3n/MQvoTuPLyPNv5OKDTcGK2TNL/arnYCKz78t6W9zJdEP3EVeadN+WGmH1dUf52PLof6nZvl6ye1VT3XryVc/t146/42hkHTG9SGLrc5OkYdLEGO4duvfM32vHcysaIXKGXFPdSpOouSzJNmYEYujOoVZbCfPNxEcdB2myBl8K8S0URq6BRYHddui6FzmiUihzOdYWxwvj88u9f6Q3IqqaoHQuhdeQiQDH/yYNm5nP5e/1MFIa7gqiZyMEsr2YDOOsIpSJcLHtRSecadzE0E/NqMm22146f4WMVV1ljtMYpSAG7N6NZjRfGFylsI3cnYS4osabfsgg9AI1yFeKcDA0VwW6z+lmeuxeqIS+7U5kF57tpTi2D1vaRvBzIU9cfi9mNJ9ltEuFm0SyvTCypbMpkxWVOivdMtJdeDG0ByXJ6r0g9KIZQpAg20YOD8AtHcpJgnHzWgdOcf3uGUpJ5kYsPcpEQmtAR7KTFudL+oN8/rqXAMSscHzz7iFNnWNOFe685+3zW751PUEFi25k+oKCuLf8v5++RdxJNybbyQTIdJJFF3pNMNCe5lKszSDbpO5FOXzWSrTlZ57ixkqYpNUphTZ1nAoxB4fBw6wk2Eg7GckOk5ahe6yCTKsOF5p8F6muHc2pvM9sHzFdICrJfKnPhUahggRcqnmObqW7qUGme0bTn1S0pxl277F9gBiIceig9EJjGy72oTjIrCwoi5ngO3snnQ577OTFzIwm9dj18sf8GHc5QeQlVgowlJKE5BTIpKyRrnGRoewclEIfmpQsG9Cdk45nMqUCMq7OZO1QTScbuzwTCYY1qLKUpPs2BRrCeLMwdS8yPReYferxpSJf9SgvxCtbW+xBY7ogKcx9xCRfw+BD0j5NCSaWYKbjzSoYhU6+CNPGlBkkjyG+KugWso5NriP9RI9TgGBFRqh7ITf1U40vxDNiWkX1LIV9ZnIthUwCR00TwSkUYkwfNv2jlyxNH4bnry+E8qMOhmytR6/HMIkYrvVgZdAkaeWymYlK4TPRvHcL8YypTqf09Ui2S53nVCf2UynoohYSj3IweRaSvFVJYaHS0CnI82uXcJsLg3p0gmlh+rEUN8RhKipBbaaPTJ8EMZS2gmoHkcCoKE2jfqbpCjVOTGWzIHIQ08VxExLyFHYXI76SsLvqxmMPUjCExQQmZQrclWlQNPIzfiKI7wHrOUy4Y9vJe7NJv10UqMVMJicvTvB9EMkFCA1KJ6lH7wRzbYxcQ0WBzhW8kD/1Y3W4Dn23kayhPAedVBV3KfHaamkYtSnUzVrM3V4CI2OQ7x82biESKkvMNPm6Y8D8xszgJ1YmY94Ty4JYWOpX5kSrKG+cZAIlL9Sg+QdRX5g+km+83Dsm4r8M9THA1KaEdZ8Jeje7ttQXin4m55TyEMqIbhTZRkumWMJvh0yhO9nItFeT9BhygfhSEe81VFXPtz++j3kqa0O2UfhPK8qtoLJ9IdddPxd6Zn0oULcZxTrdc4xc72ESWHfluC74pxX/UT0ChD61+bIewTa2hnLlae6k4bh7TZp7xbXGTaPgv3vNzc0MvbGoAB+GS/ROPCkoqYuae1F8GUWALFJEOGxKzG3Gpyclz6YdqvS4U9Cdxe4VxV3y8VZpbUrE0WhkSmtamH2kx9yT7FbkUt1SaoJ8B32l8CfJ7+MGyqHCrqXZ2y0yWbs7mWC1C025isBxMuIT9l+lNUgm0SYFWkZRSBiFshJBYFcHlA9kPqJmOa7S6E4k3m5qYWqxe4NpDKbpCNMKd1rJ/alxYxiqyuR+oXshrEar0ZsEvgBQWhqoA7wh+a/VoUGHz7dQ/GhvROYTlC4kZGWzle5F9gL9pu3kA7k4I+4P8j3T6qjv1DJ6xnnsXY2fFXSzPKVkRqr37+TDBczFHChTsQD2WrTd3dUcV5ljoE0fGdJq7boW/fksx00N/URhOkNUwun3tVwcPk+p51p+bvaJdD22rx67ahI+FMd04fZETFezD0Wu8fB0zXu3JfZg6KcQFgBSBMiiIBsH01qyXvwTIV1I2okmsbmAq9dveX4zJ+wy/FmPdwr9JJPifimJw8UmEh60/LHXHvPN+BrYwP/4E9/h3737Fuf/ruTuJyG+VpPljhgV7eMJsQq8fu+Wj/QpbTcRxG0rJvcy73n/k0tibaivIhcP1vzpy2/z7vMLWjchv9EoJwtxfmt40twjP8gFWd7IFMkXsrGhlo7D7qGhvhJZ2PwjuVDbU/kw3QT6+z1vPHrO5tceUl07QOQX7ZmMP93USAFj45ga7eYBu9fk6zRGLYfiJULC+R5eieiPoPpkC8xBGYpVj249hJxuadi+JjjV8jakFHmLaVNirlKomAMT6quC+lwz7X73eFOvD8RPn6AXc6jSDkspOf+rEnc+E7rFnXTjdSpwUIpYGEibwVjXROeIxX9CcvDjdOQFqpqMfw2bLaGuMfcuZXMCgjKeFui7Hdyt5WtKSbJskb007YjTijAvRx05gJpMYFGJnHNSoluHBfq5bETsTgKo1P4Y8jT7jc9kklUKkCDmGVlmKK14S1QvkoqoDFSMGxDTOEwb2D8scKVl/kknRf69bOxgDzkXgyzUtGkjcK6ZPpOsm+aipJ9p2qVox9tzmYpm+0h7oukn8ljZRrH4qEH1gfqqoJ+JLFJ3km1garkJTp4FDpcaXq3xmxy7MmNxH1I2wO4RQCRfK6rnUKwCbirX09B5DRawcvPt52qk7+g+jiGEzaWYYlUrWvh8Fyhv1LihcaVMbUKSVKhePpP5+3vq+xU3P62POO8gTRvTiiyqn0I/1RwucqrbyOw3ejavZWKez9OU/MRQrjzTjxvxcTnxFZJZ+kUm6+pdS8gmhJOjLMQXknY8fSz5Mu1pPspyM6tRCeetu8Dko824qejuTfGVxu5TunMmZughUyZqyJ/thZQ3n4gMa78/IjaNQc2mhNO5GNo7NwZsqrqVDIA8h1ww7gTZnJBnxImBIkfPpkQLfD4Yzo/cEZsWt/4MPZnI2gpiVP/0qcjWJpVI1EBgH3lG/PSJrCXnZ0f6ng+S83BW0s0Ny/94TbhdoSYVukwKjqaVTJLlFLcoWb2VofvI/f/XLWFSoB9O6KeS9+NzPcr+dA/F071MXGJG9mKmSwTTiCfJZ4ryViZ167cDfu6ZfV8mlrH0qF3G5IkQ20wHuwcybaiu5XrZvJaQ8htpWLopvPXwOS5qnv1vr5JtZTJZPY+UtwJ6UBGu/5ihWwbU/QY6g99kzB5rqmeRwwNpcHb3e3Tpeb6djYqF2fsK93RG/7pDnXUsv7xjtZnAk4psHymftkymmgOa+//dYx7fLZh9c8b6yzB9dcv+szl2nZFtZZKhP9bjZGjIY+sfNTy8t+K/ufyAVT/h333wJeyznLPfgvoyp1vm5F/bUixqtvUC3RmpdzIBUOg+XY5KNlT9IpB9prn4zZa7t3N2j2D2sax3Nz/rcQctVLK5or6SNc+mzDKIlM9lfawvJK/MHiL7hyK5fvVf1+jWsX8k8JxhLQYIufx/uxCAiUBzwGQKEKl99mQliqDNjuxsSb/MJBm+8bSvlAkrrjG1oegc3eWU3cOc+SeKrHFy7ceIToGdqulQs1Iaazd3uNs7OeeNht1BkNdNm2oSQ1xvCe3uc113P9IbkbjawOxkDBnj7IQwLdGrnRjzZpPk5tdCHiolnl6FiE9yi99reKSi6N/itGL/pWWaSCj6RY6uLD6fyQTFHikF40YkFXxuUdLPLId7FttIoBjI4wQrhWu3kI6dm6YdcgOTZ3Kjub4nBcziwzA+ZnMi/P7quWxORMeseO979ymeSzE7+0R23N1MdJ0yaoXiNsmXzuOYWLz6ukMFhdnLjez5dy8on2qyHax/psXMvIQvWdi9KeNHc9CExvI7j+9B6lj8h4/fwO8t29cVykXixxWdls+x3Irp+/vqCkxEXXSoDwrylWL7bEKdB9TeolSkX3rW24p//uHP0X8wo7p9YSpB0mn+f8n7s1jb1uy+D/t9zWxXt7tz9uluV3VvtSySRZaaiDISW0SE2IhjBDaghwTMQ5AgCKIHSYAbIDD8YiGG/WAHiBjIgJQASeAgCWK9CImlwJZAUWSxEanqm1v3nntPu9vVzu5r8jC+OfctmRLLhlhylRdwUHXP2Xvttdeac3xj/Me/yeLE49w/EhShuJHtTbYx+Dyye1NoI9lOwg3hE3xaC/mzjI9fP6KeKdbvZBOPs0zhaP1cbmZzUNOwcfL74l2eHSLNKfQLoV+B5nCu0Q7Ov+ro55rnf+aE8jJS3niiUsRMYxsRvma7xCstFNXrAbt3+PruVnR1RnsqqE594aleHtCbRpAHa9G9J5YZ6slDQmbvth0uoBPHGcCvKlhVmOs9dr2X+yFG7K2EGFEWqKoUDrT2/8xzRP4oHyq3EshUV8RZheYY1c2Emtm0qNVy4r2SWdF3rBMyOp+BD7KKNhrOTvCrilBZuH+Mbnt48ZrY92IaMOaEeMmDyG5a4TB/kl+e9Gf+bCG6kFpoW9m6ZVhkHO4bsp3B3kot0FYOGBksvKT5LoWqpV2ckDJxshIXvt0TRXsvAJZ8E6leyUajWHtpVjJNd2RojzX9CkE3t2K/C7LJE+c6ja/g+Z8u5Z5I2qs6URb6pZDLlUdMOCoIr0tsq7CtmgYRGBtxqV2mFW/+bqUnYXtzP2I6CXWNRkCB5n7ELzzxI4vp1bS1/OTj9rOw7Q31i7TRKOSwry8kQNGVJMtduPzZOb4Sxz/TSV0IVn7/0ZlrbDqyg1AtD/cs2UGatvEhQ51lfz5n9sqRrQdiVuNznYSnTMGRth0DZ6MEzinoj0ddEtOGNFqNCn6yZo7GEGaSYQWyVTMHsZTW6z1qJrQLtROOt/Je8kXqHHwmNEQnLnEqzydhdFRgNkIxjGU+CU9F32BQ2wM4J+DdfCb6y/Gctf8o2ean56FXK+x8JeDm7VrS6I0mNK0MGScr6Abi9Y1kJRQZ+v6ZABRGM+aMYA0xt2S3HdktxCJHPbjHcL4UndCuE8eiIkfvWvJtw9EyE7ej+wvGYExgCtRVAyyeOUwXU0q7uCWNJiYgG9HmntCVTC8C8GAV1QuNv9GTprL6IBenLCKbtzX9KlK9lkHdlXIPZYekR4pw+xlNd+r54NffwHSKbBAtZ3uK0JW1hPsqL4h/caOJ63rSxWVboQUdHnvUcc+94x2DM2x3Fdmnd7Sfc2w/XmK3QjUOg6YbLN5pdK9oTxS3n61pziQr6NnVCqLi8o/J79hfzjAH0cAdPi3rnfLjfNKm+TLii0ieOJw7X7B1Bd4ZlBHQRXqKyPBiRg+Ul7KtHWrF4YHCvXdAfVRRXGuhr2fyng+LyPqdXEwCEnCph8j8+1Kf21PoTsRYo7jJKNayKRlrzuguGJP+I1+nrVWmCVnOMJN7M9vHiaYrYh4oNkEYKUc6MS+gObEpwuAB2S5Qf/s1ocjwuSbbOOympSwMwSqKyyaBKJ788sCqFY2pXxb092eoGMmumzv7+nbA+IjKMmEaOQdFQf/Ofcx+wLy8utOW5BmKHy389Cd6EAmHBsr5xG+PVY5bFOS3OyZrMo2IeDKJoyclKGN1Wiv98Cii0o03igJDKU4Vto3YRtLOQyZuKCO3Wi4OWdfpfrRYTHSuuaa5r6hfQf7xgJtZEYcl8bZYycmNMqJi9iCZAsHmqADFrZP1a6YJZxJkOH8q4Uau1JJt8dymkKJIdS2Hoj4vRJiW3DNmrz2371qa+3GiZi0eiVvS7rZGXWfUz3VCSQIbBVnu0A5cAfp+y9Bahlajes1wXUIRIEJ7UaG86EvsTpHfJsF6/ITI9SJjOPbU9/c4CqFTbKSgmi7ZdM49wyHj1f6I+lrQmO7ohxuPqOMkHPW5/C7ZTrYWuhdLYj8PZD+w5GtBUEchblAQi2QgcJCAp2GmmD1LPM5OEFRXyus3iXuuPCw/lALnS4M6MhNvMypx9Mg3MP/GFeufO2PzWYdpDbMX6drUCt0JHSe/8rTnNUMtvt72ckt8sJrSsX2h6Y405U0g23hZg2730gBooQbEwuBnd+4qgFg+tokaECJ+luEqw+z1hrjZQRpE4s36TkeSmhN+xBXqT+xDa2LXoMpi4sGqzBI2G2KImFmd9t0i+I1FJi5BbYrlDGFaO4dlRSgk9Z55DlbL17hPiP6VksR1B3pwoBVhXjJZgFpNKCzDUjaww0wLlWqn8aWADdGoZJOYLGhjQu47j88zhkTLUGHcpo7bBBGR90cBe36gezEXStKVxzSBfC1hrDGTjYebM9mA5rcp20grTCuJ7kJvUjTvyfWfXWTkt0LV2j+Wn6MHoT0NC0CB3Yo2a6JapdcOInjVnWxr3UwyjooraSL6B5GYAVdMCcV+4cmOWtz1TCgSdUqFHnUhCtz9Aaci1atC6rZV5EOguhjQPpPX4oSusn07bYwOYjmab2UDEq0kvwP0SgAI2wS6pWyZ68sgNDSEwtLPJQSyX4FtTTIEEErnUI+mInd2x2OukO6c0KmKO5BjbJjEylNh9vLLxUwTSsMws3IudF50B70j7g5opdBdKX/fDXJuGSP0rwhq1Do1jWw6zN0WiLYDa4mzT6D8Jrk8tR10HeFwkGyBxWwCw6ah5afxUeb40wXGe0LXSX21VkwuSFtRIA6yZYomWaXDHT2llbC5kBnsppVtU1UQqoz2fiG5MLuOWFp8Zsg2EjtQvprjq4xhkSUqjPQgUaV720WyG/mMo9XJ9ERetvLSmCot6eZ6GDeicv4WN+Jw157Kc1Wv73Qk3Wkgf7InXC9Ew5YLB1EAhEQfLBUsB1a/VZDvPbuHBlfL947NtKtVErlLMGC2i5Nl7eiWp457HpytOa0OXDc165sZ7zy64l958A/499tfxve10NW9YnCG4DQmiMteyBXDTJggblugK8fpWzdc38xQrwpMD0Q4Od+QmcDlzT0BQKKwGeLcUdqAC5r1ULEbCqJXYGTbM1I4ixsBRrI9kwvfsAw8Pl3z4mmFbYSZOFoIuwrae6JXjSZO1K3qtQCmh3P5NzNzQCbvZ6aSC6C8dyTTm2ClHolWRzLrhO2RrIsz+YaYmDH24PGVnBliUpDAoYXClYZ8q6meFsRM6P3KB1TTYddiOa+vNnJf55nQuPct4XiOm2fTQGtvOxRpEHGemCiJVKXoyZSiO83JM43e1cIaGk1f7I82YvxEDyL6zceE+QK93hPbDvX8gvwik8Iw2vGm1XPMLBwvASke7b0S3QeqdSlNR5EJytQ4bAqNO3zunKgV8+eObOuw6wbVOQiBqsoJZUZ7v8KXcsBlW0/+esdwb0YwmuqDW4plRT+f0y8Vz/90TXkdyXaRfBso1rLtGOaG3UNNsY4Um8DucU40OaffcIlaJZxicbWQEJ58FzBdZP9ANgZ2LzfM4YFimGWYPqM9IXGRBb1Yv2MnQVs0QjvarSts7lkcHdiuVxRXkcMDycFARbomQ1tp+LPc4W5zqhdW0JQI+zflAq1eiA3vcBJw73RkdU/33SV6gNnPXtM7i/9gASrS94bhnhc628MGvCb/WiWF7QjMdUZxrWgeew6fCtTvZykZXbjqdm/pTgJh5jEbSWjd/vGWatbzmdMr9kPOtitovneP8jZy+bNSZLKNDCQhj+weO8rjlvaqwmwNi6eigbn9XBTR2TbxQDWsP+sxrWb1A3kNvpBDWw+we0todGe/F6hfO7i+Rfsz9Gxg/8gQdcH8RUKgl1b0KQt95xuuFWjN7o0CnykWH4H2keoq4ArF7kmOL0+whxV2m0RoIRByy7DKydY95iANoho88cVrVJ5jOEW3Aza3uLMF8cGK/ZMK2wTmt1uhKl5do09PBO3sP6H2/Sl8xH5ALxcitH3+WvQ2IEFtI6e76TBNdzcsfMIdSDlPvF2j5nNUZsiSHeqIDqujFTHP8CczVOfRvSPUuWRBlLNJX2Bahx28OOBkBtPJxsMe5DW4uYR/Cv1PMzxcEoyeXFhMG7C7nu40pznTYvPYR4aFwWfQHd/l+Bx9S+E/mHP0Pdm6DUvLMDdsn8wmvQLIzxqpjypKUFp3EmUjsxdjhqjg9O8L0jXUEvYnVAJQTjP/WFz6DvelMe/PHflrS3EttNBo4PRrnm6p6X5hzeZyRvU6F8euTnjYkjeikw5ODmPTwuI7Fl/McXWUP0uPOWiyTTJqUFB/M58ySZQXNHeYKV59pZwapX4hqGx5yfR9wxLaM0V5Kc41609L5grItsSVJrmmJc1NOvj7ueHmixJidvJtub+jVmzeFlvR2QsRlebb5EhlYPdANqHDbC7o8D2dvuZuSBkWhqgtw1ulACHd+G8B04iwtHk8E40PELRG916G4qxA5yKsUS6ghoDeHYhNK4MFQN9jDy1kFv/4TFyzDvJvKs+nwZcYILOYszOpUdu9bAfmM+Lm5o/kHv1vxGNwqG99QCxy7ONHxP2B6JxYG2cWtW1RbScgpnOiFYGJugJAWRCrXIS9/SCb1fl9yX7IFURNKDOGo4LuyFJW55jG0Z8Igl892xJzy7AsqF/2zJ7JFgygeTyDAPltj/Zyj/RLg88s5W0ywcklA6i5ZynWoxWsAGz9QobffCdUHu0izWtDk9dk85TR5QAkWNk2yZobiI1l90RhhpRLlEsv4c4G6uOGw2vZSrSV1BM3T5lGiX0RrQxLr6+XPF+fQel58OCWbz8753/3D/5lsq3CeEV31mNsoLktYdDi1GXFlGwEY7ILMXy47AzZq4z5U9g/huEk8MWzlxTa87dOj4hrS3khugaXGQ7P5jR+wfXhHr4Ue/Id0PUS3Gr6Uf8hvYgEoirmHyo27z9E348cHgaKSwFyundaPDC0MvjbvWyJuuPxfZRHtlWErqRfRq6/oMTVz0sPYdrI/Jlj+4alOVcUa9me3r4rTBTlwCgBXEcDnJADQfR+ZogsP3C4WtOcGcrrwPxZpLiWs2z72WNMH6gu+uk6kkgAjXt8guo85vUNcTnDncywtw35zY6QnSaX1ih1oeuJRwvcUTWFs4bbNf7VBfNfa+H0mO7NY4qP1/D6SoyjYv8j3XY/0YMIRiZGQJCDQ0NULWpWJeRGyTZktNskCcqTdWUcKS3Jfm90uGCIkBl8KYditnOY1okLyaGV0DEl9p8jIqFHC1al7gJqkhVivgv4Qk90HN1LAdAukm2dbD0qCQ1SIU5pxbMXIrY/3DNoL4fSuGEYmwiXwnGznQwirhIIwg/ScEvDkcTmpaz/JltLJStQbyJaxQk9cSUMq0AcNHg1ISdKCX1stKKLWmhSKsg0HnIpPGU5cDbf81G2QEXF20fX3HQ1T3Xi3AaNqh2hVNTlQNfdXYZKj+49ELOAmQ1ANnEyRQAqG5bgJUMkKqjmHauqZZm1hKhoneUwcsOTtZ3YikozoytHVfR0ZU7oVQo/U/i58PFNcxd4BKSNlEo2vmoKVHPzRPXaBuxuEA62gXCw0/serEKlTBKfiz2gdlJgQq4JdfHD1okukm0c8cimoqPwwaB8LgLoQ383mPow5YwwOGLyuRebWXHw8bOcmLYtUSOr0yFD9VaajsHd0S5+Wh/OgS0heElJTpSL0T2LPglHux6sFXGvMagsUS19kPcWiJlBtYPUlfGezyyxzAiFwfgIraRmxzREwLg91dOAEq26s1YNgnxO1pmN3HQ+07Ip03ebhZjJWn203B0zfkYqk0l0rWIdYSOmG8oHhlnBUKkJudReUE/VgyrlefQg/18onUzoufYpYFRJozP9b/q3sZ6NtQEjA7qK6XlsnL7GaLnWtJNhZhKzf2I4GmuoZOskqkKRxOlOTXaeIZOfke2k4ZLvZbIodjMmg4/wSUMXKaWyVa2T0FMzifBNk0CL7G6zK+DNKCpJYv2gyDZuChr1yREHBKXWXUj6DTljRk3gaHEcnLzHMQ1LY10dtyWmj9OmS7skdjbpsy6yu6A8xLJTzr273zNmFjVYoR2GmAL7lFCHjJY6MQ7cn7SzztJ20Bi5L5wTTcQfZF/70/TwEiKqctF/0IhWJuaZ1Iqul1qpRXOnnL+z8vYpnHA0Bkh2/SDgZ8hkGyXnZrqHjZwBKhoREw9RwE5A+yyZVUgtj+rOvhutEoKu5J6uFGZIwvVCqD4hB3+Q1xFJZ6cH0jkvWUQS5Gn2yazFCDUSdYe+qyDPoTotWWD5uO2LhDKisoD+hE1rKAPKK7wXKlgoggwhUsbwvSG/NAwrhXkYCXtL/VpLzckjxga0CeASTauI4Mdt8Cf6Ea9QByPDg5KNT8wDZvwCf1cnlJPf2+yFfVHcChOifyJK8Ggj3oKPkXwtP7dfBbQTg4x8I5uK5gGEKsItE5gx/mxSnVB/wFGqezEJkvcP1BBRaXMSfugcSJ+LT6wPA1kbp633BGBGJiMD7cG2ToaUXJFvhZZnNp1k3GWlfIaD2DCHeTkZL4zW/+MjjoGog5Ytq0va0hQJEJVknDHWkxCJbiDcrjFVhQrLu6+NkfiJ0N5/0uMnehCJT59hjs4E3T0kG12lMOsdqi4J94/kBr6+JfY90Tn0aomua/JVJSukrr8LZkluQmbdoAZHvhE/a915fGHwDxZkz6Vw949X9CvL9pEl30Vmz3tcbeg+c0RxM2Baz/6zp+g+sPraNbPjmua8FD72UtGeGrSDWa7IDoHV9xvaewWHMyPBQhls38zoF4rDLzbwsuDom8licicWe/1cc3gi6GD9Mq3jlh60QXewfF+Gl5iE5m4uFADTCS0JpdjNNaGD2/2CfJ8OyjoSa0/xPMMexMovGEXfyQnrc9h/eqBYtbx7esttU7G9PJOkVKDvMq72dWruYT8U9P6HecUPz29ZFS3fe3mP4ZAR7gVx8si9+JQXCr03+KAYVpFegTtymK2hvNCUrxXqpcV0UnA3pzN2fs7rm3OhudWefCn817PfExHd9olh/wQef+EVH3/vPv3XKuI7DqpAdhCNR3ZtMY1kF7hKDo0Hv6awnWf3KMNVYvW7+Chy/K1GriHEZas7KXj9i0+wbeTxfybo92jH6gtJ1DYDzJ/7KeflcJ7j3yg4/uYO1Q0MJzV2P2BeXJOfH4k1Zys3c3eWoxyUqfnI171Yym73U/iQPlqhZhV+DB9qO+xGAjqzb0gCczxeEo/mxMygn13inr0grqo/6tv1n+nD324w1d0JoU+OiLNKKBZjYrUPxE4oKVEp9NFKaFz7ZqJ0xtWczafnVBcF2bpF75Ilci5b1WFuMbseLm/RxT1CbiheN1OzN5xU3HxuTrH12J2nX8mWbLweJNzOUVz5CSzZPxLTivqVI+SKm8/N5YDaC1I4aEWxCdg2YFudsgRSAGYfGBYZ/dLw4p8Tp5yjb93RMmw65PZPBLQ5+p7H3yiynaY9FeeX8kIO8+svjpsBJqRTBgjF9RcUetDMXkSyrWJIIWTtGbh5IFi4/rw43XVfP6Haq8nkIWSCIKLg8MSjekX9QnN4GCjf2nK4mGE3hvJSkd/cOQ8KRVNIA6KLge5Uhqwi2WnnmzQIaZg/lYP/8DCinSK/RQ70lPTcHcn35gfF/OMwhcKNQ9L+3BCVYfYqYJvA4n1DsZbPtTmz9KukhxkSz35QmEEGkWDFxjuuR643DAeNbSDfjcnXitnTPap3mDcW6C5QPt9K05oMVqLV1E/3QuWoM9Tg0e2AbnrRNNYlMbeEWY6fZfRvziiuB/JnuQAOMeLPj4hGYy82d7lD6REroS6G3AqQ8eoqmbqkfIDBwfEKrv4o7tJ/9o84DNjHD6aBLPYDoWkxn8yHMRpVp3rZdoTHZ/jSkjdCyaLIES1eSywL0YaclPhShMUqQr/KUD5SXQxkmx7lA+5xDoUiVjmEgL1taR/OaY8N5XWB6QL2IHWhX2V0K0N7KtlZro50J+LWNCwiykG+SVvWQk1NrUoDCKSBt5QQ0+qVYveWFzepG/tDNMpBCUMg2yr6VSSWQsUcTh2ff+8Z3352TvvdFXlauvlFnACMUAb0SU9wiug1wWnUwbL6HnTHhuerI9QgNr/Dg4Fi3lHYwDCMYhZPuehotgWxMdhksuLfafCdofgop18Fund6YpAf+lsv3qBtcpZfzwS09NJP+EqnTDcQx00IX12gC0l+P/nZC/7k+Qf8rf/7HydfR1a/dIFWkZcXK9rBQH83hLfvyi8bDxaVckaGY4+aOY7+XsHsVar3M8XmHdGalNdxAhxCJv3F9p1AfyTmFPktHH0nkDUB5WD+TLLE8o1sYbuFwbYQ05YUZDst9uR2Ymq0x5p+oTFdhe48s2etZJAUhsPDkm6pyfdyPtTPDqJ9LKQ+ZC/XHD5zSnNqOf7GlmzbTprTTz7UXjRUKs/Qs0o0lm2H/Xtfh+USdXIkIck/otP3T/QggklIRCa2gsrahAb7yXoTpcRVKEZiPyTUuMfsemkOlJLCmxnZevSOsChlKnQyCWoXCCptX/JMBt/E27StXBSjFeswU6hoJesjIYJjOFQ0yMHnwc8T97DWE7872JR02srmYZgJwuZ3FjuklVzSRoxhXLoRa9vuSJ7f7gzZWpEdBJGT1E3S4ax+yKJ24go7hep02i4k/vZBqFYhF+6iryJul0EW6c49pnYYE7jczWj7jGEZJocvv8nYrTN0FnFl5GI/oxukCUGDzTztYPGhlg1I7lMyfUSBIBOFoAgqaNlmGPne0V3AV4JIwig0jRCU0M4SEq0HGdzaEz05zwCCyIaE/nollNRCePUjyhHyu81TyGDQgtgAUyFztRGP7aQPGpFO5YRbTkIxJPBIjAPoobgepsM/HzclhUGn3JdoFHFRE8pMEtYbL8hYlzi3I89b3R1aDIOgRmUhaeDdIJu/spBGuw+ij9BKtnrWoIqc2Pdyv/yIXM6f5EdMVqSC8ia3oH6Q/5+QG2WtbDlgQjdVXYoLTpETrCY7hMTJ/0QT57w0hck1T81rhnmOmwvlk6DwVUbINPkuTNsw/Qm/96BIKKJC53oKtdSD1BLTBUAc/Ubh9bSVcIKcKytomvJy6AWrcLUWwXRKNo8GghZ0PyrStlWer0+0QeXuNhWuutuYSLApqHhHXYxathUg9A/0HXoplEpNyCLDPG1P07YxZGp6Tl9BSNQNlbYPKkDXyhpDNpkKbZEXopOTTy3Jz2Pg2jCT58s3pK3R3cZh3FTEDAJR7oUgwIz8Q0KKO6nrrpDtZ777REiYGeunZC5oJ8PBRL1LzmS+VPgOqTNpMBw1gCCvsbyRz2rSCxqFn2Vil5kOcBGdi+mBrzMByg691JYEjqvOyYZjROaj6FBUiNhMo9PGNNalNBVa3ITiGFL4SdQyDSE6JavHrgMtNVLpdO/8Yy1efgoe2kyNl/IBlZgPWHG71N0goIT3RKXF2lgn9oWVTbQEHAsdSHkHzotrYhRHq8mcYAyV9XfnEUromWpkWMSI7RKoMAS6RS7nfj9mSzBt/Ud2hhivCPNCzhPoV6PznGwtXaEmmtMYMhptBCvmN6M9vS8i/TJKTkpKCIe0vew1H69XhF2GHRKLIo9pYxOnrBK/zhjpkapyxNKze8MwzCN5NdC1BpSGVtNRMOQepSPZqgMV8V5Dr0WM7uX3LMuBNqp0xqcG38uNnhlPKAaxCC+YaoNNxjMx6TpG/fCoLb1ez/h68RBfwRAVh21NkTvmi5bDocAFi95Z6TH2GoK47OlB/jcag0uBhtEYtEsDUD6+f6lOjfNMet/HHqM/gmGhmX+cqKW1bKOyXcBnQrcrNqLfHbcoYhwSU427uy+l9mth+fgAQZ7LNrIVsY1YuouWLIqOMRksSB2L4p0e42TjGxcz0ZW0Xs5DpSb73phnk8OsfHHaivyImUM/0d2HXswlnE1r9JidkGfw8kJsxNrk/3/vBH27lSLhPRwa9PMLyRApckKdMywtdt2grzZsv/IEV2nmH7XoXkSAkihp8IsCKFAhku28IBzpvR5qRXuiaU9kxbr6gcMcHLGwDIuM5uTOdenwWG502yp6rzica4qbSHntyXcKVyhuPyNNwfKbEjo4zFOoTiVp66aH2TOxo918xpFfG+pnisXHnnzt2D3J6RdiHVfcRE6+3bN9I5/EUyGXRpygsAc9eYkXt2Baw/BzOxazlu2uYtjmlM8yuk+3/MI7T/nu1T32+5LuRUE0ULyxo+8tfp0z+9BSv4xc/CnRYdy8WKKcllqUe1azRiyC9xmLB1vKYmCzz8AmZLry9EeQ32pxycmkIDKoicvePHbM7u85mR0IUfH89RHRCZ9URZLNrjQV1z8vz7v4njhhNUM2DRuqU2Al20AKRAptKqF+Idug3RP5t+I6Tk48rtRs3srYviPhULOnRsKLboW3C+BLTbDQHqnJbi/fBPLvvYCqJMxLsguxt9t86ZRgFPOPGtmufOpIMh4KRbYZMM1AMYoUC5McNRS+mqH7isIH4SMvZzA49Osbwtkxw72aDFDWMJwvMZ0n/vY3UAnljF3ih89+ujciyhji0KNMKcNaIwLekLjzMqQZ1HIhQ51zk37Hny3vKCkuUH+4Qe9SzkieSWptCj/MM0PIDP7xMYdHJUOl0IOEke0e51TXnsXXLugfH9GeZhS30jAe7udCwUt/XAnzF57ieqBYSxNjDwN6EM2C8tLENqc2ofYJDEkDgu7DlPrbrkSoePwNqTnDQgSNrhYKkh5EWBkVbN6WulJcpwyhVtGeSzBp+dJid0y5GfnW0x7bFHKqUuNyJ8LM17B45hlqjavg5ovSmNTPpGPqF3dD0OGRePvbjZmErdlWE5qSmIJP24fif2vXAlqEahSHip5GeUV/6lGDorwUFxxBh6UB6Y9k2AlZRCN1RX7Hu+tENklg9x5XWrpjEa0Way8NQKZoV6LZs40MfMGKfke2zNJUHB6MdE8wjcc0nqEu0uYD7CEwf3+DW5Y057mYimSK7RtFEhcL3Wv31ozqsid7vsadVQxLS/Uq3rnYDAG1b/Bpe5rfduhmQK838rOvUoMwONzDI/rjnPJVI4DbqhYtyT5lcCkltEGr0U9f4Hf7NIgYdN7BfIYyBvUj0i1+Eh+qzMXhagxGzjMRpxcyxcbtljhlCRU/JNyPecaYVh1yg5vnFPsOtd6SpVqibrcCfuYZoS4JaeggRopbR8g1zYMiGRzIBiRf95h1QzSG3RcrlIfVBz1RW1ydhMyJzaA8FK9IdD15+Bz2TwK+Dhx9T3JCNm/LhD46c+k+QhFQWWD1/SC15USzexPU44b+ssDuNWPGmB4UxYVhuDimBFBw/t4l7yyv+fVvfxoCVI92NC/mLL8tbp3DLBKXPYujA2+9e4PVHq0iv+vegGtL9dwKqHoS8ccD/9zPfJsPtid88PEZ9sZS3Mi94+rIomrxXkTlplX4vUUNcr89Wm7IteN3365lgzsbUB9V1M9TL1FC84aTfmPQ2I0RkPbrMz76zozu3IGOFN+asz0J/MLPfZ/vcI/tOqe4lL6iuorTZokon/l+b+gOGc3nWuKsp90VxF6j95KBZPqYNhgJQNKQr1PfEeHwbs/bb1xw8bces3ga2L0pOhPbSvhpc19RXwRmP9hyeGOBL5Etq7kDpOCOdhesQuVGMsoGj+od1bZlPOmjMXTnNcpZisFLfMVxjt17iuvRqMGgbjbEeU3/5Ai76chereU6r0o4NHJOJoBeH61kQGk7QtMS+/8W5IjEpgVbCc9VKeF3OkF3lVL4WtBivevkDZ0ny16lBAFORUT1Tni+ZUZ8eEI/11Oi+j/6CIUhGI2b3elDQqnwKbyuuBW7R+3B7p2Ewxw6ypca3VficFBo6hdmogyYNlJdhmTvGNg/FEpWeSVbDdOJI4UvE++zCsS1oAPV5ZhFYdCDfM3hvqY9yiX0sBBni8NDuP6SRXfCN862wlnM3tvhvca/L2LQQyYopm3hsCm46S3mRUEWxNkrOs3H2yPaLiN4BakZ8OPa1aWwwBmoVtO9qilfG0Ie6e85lIL1vmK2aLGrA/dme/pg2GQzlIkY63Eux+7V5Hghoi6FboW76Qtx2zoMcw7Mp88m22tmH4tfd/fAoQcr1LJLMyE/xa3i+vfvUbSCTJSXogPK10I1KcoUkNjKwKh9pF8JwrD8IE6FWwWhd+heobOkBSmgR5FpsN3dJmQMNhtFqe3nH+NLjas1+UaccECQ05hp8KIRIVpUlMHDUUxpqXLRyfrd7h26c/RvnoCP5B9fy6ZktSCmRHbVdqimQ7s5UYF945EIz7peGnTvCaPb00/pQy9mqG07DRRquRAUJwTU4AgXVyLaT8BGtKKfUYNDt+m96YepqSPpS0JdChqa0Ci9a8UqOLfYg2wwQibbjdX7LdEo2reOMUOgft6ihyRm1jnaQf2qwxcSnmr3qdn0gqTtH8sRor1oGrzSkw3kMBdr32CEL364Z5IOBGwajF2p8KVY5sqwLcYXqhNapwhKIaZfV/eig6peSK2LmkmrEqyiPbYEy2SXG4yYZmgvGxNXw9UXjAACA+Q3MkCMdS/aiLkVakjU8j4J7euOS+3z9Bpbha/uzCZMo6hey6AfMmlyhjmUr+T3dnNBi10lA5Ftkp7EqCkMrF9JHcxvBcUMRTK0MLB7LJkhoYhTnY8jLz+564y27SGT7UnUMHvlU2CbHK39KpMQyz4IAp0aTBUiw0lFv7R0i3RNRsliMJ0YmIAMLL4wxCdH6f0RR5poNcMqEyryzZ22Y3zEPGk8RqcrazCHgTwiLnzOCw0rXf90PbHvUVWOUhkqz9F1hJGShWwLsUYcuH5KH7HI0etPZB+oxLjYNbLpLEuwTnqP9NCdm+z+5Tnk7zIfhIu/WkjNUAp//1hqTtKYmbXHHdf40k5ouSvlOotaU10riiFIfoNNRg4K+qWE4paXKm1X7qiF9WVgqDSHh2rabOoBOGiGCjmvFJO1/zCX+41Ow97I/VRrmnNB+s3Xa+JJYDjyCQiMdGXSPRwUvo74OvD6csnF9RJ9awlV4HjWoB9HNnUNgwCerHNu1zm3L5aYxcAXnrzAdYZ6q8i2pEFE3tdXzYLeG2zh8XVgGHTqgSIX10uUisQvHWSgChD2GcopCVvMPLOzAyEoht7iFp7mgZk2KtlRS/AG8yqbzHuGuQQwksm60edgd5p/8PffE0p82qYMC9lcKC/0LtHayGbD7sC9KmjrTBgeTmGSrsWVmvZU4WZSk4hSt2wrZhmonA/3D1j0AmoX10xUPt2TwmIV7YMZw1xyYoZKehHTx0TNhfLKYZoEwitFKCVAM9iS4nWDuVwTVnPIIL8VGrJblmKugGSoudpQPe0l5LTvUTvIn2upFYOToTrLQLXgPWq9u6s1VSkDfNOi4gA/gg/OT/QgEnYHYjG7sx70XpbGWks4WW3FMnV842b1H/g8qh0keOykZphbhtm48/4vTyI+0/hSki9HJxVXabojRXkdqK4cLonczaFH7zrU7oDaHShfgn98xnBUMo/i0rR7JFuS2cetoN25pjkTLua93x0tepXQAqySzUARJupCdSnJzK6yuCpN+2WiSeTinc2Djsdnt/yPn/wu/8nTX+TlD06pX1qUg/fOX9L6jG++P8fXkb721E8t2TaKI9XBMH8qA87+cQCnuLqd4wdN9BpqGS6C10Sn0U6S0U3tME8rsq1i9kIOev+OIwZodzmP3ljz2dVrfFTc9DUfZqcoHbE20A9a7HjHz8fLFtW08rn4ShqI4sqQbQElvO9sq1g+dXTHltnZgUM/JxpN/UJNtoTlVWT1/cDh3NAdQ/VKsgHy7cjTFj/uYh0IuWymhiMPCoq1bL/6hZ6E/abjTuiaMyXV+718ry+Yvra+cPhcs/50noZHqF5rsr0UAO1knWqcx2waoAJl8aX4xefrOwcK7WV1anYdqulZvydOPMffblB5hj9fpecUu76436O6Y2JhcA+PMdsOLm+ADK0UYfjR3C1+Uh+qrlBdSNQSCIsKtxRnPdM6+Pi51I/5PCXby8qa1KQp54m7vaTQO4c+PiLWGWEulqgGqSNqe4BSPLntIdGKrNAksu88Izy6x9XPLzn6Xkv20eWEjEYNuovk718Q65J8WYm41Qiv3GWa/UOD7iPVdZisHsdU9H4uq3c9RLqlpnkg4VnZLlJdybakW2mGOfRHgVhEYhaItzrlXSR6UCaNP0iCuwpQJj3A7s1E5XKjRk3yMZRPg4gVdx7lZYDZfBripw5035lRXENxLQdpd5pS4G2kuFLkGwldGykLrlbsV2K8EWuPfWnJdoohyjDh64C51aze9xN96uZnImHuOf1NoRbsUmp6qAPqxmD3ybs/BbOFDIajgGkMphcb4WEZ0L00Yt1KCYUrv6O8jMYTvlBTHoP2d47w2kP1UrSK63eWgLzn+Z5Eg0mhY8kCuD0VC+Z+qYTi20J50aKagfb0COUjxfXAsLQ0Zzn5JghNM0SC1fQL2fBm1kxiV0gUjSIXRLMfpCHRCrVrsLsGtntiEBosMUrOyP6A32wwJ0eozMj3p3sF54jDAFlGtGbaov40PmKREy4uU4p8nqicGnaSuUJdobr+hwYR1Q7iztkPU8+geofeDoRFha8r7KtbUIrufiVBlxd71KFDrQ/4h0u6E4tp42SG4kuh4phek23Fjjlkd9Sifi60zvrizh7eVTKIVK96OM/pjrTkfnXSyKrhE+ng3OkU2gcOc9SjX5ZkO2nAh7mieeiY/8By8k3Hiz9tYNXjt7IZMosBv8/QvcWvHPVxQ/eDhTjZIXKKs2rP28trlk9afufiCZc3C/RHJXYr5/DhkWF/nkNryHYC4mof2SYa1+Vhhg+KohzY1xbnFWHmQUfCZQHHPX/uS7/Ft7bnfOfyPnunicGQfVASCnj7j3/Afsj5+OIYvRgYyoBKZ+3Dox23+wpzVRFtAi1WHrvq8b0hOghlpLjU3PsHjsM9Q3NfmCR9De7EQVCUL61QUA8JbNkI/dQXhu40TFRUgrzX3WlkWAWyrYCjfhYwvaZ+Hcg3GvdCJ7BZUV3e5cPYDtS1uLMezrOp7vtc6FkmsTXswVO+fyG66E89wc1zXCU9RD/TFNed5OOs5qA15mpHLHKaNxcT43KYiSta/QNP3Ddy5rUdbLaQ5xICXuSgxfwpDo54cysRGWVJrAr8vMCuK5RrfvoHEX28gtWCmFCdWEgw08itzJ6vJ0F6XM3xyxJ96GWtPTj5nv1hEuJll4e09he/ertuiEXG/p0ldu/JdiJCVwF2jyVHZLaPyUo3+e8rKSSAICCriuZzJ4lvHSe6DggN4Pi7jmAV6/dqskPA7gPV6yhBfEuxZ/OF0C3k7zW+yDm85egeRpQTi7fDg0h8o+FnnzzjH/76uyw+SDZ+c4V74nl5s+B///qfR70uqK71ZC331W+/A4NmcSF3fzQaX8D+CejHDVXVM7yp2d9U1N/LaYpIXXdsXs3RjUHdb7HWo3WkrHrK+46rywXhokQb6M4C8z91BYMlPF0Si4CeOWZZj1We/8+3f4awt5BFolccbvMkco0s3xck8+rnIjGTjAW7FyH5/lHEHzmyKxmo3DwyLCLNQ00oHNxWgnRoOJxHTK8ormT4a08NpoHyQhoqVyn2DwRtae+FySK4uBanILMzoCOHeyoFN8lANHK7dS+FyHSy9cgOUdLUjzJcqahfDdjDgLk5MNxfcPuupboMzJ/dNf9qCGAU/TJDu4Be79F1DlhMI/xg4bAHGT7aQQ7E5O4ye9nL9siIo4VuJasgWi2ZGUqhDx0ckMH80OBv14JyZva/FBD30/aIB6FhqcwKCvziivwqOeH4QKxrKArJVGg74iGlpRsNpiIaI3zr4wyqnH5Z4ktDtunRzjGcVJgmw+7v0GLtRdSpnZgL+LfOiZlh8VHPMLf0X34srnl+TDcO+POj6ftdbSWzJkjjblr5uvJyoDvOcKWmvvAChiQdSHsq+qHqtUoaJdi8JYfe4qmn32u6Y4XdaOxeLCejSTkDWtGdpFRiB7sHivZ+kI2El22HSZfsOFwfziUpmeS61x0lnRUQdWTY5lSfWLbpQSiPwwz6Y8nxcZWmPfdgYPFdea35jSJbi1hfeNig1vI7ldcak/Ka2lNNcy4/22xMsreE7uGAajXZjYSz2gYGk/Qj67T9uTXkG3nuxYfgC8P+kbzX2kmmyvE3hfPenNrJ1bA9ke85+p7/Ia1OsHD584tpSxQ1NPc16iXktw5XWlypmH/siFaxfWLlZ3/sRWfoIu29EhVKZh/JdRStJlsPZOth0huayy3WB+xuhuoGAboWnwDZtNAuogbqXL7m8InhYTkXpLQSUbXqHNQl5vxMaEmdWFUDcP9MkP6UmqxcEqvf/FO4Kf8b+FD9gF4tk/VolAFsBCjGIMfMChBRFYQqR9/shM5Z5BPQ4VcVw3IlOi8XpTdRimFusI1sRGJdEI7n6CFQXg3o1qOiCMeHhYTaVpeObNvTnFe4WlB47QQkiEquu3GTUl3IPbF5pyRYmD1LPcSRgBKmERDBdJHZa0dzatk9VtQfW+JzS/teS38K5tu50A6dpH1ff94SdcRvcvR8gAjhsiDfCMjXNjntxmIGcZ/Kdgr9SvP13/gU7mzg8aNrrtczfGtYfVFQjZv3T0BF3n96n/xKMnia+yrpLAN4RWkdzy+PyL9VUQX5azcXgCF7c8/JYs/OF1w2c/a3lVC3o8I2itjBNz96QFENnB7tePVqhX2dob2AN+8sr3ELzW98ocLcWoorDTZS1R37lyuy/V0O0v6BoT1TtGdiqBOzwPzenq6zmA+EZdDej9TPxZAiWCPbpoVP9DeDiykXKkbMTlNdBAlffCQskn6uJyAGZEi8/qL0ZNlO0tjHQW2svZAYM0Mkv70rsv50gZrXNI9nuFIAbNsFlh+0Epz8C++SPV+jb4S+GYuc9sRIev11T37Ty2CtFNw7xp3O0J3DXO+S3iQI2K8UarGQ+SWlrxMCarPHrndQlejyDH7wh993P9GDiMozoVcMbvL0j1bDoFHOo3YHJvs8q/GllTc4pGYsxGTrKc2JPoi7QL4pCEZJscgt/UJQSTYiXAcRFordpRxOJtX5qFKTqhQhN/jScrhvplCrEbkynVjnFbcD/TJj+0QRlfyc7CDI2TBLyehlSgnfy3P4HJrPevK6p19mMhnPA/ePdvzpk+/ze9mnk9BbUMA+aHxryV5n2F0SkGqhJ9jLLKUcI/xmm1JAjzwn84aTuuFeueNr+gHhO/kk+la9oC0RMCagFMyKngezLVdXc2wj25sw9/wrb/w+3z3c5+9+74v4XKF1JERFFyzxJifba4ZTh+o1dqMJRRQLwCBam1AGSWR3sj2yh0jII9VxQ9vPUL0imkgsAvlRS3/IYWenNXYoAC30FlfJ71e9UmQ30J4IUjEshKrCUY/rDb7S6N6gvBIEU8v3hkxWqyNtbwxWM8kGMd8H7EE8/22uAUN206J3DWp3QK8q4Yi3kfyjG8LRjFBIWvpoARq1Sih8Gj56L4JnkPT0XSvD9X6POjmWLcp+EF5wkU+CVaJw2LFGAotGA4d+EJtakMPWh5/ukDK4g62ThWncbolaCwhhZIOqijzZfCMCfqWIUdDkyaK3yPHzAjfP8IXQepQL+FyjnJHn0hqMbOFMH6aQU7cQPni26WnPK9pjkwSLIhwkgK/EslO5IMnJpSCakqAu9cYcBsxMVOGmi9jGEY2Eo4nJgzjrhUwQtGEO4hLjU80SF5fiJk41RupXZEjBhCrIBjGsnFAwB0W2laGfMWBtkI2Bm8s2UjkZAsZBBEA1SXidBnflx2AuGSpCIVQtfdahdcB/NBfK6P5u0B9tMXUvf6orP5lADDPZbOiDaFuilhqma0fsE8VziIkWFdHptU80qVYOd7NB8ojeFiRUbWQAql/1dCeZNArJqSbkQsvMduGOi69kK9HcE+pXeS1/7T+xURn1ISrZv/pCXtukNQyR9kQQ5+ojGYTdUSU6xWYgZia9p51s5ZILVvSSqP5DtqE2WcVajXbmjjWQwsui1fJ8PkKWvt5qccrqnSCgWouN9Sg4jRLQSVH+174N/5v+UN5DXoDX4qiZLEqn+3qkn+QZschF3OucBLsVsh0F2WwPc7GBt60XsEcJlS+mjSM69SQhotqA7t2k2dFNTdQ1du9Qg7AehkrJJjyJzIUuqaacjmItQ/P2iQCN+VYMHkTcPmqaZBjJdi7ZBYsTk3KR/guBPHdon4uY2Sea90p+pm40apk0Ja2W3+0QyXMF6InGqBzYHrRTNCrjajFjOGTQa95YrplnHX/vakFsDOZG6NNEoXO7WZwSx7WKhEEL6yHds0KFhJPFnuOyYetK9n0GnUaNGtJ0b8dNTqegWm3By4ACcp9XZiDTntlJw76foV/fGdrYgzT/42AwzAVs8YtEzbCBKh8IQQCaOGpYo5L3OKY+z8oZLNbNUQw+YLLl1g5Mo5PhBZPxx1jvhuNAVBHl7RTeqkKqY4m2bnqhi5vOE60iGC1nSCnb1tEgQ+3B3jQM92r6lSX/KEj/UFWMYYoQRU+yEwc+MksoLd1phmktZTtAAvHltURiKQM2mRXDlnF70rTw4N4U0vyH3ndxsoj5yXlsNhtWqxW//OR/hT4+Rd9u8a8u0J95h+G4In92I2vSzE6r0tFRJNQFGIV5dQtaEY4XE5dOrw+oQ4t/eELUCvv8mnC0YPP5FdXFQP58TZiVhFLC5ADsTtaxIdeJSgHZWv7u+vOlZGsoKQrljac5EXve8lo4w/0iiVNrGLMhynHNlg7s/bnGNpHyNjIkSs/hgXCT65eySpW0dKEv9UfSvBeXIvwkCp2pPwlELcXK7GUSD6PLBZA/2fMvfurrvFFec2QO/Iff/hdY39awzWDueO+NV3zngwfU388nh4/9m55YebJ6IEZp3Pw2Qx80xZs7VrOGOhsIUbHvc3ZNQbsrUicAi2WD85rugwWmFWefMUX68EAoJIvvmrR2lKGhX4oOxC/Fzlf3inydaFuJCkWA/jgQMlh+Xz6XzecGdO2o5x3dt1Ys30/vfwH9sWguyktZdeoh0ckKWHwoN3t3pJOHv/wcn0vDYQ9xcjHzJdQXgcV3N+LdbzXdqRzc1fvXDPcXvPxTNfOPA6vv7tm+M6M9St7oQfj81YWj/r2PiKdHuKMKs27Txk8GaXWzIc4qwqImVFZSU8cBeEzY9gF70whal5rruNkCoBZzwtGc5uGM6qMt6tUVvlT8raf/B9brNcvl8sd2L/9RP8Za8WdO/mfYs/uw2eFfX6Bshsos+vTkDumc/NITD78upRnr+oT2jP/uJbTMGgE0QByJtDR3obSE0pC/3KI2IvhVRUH/zn1pAHXidftIv8qmGmG6SHnZEgrDUFvcTHjAxVoGiMOZJWsi9fNE47SKy58r6I4iq+/Ldd8eq6lWdEvJDBkR+uWHjqhVsndUDMvEcU6DjvKy0RNAQhKa3Qz6ZUx6KqFiZTvZAhc3jn4pKP+ING7f0IxOWGP+h9C2oLsnJ73dyvATcgkPNa36ITTQ7mH1A8/hvmb/WMLATDs65Ym/v0qNxTAT+lV2q7E7xfF3PUOlufzFSLbWzJ7FyQ59+aFQHTZvCVXr+DsdrjYMM0m2H2rF7R/rwCtOfjOTOuCkbmcbx+Fhcbft/kdOzfZUhqKQA0rQ6upCce93DvjaMswM/UK24eWtAAw+6UrGhOyoYPbKYQ8eu+unoUCyqeQ6VM4TZpUMuoOfaozqBlQnVKCYS9ib7hzmxTWxLgnLSrQh/UA4midXyJCua8RBMl33xCggHoj5SxCkkyInZhZ3fcnffv0f/1TViqmneOd/g9XFBGBO/6u1mN2stwJazOqks+tAJY1PAnzCImlRY5zo3iOt9vCwRPtIcTWQvdoQn70kfuFTtGclbibA2+wHCanODCG3hMJw85kCV4kRDQralQzetov4DKJRFBuPzxTXXzAysF8KQGq6SLeSzJHlU0e0yDauj+S7OF1/27cE0Dv+ZrIYHinqiOuWK2FYCggYZl6Aw60AkrqHYSV1onol4Ef25Rv22xL1usAcFKYX4wsUVB+bKTcL5NpvH3nUsufoaI/RkcEZzuZ7fvboGf+v3/gKx//QcPsnO87OtqzKls5ZrnY17SEn7DLOvmqYPxv48F8yqOOeMBiUjigbiLc5NtHG0DDcH2SLe7Bkt5ryQnqwkIvOQ+jeUmfytaJ55Fg+2rJ5ucBsDaGWe9gctOhJN4r6tdSK579kcCeO4qXg/G4mtai8hN2bEXfkmX1gsftkn57cCZt7iu4scvwNMce4+axoes9/c4+vLO1ZNl2Pd06tasqQMr0E3ppO8oZMK/W+Oy3Ido7841u5t0OUfjiz9PdmKBfIXm8lB6vO8aUVu/EXO3AedzYX185DL5ono9D7Lv3bAj149AcvUv0IoqMqC8LRnF4P/Oe//Zf/0FrxE70RgYRgWIM+Wk2I0fTwQZCIIhO7scGhYn5nm67T9Dgix8l2T/UOjJHmojDTGkzCzwTRGgXGIiCOGB8gWnwhaOjI2Yx2tNOTjADbSjPbL8cArSRyTU4x2LtDfAr0Gi3e0qc1iql1L4haMGrM1Zn+gBzYplPUzxPpMsjzkwfYSUiiNxCzAFlkXnVUZmDnS9auZrcviQcr4YFO0XkLvaCpIU+vJwJOMTSZPL/ToGQTkll5jy53Uph1emE6CxOwNC87Bm9oMmlKbMOEnoaZR88cwVZTqryrNO39tCWJwosHaXbECUvsh41DqpsODLOESmYRZeQ1+FIGi3HNOQri7SENdL24+pCLCFcFNSERehCUZNyKRCNoEwoJPIuI+La0xFzTHgtNorgQQZhy0ny4WZZCCQURUfGO+hKPl0SlMLsOvW8gBPyqEp55XxHLglBZKRpZQt1chBTSGf4RBC9qJQ2FVsLzzoy81jEQ9Kc9qMxaYpWj+wJdC41lDH4kKGKZhLufTJhXaRsyOPk6K+vnmL5OjcnqKlki5xmhFkc2NSR4bdy65JkcAAiqN/rAR8tkbgEQMjHDUJE7S15/t0kNBtzMTq9vHIxBvs62SZgaJYnXtJFYjfeIXA+mj2h/pykYN6FKq2nAHuZ3dUknyoUS0E/qVqZwlZnQSxmsxm2w/D4xWd0GK7+n7hXBRoZlvDOg6NSda5WSoSfkSYdhBSkNFihJmpiIn0sTEAotwMonXpcM4RG7v9sk+UIAAp8C2kImn4EvzRRSOn4fTpBRJawKXKkm5DikYeGTtJgp7FDLz5LNUgqW7CJ220nTX6etelRTeKnp4mQvTAISRsQzji5LPsg1Zu4+r1iYiRoRM9m6G6XQPoCXEF0NstnoOpQ1qCG/u6bT8DFtTEejCqXkmo7xzs57HL5DSDa1Wv7up/QRlZpAzE+6YIGcP2glrkDWoLxBeQtVKZuQ3WHaHqmkvQEEcS5k+2mbMLlk3f1M+Zqh0hgbQQuwJLlm6boYz/ZEt4w2udUmC2qx605si5apSTVtxHYB18tqcZjLMOxqMFrhxnI3nkNazCxI24cxpFQP8tHHRuEjhBSkPJrAgNybMYsEawg2UmaOvUp9ikshqo04b4UUljqFLnuINmBtYFl2xKh4vqlZlB2n2R7KgKss2kogaqY9h5jR7ArZniwG2jOL8hlx0VNWA22QYhQGPQ09MUvmE50AJp+sHRKULLUrZHdf60tQUdE0uWxeO/CzCEY2IWPd81kyGigi2Jg2PWlDO5C2nvIzXbKuGmuUSu+lGlItDcKCMW3ENAMxH921RvObkKy/dcpQUtPzjyCXcgG0QvdhOo9Uup9jlRMKy7Cw2IOH9RbtamJu5Xu1mu57sxcgTg2JJWDt1CtPbIGkmVJj5shI01I/Wq34yR5EjNjhubfus/nUI+bPOuxNI0UiBOLNGnVyRH++wK47zFrCotBahpNckpB172XaG6leTY/KLLvPnwpfeSO2eoc3lxQ3YgvcHxeyRWk9Zt+hL24x5yf0pxXbJ4WkFwfQCUEsbz3Fqz3ZrcXPMt7/VzPUqif7fkW+hvnzkA5tRXUlq/qbz4htb3EjNIvmVJNvBMUY5nKgmo50sEbimy3vPnrFt//+2yy+ZzB/5gofNPb9I5SXQJv+KBCywOJDEbJe/JInm/dkueNmU/N/+c0/Sf7akm8UtgRVRdSn9vSbgqv/7yPm6WBvHgbC3MmqstcUH9tpKHCfOfD5xy/59sv7bG5q6DWq0+S3mu7RwKfefs2b8xtWWcPvXT9m8Ibq8Y72owWz3480ZxKmZhYDq8WB6y9q1M5Sf2zYvzvwP/qF3+XvPPs0NxcLQaELKD6/psoH6mzgww/uMft+JuJv4Pi/+xIXNP3X7wEZ+7wkHg30jwbyr84pLyNjNZDU2Ch5H7dSTNafBSKc/r58juXzA4c3Z+wfGJozRbSKB39/wO7dnfPEUcHmzUJQjpNEDQmLKQU6ZLB7kjN/1rP8Xkd3T5rj4tWB4aTk4r9zxvE3D9iv/wB/OKCqis2fepyujyodEIH+SBDp1TcbzO2OeLtBrRZ075wRSgtHC0AORlVXUjQK4Y3XTx36akNoW+LipwPZ/Mc91EyQYn9vBWdL2X7uG/zrS1RmiZ99R75uyNHbPXG3l6KqNXG7kwbk5DgNBEXyT1f445kcDN99iprNCPcX2E2LvtnhHh7jHi0Z5uIpX1x1YveaCW1jyp0JYLfitrR7UlBsPMVF6s61IiTLZhA3lX6RTb9X9Toyey4bCuUh390JqutLh2kCVz9TMMygOU0NgRu3LwKEuCQvCBlsPx0Jq4Hz8zWvPjqmeCnR5cqpKcAQoLmnuf2MFic9A/UzLcLtmQxAegf7NwL2zT39q5psrTn+OgxzzfBn1uyvK6rv5uTrSLZPYay10LzcXOqbPUB5JdtPNw+Yw7htUcTSU9w70KxL9MZOr6M5E/pm/UxcsNpTMf7wdWA7CKjUHYkTXnuWSWLybaTYBthB+SxLmSd3Cc7rI8noKC8ippfAsDFDSmgR0hDYRpqHMbE+2wdiLrTL4iaifIbPFdn+jtIl4IY0CVGl9PVMy5ZKI83wSKMCoo+Ewsp1WBjczNKeWGyXY5qa+ntXcLtFp1C9GKPoIPcHcYqbVaIvY0hnXUd4dYG+d4o/W2Iu1sRDi5rXE81IdYM451ihF6nyExH1P22PzOI+fIZ9eI6/txRKbPp8yKMMIUWGX5TEbJHuZWmjZl/9AJKQP+SWOMslhRrojjPZdnz/dgqWjGVB/MKnhJo7REHkB0ny9suc7ZNC7Pxve4rbgGmTcUWZWBQzcXqafyQsimClib73D3raE8v63bR9jZpiIzlfr76iiVbu/e5YEPriWmP30N73xLmnfycQW0N2aZPGDbINZFs5J9Wg8LkhX2sWH0a6Y+iXoB601FVPv1kRNVy8XkJjMEjD7ksIZSBWnntfuKHOBmZZz7de3Mc9lyLkBkNhHLu+IHxc8/F1yf/pdgERdp/2xG3Gy/6Idz5zzWHIMS8LzDs7/ofvfo03v3xNrTv+2od/ipt9hckCISjioMXuu4hwryMvHN1ermGdewadY1qLbWQYmUBWBTEP9Cfi+Fd8fyaAcA6rL8vr//D9+zitkvW6uKkqH1BbS3mVgiXXTJkx+VqhB4uvIr6SYdG2UoOqy8j8uXy++3NDtk3i/U8vEg11DEyNLC4a9LbFH9cM84yhzjFdJFv36NahQsAtS6IR+3/tQqIVy8bDF2KMdDgzlGtF0XViv6sV+hYBJdKGVL1KPNMYYV5DLO42sYPEW4SmRc9q1PER8dAQr2/RgB4Rtj/k8ZM9iHQDqAzdDBQ3XkIKm56Rz61mNSiF3XagwR/P0NsWPXTyNT6ge485DOhtI0FGI5KMBM/F5KREiOgQ5UNuelSsCQYR/2iF8qsUOJUGkB7KJqTDRezw9L1atCqFwuw1PuQUNzL1+kJNqZu+kAu7OwEiFDcjYh9xlbjKDAv52hGxiAr8Oucb/SNmV4p8G7nZ1qAiKyWHY7aVlamygc2nRITKINuMquppekN2bdGp6RgDBGMElQW6U9FRhCqQHbXMyoFhsAyDofcFeBKMqHn/6jShMMgGxonQ3N1anr4+IUTFvWrH1b6m6zJcL9ae2zeNFNiZ8EO3+xI6eZ7uWGCh37p4k6bLUSZi95J/ss8X7CpPddRCEPoaUTiYzz48hajIe6GuZTvF4WFOfw9sJgJ20ybEycVJyC9C9rvLzdVK7ASPJA9A0mthclgzCu0EuelW4r5jeoSbGkihaGmNeogUtwFXGnxRC0oTwM9zEZc1qVGZ1ZjVkljmE+KhXZRsgkOPL0z6oOQ1xK6DvcVuOhErZwa9PQi1ayaDCP0g6OngkoWvlhyMn+ZHP6DXhwnFUakZUJkVwX5IaPLIjV/MCfNaiu0YVAaTfW+c14Ra8oSUC2Jzmrj3488wuw7lA/1yLkNHiCmgcKQWcYcmloLMa5fQaq3wlRXL1oObRImjNsK2MfGRSaieuDwNtfxbdekSss6dnskj14QZt60K00RslGsbBXancDHjwi5QrZmGEBQ0D2TDqlO2zzhETUGAg4hix98p22m6l7XkD0S4/GNBQtNuKvTOJsvMpCtJtWYMJIXk6lPLBtju7vz2s1vNsAJ76qHT5DeJn66EQiK2w/GHLdgTn1un+3HcSvhCvidqjRnuNs3jNscXJOqSoNDRp0R7I3UD5B4ft0xjnovtZNhw80zu8VJMVLQbHcMkINU0Abv3kzW3m0suzWQ0Mc9Rg5hV+Fl+1yAoSdeOWqUhVJoWUgBnnFWCyDsn+pDUQIfSoqyWaz2h/aoqBYSzI09GaoMK6Vp2STNirTB1fsSQsp/Eh+p69KwGracMsVF/SspqIrOESlonFeV+BuBoOVkhq15NG1UV7LR1k5BDLXWmyIUWlcLpBDVPz9l5ymuhMfXH8rlrL4wAnyP36oGUAxSloU1mCsCUzxMNdEuNCgHtoLyWn5VtZbsaqoirxempfG0IN4b+zAtdKMj9kG9l0OhOYVwhlJcy8A+1YqiTtuOmYLcR22flFPmzPGnIglC4mmR3rQ032xo/a3lYbygKx75IG2KnaV1G743UighDa2HQ4OHoyYZV1fK1iwc0hwJfB0Jv+fXX79Cc5rxRXjPLerrC0rU5NvPMV3sObUHfWWzmUSpSLVqx9b0sMb1YELs5RB0leDhA+cIQcuhPPL6Ik61w1HC4nnOtBRQZbYzHYMKQyQDjc4vWQg2V3KUEcHjJfVFeeruooT9SxI1sisfQanOQ379b6qmOmz45qc5zVGkn2qerwB8ERHWrgph6kTEYM2SaWJQTNdjVZtrM6yGiZrNEP4z41YxQWuxGtKi0nYD+81namgbZ1o33iI+Ye6eoLJMeOkRi3wugYQM/yuMnehCJhwOxXqKvNsy2jRQJ54TWUmbEukC1A+bZJf7JPdrzitnVlnh9KxH0IWA2HXp3IFxcoZcLWbNWwhHNv/eCuJxzePdYDuzDgN4cpND4FbHQdMcWFSzm6A6lNL2koVavOlxl2LyT0x5r2uNxPS48SuUNqx+I3e/hXARm2sWJS9w+HsApFh+aycnm8FByOtzci1tTm6hZEeqnlvnHhnzvhdLxcZlSh5PI83WkPVXo3PPH/+S3mNmO/99//vPEgya/74mtoX6uaM8i7VmcDuToDFk1kH225eFqw3vLCwCGYHh2WNF5y+E4o3eG3ll2r+b0zwvCkUdVjmrecXA1+Vpjek2/rfmgsbw+mnO4Fo9x3WliGWi/fCB4RRgMtIZhb7EbySGJbzawzXj9u+cMJw49cxTXggYtnmr6lWHzKYtWQkuzB4XdKE5/X1Jxt28pqovI2e/tufrSjI3P8aVsaWfP4x0FLz2GhWQNjBzO9lRJIFFWpM8Zqhvx/Y8GXGXJ1j3uVLN5W5OvI8XtGKgWKS/FLSk8EueU+umG2y8e0Z5q5s8llbs5z9FDpH41SAG5d0R/b4YvJdFbuYjdDth1g7peU4QzzJG8nmiNOEN5j/5YwdESf1zD0zV+vSF+5QtyCP3g1WTXqRcLVF3hry7+yO/Xf5aPuN8Tr3eQZWJykf5eVaU0WC5I0b1ZE0+OCEcz3CxL2q8Zpg0UH91C1xBubuF0yXBSkr/aS1OxmBHGwLrcyDbl1SXae9STz4o4W0sTaQ9e8oVaN4kCr3/+GLGIlpV7yAzNmQgOVx+IWYFtZbDol4rsKjJ73tEfiWg+GklL3j/QLJ8Gqm+8YHjjjPZ+IXTSKNlAAEMtw3CwUF/LwbZ7JMYMsy34XDNciq1lNAnosHD/cxfs2oLh9kjeuwHMILXHNrIZyPbSFPVLRfUyMn8qepTuBP76v/h/5MIt+d/+n/8nQh0pZTMRskhxpZN4M00IiJB9WETKS9k2HM7l7+vnisZrsrc8dmuYfxxpTxS+gua+DEuL9+/obiP9MtuDaaTpGgcNV8mGJJuJNixLwIKrJaW9P/NkN5p8LU2U8pH5M4ebaW7OzZSwnjXSkA4znQAQSTBuTzO6hWZYKObPPNnO42ZGTARqRRVBP+uTeUpAlStCkdwLK0NzZiluPeVFS7/K8ZVm9nQPQHNmyfaB+dODNBpaEcoclVv60xrTebJGmohoDWFW4Cs5p5QP2MudNMhHS3FwGofoGCXwU6XQ07Yj7PfoGOV8DD+9Vt9xs0PfOwOQsz71FJTSE4T1Bp1nDHOb7mNH3nmiUvQPl+jOk33wShqxtsN2p+jVjGBqMSOZFxilUOutPCdIOK1V04YNwGxaZq837D93j91jS7aTc6hLwaEA5XVg9nzgcJ4xzJWY3AySMaRCJL+NDAtFewYqKPJd5PjbTu69QqiJsXYMTuik9343YJvAxc9mAjQgbIzFx55n/7ymeHvL4brG3FqOvyVGF/tHiv4kEBaO2Xdy7AHWX+5Re8P931as39H0TzrURpgf0WiCiwzdjKt7ltm9j5kVPbvKS9bIoFg3JT4qQiUUTA5WUtWd4n/+3q/xxeIZ/4v/5H+JDhA/1eA3Oa8/OudvfXrGW6c3LPIWpSJXV3MW857/wRvf5KKfc9PXfOvyPl2X8d75Bc83S9xXZwwLsTCene95vFoD8Gy94uS/mDHMNBe/qPBLj3okPLYQFPl3K5SD/iRgDorqQt0NIZVHFR5Xy1qlOxYtb3nj6I40LkJxJYDG/OOew4OMi3egTDkxIVcTjS9kivZMTSY9+SZQXHXsn5S4UoADX8ggk+0FGDmc5/RzxdH7HaaTpsaXlvbUkh0CpgkMM4kXqK8kbDWcLqftRnde05wacS29cvj1BjOfEea1yBvanlDMiJlG34qttX/rXEC53qFiIHYdcbsl/LdiI2IMKs/FWnC3Qy0WxHmNansYtPC+jYYsQ29bqlHxn2eC+ChFWBqCnQt1Iwn1olLTKg3vsXtxaXGzDM4WwrdL6DmFSiinDARoJu9nV4nP8uyFl9VddsfzFb9p0lo/Yg9yiI/oVsgV62tLyCKH8zuawDCXwWLxvgguiYKElRdyAB4eKvZKNAmmGzcG4u9vhki+1jSvKn5t9x7oSN4BWnH59AjTCCWKqISatRN+5P2fu2Ged4SoaFzG714+5mo9ww+G1eqAC5rt5QyVBfJqwCx7XK2h18TWcGhmsgEqFfsngdmn17TXM5oXc6i8rLyTlajNPF2fQ6tRtUeZgFNSSONNMWUcACgd2X7as39DtDgjLz5Y4arqQfich/tC6RDdh+Lln5xPTmQEMAMU24DPFLsnooHJN5FsRwokYuJegiCoIZNG5hANKoj1nW1g5gK6jyw+kucLVowKzBDxlUHSVGX9uvnsSrj4EcrXHbr37N+oE3LrpTkG7H5IyFcQKsAqF0SsH6TJHILQN8oMM1pPjg5ZgFrM0dYSOo/SyD2SZ5g8k1Aia9Hz+qfWknN86OMjYgh3DlowBY1Fq1EdxP0BXdeooUR3Om0vgmxCk6WvPj6CzYGi6aVxM0Y2Skphm/KOj7sQm9Tiqpek5aQfiUYoODo3mJSdVmxSNlDadtlNy8wHQmHwhSHM7BR0ZltJ6N2lFG6Sdiok96tgwD84TrRTaUh8IRzmcSBRaTujApPF46idiFqa+GwtwnFXSfbG5c0Cd7CcvZLnGxZyQCovm41+KYLtmMmQIUJ0EhUM/h/XfwytIu25R3eSPK4HsI2WbU4ZGZKhhvIK1YvAdZhH3AzZxiTtXHGjaP7+GRmwfyiudzHxsnWfnO203POxk5rRL8Dksi0edR12LwOGTtuicbk4crej1tQvxdN/zA/ZPbYpB0i0KLaN7M9l2Khey0AmSe+pmUg5QyrKZ698JOsj9WuHGgKhzlDBTroByXURPWK2F4F9yJJuaJANnBo81ZVYvx8eV+LUd3CiERsiRRKmxjJPLmwjv1tht70MwWkrCBATehozi6oqYtsKFWs5k1oRQ0I6BzA/vRoRlWXE7V6yEvIs6XO0bJhiRO1FxG/3wqQw+37aELmTGcoH4rwGahQQqpyYGUwnAIMfNylJ0K53Pf6spF9oymuP7gNuVaCc6NlCNqZrpyHDiKlCeyrb/ZBrhpkYS9QXsk0d5looOYekt8rTRk8r9g/knM13keI6Yn67EOfIeWT72IjV7Ew+X3tQuJli86Yl2EB7yMlfWvKtiNpJtSRuFM5ZumOhadHJTXTzOS3Oma9LbCcZPv2pJ6ZzPcs931nf5+JqgX2d4U4dunLcXs4hKLnOBoVpRkG84j/+7i9xVDeiu9EQBo1d9phTTwiKH1yccLQQAxy2GWtqfmvxJi82S7abCm4lwPAbF2+inCJbASqSXxsOfs531skRrteEL9lkquFRrSYcSkIeGPU0poPF97UAz02gPdG4ErIrS1SWUehvG6mtu4cW00TqBoaloi0Vw6zAVcKKsY2EKBcvJCvo6gsZwQqAItsWRXts8EUpdbyL9LMxO0aA1Oa8ZPuGpl9Fik1GvjWyTU0UQZ+L/kj6lchQy38XF2ra+NndQJElqvqiRP/Me7JxtynQsB9kmxrTf4/ZOa1D32yIxmDOTlGLOUo5+P4fft/9ZA8iyTYsNpKJYBcLsS9d71B9lP8Pkox6aFEbSX9U1iafcCsTemkIucbuBlTzw+krygdM6/CVxVWGaAoZQODOSi9lhCgtdrZTYFChUU6ccHxpJY19FJT1YVrHayvNbrHx5NeCNoXSkG2suNasPiFsS+LG2QtxrRkWJoWORbqjtC2ZiViqfGESZxk+KYDKbzX6lU52eOlgv7CEPDIsAtlWnCCKdaQPik8vLznJ99wONd++vc/V7ZzwcU3WwO69QIwKe5nhZwGXBaqqp8oHLl6tUJ3GbGWN60sI93r+pbe+zv/t+o+TX2u6NxzKJA1FVBgTiF5S1NVqoCh7WiA0luxqFOkySjooHh4wRuz01ruS+MFMGgh757fdJo1GcSPUtN1DR3ZryDdJpDqA3QfiXNMfRVCKfCvoqe5lkBjXrq5SdAsJQPJVnNCp4lryTYq1NH/1q4HmLKNfKEEhujgJY/N9oJ9p2hMpDnqIZDey0VOP6zvzhNQk6EMv9JCuR81KDg9LVMgwu6RTcoK+khl0XQka0fVCvwJxf7JGxGYaYpXLf4+BZaTNwE/zIKJ04sf3xE9Y+UbvUV7WzAoIXYceBrFJTo5Fo9tQbFtBiKsC1jvi4YB6dC624V0vWS29FwMNpSYnLXvbEgtDe14nznYkakHTx4FTwA55WXrwqEOHPQhN7PDusazfC6kdI4+5WWiKm4jt7mxiTR+FznFSCv0oRPJ9xA9iB06yjjSdiNZdqcV5xd4Jy8f7Jl9H6gvH/twSrcJtM8zOUN4KojZSxJSD9kzokN2pF0pFFnGNxh40+a0MEF+9eJN53qOOevzBovcG28jg3y+F9qlWvdh7O01cZ+idhIiFLFK+MhPdJNtGVj/wrN+x7N4Igp4CxZWVpPeSiYqlU43zlVh4V5cCFgkVNm1fknPQGGarB6Gg5FFRXQVmzzua85x+JonTPk8OWcj72R0rmvMgeQ19EgoPEXOQ93oyZkviYtMH8ucbYplNwZrTpRoivtKoELE7L6JUI5sK5QEndr357UC/ytifW6oo26RoFGoAXl+K4crD+1JXDsP083UzyPZvuBvI1eDQg52svhkGMIZQ52itUf2MeGhEA/EJ4fxP3cMa4raV7eWoEdNK9HYBTJYC/VqHbuV9VI3oQvSilPu+yiXHpbirr3rwRK/oVzlEi6kLQY/bTizhS0V+26FcoL1fJZBSJ4oN4obU34Xs+joKndMknVeiEKsQJxMF20aGkTIo3i60J+n66wR8W3zkuPpSQX8U6U4F8POl2FPL5kQ2g5hI6AzFrWhLp/iCDowR05j23EEeUDsLOtK+0aN2luJahnKfgzrqmc/byWHzYjsn3uYUtwp3L1KUA/2rQujVxwMqahG790K53Lx/xG2xxKYzPnpNtWr43Nlr/sFHTxjWBWsFMSjMQeNVxkc3Rxwua7Ibi90J+GG6pHV9EDCtOGMpZwhbzWiW07zdy5s2KMzekO3EhXCkjGkH8xd31tv9Ugb9bHP3fkstIcUiKOoXkWLruTmxuBra05hsxJW8l12ketmgBk/zLyyl7n1drLhDsmL3paa8lushLgxmYArS7pZG4hdOPP3C3FH0Ut2JBrxRZFuPirBdZhOVdnSENM2AzeXaDWVGf16L5fOmF3G6uwMwCOFuEBkc4XYtzKJZjV/N8Gb4ZzeIPHv2jH/9X//X+Zt/829yOBx49913+Wt/7a/xla98Jf2+kX/73/63+at/9a9ye3vLL/3SL/FX/spf4b333vuv9oOcE8QnzMS1yjnUekdMqMUnvdPD6RJ3XJG93qG6AX8ynzixZteRbcWZCOeJu504gxyvRCyIIJW6C7LOrJDAup2j/KilP19w++mC+UtHcdGyeXfGUCnqS4/tBE0NVgOG/QNDv5TDavKtbiPljfzHsMymEMPqIhJuEtqfHqM7y/odBe/kVBdxOnCL60i2he2nFK6UBgsFu8cpTEdLo8BqIPuwIN8q8jW0p/DGn/6I91+cUXyronmnpzjdc/ViIVMxit+6epOPfv8hPGx55/yKH3xcYxpFVg4oFWlUhTlogivZHRmGmUHtDbpTuJUXnjma2Bn+i1fvojNPd19TL1vKfCA729ANln2To9eW6rVmX2YMOvDLn/0W37x5wP63HtCcK/rPNSivJAH1WYXzsD8bUDai32iJTsGgaZ4MNEFRvrIQYfu26GLKV5Z+FdifOmY/yDBNpDsyDLVwx30hBTvk8n67Worg7JVwZ30myKivRExrGhnaoobbT9vEq5VGr7wJuEox1JryVtag9UcNfpYzzG3KOIisv3gMQHXR43PN/kmJGQQFKy5adO9pH50IsqHEAam7PyPbDXJ95eLeRJHDrCKuanxI116RQZVNtAvVO9E53KxRq4U0zNsfP+/7x1YnQNyDOrF+UYs5cbsTAW5do6zB3O5ko/HOW7JZ2x0IZnaHAvkg26OkHxtTl+MY7JRnwsHPDTom1PogtsvhbAVaYw8ydJjOo/cdqunwJ3N8lZFtxF1pSBoBMoufizOaq7RYdKaNR3ktG9ZgFc2poj3RLJ55bBPINo5hbjncs/RLce5bfOTJDrB7nDaDzR2NYBRokoaPkNzbtBOL8P3jjHwdMW2k/kDMM64/J68lZBF/EBAlJNR19R1Dt4LmXVFbK8eULXL5e/e5VGA8kkQfhZPtqrQxcApelNJgVBIGCVAkPjpSQsTCe6W4/ZzGtELrCrkAK/Nnsq25+WLEHBTF9Qg2yOsUgMXjCz2FmPpCaKumTanrFnTahIqYXnJdDmea/ihx+XvItypZo0poogqyfQ5GEGrZiOiUQyDbkkwFXCkC4n55KkPKweOqVPMvJT9IXHAUuXOSfzQ32Majh0AsDBGTHPfiRMkhRnQzyP396DwZeRgZorsefbMjb4QOROJy471wuY1GayVsghAk9NAH9NPXMPT4pkVXpaCcNv7YQYsfV62Ihwb14By1OxBevEIfH6GqEnO1leDTpkHFiLmxuNMZw6MF9bdfizV6FEplLErMfsC+vMWfLvCf0PnU798Qy4z+rMYcHHbTUr9oqF5rzKYlFBnNqRV77IsDrjYwk82saT2lC5jWEnKh5QEiZE9bv6gV5bVP2jHRlCkPs9dy9mRNhiukoW3ODe2JJLRnO0X9XMDV7dtyvnUpCLF+GWmfBM4f3eIfaNbbiuJ3ZgQrdr5uFogzj60cSgeGQcxpsgtx0gx5JH7uwDv3r7hX7XBR83vPH9MdMrjNMa3YcJvSU2SOZhYwe031QZ4GrUj/bsODe2tudjVuMLjaEr2CXtO2GS/3yWzFBvqbElREP2qJraF7f4mqA8P9AV9YCSzeKfqjwB/749/hGxfnNN86kteZRWIllnn2MkuUKMWwjLQPnADPQTGsIv1JZPvlgeyjgoe/7pKBQCRLjoTDMk4atfJSsfgo0B4rmvs2BdRKaOrohhYKCZ8dZnMxwWgV2Vqz/FAywmSQtBJSXclGOTtE8m2g/u41/qimOy2Z/+2kGes72fwahWkGzNUWf7xIG7cgMRa9vWPwnC0YPnUiNM/RDdFHTJdy0V7eEouc8OBUrKWtxr95BjFidzKk6JNjGVK6HnPtifFHo3H+U/fsvLm54Zd+6ZfIsoy/+Tf/Jt/4xjf4D/6D/4Dj4+Ppa/69f+/f4z/6j/4jfvVXf5Xf+I3fYDab8Wf/7J+lbdt/wjP/AQ+d1klKocqCGMJdUBvI1iP9iZl484vIRhEKS8iMbDIGf4cQeU9sO+F45nfiG/FfFiGZCojYzwfU9oDu/ZR+rtshBUmRDk41bUHgTgDpavnjy4RmaqFIuJnBVZKSnO0jxSaIpWx/h/BPSeKrmJJV75oH295tZCBNwEmQ1i8Dce4o614aEZO2OREWWYvNPNGCrRz3FzuK04bipKHxGfs+F81IUFR2AJ0uXmcYBpvE9DLZE2SzMYWY1Y5Ye3wlSMLtvkJpUJXDmkBuPSfVgbroCd5Mzj5q0HinqcwgPxN5Pq0DcdCwt2R74UaqvSW2RuziohJvwzxA6eW5vHA3R7tANJCHCbVwpSC8488YqVc+TzkIORPFYrJTTGjDmPlienHDCskuFJhCLIWTnpCDpkd3Du3kBrabjn6m6BZqon/5XOEKjSt1stpN4USWydY1jPkhyRucGIlFRqzypG+QCTYWhlBmd8Jd7mhmY0bBj9uS88daJ0Caq09mAmjRcYxJ9LSdCNIr2TLhZGiY7E3H4NOUR0RmZegbQ1TzDIyZ3sf4CTvkqAXZVC6IgLAbpOFrOynohUn15BOfwWjNWpgf+twk2CsmtyUxuXC1IPimSW5MWjZ3wzyZWkBy67obNEIum1b57zjVlTHoFOQeGGZxcvfKdkJ1GlZxCh4LmWwHQyYHZbYVioFKQ0M0MIra87Uiv1Wi3WpUCl1NyKpLou9WKFhqkINWBQFt7Bi4asbXH/HHjpAlYW4rNDLbBLHHLoLkHeSpNvZMAlzdx+n9cKXQulx5l+UxWhBDGs4yhZtZyXvR6Z4/ROxe9DPBiE1qvhYKpgoCSkitF4ejcfM81o7R/tcXShxsEiUuJmE5qZGEu9ckH0qcAKzxczV9FItOHyWgEAhVRix/GGdUzk9aFEKyCB4tqr1cl+O/TflbhwOhaYl9D0onKuc/YpP/R/z4sdeKcRPiP1Ez2i7pZtJ97T3RaFytZVuVTCtU2kIr74lNe2erO9FXOgkozJP1KbLxNttWehkj5g1C0xRNoHZR+gitUIPkRNxZ9EqeSL6VATjkImpXLkxUviwZn4RMYw8B24r2wNXgTpwM3t3doG7aRIFM95rpEYt+r3ljecP94+0Uohg1xDxi0hAyuUDo8XyRvzpaHvjFk6e8N3vNg3KD94rYGWzSNfg6goq4oKfvzTeJamqhnnd8enXJvOrIcocyQaz4s0AMmnWTho/CoxuNbgx5Ia6e9qDAKZQW+mawKQuljLxR3TAreqlVidKdzQbsbEibI3XXU42U0UGl8zdyfn+dxOxaeopkRaxTrljM5DlRQo33paTdy1b0E9vpTu7raIXm2q1EEyOZZgJeZTsn1sKplwhWTUGtqh+mYbd4uaP44FK27VHCDnUzEHd79KHDHIapVmQH6V2i1cTk+hWShGCsO6PBCoMDLRrIMU7BV0ZAUBfS9aunax3nf2jr+k96/FMPNPw3/o1/g1/7tV/j7/7dv/sH/nuMkUePHvEX/+Jf5C/9pb8EwHq95vz8nL/+1/86f+7P/bk/9GdM4UNv/a9RL27Qy7lYE253wo0/P7sLM+wH1HZPPFnhjiqyl2voesLxUg709U7oXXU5vkBJrrWG7s1jQZxuGkKV4epMUrK7gTATZEkfetyypD0vKF912Mst7VvHuLnkRah4F3ZHWq8Fo2iPBJ0sbwL9QrN9W5AL5aB+KVqR6mIgWMX+YU5zX7F78+4EynYSBFZexmmYCEaevzsBV8epAcjWYmXZLwOhDqjSExuD6jXFtdCwyuvI+j14+xc/5vsf30Pd5Lz5xReclnt+cHvC4+WGX3n49/hPr36e3/zoLbG/6wz5hcE2sllxtaSW3//yK/7VN36H/+TpL7I5lLxxfEvnLS9vlwyDIfQGZQNKxylbxHtNGDR0IprFS2EYwxdDGVm9seb21YL590aUFjaflkFhXIdqD2MyqaulmFYXUsx2bwbCzJOtOsLHNdUrLV+jhYcZjDQl2VZJ6vRSDoX8Vt7zw0NpMNASspbtUmMUYPmhx3TS4PhK0891Sk9NTjla0a40to3Mn3fcfqpk/Z4IBGcftzQPS3wmdA5Z+6bbMhUa7SPF853QfkAsJGvJpiBEOciUon0kFsHmIEiqoOyCwMy+vxF0NM8k68ZqKUguEK4v+VvPfvXHFlL246gT8IlAw6P/KdnpuWyCmgZOjiRX5PXNJCxVeS7OIGNJTEOev7iUf3vj4ZRIrQZxCxlOaqJVkkjbOczVdrIB98tChOuj/WdyPNK9n5yR9o9LfK6oL5LLlYJsN2CudoSjmbiizCUrxueaoVJ0x2pqTPuVbBXu/44nWMXFz2n0oKZkchQsUpDf9ecN+QbOf3PH9edn3PxM5Ox3YPG0o72X0x5prn9GDttsr8hvZNO3fyT3QXkpB2VzLlk9thHNmi+lqde94ug70K0Uu88OqCygTGD2uxXVReT2s0yW46ZR5Bu5d6OF8kIAgvW7TI5cphUL35C2Qa6SgWn5fQEO2vsQjGjmqlcC3GgnG5PtW+BrQWqXX8tZfOS5+YwhGrj/O1JXD2eGwyNF82TAri2mUVSv5N6TQ15e0+FcBLmrbynKm0h5I0Fh/dJMA6H6BP01KgiFEqrEKtklJztf24rYVLcOtW/p3jjm+nMFqw8HypcH+mNxtrG7gZhpuqOMbO/JNj3tWYkvFKvffAbDwPCpB0ST9AA3DXq9x58uCLnFHFIgYtIuofXkhpP94KXQDGczYlUQFjV6exBKcwrxjLcbAfFG+mYUZziVZQzd/scaaPjj7Cn+zOf/Etm2Fwe8Mk+AhCe8eCXvxXtvyTe4gF8U+NpSfHgN271QvscBbhhku/LoHHcyIyaOvjm4KfHerlvU7ZZwuiTUOSETO+bbT2cUtxJ4G60MOvvHBT5XzJ73uJnh9t0xrwGOv+soXzVc/vwcXyhmL+WMCJmaxMnP/nsZw72Bk69m6F6olNHI+WVSfsaYup5vI65QNPeThqsVyhDA1S/Kc5/+tmhNfK7YvxkZznvMpQQdu2WAueOdJxd88PJUhN1f2vCVx0/55eNvcO3n/Id/97+P2RqyvaJ9PPDojSuePz3FbOQetXvFyTci2zc17he2ZJnH6oCPirbN0N+e0x8FvvKL3+Xrrx7Q/WDB6rPXvLW64Vv/2XuYFg4/1xB6SW/PtmJRPCxiAhWlZsWFw1xb6ueSTzYceX7u8x8yzzp+7R++h9kZ8lvNmGZfXomWlyh605ufl8GnfC1bUXuIyVREzHFGMGTMS+qPpF6efE3+e3yPi1sxDbGHwO6hbD2GpXy+2V4Anuo6bWWX0p9oJ1RS00fqSzFMiFrcOQlw+55YRj/4O9fEzNDdr7HbQdw259K/2m89RVUVhy8+FDfOVoxRCMkZK13P2qVAw+QOOj2UEhrzzUb0Y12HOl4lnRQ43/G3v/nv/6G14p/6RuRv/I2/wVe+8hX+tX/tX+P+/ft8+ctf5q/+1b86/fsPfvADXr58yS//8i9Pf7darfgTf+JP8Ou//ut/4HN2Xcdms/mhP0CiS9ipYUDdoQxToFyRSwpyLhZ6Y36ISoEro3A1GuGBhlmBP5oTVrU0tAp8nePqTNakdnQqSGjlGDjkIRSGsKoxXSBLuQA+1yIkTVPm6Duf7+WCVuNsEWQI0UNCImtNcz+nPc0m3rZt1PRH9ypZvY3BX6TmRqz03Mrj5h5XyQ2nHBRXGntrYGcxOxkgfBUni0o9wPWhInYG5WHXFVw2c25vZ7zezzHpxYagMHlAVU7Q//THzWA49mTGczks8EETgubFZsmr9YJ2W+D3GbE12MyznDeEqHCDkSEEoPDE0hOrgJo51MxJQ1F5TmYHGaKUUDOa+yoFDUJ7P9CdBtlepMZlWET6M09zX9x5TKvQe8OwLbCHFKSW6CEhnbejGNZX4+c10lDA9He0DNHaSNHO9jIwibBN7BTLG39nYJCGCUiD4lEm1p/JQhUQlKuPk8B9/EwlpE7W6oyuNj7IzT+M9tBazBfaXtCwlE2g0jWhh5CCtKTAqNGq1gXZzvwzsO79o6gT8E+oFdrcbTaUFnS4F+MKleeTXib2vTQRwyA8eefQRYEq8jtr3k8+4icseQc/CVclFdlMAacwIpxhQitBBmftkICqzmPaZFJgTXLTkbRlnRqBcfMp9rFy7apwF8qX7e4QPLsnaUhEKCvCdvCVFYAiJQ27Wn73sRbp9L1ZOlTHQLNsL1sAu78ToY81ckRBfSHXtToY4sEQGvlZozWv6UgC73HtL/dS1ElzkWYs7ZjC20ImOQTu2NEf+2l4keZfJRG4bB/aExHNm06eqFx2DHPoZ/K7RgXNqaU9Mik0Mf3OvdDUzBDTdubu/VIe1DBmfCQ9SdocjanGE4WhE/pUMHf38WiXPF0yRk+0YBVkoyEUCp0ySMbQO37IflnsxNUnzrhUozovG9Ol2NVrJ/c3MYpOxKY/2d3PHWlZyoc0cEUIftr+E4OYt5i7M1VZK5u/H/Pjx9pTxEhs26kRA6RPyKRORCO9hj60KJ+MCOpCogJGcbs1KGuFrpnZlGIfUb3UCDXI5jLaJIIH+XsX0H1iQDgkDiCTz2vczvdHQtWcwvfGe1ALTSfbx4TGK/q5op8nlNsCRmiQrrrb/qnI5B7nS6Eh7x9o2ntqoi26Sn5Wvo2ULy3FKytgQkL0lU8tWCabBpYDthy4OVSEXoxzmsua33j6Nv/w8AYftSfogzjh6U5ef27EaSoUsrXwBRzuaXwB3bpkd1uxXtfsdyWuzSTIVEVan2FMwM8DgzdcNnMJPS1EV4qTYcDncfo93Vy+PuYBc21F9J/JcIINPN8t+f76FEKiaucxOQiS7ms19XPZtcG0CjeX+pwdZIM8zJBCFoXWPdYo0aOqaZM9bWGjCNbz255sdCDcptqo7uqAbVK+WRcnbQoKXCFB2XrcqmvpNfVw19sOs7R9TwHHUSsxezJ6coDT7ZA0aBHVeXTrxOFxEFbRyM5QLsj5GYVaPm1WP9mPJ2H7j/L4p64Ref/99/krf+Wv8Bf+wl/g3/q3/i2++tWv8uf//J8nz3N+5Vd+hZcvXwJwfn7+Q993fn4+/ds/+vjLf/kv8+/8O//Of+nv46FBn9+Tw7/thGZhyuT77RkWNaqO6LkMEr7SoOZCi+kcqv9hj2O3KMRasRCkuH66J1SWw+MyJewqtCvJMk13lsthv+3EUatU9POcqHOOvr0ju+ppvnQitAZIF440KSpEZh+3YBS7xzKZ1i8lFdm2ke0TzeGR5GboAWYfi9//0TfvXmt3MnrgC8KYv0yc7Vyh39rzcw9e8Z2Le7SHnD7m1M81936nY/ck53BuJGArwtWXPcMR+Eo2OIffPsMsAr4OXH58xNWgqF4YLu4X/F+Xf4LXhwV57pHQEIjzjr7L2L8q4azjF9/+iJf7Jf/pD77EYVdII/I0w/Sw7JMt5jJy7+0df+LeB/y/v/FzxIOFPGBLx/Fqz6HL6dqMJ/duuFftWNiOLlgumjl5OdCc51Rvb3nz+IYP/vbb5K3iX/yzX2U7lPyd99/F7TL0zvD2zz7nF04+4uvrhzy9Ocb+vRW2VWKnGwFi4qHfJSTbvRSI3WmgfqnJbyPNA/kM5x+mYSKH+rWnetnK8JlrmlMrNp1zxfIjx+I3ntJ+4TG7Rzm2SzSu5Pe+edMSMshvFLaT91GyBGCYGWJa/xcbT7b35B/fovqB5r37qAj5hdh3qm6ALKHu+4bYduSVeIgDKKMAQ/lihzp0d3SstpehpOsJ2x3+cIAHJ3/wDf1H9PijqBPwj68VWEu4ukYV0jTEmzXROeJbj8Fq9JUVSuZ2d/c9eQZZDo/PpQAXmRTp7o7iYvZSQs31RgZEEH3HLMMXWjIClEKHgNmLGJXBSdp1ZiiuhSqav9re5TPkGWFeMixzXK0pX3cYpWjuidapfuXZPTJ0Z3ESOUYN2S7w6O+09Ec5+4eW2UtHcdnKQJTML0IGl18qyXaRk294uiPN7Xs55VVIuQGK4kZx8q27lXp5KQDH4mlPtFoCuQppjPWgCENCtIKkMisPs2d6uo5R0B0pysvkULcO0lTNFflGDtXN21ocAdOAYRo1Ccx9Ab4KfP69Z4SoeH/9puhalGxvdCPoYWcj/YMB1RkW3zP0J/Clh8/5rcNbuLog20gjcPUlpowEX0WU08w/gtkrR7e8cxyMWoaJ2YtI/VJq7rBIIXEhJhdEuddmnQyS2gVUYWiP9SQiVl7hXcov0YrmvED5nCJZ6S6fDgSj6O6VlK9bVO/w82ICuaJWhMwwzDT9XBEWM1RmRY/US6Bu92BOc2pZfW+Pvt2na97gT+YCOqRGIuRaKIVp2FYgOTljw+AcBC2W1hYxZ+gHCUU8OcafzFHtJ+6RH8Pjx9lTqM0Of3WN0QZWsykXRJ8eS1By59HbPe7Dj9CLzzMsamCO6Wp05ye3Td0M6G2OW5UMC0v1dCuAT9tBWeDOVwwnFa6aUz3fY272aK2wecYqznGloT3LUk5YnAbb9dsG08PsZao1UTaC3UnB0bf3EAJuWXC4n9OcK1onjnC2ieiXOf0KRnFyTFsBX0ZiHsluRBvwxlee0TnLs+cnqL3BbjX5Wpy27v1usoPNk+40SrNuck+877HW8wuPP+bj3RGvfvMBOUKjPP1tQ3lT8f/8l79MNeuoX4pJhe4j7T1DM2ScnW3xJ4qbmzlhCcM7Pd2LGce/bRmWci77XH7f4SQQs8C3np+zWjR85ovv87sfvMHuwxXxgSQZ2ytLKCJh5RjywHCsqO4dmFdiLnC9nlF/t8bV0JwHwtJhKs/6d86wjSJLDqXiInZHmR61a6aHo+9IJML2047ytWh71u+KBlU7UANiq5ve8/JS+rXNp+W9z2/vtgH24LGvN5SLDD0YoXpb0QDaJmLbQP2yw+x7uvs1rtKgpB75XGH2kWxzx8s//k6PCpFQ5wzLXFgancG04sgXjKb73COxoP7eC6EeZ5awrAm5wazFpIW2g6rE3V9K/lGmybctat8QHhzLmdDlqE+AFKrtiesNsdv/IXd3+t1/pK/6r/AIIfCVr3yFf/ff/XcB+PKXv8zXvvY1fvVXf5Vf+ZVf+a/1nP/mv/lv8hf+wl+Y/nuz2fDGG2/IfyTnLHG72Il7TZSwJnMoBa08SNpkzExCexKf3hg4PWKMr7fbDj1k9Eux2QyllUbTCmeyWMcJsRQbNHDLUlDP9Iha4RY5OjPkO7ko9CAcXt2Lt3QotHCOM017NIrFpEltThJnOtEXQPIshkW64Tv5oxxkPZNLxuZtNXGsW6/pg6HdFbCzZBuhVrz6YwWmE673yLfObww+T1QuSI4+kn0RTSSaSHs/EGrPty/vCwCqIt7L73y22DPUmgvAWs+H6xN2jYQHKRPRtaN5oqZk9WEV4LTj0XzN3HbU847OBuazliJzzPOe69s58VVBf2LQKvLrH79NjIrVrKEue5o3wOjAy+2C7kQaqG+tz9n1Be5gwUbiac+Hr0/46PKIGDSuM2QnIq7N12pCer0qA3IAAQAASURBVPtVxC8C+aWZwptEC6QTpU5RXMn71Z6mrIFdTNeHYZjbKUxKEAopDMPb57SnGcMMim2iVyWrVeVlmPG5QneiNWrPhJqVHe6KHgr6pUU9WqH6gD24H0pkJqStiFbE46UgEF0/0cm11uhRB/WP0YDo5QK9XOB+zNkAfxR1Av4JtSJE9Gr5Q2Jz8gy1Ex90hkGccmazuyeLyXWsyGSYWB+IZUaY5+gd4mIWAlFr/P0j2VIdOuHnZ5r8pkMNAXdUEDNBkYhRXoNSsoXs/USdIZctLlo2Ib6UrIl4XqCCiKyFc62YvQoUazVpM6JWDDONq8pk4xuFv35eJc2CkgGgECF1TDROMboQO+CQJY1XhG4lAnHtUyKyFcE0yMbEKzFrCLloUswhpbZ7OaDztWQYDHMm61rlwSklduQ+WX9a6IOaXLPGQ96XcaKf+ZlsRL/14UOiU4zHnWnUlK/UL+Xn2OtMfk4JptH8ztM3iHuhJkLS0TVClSivxO2qj5pgxFDCpbRjNxMkM9vHKZ092zBtclSQj8x0kXznxVrzXoFpRRsnmjGpx66WgWSoZYOb7ZKVa6GTTmwQhDEIbzsmik5UUNw4oUu0A9k+J2qNOypRvqBfWbQzEqobIvXrQdDPeYVZ76WK+Ijy4uQ2zC39ylI8L4Wi2TRiVT+I6Qt1KVpJH+B4hXKeeLu5c5nrevT6gOt+NJTzn9bjx9pThIg5WonmFCR9PgUkA5IZBJh794g+Ul4Owp8PET148BHdDfh5QfvgTDZlbZDPbFHItioE4exrhcqF6hnmJe64kg1258mc2M/3R5Y2heOqIFuJqKA5ka1ito/0ya7XF7X0A4UmZFBeilNjyKC8EOryaGsNEKLUDzGSYQox/uDFKaEz5C8yTC/UwuY+NPcMq/cDZoi0x3qifutB0W1y1KDoNfyueiIsh1nSVEQ5O11lMLYTxyw9blsUoZQ+6epmTjhYVCH/3axLMJHtp8CtBsxiIAZFdBp1LaYei3lDiPDdq3soDWHmwAmVyi+SXudghHESFM22oO8yglciZD8VurXyCtUY/KDJWzXR6cf3yu4V+VZNejhfiiwi2FQbTlra+zN2rfQRhddSw9LvalqhbY3um6YRk5vqtZzLwxwODzJ8dSb9pBKdCMj3mf5O56NKi6s1Ptfk2/BDw+qwMJSXPWbf42c5IdN0xwUqwuzVgO4DwWrMrsf6KOcN4B+fidFCLgG6unPEKpdsrPJI3scYMa1Dbb1YWv//yfuTWNuyNL8P+61ud6e73WujfZEZmZVZVaksqihRRUqGDNuy7BrQEEDA0NgC6BE5ESDYnBQIeeKBpuLEgAFNDMiEJcigbFGWLIlklVhdVmUXGX3Ea29/ut2txoNvnX1fkiKZhKuCyuQGEvniNueeu+9ea33f//s3cwn+JMYMzMl7TOWdqcshQuCfdP2JNyKPHj3i29/+9k997Fvf+hb/8X/8HwPw8OFDAF6+fMmjR4+mr3n58iXf/e53/wdfsyxLyrL8R/7M5CyptKibNXGzEfvNocbMG0Ef19upOEurBam8E/GOyxK7FUcB049orYCVUK9qS6g0wUl6bXHrxR0gCIcyWhiO3E+N3QH6I4fpDMV1FiXf7qdCMD0+IlQGP9diBXssdIr5U0E52/vCi7ZtHqkVif5YtB12OdBfldi1Zv65bErlWsLIdv9Sh/+iYvkxxMGwHwu4dRS34hzTPkycfOecq+/d4/gHgkYmC/XLvAi+JpxubSN+XaBbEV8lFynvb/GjYf18gZ6PNPN+akTenN9QGs+y6Dnfzbg4X0gKalS4o466GTl7eMlNW3H19Ij6bM+vPHzO12fnzE3Hw+WGvrF88+gVMSk2vuTDjWP5uab9uiMmRfihKG7X30rcX275c48+4+8+e5fryznmQY9SiY9e3CMMBr2xpNOB+2drrv7wHvVLRXeaMBWMD0bCxqJHGQvbNuHveZanO3btCj1qinXKzV6mPxiYP8v8+z8jQtvyJutJZlZ8vR0snnqUj7i9CMxvv94wrLKt4otMvRlFWGj6gK81Y61xe48Kkd194cae/HiY7KGHlWVYiCWfGRNHf3QNwyh0w5hFz6VDWc1wf47ykeKTV8LtBjAGXd3lE/wPrp3jpfBFP/3yH/k1fxrXn8Y+Af+YvSIG4umRNA+tIDxKKdLFFcl7VF0J9WJRT9+itntSks1a+QhXN6jTY8b7M4o+oHqhW6VKs3uzwQyR6pWW3A+jKF/eyOTl198nlhp3yHJwd9uu7nOOiRFx+nBcZbFpYqwFAe+ONaZPnP7xXigXRwX1iw57sWF480gKzLkWbdJKYfeJ6iYKLeMM3F4oFPVlwDeacS5UDV9mK8sh0d7Tk4uWStCe6ikbxzdiV9utTNZDpCzUzTxrkyg2QheJTg7O2cvAurSMszTRrECoEcWTDfvrmvpTl22DE+NxJJmEuRQhZKhzEROAuadsBtzfXwj3+5FMc+2ebEMsAk8QrQhIY2J3CvX9Bj8XyojOuSVuo3CbxNHHI9vHLk8cRNtyaBrat0bM2jL7UrF/2/PGuxec//cPKG9VTr8GVKK8DVRfbtj80or2VOyKzSj78gFP2Lxp8GdIcxM0zXOZTg7HBToECdXd7Ei7PenhPUJVMs4MposU59uJ8lfcVoBlOC6IVgoVoW0Zlp8NlF9cMz5YkmqLudlK+NiY7aRHsXrf39fMFxW27UnrjZxLPpDmDf6owr3aoPqBcDpH9YH0mewLunAyLew6Urv/xy/uP+HrK60ptEKdHE9rNFWOVB2cMyPqeif6kUenqN5Tfn5Fqoo7qt0YUNdr4r3HXH+zYPm5p3rZ090vJ3ZEsQ7UH10KUFTJZIvCcPuurP3jP15DjFigOzuifSCZXmbI+o1asX1LUdyIfqBfafwcuhMzrTO7Syw/9zKpP1IsvpTp+s17TgLzEHYCZHqXl6YEoPioxu6FpRGNrPGr7waK047hfIZtMy06kKca4K4NdpubnZs5qUzEEw+DRrea9oEAC3U1kjIdLBox3aHKDcPziuZasX8/ohTYc4c/Cpz+yjnvrS55b3bB5+0xz/crPnv+Jskq3lld89HVGevnC8xqoDluaV/MBeQ5GQitEfeufCkv9ZodJG9seDSiWoNda/RWGhjT31Gpks335Fax/Cxw+56RyczKg034+4lyNvDW6Q0fdY6NKph/kfI+daBnghuhvowSaFhLPIAeEssvRoal4fY9cVPdvKWFHdMn2jPZa1afhKl+jIUmGTdNbpvnI2Y7YG539G+fsDkraT4f0S+vSA9PScuC7sRQXQeaDy4IJ3MByl/sUbsWdbwkLCu2786IVrLuVh+32OutTO3mlvbMYrtE86yTqf71mnj/mNgU+Z4iE9VDnVGKRlLpn93U4k+8Efnzf/7P8+Mf//inPvbBBx/wzjsi8nry5AkPHz7kb//tvz1tEuv1mt/+7d/mL//lv/xP9bPSKMiM2u7hVUvc7kQQulgI4rndk5wlnh1P36M3OykwVnPQGj1EaTreOMZd7lCb/U8VbrYNLL4IE6rcPaiFoxkkJFAe3CSakMwXPvxv90YlBUB26kpGE51Y8fnGkpSgciI60tMGEQs50GWhSyMRKi2HUwKSCNKHI8UW4VHGywKjYP9YYV8UfHnxEGWhvx+Y/doN7CrOf3RGfa0I7jCShf404Y8833rvGfux4Hpfs74psHtF6sRRqRtm+fdU6KPIk5MrXu3mtIPjD56/QQiaEDRaR2arjnE0hKAZdwXjvmBVd9TOU522OBv4YnPEHz59Az9IIKJSif/qo/c5Wu75Vx5+AlryO0LUDMEyeyqUittiwWenFbuh4PazFfUrQ/d+hzJQfb/GN4n09T3aRNb7ivJaUZ9HCVfUidga0tFI+bUN1x+eMP9MU31W0D911GtZ9GMjhdc4R/iqGlQweVKUi6YZkDQ6iB1fqGD+Qv4u40wmTKEQgVl5nQiFJq4Uto1iG/rAUt5GFl/0mJ2goac/6PKoO7tkdF6ohGhsJ2Pe7o0Fdudxz3JD0vewqElWixPGGOWQLBr8qSSfBieOLtpq9PmNrJujBap/bSFpJWjoV3h9lfsEADGgd63w85tKuO8gU5ED577rxVnkaEVaNKSFCNfNtewJataQjMa2QcT+OQtAd57qapgoMOrA6z5eoKoSd52de6yZxKz+uGZc2jue/5iylicj12eGch2ozyPjUrbpWIp4UPtEaCzpsQAmgi5milCmbESrJp3DMFeMMyXZJUomesKXFvtZnQt+46G+iBKYdpYdrfLBrMc8xauyNW0UlFWMMbK+zTPp5SB//SLCThKDx5VMdPrP55QbLQ29RTJKZorUJIaTgO405cUdrct9VJJUybBMpGNpUkC+LwVFjCm/TrYKRlBLM2Raylb4y26T95VaESrF+XcLWatVoj4XYGfMCesnv2flYK6gfGV4sbvP4oWaCkF5AwgQUS1RUe7dsNCMThGNxrWJ6nygWGnGraa8iRTbSH9aZGGoaLzGew3+nQWh0FTnPdpH3EbMJtq3FtmRMGax7IjJmSDltZvOGhUT/t5C+NybSDJajBFyCGfSiuZZR7F26P0oZ9/xkSCbZYEaPe58Kwim1thXIlZPxyv5XbUR6oU16JmDn41x8SdyfaU1xeChRvQzXZIgyBhJM9ln0+nR3RcfgmO1kiyig9vWco5uPatPPOVFj9n0pIcV0Spcm6es83pCowGIidmL8afyowDKmyDMhW0ULeSxrOHmeZoc3dAIZfOVfE177x+W/m4fG7TXLL4UMOL8u4pYJkIdsVuDaRXlpbAx9o/FVat5IXWIn4mDnR8MN99KEiqcRMvRPhYtE0lN61LlAZq+tZNzFHOPrUa0jnhvJNS0E0BQmchR1XJuRO9Wfl7im4R6dwe7gsvv3ePa3+P3gmJ40lE1AzzZYZPij58+pqoH3nrvnC++OKV/WkMpjhHmk0oAewexFk1I9cxh93nPsqDOM/vFkkEZRfNKpk7b7/QYF4lBMa5rQqGEHXI2sPwDOS/X3x7prys+ev4GqYiM9zzXJ3na3WvcWnP0gdhxb98wzJ5H5k891+87QiX6TbeB2dMcCLuQnLFiHQjOYcZE/Xwvgbhzx/6epV/pCYDxMyvOVY8yVQsYTyowZ3K2ZGesZBTdk1PZL7QizWswhrCsSEZTv+gnQMyeb2CzQx/NsFpR3eQJUaElVyjMCYuKUBrK52sxgJk34hgXhLasfIB5g27Mz7RX/Ik3In/1r/5VfuM3foN//9//9/lLf+kv8Tu/8zv8jb/xN/gbf+NvyEOqFH/lr/wV/vpf/+u8//77PHnyhL/21/4ajx8/5i/+xb/4T/fDgrjPMIyE62tpQoyRJsRZ2SScJc6LaWykr4MEM63m8n5CJFYW3xjstUaN4tmsDgnrY8SuO1JhiaVlmBvhNm+zrZ7KgsPujlPt545QiFDMjAnbFplvrDBDTsrN9ncu/5FCcZe+Owkos0i0vJbGwe4OgTY5SVjnjj0q3EZn16dIeaGxrWL3lgjK/823fsjffv4NNr8/l0mLzUVCCf7IUx13fH1xzotuyW4oUEl4kJPbVzoIK0GbyJvNDb23hKhZX8xkFAqwGFk1W9F4jJb2thDP7agpTWA1a+lHy3pf4Z83uLVi/0seayPhvOI6KXiICERjIkRNFyzlWsRb3ZUhacftrKa8MlQXifZdDURmzxPtPUW93NMOjrYtWOxFPCZuZArdatRJ4H/6xk/4m+vvMl7VVJeHwJ80hUOFUooTCUBLjEsjRRl3gvNQJMKYBX2ZuqIjBJeF5lr0Pm4vxUlyUsREl/CNoroBd7WXkXFKFE9vwFmGB3N5/voRomx2ZhT75nEmCIPzQegSmdedrEJvRHydjCbVBcNRMVFbYmlRIU6NO1pPAWmHK33FItSvdJ8AWf/DKKLz8uA4I+GmKYvtkh9lojprxH63LITmuRUEOBWOpPVEp0rOiGDPB0m1nmifslZC46QB3HRycFdu+nuH2tAvXws880mMKDYDSTuGuaa89hSXHTqUIlw3WRCYpLkNlZ5cTaIRylSxDtIszDO1akyEUy3OLf6uYTgU7oyZgZbkPZQ3AZRhb9Uk0NRjmn5GKMUS2O6loTnsEyrCwbpS5deLRiaqBy45VQAvFE2bpzQqivmFHhSpUKSZJwVx5BJgB9xG3tvt+xCbSFIJNcpUR3lQJq9fnSZ91N0InDvAqMu/e5GItaK9ly3Zs2GA7dNkwbn4UvQi2zc1bqtwWzVlAw2LQ/OY7XlLQ3UjOS7DXEtjeKBrjgHbJ0xOTTZtpD+24sa4lXwpXxt29y3jQuF2Fn3TY7pAaCz94uDMpamuBsxuRO96ARe6Ma9lRagdobKYdT/RhwChaxqNQmOv95h1zhXRCqqCyYr6MCksnDzbmx2kiKpeAyicFdG7+YcL3T/N6yvdK2LgYNVPzI1GCALUKE1sZC9VvQj98R7lBSA41AwUDj0Eqpctej9KYZYSKmVb+kyJSVZzsLdVgFuPk8bkcNnWy1mxFiva9sxIOO+NGCKEQk1i52IjIuP2VOfiWk170bACUBx/4AGLXyqSi1MTowco1lLPbL8e8BgxTjkks3tFHAz6TNgQ6sYRi4hejsTOwKCn6YHei97UtLnZKROuGlnMOvrREaOChScYg91bUNDYYRJuF2t5r6dHW561x8yeiUtUsQu8qEq6B4oHD27Y9wXrZwuK0vP+6pwvPrlHea1oHwgdrLiRs7w/zcL0mYfk7hzCspA8lglfJ/Byv2wn5jVlM1KXA4O39JW4G4a5Z7boaV4UqAjrb0hdUb/UtA+Bs575osPoyPX5grR3NOee7SPHcATLzxPVeQffdNnSW4ClYiuA+DjLU969p9gaqRc3HTQlqraMMwF/mpdSI4lZkbh0qpQylVZDKoVGlcTSXChkdnL5k7wrR8xyBbvpp3pAbXbEfSuBm85g91kPnMH0VDhiIQZMqpf1EVcz0U92OQbDj6SjBfEfNHf5R1x/4o3In/2zf5a/+Tf/Jv/ev/fv8Vu/9Vs8efKE/+A/+A/4t//tf3v6mn/33/132e12/Dv/zr/Dzc0Nf+Ev/AX+1t/6W1TVPx0qq89O8A9W2MJhYhBLzpysTkr4t85kw27HSSQaj5ek+8eEmRRe2ot2oxijIKZdh1l3qFDSn1aSWzE4+rOK9sxSbCLz50KtiVYxLLRQepp8wxM0z1pUP1Jsaoal4/obhUxNdonyNqFjoj3ThALqc3kwzAhxI1zF/kSsKv1MimS3Ed51fRlp7yuGNwcxJvCK4qXD7MUK88D7ti0on1h+qPDPKv6j/s+ht4Z5Pp9Cqdh+a2B+vEetK7rbkv/0v/+1vBtG0InhKLL4ODsxfGdNuyupf1QxeMPCdsxcT+sdqojgIvNVy1Hd8e7ykr//9G26lzOwIih78fwYUwbOjjfs9iX+qkIl0aWE64pegU6gnlb85x//Ok2bA5c+W/DjVzOq9+XeDseRuBpZzVt2usF2UH1REOrE7dcFca2BvreEjWNYwO5h/h0GmF0pur7mPzG/iv6ioryUkELtE7fvStLpuBLU1G1kEqUD7B9Ik1LciuuPHhLDkWL/WMbj1VWiOzZ3G0q2WY0O+qWmPxYKRbEV3cnseaC4kcZV7zt5Lk8WhFnBsLKYLiPrSYqj+kUnqJpSxMax/vU3cBtPeSHBiCRQzy+g7eCNBxAj1cv9ZL5gb1v09ZZkxM0lKoUOkdR2k0A6zv/R1Mc/jeur3CcA0Iq43oibzb64+7hSqLomzWr0Pucl2LttMSkFsxqUIhZWnIecwewGVD8S5xWxEK3QwS2kvOxwX14SzlbE2ma6pyLMShltv7qhVArT1iSrRCt2LEJyEPS72CX2Dxy7RwWujegxUdx6fK3pTg3FJub/lilLfS2HzfaRJRYy7RBLSOjuH3I/RIzanwhY0bxME6CyfySBH/5c4ysJ83SvErPngWEh6evj/C5ctX0Q2X9rxD0tKK+y5qSU5kTcezx2b4X2sBXkc/ZlSdIwHMskdv9mIpYRTKL+3FFdip0uCtr7aaJGhErSlZON4pZTRoKCcRD9Xsq5B2oP5RXSdLSKUIuduFidZ1cgpdi/IWt88Wku1JKAA+uVYf/wwGk+hJlBf5yBHyXUzPpSJpSHBg3IWq/E6qMWjGJ/v8j3SZ7V+kLyH1DZqcsoxpnFtoHqxZ7d/SXDEsa5QY8O5ROmDcy+FNcave2n59ifzIhOE0pNedWjP36KWcxJTYVa7+4AB2tJyxlq35EurlCnx6RZPRktJGdFjLreksaROIzoWSPPf9+TQhDNpcni9RhRwaKGr5aa9ZXuFVGMb6arcAJmlk60ULdtnpYMEwU2zWS6oTedGNIMozhnFY7+zSOGI0vzrEV3frJc1+2Inznaew63MwIYlFKUlpdMwGnMTZ/sL9LMap+oLgfGxjIuDEPO4gmlnE9uJxqG629YmheJ4x/1PP/zJd1Dz5dVSSzAnu3wLxtWPz6g6zLpHxeK6qTD3g/cPCjgecXsC7GnjdfFlC8yHEXc2uC+sDkcVYwzVBKTHRWFct470PMRf1Gz/kyYFclAOhmhjPQPPFolfvTqAWnh2ZcaoX3As0/PcFcGPSS2bymGpcZtFMVNydUXYtxSj4p2WPDf9F9D1Z79exHVGlKC7TdHGBV2bdA3lrg1/IX/1R/y3cXn/J//3r8htr5rnbV6ivHEE+eeZ48EMOK2pNMlykaYRW5zHbK7rXAnGrtPHP1RFn5bWHyi4eOa9S8VmOOebz55zifzU/Y/aOhOFf1JYP2OYZjP6Y/FhOPZv1pK0zaAWydmzyOhUPRnxWTh3721kvVeaQFWn4NrDyGmTHqb2ctI8/mG/sGMcZmNLPpA/UUrIFzb4x+f0N/LayIk3IXUBam+yxnT+fxTvUfnnCvlYwZBOtS+wwG2dvRvn9yB8bsR0w2SxWVq0WCnny1H5E+8EQH4zd/8TX7zN3/zH/l5pRS/9Vu/xW/91m/9//eDclJ00hpdVaIVOVjuhTh5Hh/sxiTwzUwFBQlSPCCYeWOeze5C4g4WqM7k/A8wQ8TuJcDmIMBUieygkv9dGkxKWSB1l65JItutCsoQXwOhg8uo3D7RH8nGIombAnekjJzI/YMUFXgt/tTjHRIp3f6dLbAewF5boVZYppwNV48cNy37XUlqNeUrS3SJWGpxmiiiuN4cdNM6W+IFxSe7U26HmiEYSTcFYtSEpIhJY20glQGdRWhclIRKMywMwWt0l+0vLag8TUk6Adl2MyH2c4NQw8Z5EmpVKdzRwVtJdZ0dmi5JOk0ukZIiRo3yOgeySZEkBYdQ3dpXNdU25wTk3++A/iakGTTD3Yh5etz83ZQqFDAskwhmR/napNQUWmjG9FPWnoosTs/PS7KK2BTiZuW9hN7pO3cNeVNCB4xWoworzjdGMzYK7c1dsFBI4D0pBHASuDfZxAaD6j2MI0rrHMiXXz4EtA/CQf+TjRP6ma6vbJ8AMBZ8lElSipIJoBSqzAGGWVSnjMmWpdxZLuciBPLfLib5+oNLFoLYHwTRAnqMYpOcuEOtM5qqjaDSdqMnm1+1Oqip8/6QJ2vJAO2dxgItGRqmV5kvnCepIWXWlyCkB8vYlBF+STgmf23+PTTZtloaj6TktQ/iSp3DtFQShHWaMihBTlOSNWrb1xLJC0EZQ2nEhGOjJnMN7cVYw9eJ0ERYeLk/8fDCspaTlc9PGpH8s5UXx7tUyX4QSpnIpLxWxcb47k+etKCdHN5DQBCPeNgr79b/WInAPRV3n0ffBZMerFKFJpUtUnMgrBlEoB6dxmRLbZPFowcjkynfiNzcavCNiNVVH6bXvrsP8accmNR2LxMJZ3NRYrKNqEYfuNgpTQG+U/Dga2G6YuGbP/b6x72fvi+FiFKSH6K0koJYiTvP4Wekn1GA+id5fVV7RQqRFCPqcI+UIh0CHF//tZWaMlYmW2+j5Xtff73Mu9ftiNr30LhpipmyE5awDkSbKPWCmm63DpE0KvojS3B5qtbFyQIYyCi3yu5J/JRttISVyiSeIoogWUHoHKYTaqaKeUKaXdr6vSOUiqLwdC79FEPjMKn0MyVZQJsczow801Ej53S4C9wLXc4GU/IaKUKIShqOMpCiou9y8a8TxbInRYW/ksUXSsVwlPBnIzpk4HWjpmR3gHFdgEsoF0mDlumTi6SkSU7oZLZXzGzPG+4674lq2tNe/5tho7A8Rj3tc0rlCXJSMGrGRWZBBNlDYyGW56ZPmJ3GV5bGDpTlSChlX9KjylPlvJfZvIdlsTzI9FYMBlTenyQ/6mAuRJK9RAx1DnWL+qmzJ2l55l5f48oH0naLHlYyra4taIVZd7LPlSY7hyaZoB5su6OcAbLZy+dTP6D6HAK5FL2a7V7bvIycazIh/9nqij+VRuQru9oe99k5lIXw3nct5no9FVXu83PS0YL920uK9Yi5VbyeAyAJ60Y8vsdA++SYUJ9itwEzRorLjlQa+pMS7SU0prgSB65hZTF9YvHxnjBzEwKWFFx8pxGnimvx4T/+YJBCIclhFfODBYJ4+1LR3lM0LxOLpyPdaUGoRXhperH19TV0Z1o2q89K3C5zGrs0hRi6jfzM4KTJ2b0lmgbbijCrfRgpbiR4J3hN5y3GBmJ0LD7LXE8Ut99QjPdGuntJCp7vL2GR4Fsb0nnDH//n36R95KEOmEuH8or+VcGz1Yztw5Jv33vJr7z3jGf9ER+tz3j5O28TSs1mWRP3FjdKMZJcRA9aKBVNgLOek5M1zz64x+JjIxqNuRej4KhkdHrr6F4W+JPAzaPA8g9KyqvEPo8Nu9FKYOKgRExb5gZOy3i6vFY8+LuK9kycPJKSgslXsribl5KSbPewfVManPJSGhOijG3LTWL3hoLHHdsTg2oNj/8/oEPi5j1LsREkeZxpokscfSRhdTdfLyb/ceU1ZnCcfi9ico6H9pHqXCxedTeifTE9T8kK//+QpGx6+ZqDH71qGlTTMKxEbK1HsRJ1t4MgoCDrpHDEyklzAqT1BtMPJPvVFxdf6XW0RN22pLYjbDaY42MJb8uOWfH5CxH3N00OJLSomx0qRIZHZ+Ja9eUNkHsSa0iFQ69bdIy4MYvOCyfNxOkRhITJgad+Zlm/U1BsHXOrsRdb1NNzdFmgq4JicSZBeM7QH1s2b2sWn0fqF14K3SQH39ho+iNxoOmPJIz04B2vx8Tq057+yMkkMDctqw/lcNs9huIWHv93nt1Dx/YNRXcqh7FvpABvT7VY+/4o5NG/CObFulwE5NFB81wz/++d0FMU3Bxr/DzRnckUtzt1lDeJ+78X2T40DCu4/k5AzTxnpxsAfNDcfnhM80wLL72O6D5TPOYe86xg+Ykc3NGC9kKDaosINhHPRsJYUFyr7JcP23djTqXOh7RLlDdCtTpkLbmdxtfihnWgZh2yhwgKt1E8/Ls7br7RcPk/76j/uOb0dyNuF1A+kaxinBvWbxuqq8T8WaA/sgwzRX/sUBGOPxjBQbe4O29sq6biMZRCs5m9UJTPoL70qGQor0bspsdcbUlVQf94id4P0HWoWEg0gbkDPIbjgvFffFfyS4aI20sGRnjznhS3L29Ew3B2wnh/ybB0VFqaG/Izq8pSpqXGQAwCYt47kYIkO2QlreTrQ5R18wt6pWGEGTIVKpw45hmD3klgbFzWU/6GZIJkKtfgifNK/t2VYLVYoPZBWA+bFlKiuye1RJlrFNMnyssBe9PBZ09RRhPff3uiGNrrFjcGnv6rZwynga/93zx2N+LnQo/xpcLts/FKKVSt7dtieLP8NIrW4c1CLGgVnP2B2MC2pwXjTLF/JNO+UCWa5xLSe+9vl4SypL2ncLXUDaL9kqBT0yXqF3euctEqaMD/0pZ7R1sGb2kHx25R4y4cR79XcPsv9Xzt7Rf8+IM3xAjHS5GLgzRooWPeiNj+3tuXzIueL8sj2mXBZlkwe2PDk5MrNm+VXO0awt87pj9O/KX/2X/Hf/bZL9P/4bE4CFoI98UB0rwqCLNI8c6W8cMF82fwn/0Xf5b/pPkXWX4klXt3Txqt6JLko3zqaF4K8Hv1nUQqIowas9EUt1JjhFlk994IJuFmA36wsHbYjRZ3rRuw+4KPTs/YbSuck+yP6lJJppPP7meZwpmfPBH6l5JBEl2OFIg5fX0QipWvFKHOTUpUDDP5m4dCAlqjO8LnxgcNsTD0p0vcpsaBOGb1kdsnFaGA1aciWxiXFtMLyJ7KAlVVAsBlzUhqStpHM+o+QNehW6l37UbOO52zRqYrItPW8Wdz4/z5bkRyeBAhCGLUD3dWg8ZAU5GUorzu5UYNo2QGAKpNUyNymH7oUQRYNtuX6cETde4+o3wNWsJh3FYOajXKKZZMPqijLM6kM2czJaHH7ALudmCcO1IWmB7s72yfKNaCXoxzI4E1bX69lHUHOegulKIXcVt5gPeP5NAtbsmBeIIgSJpnRvL6PInR4h4TKoVxgcIEwmhkojA7FBoyNYjXcqAmkxGWMnI0b3l5XUEy6EETD2fsAVUIiv2+5LP1MUMwWB0Zooi3kwa/c+jGY09b/F6S2VUr3xcUhFHz8mqJaWUSU15o4tqJBqNIxFkgmSBNw6BRe8ewEnG5iMMU24sZjDnkzCWCURMnVCn5XbpjSVQXxx9BaA6/67AAU6o7f3VzgEPukIikhbIxvCoxeawbnWz0xSahPAxLfWeTaJQAaL2gGv0xFBtJgh5OKpy9n+14kyAVpSHWlnFuCIV8nUoSeqi9FIymzZk0OQgrLWeTcFUPAXO1ywiqkXXRdfk5DxijUV3/U8OXn9Vm7+f1UqNwWZW16NlsCmZLh4/XtaCgWqGGUYo/rUlaY/cZubfZ/juHvqnDPdMi+J0Q6SQGAWlRTVkPts1TtpgIlUUva7RSxNJKoTPEyR7R9AU269vF3EKerZjR9YOzm+0P4IGseRXIoYgG0+lM1czTjTzJU1HoPyomymtxm4pOqIiHSUksoDvSlJuI60UAqw6Ifp6CwMGOVhr9UEpoWCpknJmsrMsuyWRSJdCtJmK5VPO7PSPJ1MHuFakX57jkISaLHmUydAjmGo1w7PXekAopEmKRGI4VapTXMl3eJ+so78VF+iOD6YW3rtIBwZQ98nUhvuhRlGjxluKuk64LTMud66FVdCfSdIQ8RTlYuetwmJgI3z+WRgSkeRrraw01FLtI7ASMUAH6h7J2bZvPGBAdhpbXTaVDLxdCo0wJ0wqwkbQ0kUkhrnxZxK7y9ymU6D+ydkn3HrdX8jNC5nNnuPf1VHCUgraXUM1ZjRpG1L7LUwD92njuF+9SRsu9OOhgfA59bHvZG5ydphUHnRg5IFav2wkETbYk1mJGoVKazAPsLoil6ml5B0odLJaPVuAsfiaBy7q/K+yqS4UZLGbfEq1m/XY5TTxtL9RuyZ2A8cpI7kTWLI2NNA1payjWAdNH2hMjOWRHET0oipuDXX2eXOZ6Q6WM5BdSO3RnQntsXoppw+adgwU4rJZ7vnF0zvcvHzKOBrU3RAP7xwntIrd9BTqfqa/f8yKgTCIMohV7ebXkwgb8aElBk1xEqYSPmt1Q0A8Wndkkf7x+zG5fSiGbH9/UGZmYVuLENw6SJ9IfiQhXeaF+H/KK4jIRjzxsnWh2EySHgKNBUVwambwemBU+/zsoxqFC9xq7lX3D9NLchDrRXc5QW0s0ChPlDPeVTKxtL5MvX8me4ivZ18t1IvYqW67n+rCVCSwIhQuSJK8niZQ4fK0Od1pjIFt3ZyaQVcSFUIx1Hyg2QgGLTvbU4sZnipch1QWqP+QYyf/UGCive3lOZ42sj5QwO0lbVzHK/hSCFFkGprDDn+H6uW5EUlUSmxn68gb//IWElR34bU3D+HiFve3R3/8EVTgZVysF3qI7EeZN4uDBi0/8VmFf3YqfelWiVC1oUyfBUcPZjFBqms9uxS2gLDKVQgp500dW54Mg0u3IeFxz8asViy+h+cmaaI/ukk61HLKmi9SvIvsHjs0bhtMf9LibjutfXjI2EGs1JYaPS5kSxHVBtHD06+e8fLni/v/d0K803YlmnAm6V13KJndw4xoXTEX9at6xLDuebs4wg2L/WKYfppWQnfoVdCfihOFXEXM08PbymsvFHD+zUhC0Om+Gh2oI/G3By8szXoV7VG9tMCYyHMvidxeW+792yX/4S/8R/4fP/iJ//OVj9IVFBQgr4KagfC4iW5Xg9PtiObh5w9Hd07T/Qk8z63iw2PLZb7/J6idw8ecHbONx328obhXFrcPPEuMip7yqhLnS6DFTRprEzaOA2QutbXIt8kLP6N8cYNTofRbo58JFWdkQiELDa14mmldqarL6pcJ2itXHA+09x/odTXGbcDsYljJ1qS8C6b7h5o2A+cRSXQc2bzp8VXDvD/foIdCdOBHDZ//3ZOD4gw5704noPDGhlACqlWKif/uYUGpMF8VD/IOPMMfH6OMV8eaWuMuuCEoJ6n/4fuck4Kx93UbrF+9K6w2pT+Kot5rLlMiLcYVSCn3vVKgp2x1pu4PtDh7eE9Dh2TUoRThd3DljjV745IUjWU2Yl6gxYK53Anj4wPjGimFlWXz/Ag3UK7GK9Y3BNw08bGRtJqhfdOjOo7ctVWUZG9HsDEs9jbcPNs6rT0dMGzCdZzgu8bXQHlUEsxtwWlHONN1K4xuFHg6cbdkXbr5maF4kTr/fcf2Niv5YUT8XEMI3MCwU23cSqw809csB15pMPZJ14rby7+3bmWIQJa04VhFVB8R41NCdQHgT7EYoB82LDNMh1MpQJXyT6B4GVj8wuH1i87YcfPbVXdM+ey5har5SKJsBilJySsJMXGzYOHSrmX8he+X26xHdeOrZwE4nuocWu9aYQfa4ZMR9y3QiQh/nYkAx/1z25PW7wpk++r7YGEen8Igu8OZrkhGQnFDDhqXO+SSRUmkBlp5ek+qSpBaTHfP1L1WMM8WD39nJAV5Y2oc1V98uaV5GqsvsmqTEkS0Vcpb5uSOUx7jzLWrX4l7cCs2qcGCFBqHXLSpPVimcOOhpiE01WVabyw36VpBgNXri1bWYuywXAlrU8sypEAlfPkdVJeHRe9ibSLy4RB8fiXtUCPyiXqqqZD88/Hfbk8ZR9HSA6noBLECsz1c1uvMo74kffw6APjmCyjHO7eSGh7OkNFK+2DHcn3H5yyVulyQHItszt998QKgNoVTYfaTsg/Dsgfu/24pG5WZP9/YRF3824m419UvJnio2gepVCyFRX5QT/atfGfpjhdtAeW2oXm1Ba/yslHP5cYf7o4ajjyLbRzo7PgrqPhxF7F5R3Ci6M4izAI9b9rcV9/4Qrr/hePN/8gUf/fAxi48M3zh+xb958j1+98WbDOuS5rmhfTPw5M8848urI148P4aoxEXrtatZ9DxarfnMHjNuSuofNgJ6HEeoEjQe7w0X+xnnr5aovcXMZL/6/u+9K0L6nJyeTMLeGJmqPuqJXuFvC5gF9u+LnTBA+8SjdoajH2jGJXz9nZd8/vxNypskifQrWNzbsrmcsfrA0J1KgwGgBoUZNKZX4l42yv52cLbb/VrP6cmW3X97T5LRLQSlSEq0paGE8kr2/f4ExnnC3x+Z/6hg8dRjBtlnQjYYqc9H0Z3ONeUmQILz71pikVj8nYDuI2Wpp0gAEOBEDwE1RswQiUYznM2w+xG77lisO5Ix7N+ZYXyi+uFTwuNTNu/NsbsSm93zBAixqH2P/vwZ6mhFPDsWcGL0cHUr/V9dSRPSDwJ+uH+61uLnuhHh+ha1G0neo2cz9GIOzpHaVpKLM7dNFW7aYNQofNhUleJ6M0bMfkRfbYhnK8I8b0LGEFcz4W+PET14Ee8MEl7VP5Jsi+g0KiYWX/b0x472xGLaiAqR/sGM9tSyf5RI2qD9fRGCOkV9Lpzy7WOD6TXlOuV05ER36uiPrYRr1Yr2fsLu5HvKG00yxaRTePVqhblygHS4w0JcJ2yXpp8VSimoq3Px/g8VXF7OuV43FFdmQjiTTQzHefSfczT0oHA3mjGV/GR2D98brBErX0FKFeM88c6vPaXzlqvNjL51xEFzf7mlNJ6f1CtxCjoZGYLhP7z41/ijLx6jn1X4WSS5hGk8IclkJtSJWMl0yLYGX4nzxXff/oLNUPFqOxeO9UxhLxzJOJpXwj/fP8y0vI0S3roTdEIyEgQ5tRtDMjKORsv05BB0Fl86+fpFQG8MplO4nVDgxCUHunsKt5bph/ZktzJBWIetzemrglZU14HbJ5ZQaBZPA7ZLLH9ixbZ5jJheFvuwlDRV20aY0HBFNAp72aI3OziaC7J5vb1D3mY1qXK49YApDN1ZgUo15aOHpMWMsKgwY87JWMj3p80W1TTEkwWs97BvScvXgvx+Aa80jKiigRQnd6BUW9TrSepK3YEVxhAKK8h0RqIP7lfT9CjrvVAKe7UDrYlHM/SuR613uOsOPTjCyQwVkhQK+YrOkIzCz3MOkVZgRcOTrLxueRuwuyAc9JSYf9GRsssStSE6OXyiU5Rr4YIPpw0qSdBatIXosJIcTPWl0Df6Y0V/pLj6VoXtYP40a+GUrGtTClo4zhS7N0qGuSKUknl0EKbqUaH7O4K17AeaGJTQImspClQQkwkQMacepagfVoLGKq8we521GGo6uH19Z9TRH8n7dTuhKHRngioqr9CdJgUnhYuW3BM9gtkY2Bj6WOHyNMe/0RN0ovygRnmwGynQ3C5RrBVmVBl9THilsh1wplOpu8lUdSnCYj+TaVNSeWIeslZIwfDmSUbAvdi+WkVzHgg3inFZEGqLaX2eMMle3Z06SqMk/Xgv0znTBcaVozsqWADOiIWmAGpZ1zQGybtwVtK7ozhBokBHUMnJMCs3N+ZiDaOX89JkVsHr7jYqI/9GS84NoI9W8qluQNmfDeX8ebxUUwvAWBWCDO+VNB5F8Q99bXJGqC77HrXv0KvFP/Q1epD64uAmpLoB5wzVtcO20kDEwsCqkXNoiDK9MIr9o1rStveB9r4AnotdjW0D936nQI8Jtw/0K8PmTUt7uphommaQSAHTJ6orJlc9vyxJWuhVzXOFv2kob8QlavZSaoj1e1Ikz77Uk9OeCopwa+kahyoCF9+pGGeJDz99IKGD70b+4OUbPN+v+KWzV3xkAt3HZ6hRcbGd4Ucj04gmu+K9lPsZi8Sum/HhdY3eWIyH/pstWifiIJMNayPea263NebSyRSjQJ7v8aC3kWwPVQXiZUEyidPVTihiQxZ/eoWqvQQt64RXsH9kCE3gYjsjlIn9fclkCWVifz7HXVrKdWRYyrRWRQFeYiFAxO7NTO+MivlnMHvhiVvHuqwo91JXDKvMvNAyMbF7aUCIYlZU3CqGXUF5LVOSYa4lkLXPQHKOfKgvhH5JTMw/N5NV+SHDxvRJNJ/+MGWTKbsepB7V24FUGsKsZFwKtU/unWJ88kD2pDFhtoOY2yzEPVKFIMYsXQ9e3NtSlbNCrBGr3tHL2XW8lOnpRoDP9DMGJf9cNyLh6hqltuimQS3mpMWMVBboPG7Wo4xMD6hvbCrJERki8Wgm0fQ+ovY98foGjhbZUk9G0H4lf2ndhwkF1V7oMfv7TriRCuoLT/XxNcPyHsNKEc/F5aU9tbT3NOP9gWQcKtmJZtCci1f35a8IpQglh1qxjXTH4pAAMvof74+oZ476IuJ24r6yfaNgWCrMqwK3VpCiJKTPE7PnUF8FcYKqMz2jF/1IaxR+FlGXBcorymtpKEIJYyHOUwmD3auJzqFHBVFz08yhF92D3Wpspnz4Bv73b/9XfDzc4//18tu83Mzp2oK35tfUZuTH9RugE2f3Nvig+S8//wbm84rqQrH5dsDNRorS08ac3nyv5+x4y8V8SWqN8MZPBv4XZz/g795+jY9fnoFGUsuvhfJSXwT6lSY0CbOXManY4yHCV6+wnYxY9SjToTgLkyuJ8mAzLW3/CNSDEdbir+62QoUBKc66exEVtaSwB8F4fS0FX7/QE3JcrgPlyz39r60Yl4n6QmXN0IjKaai2l+JmXBhxX7v16FFQsuikKNU3G9J2i5rV4APx5vZOXD2riU2Bud6jnMW/JaFn7t4RsZGCR/VzVFUwPFiKbWg/EFdz2jfnNB970sUV8fHyK169X+2VhhEaoamkroO6FOTTmLsASKWEG25NNr7Qsh+EQPLhDnGG16xMJWOGixvUYsb4cI7zEQOYmy167+jeOZJG5MNXk8Bd1yWpLsCI/aLYe2uUkzDEaMBtAsXlnu7hTOwov7wizhvGd5cEo6BAUpQNVNfyO/QnlmIdKF9scQvLWAsNSwdJ6fYzw7gwjAvYvwGn30vMnwmIIgJHJiqjn8EuF6jJQn8WJzTTbjRuJ+8zadnD1Cg6joS4/qko6yCsAqoImB+WFLvEWMOwUnA0wlUhjlZlppm0ZMqITGjdNolWa5E4+b4U+u19xSGvRAcFXdac6Uy1GsDuxKmruBEqqq/h3oMbVmXHR5++gxslJM7txGK7WCvCcEd3Uw5wQtkKSWitehRxan2VCC7RJXEcAvLvKpksSUH7oMBtI9WzDWFeEkpL9aqHBLs3K1TS1LmRML38nL5S6CBrXiWZopg+sG9Kdo815brA9IFxkfnZ20GoF30kNo5YGFw/oMYklGMlKG3EopTK78NgXkVpzBezf8jG+3AJVUuLliQlyQloe1Lbwuyrtfr+Kq9UV7AdoC5lX/VRpseHKUk/3NH0nCE5La5k6w3q5CjT2rpp4qyHIJS5YSRliqyxhuqqwXQRuxcK31hZyPRb03n645L2TIsouxCmQzTQvHSY7cDp37kFY0ilpf31Y/YPDzQvAc7cVqhZto+om/y5JO5byeR64CZQXnn6Y8vYaObPBkKpefWvJfTWcvyjzDJ1imIrjJv2TYtZjOy+MaD2huqLgu6hp35zw+bFgs2LBf+73/ivqczI73KGHhTbXUUYM620GvHe4LYqa7OygFPJuk0WfuXPfc7Kdfz287fFeEYl2rYgtJb6WuqO/cMEeU3G7K7nlj2recfF7ggUPFqsuWwbdjd11qQobBEoK2EUDCbSP9DgIptdJfSts4SfyTTRXlrKS0Wx9mgvdY8eMu27SESbCEdxooRVrwqK9Yjd1PRlyawTUMLPDnEAkeYLi90nCWWNipMfCQg03EheGEpyn/xMAI+DDbPrE+5yL9rOGFl+JpETwCRUl9Bk2TNUiBPNU/KEBvTlDfH+MWFlae9ZfKloLoM0vY+ryXhD7zriza1IGA6TjXEkjcMdAFoI7VAbBYNHXa9JpSOsauzNhvDylRhIHThl/4Tr57oRMSfH2HImupC+R3VZMJ758OY8NxVVKRvIbo9/8pBxngU2Y8Te9OAs6tF96HqKpwNxVssmk5sZc9uSjCGsZlI0KHKWRKYrjIbi3pLyZsRtA+Pc4JuSci0e8rZ1IuxqI3Yf0WPMIVSK1U8MtgvU5yPtPUd3IoJ028qoMRSKetUxnjvh9VWKYeHYvK3wM5mUlNdQXXTcfG0OT7ZcnJSoXuxxVJCiPFRCc1BRvsdlPqM+MHIU+IMDVilowQElDfVdAUIViFUg7griqNh+faQ+afnd3bv89uW7fPKDR7lxUfyOeYemGlAzT9pb1n94KgtyFjFForsHZJerwnrMPDKUnr51nD89QjcevYzwokS9Kvg//de/CSahigCzSKcV1YUWke2ZJjhFdS4ToOFYNgoArBQpvkm4W8XseWL3WNEVmv0bkW5QzL5kEri6tcJ/UlO9EtrGgX5VbBLVtRRIKqVpdEo6eJ9nxPi1VaVi5ORHgXEm0x6VYPa0J2Yxo9tG7A7RMXUetetIdYE/roV33EdSXaKsYbg3Ew3AdYVqKtK8Ybg3w88Mzhl07zn6w8up2LWbFusD8XRJaGYUT68F3S8cKgTKc7EOVmWBudz86S7Wf8aXOT2B1RGqG0j7PWlW4RclxXae0+rzJKRw4vs/ZCMAZOqE1gwPlpjOo9ctqS5kWpqAg0iv7SifrVGbvVDB3n1MmJeUL7ZC6TvLwuOLG1g0xKbAvdrmQCjZc/yqxvSRow9lLOaPKvwhP+b+ilhaYuYBJy25RC47tIVS056IgDWaBd2RwddqcoiyewlmrS6VOOZ0irGBzVslwalcdMieY1qhYNmdrBU/z9zurMVKWmw6i1sp6Lv7gqq6rZhEjA9HzJXFbTSLHzpUctx+U8Tu88/kYJ4tOna3Dj3KRGRcJrYPBxg01XPRhm3ekf2teQHDUia8rztjFTeK4jYxLjTRwuYdee3h/oi/sehBTXSym//6IdcamhtBjG3WCbanhkNw4/6e6FsOCLJtMxg0U8yfivlIe5pDa1Uu1KyIRnVINC9GdIgMS8ew0Gz/xWOqm0h5PQryDdQX8mzpPqArg/YGt47YLuJrmXLZnSI5hZ9ZbJtYfRKoX7Tomx3Gyd4Rmpz43eR9LiXivEbFKPoCJWJVnIbKYm9aXCvBZWreEBe1uHNtX7PjNRK+q1ZLceL78oVM65Qm9j1p9KT01Vp9f6VXjKSuQ5UFuitFSxMTbPeiDYuZZtVU6G1Psc52vk1NOFtKcdY3qMEz+/7LO01ZCJJh9MY9fGFwG090mnEpGWMHR0zbBczFhno7YNuG/cOC9VuCyku+hSYtS8JZTSw0YyMapOZlosisiu1bYmLhtp5h6QgzWQPExDjTkzlOsdFob9g9MrT34PpbhYAKm4TdK/oj0ZCNC7HFtm2i+dwSnaWIYgNefPea7mpG/+lCIo5s4v/6o3+Jfluy2gJK0RUVxa28p/1bBqpI+96A2lhmX4he0zeJxSvJVfv9v/MNQhOFXlVEitlA2DjM1uAXiXEJ6o2Wqh5Y1R1DMPSj5eFiw8z1XOgVyms+vjxlvykpnjqG04A7lsj0cTQcL/ZQ9WxcYHdVYz6p0bknYuExRSAuFbum4HpbsHkCsye3tD8+wt0qcetKUH0m8QHjiac/hctfrimuFW5TSGhigOYpoi02mlDLRNdtZF/evG0wrdQVu4eG7oyp8Epa8tzGmcJ0huLITbqgcSab4OyFx/QBsxuzrkwxHDlCqbOhQBBzpXszbv/sMc1FoLoYqC/05M4lZ8Io9ru3rUw0Kgn9TVrORKoCs1pMDnLmYi00LGvBe8L1DbofsFmTYo6PUVWJVv6fTaDhV3mppiY14pMe+0F8zr1YEJLi3Y1yVlDPthMB4Vx8u1UQkU0yCppSnC26XkbYpQRJqVHGUtSSii5WfXlcn+7GgrEy6C7gtgP98VwsNluwu8C8uxP3uZ1HDZH+tJQx/03AtAF726NOXbbmFHqANCvgvUYHQbfGmRVaQCOUI7vLIvMxkCwcLVp2LjCOhrF1pEETB0u0idhEzFZj2vzeutzd6juu98GXOtkkrpoaUpW7/kg+lKRTTwaKVc9q1vJ5e8LL9YLyyuQDOtFvS2LQaJMICcpLSVAW3/Os4UgQR003OIyJVMVIvytEkFoFtI1SFPSK6rnFzxL+GDCJ0CSxGNZC3wAm+lR0CaIIsQ60jVAmnD4kTsvmHGaRWIL2RnQiTmE7SVgt1pKJ4BsR5qedTLOq60PBkLWeUahbkJHRfE/l3mqqiwG7NwxPnAjXx4DKAVimF86n3g+oXgpgXBY5hixGzuh7KGUTsDlUyC8rQmUIhUZn5JsXF+J2s1zIs9y2pPuSZ0HbkcZRPhey61aIkjeQE5h/Ya+qEDeQEEEbCSw0SigpWaibtBZ6VAio/jVL4yz6HxfiGa9a+e9ktdA/EZErKaG2LanP42itSU6jtx1JK8azY6xSmGsRwSejhbIxjKSmBPIEbJC/TZgXhNJki10IMyd7UBYopzwVIIrg8WDbKWnhUphPNuAJDkFtZoQ4QOykaR7mB4qZ/ByVDiJuoR4mJ1QEEMRVj1kkLVgHZjhYVTPZ3rpmINxamQzeCG1p/c2cu/ClvdOV5d8jOtkP5kct7V4EcWKskajPNcU2sTlREx3hYB6hxxxIqmSq0N6XfVEVYbJdV0HstOdPycJO2b9NL5SoUDDp0nzDJNJlyOtaZypIEspDKGTP0UOuGSarZJXdqwJqZiVo7Ei0Y1VKBCdnh+nFfUuFu6mo2wmNK5TF9PeGu2bT7iXkVMSnoJLYegN3FuEBYpUtoseQzVjyQwDS8O72cm66HKgXUj7L0vTMqgipdCitiBednHfGkIZsBjO+1gn+ol2H+xCTUN9i/t9BiAt5P9YCVhympNaKnXouBs0YSLtW9oWDCYDR+LlMQdUYwWl5lvI1hSj30qjaWwMPxUFTX8mzGEp59nyl8XUuUnuZgJQ3IetB82sezg+YbKp9eac3PVB/fUXWggrtxl1YdC9TRF/DOEvYbaYVtZAyeNmfwNdOLvj96wa3Edp31DC8bLB7nSlLmd69A7uF/kwTbKI86uiDRCtIbICcyW4XqV8axpmhPwt3AaVJwM3oxIp4NetYVD1n9ZaYNEM0zN1rOscA+21J2lsBDqNCm0iMihgV/WgxOlG6kV1sKG5yWHQtm6VSCeMiYx3pTgx+6VlUPW0iW/vLxiWB1IoxSE3WnUr9IHuy7I/FNk2gRVcoUsVkrjEswCmFukqEGoaTrF/1MslNBrwXfQnoKYjWV9naPE9OZUonziHRKXHOcprkIxjRJbb3lWSZjSEzRjRjDkw1uxGz7QWUUApVZb1YTBJKmLVo+CgGTaMnDYM8s9n+O/W9NOxaSaj4P0VI8s91IxJPlsSjJfa6kAIuBOgiainc13A8Q40Bve2k2Kgr3NMb3EWBX1aCGOXUaTUGyREB1L7H7HvsMAq6HIJMUKwWcWhjWH7SiaivkrRK5SPDccGwrOlXKhcEQsWpX43TRkCQg239rsVXgmSYRuPnhu5IE0uxjU1WUBK3hTf+LwXJiGWw8LETzXONnynaB5FkNbu35/gGutHSf7ykvFLE00isEuFBXqBekx6MJBvpaCjWd0Jtu5exox6kUdGDmhqF8tLJgqgFTa3OE/uHQpfwL2teXFecL5aE1mDmkTCPqMZPI1B/VaF7RX8i4tDmhZpyWYYEylvmPxSq2ebdSKojae5xT0tUgKPvXnJS7ymt5wdPH1L/oGE4ioQmygbaQHp/R4oavy4wO43d6pyanti+ZQl1IiwD7ZuB7qHGbIVeZvaSybD6ZCQ6xdU3LcU60VwIXzaUivaeTInGuVgfz54H8QMvFL4BEsyfihNF9XxLKsT5xNeG/dszypsRuw/Ul+Lhv39rht1H7OaQdK64/fYR0Qg1z3QRtx5lky41flWjfcRuR8x+JO1bmDfEyuBuB8qLwHAiTYlr6om2lRYzOFqIM5NSk8iMzU5sQDOvXKWS9PLyK1u3/0yubGGc6hJKh7neYF4MpJ2gwQqgKoirBrXvSX2P3oqVcjLCoXc7j9l7VD+g9x0mJVJTCTp+spp+VFrNwSj07Y7i/EaanKMFN++XuF3BfObQrcdse8ZHR8TS0J047D4y+/E5w1vHXH5nSX0dsPtIsREbTgkvzHaObcC2gfWTimGuMk0ysfzcY7qA3XtsW+CbbCihYP+4Ei3CiZomd8WtZF5sHwuwcvRBlIwMJa5Yw0qhe3BJCgYVyXRFacjF+jJPBupIWyhSEzhuem5MjR5h90gSlt111qMloVT231+hc/Kx6WXPCX//iCJPL02vsJeKYQn9saa7Jyh/eW5wO5mE7B7D5v3A8oeW6ipR3EqB5WcVoYRQH4CVbCbSKWYvZK3vz6xYqd7C7rGYfBySqG0n/45OTC6KUaigodTiatgnqivPsDS0pzLF1j7RHxeTo1WxiZNz4jiTSVZwis3b4sT14O/eUlzsKF4hTopG9qwDCKF7T/HltRS+pZPp59tLzBBRPmF34wSWxcoSnSFWBpKheLUVPdHiTtvgT+eYpkTd7uQZBqFdlXmyEpOAFTGiZo007t96T/IvLuU5VtYSil/ciYjatfDovuSpdD1sdqS+Ry0Wd057VUGsHFpr+dggDaK92AqKXFj6hwt2v3bC/OlA8Srr0JTCbgdiZemPS8kYKQ+FdnbZjInw4IhQO/pThwoSchcNdCeG/X3J7Tn+yUC0okcsNkLZHlYCWtQvZZ1u36pwbaQ595nBoWnvyc9bfBFFo3LrWX0CzUsttECNTPysNPamg6YVQM/Xiu07YkoBoGrPJ9enMGpCIUAfKlE/k056+1bCrwLFSUdrGopCE+oIOjG8amDmOfnXn3O+nhNvS9p7Arx0p2KQc/buFbNiYFH0bE5KdkPB5Y9PsTtN2ztur2dc/+ARu2/3/Fvf+T3+iy++yc3FHLMRJ1C6kjCLjN/ek24K4odz/Js9xkb4f57gjeLmVz3u2uA2ifY+xHsDzQ8q3FYoVWqRaL/eo/aW8z94gO2kcVv9SPK42vtJHEoHacT8LNI8M7gtlJciXo9G9tHuDBafJqoPI69+Xb6+uNXZxjcHGn5mxHY8A0h6BLdJot0YIA2Agn6lBCTWimHl2H6rormINM9ailuP3UqzG0vL/lGJCol73xspL3vMzR5dCQOgfBmFFbHvSE1FeHQigJfVVD9+Qep2qLqEdkBftGLAURcMT+6TnKZ4eosaRsysIe32hMsrzHwGTS2DgDTys1w/140IMY9NNdKBhYxiKvF7PlibArKJKiW2mjE7VRyQikPwSrY5vPt4EpsyZ4VLntIUQkS281U+ys/LyIakYarp8JdQLZ2DDMHkA3Gyg02ZNlSKMMytE/6hcJ71ICIo2wVCFqYmxcSPft1W88D73FzMqDLtymQxabAHiA+SEXTf5IlGqJjEaOKlnybHjUPA1mHCIbZ7arKwTYYM/0PYOJk6nI4yVvSalCdGalRonxHXJK8bG2lskiWLv5hSmykixWIgXTi0V/Te0HqHMwFjpPkgKXSfkR8NMWpSlMAzlXUg3A2t5OcOmmQSqfHE3mXxusphjzlEKAeLHZDTaAAlFJ2YNwjtmdJMzUD29M4/prCCUPoIymQKh0Ih6DLqtfubUc3kZFyeDGLdF7QUFJDDz+50BMmIkFQcLRR6DKjO3wUHvXZYHp57PYjVdHJZz6C1rJ0u879zCjBfbWDyV3uFKE3YYY2/FkYIwDjCgZ6lNco5UgioQcn6TmrKGzo4bpGSULnI05GQhALqLMlk29QYp7+Jyc1Cypk36fA3VZkWVaiJ/mk7eU6iU5hW3uuBoqXi3fMmHyALpXO4HhBqOzX72svSGw+hg16e3UOxj1I5EFDQ9ZifURHPipV4iNwlv2cb3FCoaTJj9woVhevtjWbwlmQT45w7R5s8aU1WmhG7V3lKIyGGIJkI0UoRAFlgWwkQQMpWkxuhlOrhbv9Thz3cqOkAl2Yrocaf3o99Lank4yLbAY93zdQhyPQQEEsEpe8KA5BGUIUkRgH28BpioSridjXZVqoghcj0N1L59WOSNO4OtB+Fw65UnjozgdoHeqC8lhgS6EHOHfkbCYimAeUjoc7hm4cwPsVkP3+gailnRWB6CO3LIWZJC8pPlFA0soVwTtDNYZ9Gfolf0CulJGs7G1aouhIDnKr4KUH/wbZUGBKl3MPRS32Rv04HZOLnDGqQPUONHh0jtrLEQosIvNITxS8pjQpO3LPcYcqfTVFsytPc/CwcnodRpntJJ1Q+Q6MTg4eYNWcSiKfuzqlsK6z9HbtBHyaLOXvLDHfn54HqL854ntQZ0mC4vZ6hRqEz6kG9JuYGfxSwy4F7qy1PtwVDsllQqTF7jS80tc2Fag4g9k1edwGcCYzB8Go3x+iI0Xd6jKLwjIM4bqa94fu3j9i1hayjwxUBrwg5NDk6UHnaMazkfdq1we7UpKMLowRVTwGCCugNZqtxt4caidd0GXf2xaGSfTUUoGoob+T+hYOwPmvQbBvRvUE7iCZb62a9sYoyLeEweQl3OhGx871jXhDBtjI1cnvJB1HZoU8piaaIeVpq+oTd5XrYmhw7ke5Ay6qQOlepKXQ7LRpU4YhKSbjpwdRC53sUk+gpD3udL6U2yU5vUjP/c6AR0dcbEREbQzxaoLd76AT9V8MILy+gLGFx5wgU55WgGb2fxrAT/SpPVdLRXDaPyglve1EKN3w/ZGRB4RcOFayIRTPXrroYqZ/tGGYrooNiJyO57SM7CSaLW6H71BfSRNkcSDjMNLOXnvLlni/+lyvCaaS6MOgBrt+vsG2ivI34Rov/c9YtVBeC0psusfw0Ur9y9CtZFG6jKG4V+qm4MIyrNN0H00qR0r3TQ1T4Vw4/j+iTnpBKVBSry6QT/f0w8TVbJb/zOBPahD1rCd7gPq4Y3h74t77ze/zNH34X+2FN/yboIsikZWRy5woltE8Gjs823N42eK+5fiSbjNKJt05veX91zn95+y24tPgfHbG3iS/mET0fOfkXLrn68IT6hWxeKYD+oEEdrEXzRjEsBQkdlwEVFfWXhnGRGB9K6FkohNqmEty+J0YC5XXKonOTx9eSTaC8bAy2SxRrz/5ewXCcOPl+or7wjHNDf2TYvDHHtYnyVhag6aMUK0YoFsScB5IpPePSSfBhbshML3bL26NCkK7NQUgtNp7JaYrjVabyHJ7dAdNVsqEtG0FClyV23WOud5hbQeTCgyMpfupShKdXr9Cnx8R5A6cncPOntlT/mV9pHOHqhtR2xP0e++Qdwv0V5hlCORnHKfgxNaXoxvYd9K3QVFJCDxbVDqTNHcKpCkdKiVRVqK4jfPQpZrFALxekpoJZnQvGxOnvnAslpnaEyjI2Fe62x+xGQtkwzjUvf2PF8nPPyd95yu6XH9KeWVY/2aPHwLCaTZSiUGp8YyZ3tvI6iGNOTPTHlt3D3LQkWH08SnbAaYEKsPjCc/N1y/DAEwuL3StmX0pz095TUyrz7Gli+XRkWFmGuaK7L3TH8gr6FWzeTZRXGreB1UdxKujbe4Z12aBmnuHbA+qLWjjnT3p8UJiuyEnr0LwQquTVr0BaeHjqpGF//W8nIL/8rC2c/lFPLDW7+5byGkwvAtBkFO19ee9JZUrZa5EQIAXS1besmHMsY37tRHlhsHvZnw8Bh+KkJw5ZIaPDZhRx+zDXXH3LUN7IhNTtZUrRntkpFTkZNbl/mUH0I3Y/4jbiWNM+qqbpp+k8avCEo5JYikNXUgp1MpfJqNUULzeCXDoLZUH/QPJY9O0efbuVxOMHp6TaEZtiom6ZPmA2nXysMHDUTAXNwY46LEpCYyljFHphIU252nVCfe561HyGKkvofgbS98/ppZwlvThHn53gH6zwsxWh0BTrTIsDzNWO8KMPsQ8fEO8dMdyfEQtN+VKQHL8qsduBoy+uSbOKWFrMi0uZZAPKWsrzUpz7Ckf35IR+ZeiOxYK7cHoqdEHW8OKDGxhGuuMHUzNh95H6UlFee9x2pHwZwGq2bzfsF4r118Q2X3sJ47Mt4sxkYP9Amp7mmac9Ldm+BfVLeV6273nMxnDyx6LL6o+heCaaKoqILQLpRSnWvmvozhLDcWD+icXuoX2QGI4j77z3ircXV3x38SX/bfM1Pr054frZCrMxFNcKFSyfLE7xlxXVhSG6xOCyAU1vuH7c0K4ryi8K+vseuxLKa6gS3zg953ZR8+HmEfbW8Nn/+13GtzxmORIHPWW92L3CvajYv+M5/tYl21bOzX/5f/M9fnJ7j81/+kjc8BBLXdM5urNMGz/tSTcFx39oJjpke0+0udu3ZV0vP5I9QY+wf6DpTxTDcWQ4IdPTxGbcrRNHHyZsrgfmX4pl+PYt2XdDIROncS4NjN0n5k89ySrW79hMn5O6TZy3Em4P5edX0HZUP9IyrWhKVCGT8/19mc4uPpbzKjlDqCx+XlB8eS01wGpObAq6ezVu77HXLTYlYmFY//IJScHiwy1YTVhUEwhhX95O358ORg7WYAonDbn3pHlD1CU8/Sevu5/rRkTQtDQh82lWQ12itq3YjJUlqiqFjpERgAOqoQ78T/hpdPTgCpABfOWj6Dfy107IVyGWasX1IDkijRUB86wQpGJgyoIYVgdxKdlK84CcSWF7QNfHuUYPlXCqkxGLV880BRlnGh2kkdk/NEJJ0tLI3BgrfOlBFoXO3HEydzqWMB57VCeWtMkIQmfPxeouFgnTatRnNa7LzlJL4WMmnVBV4PRsw4VaMI4F/tiLmFwnvNfYvWK4dfzRzWNi5kuaawvJYXeCgCYr9C/TA0FQ5jgYGDVx0OAStvJsupKP1BkYyRlAy/fNPrV0Z5p9PbzW3EjRsH8jYFqN2+QU9Ne423ow+W+H2HR2Rf5cytz5PNXIgU6+lDA2t02YDqoLecZ8I4vQN0bsUj8S6l20d5qhUIuve3nZ051VDEuNGXQOOktgBNlO2oASzQjkyUrIiemjIEsHR56kM4K8HdFDEKQhRtwmaxEKl5F6UO2AUgrXB6EWtN2Eapqr7d20TynhL3tpZJT/B6q/X7QrBtAJ5Sy6acS+dJN1MdrI530QMXmMsifEbP/tg0ymfBRP9bMTVC92nKkuibVjOK2xhcW+WopVeOEEdfZBKmFriE0pbkiDR1mNsnkiEALFzYAZ7BRINb5xAghVD4U4/I3yHI45hyiZLNwW+jBRCRc4GdE3DUuhDu7vW8zwGpKmMqf8hcXupEApdjKlDRWESkTs7T3FuChwW1kbbnNX0etAdrWSRiipnKmTkdXqS0cyVpywdhmJ3eQcnIwUh1I46AcqktobhqPD30vWZygFDJkmFDCJdIelmHBI+KiMLPQIwYjDl+kEiJFwRUGJp/FCIlsHg+n0hPiGSk17B30i9bmxMSoHnCrqV/LFbqtxm5wFMQiwZEay9kssw8NrP9M3gmabLtwFSxY5VFcpVGEwY8xBtklovEqmq2bMmRJNlc+3gN0WolFpBJFXh0DNQRFrGV/ZVjQrRDBroRNO05KDtqSV80137i6jKJ+JysvvquoaQpTcHfcLrBFRCj2fQUqYqx3K15hShP74IGhyP4hmZhzRmxZ10shE46DPGbJOKESSjyij4PRIKOPrrQROzpusT8vmAAnKdabctaLvsVZN9twyVc9TCg3DygqQ2Qo1e5w7Yg5JjFYm+8V1Nr7pBKhUUSzvp+mkRhrcdZKMnzyNq7+UsnD3WMDL8ShQ3Fpsl3CvHL62qDIJAUWJjbfdGIkbKKTeUEHx+fMTnl4c8XvVW+zXFWlvsGsz6bGUh2HnctCfWPYnJftFUtBvS/CKcRnRi5HFvOXmuhRL4HaOjxq9GBGigVj9xiAUT90rCUk1UseYnebyk2NhdWj4L29/CdUbqhXooHIIsdQbbqswrWaMJcYrsQs3MpEyvWTNdQ8DsRT7XxVkKjIcJcZllDoqwv6RTJzLzHruVwrWGjPkhqYRzY3bgdsLAOnD3UTWz4QBY9o0FaQHUOOwpxxAsnQI90b204OWUKmD1jTvJUr2Sf9gBTFJaHdhCLXGdkqANifPZH0uU78wL9BjwFzvs728ln0hiJOkUmpaGylHZBx0I+qfh4nIP3j5o5pkFe7qVly0jo9IdUlYlGiV0yoPhdhwh3D84y7VjejbDTQ1cS4IVtJqGsG7z8/BWeKywR/XmSMsiz9U0uV2p2kK0jpQKPoVgKLYyMjUN4pWa8a6YPYysvxctALJKIalEf//laK5SLi1J5SGcRWJhaij2ycR+8oxe6aw2W/f9pK0vnusGReRB29d8+p8SbwsBOmPisUnQlXYfi1QPdMcfxAYGxFit4+ipIuOmqIZ+Dfe/CF/23yDF90pRw83nMz2PL1akXoJ74tG8+PPHgIQTiSgp1inLJ4V1y6DdPNq0AzeoDqD7kQA6+sElWe9rrm5moFOpOWIKQPxvOL+7w1cf73g5rSi7O74k75WzN7asNtU8KzCdJInAFIUFBtBIbaPDe4qMXvpWb9lxQY0NyK2lf8X61BFez+y/EhTXwWK54FoFbdPxLWiOzIsvuwpvrim/dop48JgemmKfS1Fmv30Jdx7h/ZMo3Nz2FzIATPM9fRslDfZZrGLmDFht+OEVkYnWRHRaXSIuOdroVKVxaR9istGnu92lGZksxP0P1tIJkAfH4E1hC+fi5Dy8UMRtFcVeI/aeFEv/wJfafSy25Ulej4ndT3s91AUMtXoglia3m7/4W/2QUCJMRAbx3h/RnHZobctYVnhG8fuoaOYGxYXp5Otr77ZSKZRVZHqkvHxEtN67Ks12moRYmZKkfvyElsV6H7JcFxw/c2G2StPdT4IjctJAetnoiU7ODvZlpyoLAVIe6px28T86cD1rGScSzGvvOQQqSRj/vImySR1FJqR28VMXTIMC9GH7N+MpKORxe+XVFeJ6oJJSK0H0ZfU55HqyrN97CYhue0Sp9+PU/PdnhrGmaI8z5ayXgqWcSZBXs2qJfxkiW0V3SMvFqRXggqPRZrokpCLsIVhWCj60/RaMKya0slDqSjf2tJ/MWf1AezelHC2WMtEsvnCTiL36lwxfx7Y3Tf4OYzzOzpKMpK3ICYAsl7NAG49YHea2UxT3gbKS2lokwLbykTEbYMkrus7c4F+pdEzzfKjHu0j0ThwCpVzYVRKVK86VD9KmOGBwjl4VDsQj2YEV2LPr2AYsVoT5xV+VWMP59ro5ZybFULv2HRSYALq6pa43khKu3NQikNc2u7gNrPBCrG0PkwHGb0UMLOGeH0jwaiPz/4EV+b/+K54eoTe7EhPX2B2K0zhSNc3ohtpJNBRlSWp7Uj9gH50BI0hNBY9ROxtK9QXQIUAXtE9XkgT+4nQMsOqnn7eweShfr4XCtdrl7o3oz+2YqIRxUHNV4r9maa8TdTnI35m8EvH9rGsmepCCubF54lyE3DrQCglEuDiTZk8uN2BDmpoXo40r+D2SUEoFGd/7NmfGS7/lZHmqOWdozVfvniL6lqx/BDGhWb97ZGkDPE208AHsbUPdUQPGt0pyh9WmE7O+xIETJ2ryVVSjwq9tiQnWhI18yid8FuxklVXjtRE9IOO+ydrHs3W/O75AqLh5e2CwnnunWxYVxVtFlenUWM6hd2KO2Z7pujeGak/KVh8ltg/kJ9/73sjw1zx4l8NAki0ivHEY+Ye97yWuqXUDEto3xuwlWhewx+sqK6hfRIwdWC/uGvKXeWpC0/83grbQv9rO9rbkqMPNP2RYv9QGk63hd27HsrI4vsFxY3kjYUimw+MQhPrjgXALNeRkGukA8gcikyjm5Wo0kkTPIZsWnRH9bp7yAQA0ykRsWye1PhScfRxNlJpJLhSbXYwr0lWU/5IRhmbP/cOxY1CP3uJamr0TIC8lBLp6gbGkdh1mONj0lsPUNtEajt0XaPMPweNSMoPHzGieo+JnYgfFjPhdo4eCkd0BhonAtJ9n11xMvLj7OSKkeoSijkgXDx/XGdLs40UA4WluGopLhPjcU0yiu6XHglfcwi0ZwXdiabYyPheBRE6HsIHD8Vn0kwahmEhPGM9JmwHbi/CtDgzgrQHGcGOtaU7lU3MzcVmT40KpaT7Njcy6RDxtAjNt28K9/R1qkOKEtyFFoeI22/I9Gb+kSAV7ZnY7NkWoUq5SEowdI7/9NNfYX05w94absyC26oheQ1R0T5QRJMwFwU6865BUprbhyKaT00gGdFm2FtNG+ckmwgzQTLwCr6sKZ5s+bXHX/L7z96kW5fE8wrTKi5+pRDrvr2VSdNSXj8ZGD5dogP0pwnfinjXbQSRGBbCxdc+MSwU+weO8iax/CSxfiJWfNpL0VFsk6RRj4ruVPI9TGumCZPp5W/Unjn2Dx5MRYs0IjmsaKW4+tefIBkzcUJyuyOxezU56VoPd+J00f+I04XqA2bTw0IEjXYrTUZcNeCjPMMHbqfV8nzHhLIarVYZ7X+NPmEPiKu74zmHKFSOspCiZPjZRGU/91cIJMj3opRphcouH6+546QYUUWREaB8/0aPHjS2DYI+WyMo87qjfKkm0d8BeUpVAYuG0BRC9XzNBU15yQtIThONQ/dZR9KO2NJQbEWTIhOTBFqRalnrxTZz+NVBk3b3bFVX0tBGp5m/CNSXgoClzDMWXZI04AdNifLQnprJkhzERMNtNb4piU4sJ02bUFrWhekEyRtnilA4/EzlHBAplNr7BpvzDKKT/bS6lPd84E2HecRcW8ZXS+ZfyB44zg2xjAz3Au7KMHumhOqxSpmWprB70aIUt5IHNM7S9LoHp8H9ZU11raluArvH8prFuRFRfJD3v/hCgJr9mbjUFDdME1L12vkpmh6htdguiQA8QXkdBAR6UMtkIUlTaWJ2N0pQ3oTM44/4WqZV3f1aPncbMuWDTLnV2J3DmGzdOQT0upWGxFkBJQoDxytICZ9pW5B/78Lhjxui09jbHj146AdSUwqtwp6ijpfQZ2OX2y0p/TQYlzK1mU6D0j+lB1HOomezKXvpF/FK+xYdbwTMyf/NMEpz5oppT+DkSOjf/YC63IlmpLBTLZKcJZ5Wk0awvGghJeKqER2WM4xzi59pyitPcT3Qn4kNY3nVy7NsNboP1OeR/kyKQ7eLaK8YlJ7CC30lheQhh6M/yU5xfaK6geKqZffOnGGhsXthY4wL0WZtB2EHRCNrGWSK5/aJ5fcK2oeOj94oKZPQtEyb0D2YtSFWid37A81HBcvPokwoG2E+xFJqHZCGY1iKJm3SqGRrfdsqvEacOW8dqpeCOFro7wXsjWH2g4ark4YXy/uw9AKO/vGCAdjNE2Ee0IsRXpXiBlWCn4n+xQwK1RraNzztOxF75bB7xeZNSzQKd50nxQmU10Sv2L0Zab1MZE2nWH6vYDgq2J8E6lEaR3vhiIXFREQXEyAWjtbCbC/10/jBjKaDaOMEdo5z+VuVr6TJmD2Tiff2sZ3ul+ypYgaiIoyNpthF5s8GfGPwlaa6lv1wOKnk7E+gfQ7f7gPFGAlliQ7SgKTCMh5V2N2I2fS4fYkKGrMdQCnKG5mwpdMj9K6jvNkSN1tUUaAH0TXqs5O7dVKXqFhMNGX7xmPRjmxayewC4s0tiX8exOqFgxGZbIQo6E72PU6Fm9DNZBUxicjOrvdCV4E7UU1KQuUq5kKtGkSI6msLIWFAxMFaobctqhuwVuMXJbvHBWZIlNeCdPcrRXkrKDdo0iBcvn6piZO2Q/IpVJRN5IASHkRnw1JPwjUzJtw2CmVonlBJ3YmfRgDpkotblXUPMtqTA08e8uqlHIpj0OCzPWPefOzjPcNtSfM9g2/EUafyScaBWbORTCINmvXzBXYjYYcoK5SCnC8yrCK6F39s22XKVJGtdM9GbOmxLtC1hlAdAhMN/QMPhTQ7amsprxTumyP/67Pv8aPL+3Shwm2kcNq9lelxnYxufXOwAFbUL0VnMRzHyZrQdDLK9lX2aU/Cs2zfCJQ3mtnzgfXXSnG7qDMdKk8vVJD7Peps9dsrmueCzmovKG93pqQ4adNEuzNdws8E/Zh9mZi9ki4wOiUc4CDFmvVAJwIyPebCBRmV6z7IAdcUMpJvR9Qw4h8sRVS3eU1VfhCW5eJAnl8zUSqmKwktaSLPZts9VYke4qdEfr/I17TWi8ktCKWmkbLyUjAcjCqSNbLPZDGqGsOUNp2MmXRp/tUFypi7dGWlpQmZl2LZqRD6TkpCsQkJFTxxUZKcQjsrB8oYxPWqNRN3WaUkGntDPtAOsy4mIePkWf9ShLbRKsqr7LLmDLHQ7B7moiML1g9CV6IckAcHH9OJHs3tZE/ZvqEZa0k5F4piXhOjrJs0z0L2BHZHttGNFDe5yfNCO3Qbec9jBktSIY1IdaEmzdx+ZxiMQp8OqEtDdRVF91EHuQfZctL0knHiayWTU3UQ5OZ1uDViGboPqCgON+WNwu4FaLBtYv7lwO5xQXemKa+F8nownjA57XxY6MzRFfqa20V8Y1A+4faecW5l0nH4HbdC5wszmYS6nZe8kM6jYomvLf2RNKX1+chBRBzNQfunUSGfSyoKD7sqSKVYeietSLMKAD8vhOo3ZsMUqxkXTgLoXm1/yhra14boKpQvcFd70Zp0cg6q12w2D5SKw7pQRXHXjBgjgvVf4CuNI9Hv7oCeYZCpcVXJfXKWVBWEeYnZCQ1WbfeodZyc89ToSXUxBU+qmHAvbyEEhrfPxKwBaT67Y03zPGAvd+wfV1Icb322ozbY7YDuPd17S3ylqM9HVLjLD0ExAQhmTMQE3Srb1iPnptr3hGLB2GQ3OGA4EvOK/lhNmkrUXe1gu8TRRx4dLOusAfANmJbJfS40keP7G/qPTqkvPGYoGGHKG0o2T2oLoXj5hcQHqIQ48HmhT9EklIuSO7RVU3YPRcTuLaff79nfd3THmps/A7oMzD/PU4NTxf6BIa0GzE4CmndvZSOHmIX+ncK82fL+g3O+/6O30IOhO5HPu+1dfhJekYJGn/ZC4wXis4rVJ4H9fYMKAtYmk78v06oPLJeDts50YvIxeyqTLgGA5ONCEb3TgVTXgWGh6Y9kn1EpG/eYTBdPEJYKfZMovrxB31/C0uE24sTa3i9zLZhQXovV92aQ/Lu+yHRNYdb4mcHsR3TXTwYouvMkpaaMqbAosU93xKtrYtuhtZ7OrbioJWIgA/xJKVknWotT5OhlopJp3nG3J4SfLRbg57oRUZsdqDt7QpxFoWGzB2cZ3nsgY/uc1QAQZzXq4CgUk9xUrSX0cBgxMeKPBLUoLzsZlVYlhIC5bfH3llKAIwXC4tOWcVmwfaOgugksP/OCdCpFeFhNTlDVTaS5TAwzOXAkK0SSfVGCQiQD7ZnJdpcw/xwGrTj/rsatFSffjwxz4THXL1MuapmmA9GSkTYZzfYnanKjKm41+79/RmHFqcrPI6mMFCbilj2vfqPG7BRuDZd/JmBWA+pFhX5WEZd5fLnX2flHXGxiHTBbA1GRjNDBqivYP0iMRxG7la7fvihQvkBvFWUpQWiHkES916iNmaY2/XGi1JFP+ntcv1hSvrAMJ5HkIqoKqKuC+qWWJixC+0i+r34p99Ft9OReIRbKSWx4K7Hac2u49zuSiDwuLKufxExruRONqSg8UbsXgX2oZEMpNlKcXH5bRHllTj71pYIk3M/lZwOhMoxzTXEbcAeLXqWw25AnGIriesC92kixawwqNYRCUNFoC3RzIg20UaTKTk46SSvikdhS4yN611Ps+knToDY7UohSUFj7U0UGZyfCW15vhPP95A1iRPRP3S92I5L6gaR6VFFI8zWOMAgdTTlHnNegQY2O8a0zhpOC+ukOtW1RNxvReBwvUP2IeX4lIr/akQaHUgpz7xRVlYR7KykWrUb3XrjiKRG1FJkAqjTodYva7gmLB4TSkO7Pp0yHpCRvyOxG1BhznohmnElWzCGzBkQ3FrLFrA6iPxIqoBTM49zidp5oFN2xnpyvyttEdR3pV4ZQiB7K7eT5jhZ2j8wEVrgdmKvE8vORpBXlrWGYC4XR13kvsJJyXN6S9yXx2C9u06TVas/UnU4ugbuyxBJ2b4p2z20Sp38U8JVi+2aNCmIlajooXloxjciOfdEIzdNtQY+aYZUYjqB5JsCMGqU42z2S6afdW6prQUkPNMzd44Jh8dPPvTjbwf7MiPNPo6gupGDYPRRBcX0R0UERCzeZlYheT6aqdi82mr5xbB+XeX+R175L5dbcfK2kuo00TzvcWhK7Y2lJVuFrcVVK6limYdn6VY1BADalJH8gBNS+J66EGlx/sUa1MvXn4LDTDhTXhpgd/RjFqEU9OBMQr+vF3t5oKVxikiRl7yVhuWkkNbzrSeNIWm/+FFfqP9tLr5ZoXZK6nrTf5wmIhaOFTDlqh+oD9tUtabsjbnfgnNA7nThrqn6AWBFKPWl0YlOhRk/x9JpUyuSq2Ny5D6XSTtPNceHEGc+L02FKUF2IFlWPUaRDScIJx1kha9BKMx8dbN+WM9ruFbsHhnF+j/W7Qrc++kmkClJIi8AI6gsB03YPdE46J+tW1UTFjFbO0fa+aK6GE4+7NajfP6Eo4OJXCkKVJidLt1ac/nFi86Zi/UsjZmNw1+ISBgJUSrOVSCcDT9644OP2ISoY+pNEbAL3Ht5yPh5z+17B7pGiPwuo3pB6w9V3EqlI6OOe0FnUVQl1onNM+tFxJo17ca1QF3M+jXOWPT/l+ulrASuLjTR0ozIQrNCaXcKOSow/EjQvJCekXyZCKQ2XBFqLiHxcJtLMQyooNgJ6hEqxfwj1q8TJj4dpvxjmmlDCxXccpoXlZ5GxkWkJyHs7/zNyL8tLJU3Q+6cU1wP1Fxuh/GlNpWA4Kli/azGtMDqKSmO6SP18BxH86eyuZh0F3Khe7Aizgt17K5mQA8XaYze97AN1halK0Ib640uxrJ6VYm1/fUt65xFhVuAePZCJ4XrHpK8eBmLbYeYzkqnh6p+87n6uG5HUjxL0klFedbAa9F427yzGOzgUJUX2rb2zfU0giI/KG/ToBWG2GrXuxCaxcFLkjZ5UaOksu4gaEmbdi02atZg+4W46GZdbnW02M2Whi7itpIP5Kn8u3VErtE/0C+FSC9J/EJPBOBd3p2IdiVaEqnYvqJ3tUg44vDvk02u/YkJcJuxODtRhKWPZZCX0q9vlpmzmCcHiNgY185wdbbn8ohbrzka47MTDTczX6//Mn4tGGp/kxFdce/lenalIoRCkJLkEJh+UQZypYiFhZJXzlHqcXj/ZBC6htGycesj/y1SXw1s6IJkpozChypSFgwh9GbB7S3kbcmGnspYmTo1gyAFobiNcdz0iz0ZicjiLJbCXwuLg0BOKbD7QCpoYKjk09ME+GpncxdIQSisF6norTW7hpFkGCS1U6s4q9SA0i0zheZPtZowTj5xDmKf3goB4L2L0/Dm0BmMExQgioI5NIcF9/zywslS2IjX5PvSCdIqQ3OYCTL40GUUoRcOhQO5fzPfSB0GSmwpVSFhqUkrufeEk1MzpPNnyEgAVhdIkVEt19/czogsQC+9sOX4IVMvFuooxU3LurLsnG+zD16o7SpFY5AoFU0INFWbQd8tWMWWIHJroUEGzTZPnPUpq0UNGCK0gpUSxDC22Cl+aLHjN9rL5B0z870GmkIcmPikBB8SCkmwika0tXV5XDmwbUVHcscRiWPYHt8sor85oaSKHtzGJXxN398Z2ItiNJu8VY5psd8k6mTHvmaa/e49ifiL7hwTGCU2tvB7YvlFP9AmZyN65G0lzpPCN/A3dWlDEUNxltiQtwtjDpCu6u/ute4/qRmIxy2GXEJRG11YoegerzTFPLLRG96OgkLsWNa+FMuXDlJkjf28lAuq9UDAiZioY0FpAdS0UrGRzKKoWKqAIW3W27D1QOoPorX5RL3vwbEXuk7WSiJ5FunAAbnqZNoWI+sfktqmDoY6TqZzqB9GceTE4MK26m5KCPMSZjqlDzJRKLXEDI1JrOKHxRnNYy5nu7YUxIbb+QkGMBfRGTecuueY4aESEJp4mi+CJxnmwwQ7S0CQHo0vYTijY8swqmvPA7oHGr1Q+o9QUfmqGSNIasxhhLe58B01XQiaZAp4qNn3JZLpRRnBJ7P9dpF9ZhuOIOh6IO4fySvReLqJ1JACHAMGghb6pgjhQHUJX3U4mqIeMDhF05/sdZYJhekXocxEF0542znMAdHsXTHgXX5ByvQipiOgyEMtEGATIlH1P9rekhW5rYkJXkinka/n5KkrAtkyp5bVDmeujKK/frwxup1EhSEzARMuUhuqwD4oph8ZFef5CZfPfK06mS4foCV9rAXXGlCc6r51Nzt3Vxdbcfe6wNlKSM8saaUZSymHiCVL8p7L6/vluRPY7QhcE5SwKSBFlbf5ch/t7PxDk9+z4Lg21G6exK4VjfLjAVwbfGJqne8zVVooJq1C9NDRx1Qg95h9Mn87oh91Y6kvJDRiPK7oTlwWhHqOUuGGNCXvTYdYDGMX+jUbEUHNFsYs0n+3of3XJ/pEgiHo46BESyw8lVyBUMjI1vdjAJaXo8kjPbRJpJYtv864sSr/y4BLaBfis4v7vjuwfONpRMTyMaJs4/i8qVITd4zxmTKBfFbzcn9DcyGE+zmXRhkUkOQlbNJ1CjZZwNkBQlM8cfhYZ3h3Qr0rqLyzt2yNmOfDWvWtC1Fzta7rLGe7coW5lY/Zno7BgviyyeC7yL5w+4y8ffZ/f//bbfO/0McPzOWptScrKRljkJiDmYqmKrL+m0f4uD0GPsP2aR89Glr9dYzpQM7HZHRaa9p6mP75z8Tr9wUgoNfsnmuZF5N7vb7n9+oz2TO6v6RP1xUBxqzG9myyU7V4KuP0DSbptXhn2Dx0331Ac/9DhtplrrBXjUgLm2mON2xZYEDvXwmF2A7rV6Mqih9ccnUAQTu/R11JMp9KhuoG03uB/+Qndg5LmaSsi19OFCNcvrkVY2VRizOCDpKYCHK3k468/yv0vdjdi7p+iyxmTI9Y4kEYvvFdj0NcbaTL6HrfbU3xiZfxsDfHBCcQoXzOMUvBe36I3O8YnD0lWU3wxoHzAbHti5aC06P2A2neY0kDtGJalNBeDZ7y/wM+OqV7uMbetWCvOS7Zv1YLad+IJr5W4LUWnKG+DHDqVTPTEblqAk+0jC3mc7yvNcE/dia6VxfaR4w96xqXl5muGUCq6I8NwJGu7+uGI7gO+rCnXieq8Z/Nuxe6xCDaHpWI4KsXGuhfwQ3toXsp013RyOO8fHtA12D1OdH+mRX9cU9zKeolO0ERJZIf6XOE2d5OC6/ddnkTkA7yQ8Fa3EcvMUKccrKjos3jTDIrFp0J92D+S1z76IOL2keLWs36nlMTjTIkUDY2EjNWvEvNnPbuHTqYfN0kwFycBrOOTjvFFhb3aocdaJqPrQKg0N18X+ld5HbEdJJW4+iXRVtz7g0z92Mv7MG2kP7H4MtM/fWL+zBOdpn1QUd4YcR6auzuXJCVp7MWux5zfEk6WhLMSUzlxfRw9qu2J6w1qVmMrS/vkmGSQad6hUeklxNS0Nfq1CWn87EtpNmYNyjmZlmZtBEdLaDIqmhIMI3G3J263MHuNhfCLdg0j/uW5HC4pYU9PSMsZDKM0fv0w1Q/q9BhdFXKPQ4RtdkgpJIiwuB0mJkZYZprtcY0ao9C6YpocHWNtc5ZYov5iDSB7QlMQK4PdSCN5/XVhWRzMWP7BywyR1YeGpNIdBdtCfS5gx/6BrNvyRnSs5W1g/bbj5usqT0ZkknA4Q+dPA6ffH/nof2v41W9+wY/+uye4jUK9tJgOto9lWlBdJsJWQI3dN0f6OTwvHKEJpN7QXCmal4ntmyoX5rK2UxOof1Ji/9YpzRONnyfmn1qSgvWzU2wBu3cCxYM9D482XO1r9vsS90FDcQuzZ5bbr2n6X24Ja4fZa3HdMrD+1QG8wqwN40qh8pTIDNC8yDo71OSY53ZS9LffGLClx7+qCWVi/zDbAG/v8tn6k0QaFXrUAsZYMDtNHMrsrgfVRaZfXSra+3Dzy4rqlaW4lUmx9sLkCKXi+htiH+52icUXA3bnITWgYP50pD8ybN/QJF1SzSy377kpEPtQLzavIosfXTE8WDDOLZv3F/n3ChQ3I+7zC5lsHC8Z7zX4ymD3cQJvQqXZvTNn0Y5weU146z5hlveLkMRgY16jnUXf7tAXt6TdThgdy4VMTDvRSOq6Flt89bOBFj/XjYiyFj3P7hMxTuhNGkbxMU4pBz7lfweTEVE92ROavc987USsLenBStDqVmhbqRTPf5MSKUgisosIz1MpUl0QS3FKkUAvWcRmTBMXVHt5/eQEVUlGT6CLShlJW5V53Je9ogcwoxQjxVbQPNOJK9MB5T8gojLpYfLb16MCnwiNJiXhjUrIkJ5GrWpvCF5oTK8LM6MRNEX1OiMMTFa/utXyzGrwi0gqg2hIvCB4sUo0i57heUl5g3hW7w2vqpEYFfurBpMDhPqTSGzEUYQgFp0k0L3mx7f3+X8s3+CT9Qn7bYnuBOGQUEUYVoloFLZTJCcL6ZAHcld8gdkY4pARSQNpb3MCMhNqJBx76I4l/Of179fZ9ac7E/G68gmV77EQSMGMmTObxerDUooNFQT9CZUIk1UCu/OoaPLnE5SFHGD9QKoLoV8dngsfRJ9gcuNh77jZKiY57M5O5HffZ8RzFFFaUgqdG/JDOFeyrznhHEL9EHRPDeMdXfEX+YpxoqsQ04QsJ5OD3EKQKUlKpJjuxP0HwXgW4amqmooR04oGI2Wxu2oHdA5UTYUF3Qgaag6UB0UqLLHIyKY7hEshduDbgz0UHOzJZZ1nq96Y/945uCoVORTRZnAvUysOSd+HTIzRaIpbL7kVW/meYXH3mt2ZQ482B3sK8hoKNeXbgNA/9SDT2Ine8Bo6mJQ0AypJs+I2iu6moMiTkZj1ZG4je+Q0qZwJNYx0pyvz9WFSfEdVIAniagd5X7GW6Qlkgac7rOs8oQwaXZtpChOKO7Dl8F51SHdhhZEcAqnyXqSIGyfaswcLyRXZJ4aVJRopJsxwAD5S/r3ldwqFyoG1TIGVhxBbeQ/5mXIH9NOgokOPYnJyaD5jYdC+QLeN0IzHKOiv1qSjGbpwqHEUoegYsNsRjJpoQrrNVIuZnJNqGCdUUxmDsvbueT48/3DHEvgHwz+VnsC+X8Qr9cOk10IrATBd1tyFKLVFFvirUSaq6kCL7XqpPxYNsXaE2sqkO0Bw+o6hoRVQyFSk9aTSyH5hkCnANBU9nO+KUDuSzUVzkAb3ELh7mG7aTkTRSuSp0/Tz8NwfpqlJQ3DknLCDsJ08fTlM84WuFZ2iO3XgE0/XS3mOFZRX8ixPeTRKQkh9k2DQYCP+wQCjRm0tvhHHKj/PDYhJEBXmRtD6/T097UX9ST6bcnRBKiJNNXBWb9kNBZ3OkyIj9DG7h/GzChwyzTuA8Cnfgyqh9gqdDkDG3Z7Snwql1HT5PnSQRo3XhvJaqOUH3YfJTqjCSFHTehaNXsJElYMNhap6mDB0p8JwUaOeptYq5snUXiZivlHTdCaWmhAtrs01UTYlSEZAYSlCDpNc2XfcjmzvnkOUDfn8yJOQMcjUsynxi5LohBaosl24HiKhNvhGmBLm9Hia4JDPoENgbKwdJtM/VV1zCEhG65+mgiON3c9y/VzvKGq5gONT9GZHvLiSm1A42O2ERnC0ki/s+unZjA9OiKWVUfjgMV+ei7c6sPmX32HzpuXhf3OFfnUt3+As40IcS6zV2Fdr6AfGd++Lhe5pw7CydMdaELcuUV2MKB/ZviXThvpihAR+UTDOrXjjK+SgyGm8N++XdCfSmlaXUN5GSeD0siGYLmB3nvBGxThXkmMxJsygxQVjriSBuEg0z8TffxtNHu8ZdC9cx7GRQqN5Kgf05on87nbHxHkUipFiWEngVywjbm1YfAL9kWI4Ttx/csnXjy74Ox98DTVo2YAWI49Wa75sVyw/8xz/JBIKzatfP0IP8OijKGGQdaL/Zs8vv/mCH/39d3BbTShk0RQ3ms/+4DH/xw//LcqXlrqTzTQZKVL8IpJOesbLErvVxDqgRs3RhyEjPsKFDSUc/VgoHTfvC4+9em4pr8BtA0UpqGMsZGO5/iVJfy+uMxp6r0L7RLmG618fISr4/4oovTvRk0Ww2wWxWVYWXyk2b4pFaXEjG0535nAb+dsVn56DNbj1SlywFjP0xTXsW3jvTWloS3PHI68kmOynnvkxoG/3+HtL9m9UzL5sqT+8IF3fAqDdfTnAyozUtR1pmUOHciYGXS8CdZDckfWWeLaAL/+UFur/GK4QSf1OqBbOCf+976XBcxa6QbQ1XY+aNULHKBzJSYihGr2EHtY1cTWXIiQE1PMLtNaM7z5Adx79xQv0KDkEw9mMUB/C6fJBoWE4koMAJKRSFwaz7dH7geaDHXHVMByVAoiMAeWT5PXU4ppTPdtMAImfmWy3LU11P2rcLjF7MVJctuj9wKvfOMPPlEwvusjii8DmLcPuLSgv5CC/+I68n/qFoJrDrJAckWWieiUo6v6tgNlpjj5K9FooHzK5uKNIzZ7H6eAsbxXxY83te4r+WIo3u1Mcf5DNNyrF9i3hfi8+NLhdyoVQwp947I2lvMhZAAsRsaqd2JN2Z4r9t0ZSX6C8YvNEdGRHfyzuL7vHShy2drkxayVAbFRKaBgDNK8CKsFwZKdMp7HRRCMUieoSqiuZHr38dRGtVteJi18VjdiD394RGkt/bGWC5RPLT3OTlKme2sskO1Sy3g5UXNl77qhd41zjm4LZJ1v04BnfXzHWkpUyzDTVzFC92KNvxA0vNSXr92a4fU3dFDnYNOA+ewEh8v8j789ibdvSu07wN5rZrnbvffbe55zbR3sdgZ12GdJ0JWVlWcUDhYzypZB4sEAlUPGALCSQUWFLCCwLHiwED0hUSSkjARL5giqlglJiUZWASRBgGzsczb0Rtzvt7lc72zFGPXxjzrVv2OAwGb6ZcXNK1+FzzmrnmnOM7/t//6b7XW9KVs3TCzha0J3PSV6s4HYl7AFjxNY7TfCTAr3dEzbb0TVL1qAg1r6RpqGsRacJLvlPcJG+xw+/3mJPTg9/LnMJgR2ag6YhRDF/GExvihyUxl3foCcl4dExzUnO/tRSXvYkq5Y+umCaJtAb8ElC8bIlvbqlP5uLvW4awbYsObA24rF/lOESyG/dGIL57cdAw3GJvXddCb1Q/l00VUOeCAqU06RbT7pTVMdC8e6msm9OnzrWb1g2n/Gkt5rd5QNCKRPNs3/f4a0YsPSl3Mv7z7Sks5b03Qn9RPP9P/Qev/bkMfk3C3ZfaJmfr+l3OaE3+FZjrlKOfw1uvxSY/N5rdr9+QrJRHP+eF2gVePK1c4i07JPJni9ML3i+m6O1ULh9Cs0xLN4NPP5ndzz7r47YviHTFoJCrywhTl3YSdbZ/hVHSAKzDwzdVFH+4DXbfUZ1kzN9z1JcBqpbSzCGk1+TvJ92KpMq3cPtF0SPtnjnnvB/KrTbwaRn96o0W/1E081g+oPX3DxdMv9q3HMjhVzAZS86v0z0ZaaD7UN5XHktRjZDNgyIOL86VSy+6Uk3h2skQ0CK7rQU58E4QTeNw97VEAJ+NqF+NKV6YMhvnOiXaoepOvTLG8LRnObhTBzaTgvyywq9qqXB1nqsR1xhReNoDO7hkQCyL65lnVjMP35N+ubTrxEhRLF5RGxC3wvfNSI2KklGTjhxSqLqTtDEJnJmz49lShHtMNN1oJ/nWH0CvQerSW9bXGmpznNKF9Bb+WG187jMkGwcR7cd3gon2+4iXy6i5y7XUkzEteO+zGLgdw7duN1KZzxceMLplG61fpDQzpS4QOk4TyNyILey4Q0Fu0+gfB4O+okg/78rJLgn2cbJTT0gIdFyb+rILi3JBvqpiL2DkU5/EGurDl5+eMzF5Vw4kqknubN0NuHJzRKAZilBfi6J9poTWH1GgsNUD36b8O7FA0FrJwGfeXSjo7+/gmBwhSx6yU5BRE/tVqNWBUkrCIZoKmD1WeHB91NJfHeFp3kg+QnZtRRA3VSKkf2pCHFtHejjBGuw4BP3C5mQDPxueyMb7/YNIxOjXhahdOupTqw4lsSgqWG6pOL/8XFy5lND9cVzaSw3Dd0ipzmyTHOLud7AtsI2Hf2x7Bq+zMeb3lT96EsP4GcluheRq1lV0nAs5zL56N0BSctTKPOPo3UgQu3NDtv1gvwlycde/1N99DFsCVA2EcMLa2VtMBp1ckzoe0Jdj+iO2lXSdGTZ2MANmhyKHLTGVJ3oQaby++lNhS1TVJDCWPQn7jDl8II0uUmCywwmFsxYg08N/dSgQorOBAQZsgaCAjeRYETd9PgkxWWHiYJpAunGkb3Y0s9zmtMSG40xmiPRsaXrjmRnMJUivwlkay8TmlRQzVCL81+ykYlEEsMOk1uhP7bTOIEoA+ZW/n0IHPQWSX0vZC3Nbxy7x5q+U6JLixz1oGRIlK5knGvaA5JpakXxkZz7fmAQKpmSmFa42ukdtM8ycenbA0p0OYOhg4TGyudMdoIe+ui9L1lSkaryQFOfCsJrGmlgUEHc+zaB8spRHxnauaCbLh2+o4hETevH4C/RFqlRC2MaMQXQMatFdwcrbxVkoqWc8P1FExBw8xTfWSbvb3GTlO2rOdpJMdLPM0xi0FVH0Jr8usPUkicUUkvIrWSEuKhB6CNVuXfYdS0OXM4RZhNB8u+EaqhDiIFkFpXKpFBt9+DjBMBELZrR0qR/mgMN4zHWEV2P3iPNQQwVRH/bVCjaHJvFHIxGX9yR9XO8naA7T0g17UxMJSYv+zhNVCPgpPctiQ9kK3nNfpZFDUk/cuyVj051rVhzrz9TSHDuXUc3sfhUkV+2si70Uc4ZkXxxrQOi4QpKAEVvheYpFvKO6limE/lVBGZfMzRHjJoP1cs+pzvYndvI5hjS12US0t7mZE6miV97eYa/FTv/5DLhujoiWWmSVlHETLV2AYTAze2EJBrhXK6mWOsImQcj1PJ33z/n3XcfyqTHKYpI9WzOe7avWkyzwKciwk9XsbZptOz5qccnQaINvNQv9QO5l/dXM9TOkF8b2rkYXgQdUJ2iPorunJM4SoLIQJA1YnAb032gfHnY+4OBkAZMJed/+x9OKGKIdLKVmIaulDou934005HYBC+TKsWYVyfgrbyu3UndAqJR6wqhepYXXdSqilDdNBKG6VItGpTheiLWi7ses+/p5uKKpwHajmTd0E9TfKrRVaQixgBlvdrJVAQOU8DegwtC6fReqJ4m6jHvT1h/i+PT0YgMX7bvZRpnYxhU5HiHNJET3feSitp2wmebFFSPJmKrmwgKVtz0dIuEbp5gGo/Z99jLNf2bx+zPDKbJSU1cRPqAnyiyuwb9lW+hHp/jTqbSqGhB1oIWH2hbBRGc3T/UodPVnWywKshrD+NW+bdAc6RZvzGI5RgRD4jUoH2gnZvR3cKkisV73WjT1s0NuzODy6FbOkwjHM+BT9lNA6702GWLeWIpLwKVV+hc4VMZXaYbRzsVmtL0XQtY9j9YofIeu03Aa2pbkCuZGsiiqXAzsejdPwjoVUJ6q7F3hq6aQBpwmYfUix54K9Mb3UJz5qTJ2Ur6arCB9Foz/SjQTYRb6RONywO7z7WySAEm75kWLZ89via3Hb/2378t+R7HgW4GlZfk6WQXKVtxgRid1RKoSz0mRQ/JqOs3orh9J/bM6bpn9ZmM5ihQPldR8BcOl2ccdYtgTbN6KyHdBo5/paJdWlafNWhXUiqFfu+Z/JZT8Z7305S+THCFju5JEYVLDP0yI7mtST66GK8j92ABVqNvt4eJSpbip6lM8aqacDSXBrntCNsdoWkwD05Q8xmqaf4zb8LvsaPrxZITUEbj71ZSWBS5TDuWM/TtWjzUi0IYeOuNCP+jngTiQtw7wkwSktVOuLF+WqJ3FWG9wRQZakj5i4FSY7hc3aCaDvfZM1yuo/2sAmNwuaWdRLvwiIgFxVis97MEu+kwdSuCxzwWvHGTSNYd6ukF/ePPsn7DUlwLxbN6IGGH5QcV6UmK3RvKS0d21eDSQjJ2HsXC5yaQrQKs4sc3iuxGxUBBQU37IpBfqrHYRinaiaIvFM1RTG+/qrG7BD0DZxCkMt4jKkg2x+DEN9y/thIOd3Wq2T+8R/1YOPxe9HJmsC6P9DO7j1PT5ADs9GWgPfHw0qBiiCJK3kcFccrbPwzYL62pvjqX/IIviuV7/ytT8muYvLcGNafPBYTASkPlg6I+MZQvPMmzlbhWTdOx+fGJfP/iSqbZpvGY6HoFCH0qtShvIk1M3JXqswLlA8Uvv4OdTCjy13G5pi807dyiS0N6o9CdI7vYiZ3mriIcz2TqspignEPHcLOxmL7ZEPYVoesJs5yQGMzNSpzjag6TwiFM9fbugMoniYjXk0Rez34crf9UHkYmpcPks5/nKKuxWqGIuUPffiznojH58Am2OSPPjITSpppmIY5102eR4qIYaaJ6W6Oqljw1+MzQzS268STRxALiJC0I6t2WlvVntAQXtob9qRF641pjItUGpXBGqISSFyR7U7rqcbmhnYuDWl8E8tuoZ4nl4OSlp51qbr8PXO4l68uKLit5Lha2+4eHvbBdBrqHHebWohuxwddtoHsyEWewHornCuXFjtvWot1qjhNu3o7OYZcZppJ9v73JaXMHmUOZgDaB/N2U5Tc9d5/T9EUguxUL4vJ0x94WuCKJuUViqa8c2AwRrR8pQhLoprFZcIr6NIIrLxOStSK/Dtz+Lk/xypb+oxmmlumDNwJuytoSSG81yW6gX4KPjoPlhYs2ypGGmXiSXSDdeuYfiN3//qHks2Qrz+oti7cCsrpUAJcsCOUOIh0vCtq7qUyqvJVGsrwQy9+uVFQPFOkaZu/3+NzQZ5pk26M6T/NaEevEBFM7kghQmi5g1i1639A9LvBWkQCqbjE3gaBnQCKa6LYjLGfQOPzVDdoH9GB4A9G900kmWczkgkhp/nbjjP/E8b3diHzbEXYixlUnxwfqyb6GiyuYTgnzqUxCBvvCuqV8/y7yxBW+TEebM7kQDBQWPStRHrI7Lzz/xomIR4kNq3Ie9cYrdMcl3SKhf7UgaEV5eciQaGea7WNDthYv+uxaCr/6LMOlmj5TpNuAWgfqI0U3U6wmlmQXOPp6La5buwMSdfs5O9pimgbyG9EplM80+Y144lcn9uCeFf83vQVTxXMTIg/Ti64k2MDJcsttWeAyqM8C3sDsfU03gY/+T4pkJbQjlyECrSc5fRFwP7QhOI1qZfEduijlILkx9FOFPavoFTTWglMjOogKJGVL5zLAUFwEykvP1Q8Y2mPJBjF7xfJr4tjRHCnaWXQD2wsFIxgr9qE3inaRsFtm/IcP5+gO5neCxA6Cs8lTz/5cs3scmDwNYzAbMI5gdSuI8IDgKgdJ5elKLc/NDfszQ7oSCsfgzHb/UF6ev3ndjgXScBQvakyVjp7xajaVzSOTzcjl34Y6KkW/zEX/0XrhDL96it7U0lx37hDUGQsI3bTou1jg5hk+S4SuETnhoRERvAgwP+XJ6r1DDF/jkSQHV7HhcG7U0ag0IRQZIU/Q1USef7sCa9FJIqI856HMRayX2AMwopRMRuoW3TvcssTnCd15geoDdu/QXaTThIBpPc1ZFKnvxC0uidk0faR2aR9i6CXy75nGFpbZB3vmvaebZ3Qzw/p1S9A5i5sHMiFVAoSItbTY767fXtKVQnVymZLGppJNqp3Jfdkc6dHNpV3KhpzdyXt3kwEJVOOURugFYh2KF1ee+ljjvjxFd4HJM3mMdhK+OPK7qzBOWoOSkMLhc4gJR+Q7azCNQfWK3bl8Dp9CeuEpL3vuPpNIevudfA+Xy4lS3lC+iFbFS6G/DDz56kxjGmjfmZOvhFrh/8N0BHnqE8X1Dx2N9DNXCV/b7qODVxDqZbs8HSfbkxdiKLA7M5h4SwkFS2FqQQl9nuALy+5hRrp15Bc1rrR0y4xmITlPk/NT6B3Z8w2+TOmnqdj31r00utbQvrKUYMxpJi5avR/d3/RqLzqzrhNgLk1Q0wmKCc7HAsIHaT6mpUxTtRZEszeoxUzojJvNSM0KfQ91TTiafLdvz//VHHqSC/2qqgnOoZcLVJaSPrmB3uGdP6wbWSr5Q/taftdZAb7AJpYQw051KhqTxbdEF5q/3AsYpDX9MmP9g+fkFw1mJ9oebxXdxJA6MOuacFTiU02ycWLdvZP8iPwyXrszQ7bx5CsIVuOA2ZOGbmLZn1mSfSDZObqJTPi7mUV3gaNvtGJXW2qqB4bNa+WoJdm8ZlAeZu8Htm8o/MOW5Ksl+VVg9XlPyAK6UiO1IyRBpgqXEpjYzsE4yQjp5oH1l3qyl5Zko1h9VqaWqjcjgEDUv43Twl4R2niOe02oRINx+3k5h9op7n64RSUeVYm2sls6zOcqkqxl929OZGrzhXgDtlpMaSoBVAGqV3tUq5h+YOhmcPNDDjMXyordKtK13OMhi4Y4Zw2Pzu+4+x8fUj6XyWnQMVR1orh520ZqllDjg07xVsCf+liRbmD6xOMTocg3R0KF3/fyPQeherLtqU5TulJqLt3C/L2WfmrYnxipEUMgv+lRASYvBETfvl6Qrh3ZdYO3mpBoJi+acRqCEt1fdl2TP+vEtCkEyic7QmJo3n6MqXq5ZlsX3QPFEUtt97KnnZ8KE2izIyRWrn+tURb0Yi7W3nUtjAulpM7IvjMa5/d+IzJwNxFqVhg6tkGE6hxuvcUWhTQnVTNSM+g61K04VChAnSyBTEblWkkSro1p114aCN304uEc80tM1RGspj8q6WYJfaGpTkR4VVxISEw3ExFou4g0hj5gdq38qMtUhNrZQSDWLGSj7mccQnNicTw4y+3PRTilewh7hdvJ/5/dBtKNx7TyOi67R/1qQtSxRCcsC9rLlx9yPFLjxvwAlweCDiQbsbp98Jkbrt47Jr8y9BNxtbEb+XyPjtbs2pSbu+kooFNeigtbKXymmJYNOwWtU6jaQKfGKUSSOLqItNka8psO0xjwYgdoakV+48Xxag6uFApWslUjncvsFcVliMJ2TXYntnumjc4Sjfw53Xp2r2i6pSe8EAtVoujW6+gC1B5QpCH4LV118EAyHYaCcP5+IF37segbmo/xmlQyQu1zEZQN39dsG4ptQ8gSEZflaUTEZcozFI+6jTSeIA46AKb2eKvpioy0F5Gp8j7O48PYiISuE8es+UwMEowiYMQ5pxsoRiFmDnzKUU7vQN8T/Mfpw8eOoZGAiPxG29IsRdHi13uU6YUj3nYE5+7Z78paM4aqakFTVdejYppyNzHj1CwYhRrtQAOuMPhekHGhWIm1olhyH6Z1EloajTECZE9XovFJznGFmE/0eQRVogWnt3L/p7cN/SSheTXaObYhCi1lfRPak0wE+zLaQfaKbhIICRSX8TPMDmvScL37ROxu26Me3Qgfuy+lIcgiMDKI010m4Mzg4T8IuEFcAr2R/A4QM4jgiOYRsl7008PjTQfJugUSwpjVIfQKE0MO020gXQtiKZo8aSy6Uh5fXAoSi490VgvVqRqNQcbLw4AnZrb08r37XCgWg/i+fCGbeL000U51sGaOdvIxeNBlhnamMJ1GVR2UNmYIxd9sVqD2DWq9QzuPBeFlV43omPIMl2lUfLxyMvXCe7kOe0EqxakkBp5GxFIFmeaj4z2QCqgWlBLNlFbiquc8VJU8xlrJFun6g230p/EwltB56Dp820nzliaE1UbqBu/lPIJQXdNEXA1BLHgTCKEQi95a9nhCILttpPHb1eJOphXhOKdeauxeckNCNAjw0fiBwb43Udih9uiERpWtwpink+wCpnKSU2Q15lrEC7o3h9DSeB32hcIqKJ5WuEmCT1L2E0VzLLQf5aGbyjowee6pTg0YT7KB8tJz92UIZY93lmA9ZB4aja7FctvuwgjqJTuhXhUnFe16JqLyucdnIlS3lRr1Z7pFAAIDqlOgxI1KV4p0JRrU9iiGpAY4fbgiBMXVRdQkZJ5Xj+94fXLLP58eoxvF0emGuk2oLkuhZPmDVTcmOl3V0CwDyVEtTrWdwTYKHR832OjbrOeV6YqVf0i682yNGa3KfQrtMuB38p2yO1nriDq4dinWwOnOs38g970rhJ462O6auKbgwmjr25dKKHtXFabJcIm4pkoDJ1NPXff0i4zdWU6yV0LbnKQEo7CrRuQFcfrap0acHK/vIM+kWb7d4WcF+8cFiZHnQwQqYh1N20Fi8WWO3teiI0vi/jgciUW52KgPRg/AaPv9Wxzf041IaHtCdXcYcc5mskj04nvcP1yglxPMbAL7Gp5djEIzeYIiZNmIGI2+zNGJxrRy05u7PbrN0F2K3ndi2avEmaSfZXQzS/XAkt86isuWZp7T54I+mMpJARtAeUNxLc4mu7dmuESNtAsgcoxh9mEPGl78iKWbKaqzdEQrkt2QHWJikJFs5C6VG6C46ummmnaqo/4jsH1DeNfZzWFTHWhHEFH/DvLnluerh5Qv5YKffCiFze2XAv28R3eWkHjqEz2ilM0Dj+4U1//4FfHEPvL0c8fmVBw8cEpCDx/V/N/f/sf8t8/+AL/+4g1CJuLS5MbijSZ96GhSj8sCt98H1z+Q4udCt5p+LUX1cPN9kqicbMRloi8+TmFzeWAXqSXJRpoO3QXahRQw5Ut5/OpNK0XDE8PdD3SozDP5SiZF3Jd2hA9Kjr8C6caR7Ho2r2ZjQdLOhHc6eQqzJw7dSgFfHyfoPjB/dydOFG0/Tt6yuyO6maHPNbb2+Oxw24lVtMYnU5TzYu/soZ2lJFtHcldjXt4R6ppitRMBdZkRppnkROQW06XjCNSdLqU4bnuGhPDhmleRIxoWU5Q16LYTjUOeQfXptu8dUqJDJyJ1nSTiAFc3BzAj6s1UlsqEar2TQnJaQpaiBzpG9FZXzkEdJ6yJRbWdmAZkmYQmDqPwZ9eYxGK3cdOM7iPBaqqTXMLILlpM1WFutpgyx80y0pik3cRra/rrF4RJzu7N6diY9McTdJnRzxJ0F3j8/9tIUdo5kq2LLlDy2O0bJaYOHH9lTz+xdHNLdaIFOd0ETBeYvHTUC83uNUXxQiaTdi8OesVNdAprhbbociXWtVUYHbjSWzHI2L/ZkdxasuthcWPUyOk+WvNaEV7uXlGUz8UdcPK8xaWa/VlCN5UiLL2TgNZuKu5gQyaHWBkr+kki9rlbQSd1L7SydgquiBzr0pBfy7Rq99CO5yTZQn7j2b4qupbTX5F7pXpghSJ2cWjQ25nCl4O7TiC7c7QzI4nX155k69g9SmTtn0s4rN05uqmlm2hMlWCVwq5qzL5jaifYvbyf2XVknSRJo8BNM3RiBrYaqu3pT6agZyTvXxDqhuKb1wzZOCEi7/p6TWg72i+9KnvYrhOr2PVOsgCsQe2jIH1SSpHx7CVqMoFJMQIi0lh/HJxQaYpKEtxq8z/jRvxf9xHqGn36UKZA1giDom6kIfGe/vlLtEvkHncOVTf4uxWhbmTeqrWgwtpIoVZk+MzSHAtFs1xVBK3xsxy7aTn6ak+3SKnPspiOHZi/t6cvE9bff0If6TmSfK2FuufkMUELSNocJVSnCSaCHOLAqTEtNDPN/lRTXnrM1vPi9xlUp3hUlzRLw+Y1HTWmoKPTXn4N2cYxeXeNdnPu6qmYVZxqZu8qdG+YvHBUJ4b1Zw3BxOyRhJgFhNzvbSC7U9QfTEkjKDj/plC78ztPday4+z5P8VKzfAfuvhjoFp7imbhCtQvJLUm2SC5RpLp7G9jsc5xTqK2JjqGBb37lMe+1r1DcSCPBPz7GzBT6scc9aElnDd1X5mQ3MHlX3PB2rwXSW8Xk/z2hPhqCSQWIKS7EkMbuFeHplK/pL5K0sDvTTJ6KfnXzptDbZx9AcyT/5TcCdrYTHc8BdDO4+v6BxRKw22gj/FwaSpdDvVQ0iyJapAOEODE6HOltS3Jb0Z5NaMsUkwvFrrwWAKt+OCG7qtDXjTTN1tAtJygfpDFpZEoU0kTWg1aMlZK1aJf6ZS5hqlYx+YZk3vjTpbx5dNYL+wo2QmHVZw8EJH1xgS5y9PGSUObi9PnimrBZf0f33Xdddeac46d+6qd46623KIqCz372s/yVv/JXCPcnFyHw0z/90zx69IiiKPjRH/1R3nnnnd/+mwU/NiFqCE9RWkJV+sipVxwEps4RQizMIhokojRZoIGIEMepxb6XxqMXvq1upEEgTQgxPFGCaA6CxPE9tSCd2omo1DQypVADQqUG9ENQO9NJJ9wshDOpm+hYlQb6QkV74Oi2UIlDy4i+D9oGC/1Ej+E5EP9dMTpiDSFhfRnE6WroTYKgA9mNfJ52Hp/vo1hNB+o6EfcofXjfkIpVnd0Hkq0kuCun0JljSAN3hccYz2U/Y9tm6FZB6jHTbgxhbHuD79WINCoPqjGoKlLlNIciJNoXmzbSu4IsVBCRiSyiHlHwNbhu6U6atsEKdJgCocJoQ4qSsEWXC//T28Mt4rLYoDZCa0k2sbC3B9qVCJEPG7hyHrvrSNayUISITvrUCCKVmpG3zpCU3Ev2wBiGaM1ouKDaQy6JyzQ+M2LVCYLoexGRjWhGDCkbrmHhJ6vxPzUEFN1HNz6B4xNdJ4Ah9HRYI0Yr3xj0iFLy3v6e2L9ppagIgvAMmS9hcOdLkwPK7OScq9kUNS0J0yLahB+Aj0HYF7+c/DkephYXv6BVFJz6iHLfu5bqFlW1mMpHUaMHrfC5lXUE0LVsLMM1ofuAbcShpc9F/Kg7N9rvDpNW7WAwyRCraUj2Ip60teg47F7eN9nL9GQMXQxhzAVJ1opko9F7IyhnADSjLXAwstbp7nD/+ShiJ0hmSl8a0XMgSOm4htmDg95gyuGSe8YenhjOxpiDcAgVixqu1o9NiK1kSqxcXBtaxnUz2Qm/3rTD2s64zg4TnMHtZgyZjIJ1tLyW6bj3e4rI2OfxzXsvxWXvCUUSrTJ9tO8NQs8sEkKeyT3sDtfEeD24aJgQAQ+ZxGmhDsWHiS2skut35HDL9YdzjAnsw7qBfI/RFc5aWSOi1fVvmCJ+AscnW1NE8MYasVQ3ce2N506nSRTvBpl6dNHk4p6JBV0UmRf5CGDp1mMa/zEGh3JenPZaj27EQcnuHXrbShq7VaOJDsN+G4E3XfdyrUTtyCGDT43PGwwQlCOGH6ox9HNwYhrpwuFwX9kmiKZqnsUQ1sPz7T6QbAJ25yVUuRZat3JqfIwexPGRIaBbNTIMbAwGNENY8Pi5IziaO0YLYsAbKfhdITrWEE9zs0/odimm0mLv3yqyG0NxIV/oflih6hTaehaTCp/FSUgT78/4GZO9l9pAR/vd9N4aUgXSdSC7DWMYqXbhYGEeJ1jDOjJ8H9MJaJxuPbqNz2ulscluIL0L48Ql3YTRKGfM04wUUjeJ4vEe2b+7HpdqmYBnMkUd6s/Bhny06I/GKLrz6DpS1bJUat7EEMoMn9txHR81jCHWCVbWIZ+ag1Dd6JieXsnUdLBwjhPCwfJeAg2/s/Xiuz4R+Wt/7a/xt//23+bnf/7n+fKXv8y//bf/lj/xJ/4Ei8WCP/tn/ywAf/2v/3X+5t/8m/z8z/88b731Fj/1Uz/FH/pDf4hf//VfJ8/z3+Id7h2uh2J2+HPTjPaD9D3Ji9W4saBkYVBVfbAZi83EIGgnBHTdjZs5L6/kRM4m0LTopqV7tKSbCmplGk/20R3Js56y62nfPKV6mI0p5+lNi9k0qLrBpAawMclSMXmyJxjF+jMluof8uuP6yxnrzzvAkt952Yx1oDoRgaatwO486brDp8loyzfc5LvHiutzmL2nya/lIheUMormp9FVauLRR/E8/UopdIVU0sSLa8/lDyvU6zv801JE6iuN3yv6ypDUaiz6pTnwEqj2uiG7geU7nrtgqGxC8URsMdvv3+Od5q//s/8zZqdJdorJ53d8/9lzfrH9LGFv6C8n2LUhu1FMnnsmLxp2jzKauWL1RfHWn70niOf+kSAKxQs1LsLpKlCdKSb/xTW3TxdM3reSrB6RmqHoMQ3krehMuhnMv5qg+0RoIjXoX5niE9i8GegmkjRf3EoiaTvRKBdYviNoqG4c+4cp7USNlJBunglqE2lUKkB2XWP3Hc0yFUegF9AepezODOWVI133mHUrCDtgVxX2akN/OqM+LzGLHN06kouNNK/ZAc1WISEoRdp0QhH44BqSFDWbjM4sYS3uOOp4eWi44wQldJ3sc9Pfxn33XTg+0XUCUNaISN0YzGIuNM6mEZchpUYBOwgqStNI+rr36F0VF26ZnPoiuozFbCAVAvp2g19OWX9xMU44l792Cxc3+DdPR+3PcNhdh963pCtpPsz1hpBYmteP0Z3H1L0Uo0nMCdHgj2fgAvmL3SgSdMtSJmxKHFOqV+N6GIsNAhRX8t1uPyfTl/q8oF4a6mPN0Tsd2eWebpnTLizXXzLk14FH/3Ina6dRtHOx+s6uatnUjnO6MqF+IAnmplVkKw8r2XxVD7Zy7M8T9qdCBwkldHO5x6ZPe0wR85QiRUN3Yj7x/PfbkUqW3SgmLzzVA033ALq5AAa2kiakn3rSW8lj6Qv5u+W3pCivjy3p1jN56dmdW6oHmuJSNvLmWICE46929BNNM9NMn4rId3cmG/7JVxqhSE5FV+LSWGBFoX03UVz8bqGgZbeCFusjTbqRyU5614sN+JEl3Tgm1xXVw5xqlqIbAbWSmz39PGf3WkmydZjK0U9ilksqv52ZJ6R3LfZyg764IdQ1wVpUWdA9XAo9Y7UnGHFbcw+PUJ0TTUMIcs1aQ5iW0S0sXh5th3v2EpUm6PPTwz7ZO5TrCDe3UlicP5Dw1NV6FKur+fQ7suT8bh2f6FqhFP5uhbbHuONJbMocarUF59APz6Dr8euNrBOAPj2RyUds4FQI+AdH7F+bkd5JDZB/8FLMcuJ6o+92+FlJv8yEXjmEzUaTHWsUxaU05X2uMFUvzUeTiplNbsW+uzQCDmzdCJT5LFJ4myChyrXj5u2CdqlYvBtGek+y90yeiUW0gJOgnKK8ED3Vy98zEefK0pE/N6Rrxia/PhGwILtR470nWirRqwYlIuvBq8PuoLgOIvBOFOs3RL86/Uiev/oCuGWPzhz9RJorN/P0JtA+8ixPtzyar/n6r7xOeqtJ38/RnQAGLhPXqekH4gB48Xs03dKRLGu6TUb+NKFxmjLpeDF3qF6yzJSHLNZGq7cMuzcd6emebp/CzjJ5oqPQPwK4uRhzmFZ0vC5Xo0nG9g0on8P0qadZiPZm/kE/Ot6Vl2Jnnt31JNse+3KFX0549/8yo3ipeO2/v6R9NKc6k3rCZeLW1ZdwkxSkm0Bx1Qmtr0hpjixdqUi3OuaYeZJ9j72rCYnBL0rRiXU99mItgEXTEpYz+mPhtgarqU+zkf1jd+KuZ+MQIyQWX2Z0ixRb9ZibrdTOR0uZ/lcxVTOxmMcPpY7OUvTdBtYbwvkDmKX/y9j3/uIv/iI/9mM/xh/+w38YgDfffJN/8A/+Af/m3/wb+XIh8Df+xt/gL/2lv8SP/diPAfB3/+7f5fz8nH/0j/4Rf+yP/bHv/M1sKpxb5wXJVIJMSMz8gD5EZHjkrKmRNwsI0mOigKpz4Dx+XhCyaMcHh+INQTVt7YR/7YIEHhktU5JEtAPFlT8g8olBtcJrNO097mBMrLS16ABM7cjuAvlLQ7IT9CTZyJQn2cnkop0qvLHUx2Yce7oMQRJzQTLNXkeRKyPiofsDDUs3EJTGGYEc7T5+rl6NrjzJSlFfFGikQ082cTSqIvrRE11roKsM+Miz7qBZRP/8RuMzcdpwV5nY6N7pcSqxuSv5RnJK2Bt0He1JowBUKBeSeSJBP+FjaIPLJITIBcaiT0fr4tuLGbqOQY1xuhKsXA7ahbGYUF44rX15cLjRXcwSmCjauRrRWOHkq3sTFFlMXWlp5rLgTp6LG4h2Hq/kehoSklMl1022CrFZScbAM4ioabTCGyZtw7RNt/7ggpUmUvTuO5KVoUwUyUYaIrWvCfua4DxKRTRzsBIuCigKQpFFnrIsIPpoKdd/CJ+4a9Ynuk6AiM0dI99dOScg4yA+tTHEzEcb08iNDSHIKDpNZLLaO1StxCAghkUe3kSE5ypeY8Eo9LSUvCLvD245IKhrYtBtnNxGDr92h99bN24MnFIuIlxWj8GoyllZz8I9r3l1aM6Vk4R2YERWB845EcHrC41e5LhU1g3Tyt9LoKEep30qiNVwUIr6aAj0i5xrB6YXqtXuzEQutqGbCAggrloyYRwnHMjaYlqhXfk47dRNFILHw6ViozuIWtHiYteXso6hhS6pW/m+9bGJ3Gv5jrZi1Lz5RKPx8pl7CZztc1ljkr2gnclOvqvoA+W8CcJ7D32Pmjv1kRqR6gHBHVHMLE4ilKzDrogGIcPraE2IBaPdyTXgCrEVV0EQZ6HMRm1A7whDkF6eQZqg+xhqtxCx+TBBDVYLsOacFAxa40uL3jaHQMNhUhcCNG3UhmhhEvTR1ttwQFZBNBLOQ37vmv8Ejk90rQhBEqH3FWaVyu90z7Z3ACNUmaO2+0Mx5v04FfXnx4TEkK5azK6RtSKJSHGcViskgNLsOnnNaSm/iVKyziiFqV2cqGh5nbpD+ULewwooZisnzpGpjuyAEO+zQLqNMQJKdFIDo0KsrdU91J6458hXqY/02HiHBtkrd0IL94k0HcN9UVx5dg813VwCTHXPGM6ne1B7oYW7HLaP7xFw4pRHt2LCZhpFe6QImZLX6UAsuSEkmrtuzt3VlGwta4hPDhOIdgb1WY9uLC7XJCuFqS1tXaJ91Lo6xeV2EhkaUj/oVhoZCX0Es9W0lNAL2NqXok8dp8fDPa6jxnYIUA2iHVMxGFu38b7PFHTDY6TmdIUm6ATlZrjCkkX7cz/N4jkVm+ZghrVVzDy0C3Qzg8vyqEeTtSrZxPtYg7caV6b4XMKZE8WYRRWUMHuGWljYEZ50bcQAJ4JfqnMiUdAaFTzEkFRTRaAzsjOUtSibjPuPWPkCtDLBXcwF+PgO9WTf9Ubk9//+38/f+Tt/h2984xt84Qtf4Fd+5Vf4F//iX/BzP/dzALz33nu8ePGCH/3RHx2fs1gs+JEf+RH+1b/6V7/potE0Dc29Qmm9jgLzSQ4t4N0o4MNmMvUYjhjEonrHbziGRVhrsf2thEPXv7KgLwxmlqJb6RKHw+wazA58Lj+Cm2UEI+LDvjSoAMuvrlH7hu7RHKcTods4T7IRQZm3klYqSL4gFmZTM39PUVxbkrXsxOXLwU5P+Ji7R+BK2bBPfgWyFz37E0Nfil2maWHyTOzgmuWBWqWj97dB6Ezegl/JtEKsPRmpEC5RzD4MTJ9qbr8ktKxkPRQuhw0ovZPioi81uoGTr7TsHibcfh9AwFSK9siDVyy+YSSspw2xIID+/YzrmxOyrRT5LgrSIdpf2oT9Q0U3k0XD7gU1RYObiAuEy2ShGJoRUyvmv5rSLqBd+vgceW3lZJG0lfwOkzj+fvZ/WNIu4ORDT3bbk314Q382Z/dKPhZ37VTQk/JSOPftRBOmmj5XVOci5l1+UywJVetHupNLowWw1ehdy+xbO/pZyvZxKqmqOz8+TnWRYpGJ0AyTRJ7/4XL101RQsRfXpHeW9Fki/vZa4y+v8VWFLoQSFOpm/Bz+7GgMRtRVB88vUIs5/SvHmJsdrDaEu++My/ndOn4n1gn4j68V9C2hCWLJW6SELk5A+p4QtGSEOEfwThyC8lSCH9sWd3uLznP0pATXiV3qbo+vKglFNAbz2isoF8iuWsyuQ28rQpnhTmaYqzU4j77nIOIXJa5IRmvmkKVgFGZ/qMLNRtYj1XRCrZmW+MzQLg7WoXbfo1yIgWhy/w6pvfmtJ9n0+FRG+AOFyFsVQ0sD9VLTLFKSfYguMHJf1ycJffSwN51sxtWDBJcpdg8F+Z9/6KRJ6sWXvptY7t4WaqPqZNJh9qLByG86gs4YEuO9lUlJce3JVp7165a+gPwKAWoK2eDbmeLo3Y70puXuCyUoWH59T3OScaMsQUF1qilfekwXuHnbjDx1aXR0RGGl6ZLsEtkcm7nYqjZLSNeSN1JedASr2J/aWEwF0p3HDon3WmiypvZkH97Svrpk9WY2/h7BQK8VfWbQTp7fl1rWyU5sv4UCp+knFlM78qdbmocT2qWN9LEg7kqxsRidHpWWoM35NAZtdvhZRn2WydTkriZk0lD4eSEi+Ls1pAmuTDFXa/zltVzrIHQi7/HXN5IPUhSE7VZ441k2Wv+ONOemlXuE38S69nfw+CRrCnET7OWcbHfosweEmEoPyLmcZTQnGfmzAvP8SoqwWrQkYTZh87k5xUVL+s6z8WnhaC4NyO2awQBD72v0vpZAw6IU4GGgmvces6nBZ+guan+aBvX6Uval1GCqHrtqqB9N6SeadC3P70sr9vJPb3FHE7pFzvSJUEyr81zcs0otwFxsvk0joKRLFZs3BCxMbyGNm2t5IbTM1ZsWV0i9UFwEFu/uqY+ndAtHdi0un/tHcbLyQiidyd5z9QOa9pUOtTXoRpPdKEwjVMr8Rgx2qnODKx3TJ56kClQbHcNBtdyfe011LHqKwWtFt2If/LkvPue9xQOqm5Sz/0mJRmOm2Z9pNp/vodVsns8g8biFR/UJiVekqzCGPpbPFbbSY5PRHCEAZEfM+IhOhpmiORYDnOxGQX+osUD0ISglQYgdFJcdLjO4RNFODGjYn1m0CyzfFaCpflgCwrIxqSzUphFa7eRJRXuUsnnl4L65eL8n2XQkt5VokE5zXK5xeUo7lTUwnRhME0hWLaYyMk0ZqIJ72VfM7e433BthXsbrq0V3PWm08fV3K9FKTUrRRIaDNf2gPVFAOF7g5jnmdi9r13dwfNcbkZ/8yZ9kvV7z9ttvY4zBOcfP/MzP8Mf/+B8H4MWLFwCcn59/7Hnn5+fjv3378bM/+7P85b/8l3/D34fbFd5JuJDKM9BGiq9hkrGvBAEG6dLSdAw7DJNCkODYzelNJQtuCKRPV6RWeOPjIuO9uFhMCkJmUZ3HTRLWnynIbx2Tr12RFqkUhoCf5HSlRXd+HHUNhwoyHvVWsXozxTaB/DqJCJhwx5Xz5LeBrpAxpk/ETUp5RbCKdi5hfvctYQcaUjeTBqJ4IRezHjieqZIbyge6KC7tc0Ev+lKSPZN9oD7S9BPIL0A7NfIhzTXsHynqhw4VDHYnBb/qFNUDK2JOKwinbkXwGEygPkbCmDoOOpWJ+JMHNQQrCtpZnwXqqH3RrYjOXQb4YToTmH7Tkm7kfW6/pPATT3KrxcbXMr5eMODsYIMa2D6WBW3iQDt7cPspA5c/pElXGQ+Sk5FWld9IMun2cSo0i/l9vYiiK2WxJQhC5FNNcrNHdxZUKhkQVtEuUnRpyZ9t8IVlf64oX8LkeSubj/M0D2eoEEhuopgxF7Q7aIWpe+g9et8IajYkG7fdQev01muCuq93B7QzkUZFNrVm5DSHxBLqBvvRlWQLtC1qWsIn2Iv8TqwT8B9fK1AafXokhUbXydTDWllUQRKknZNpqrVC5RoQ6ESQUapa3EbmktWAc5g0lWlomROslt/KatzRZBSNB2sOWpzEjk2haRzdUT5mGMkHGXjHCk5yCIHsuka1MdTSe3x08VMuCNIeIL86mA0EK8WyrUSDYDuHqTVlKpo0bxXJ3pNf+6jHkGvZG0HvgoXqWIvn/dqPItFmIVOT7DbQTxQ3b4vVdroJ7M8yXAbpXdzoumEqA7tzoYH1hdzr+7NEaJNGprwuMbSLw/TE2ziptOLWZStLUeiR/9yciM2tt5BtRJi+P5MpqK1Ar8VqPSgBDXQvHOz6SKN7Tb5yuFTL9DZOgeS8QfBy7oZJczCKRovRxORpg+4cu1cLXKbR53N8ouUcRY2Xt/K8pDpoOexebN99NEEJMWTM1E6mGonB7nvRkaRa9qzOiZ6sSET3VTWoSQFa46aZFLVtj9k1lANa3rSwkc8RykhHOl6CNdhNIxPTtkWVhawZRsuEI17LYbeXvy/taNnr8/heXSePif/7SR6fZE2hFwvUan+oKaoa3XaSOh8CGjBdT2oieJQkcg7jJEXtNOWzWtZbEGApsQfePEgt0XajK59ZVei9Yf+61C3Fi73c700PE7H3D2V+cDSzirawmEJjSks7l+sz2Xqxl648LtVsfuCMZmZGFyzTBrJbJ6Gkc0ObafoScZZsAsWNFMXZWoKIXR4nFk2gOtb4TEBH3YHJpFmpT3NsFZh8KPTQbnqw5W9nCl1CNzPk15CuUuoHQXJJ8gEYlL10NzFCGU8du0cZSZzgtHNJQzeVWPC2pzKCmHwrAQXrzwIa3n3nEapX4BXrNzXaRbpmJqBIstHYraJ54HGFl0yiRJPeybrhE2lIhjVKObErVzGDZZh6+kTqELtXwgR5KRqWdqFolopuZrDRIbCPxhY+SUZwaGCSDCYE4ogpILG45kF+I/qfZikMCGHaSP2Ubjy2keuonxi8LdEukN51uFxs/4cskuy6kYlIHWMkIv1ab1t8nkKZCjA5XJdRc6aaDtPFUFPnxNAmsegHx4RJIaBGCKi6EQDN+4NlbwxQVY1DrbeE/eo7use/643IP/yH/5C/9/f+Hn//7/99vvzlL/PLv/zL/MRP/ASPHz/mx3/8x/+zXvMv/sW/yJ/7c39u/PN6vea1117DrTcolaDLEl0eUIswLWS0vFrjm0aC206OUYX8EEErfBE1IW0nwrz7U5SLK/nfLBsLiNB1ghTlKWBR3hOsZvuqQvea8sWl8G3TFH9+LInJuVAHACkYh4FCEPFaUIbqTFD7oBTZxpGuYhhVLwi7N5bVQyms03WkTdio9yhjorJiFHTKJh7wucc0miSKNYkj1YEKIWE8jDqSbhqnJ2tJIG2XgcU7QlVqp7JoJDvP9nVN8XBLdz1H9Qo/66FXNAsrqcxG0oJNIxu7T5U0K15oXT6V1HMAFdGWwbWrL6A9cmACmEDxfiocTH1YBGwlU5zsrsdUjtu3c4L12J0Zk52HRqQvwyEVVkN9KoVFtlLozqD6EPMMAvqNPdu7jOIyGQWq6V2DudlhTx7Q2kgT80JLk4ZKMXvSk2wc7ULQClW1Mp5NDLqWDXv/Sg5oindrcCXtMlBcQnK1H8Xnu9dK4b+vGxGzD6LWgDTKbT/yiEORyTXbdKhOFqnmfEGwivx9H/mbtdAU8ww1XOPRIUolCWFf0V9GP1al4HT+n3Vv/ucevxPrBPzH1wqUkgZiX0Ndj3z3UOZCk7q6ORRYfXKwPiUix1FHovIMX6aYKoO2FXAjTSRMDlB1j5tl9BMrIWFR5Dvw80Mi4j9T96imo3uloCu0TB0cmNaLRiBODAYKqN0b7NUWPAdL7zgJAcif70entlCkks48CJxbcYvKFLjSUp1YTOXJn29pH0zoZob6SKzK7V543N1c6ErpqqefSKHTzYQ2NXnpaZeK6vUO3SfiqPNwCNySzVt3Qk3zlpjOLLoM1SPC+mg+0ZdC2+imMu1UPRCtw10R8KWjXiegtDzfB9q52IkP9IX8pufu8yntkWfxDSV86suedm6ivg50JZ7+KsD0qUOVsHsov5ke8j6MQhn5X58MOjg5H71XTD/w6G1Ln8lkRi9ToU6s+jErpJtEGm4VaTqJwm477OUGv5wctEIByQUJiOXqvsNsG/qjQq6V3qGsoc8MqtGCNKYJIU9G1z3T9uKAdSubfQBJQge0OibkqUxG2h61rUT35NzYZEgR7UQf1fWEtkLNZoewvsQSMoMKMchwMHxw31lI2Xfr+CRrijAp0FUvjUjMCwpdj99HDYdzqL7HpImsqYkV7n3fy7n3geTF3Sj8D2kionfPwfZ4MAqIhiJqs0cpRfvlJUFD+cSPuVBiNKPkNaIVajAxmTszmEKs3od9nCD6rGaZsHlNmpBuGrA7RbJXlC87glO4zNLOoTnxpDeabCU032TdUbwIdPOU9RsJSSX29JvXNM1xYPGuTAd8B3iojsWUonwhGs0BNAShTwKgYPphoLhxXE4t3TTgs4CvZdralFLEh8xhraM5FqqpAB6B4pUtXWfwXvOZsxua3rL56kOxAX+lJlxnTN63tHOx9K8fOYIJkHroNGarSe+UuGZm0fHzQYO3hm6aigBeI9oUGB2tBidB3UV6p1V0uUyNTC3rRnHraGYCpAyRBtmNNA3djBg+rbE7AXWGdb6L1E/nhyymQ9L99KMKc7vHJ0tZi6JdtOkC+a0jWbU0DzL6QkOhsXtPcVsTVIrLNabx6NZjb/cyTQdCnuKmOXrbouoGN5/jU0MSLb/xsTyNjQgDJTl4VJ4JeFkU+DLFFRZVFwJkJDauHd09irPUK369wW2/M3Tzu96I/Pk//+f5yZ/8yXEc+v3f//188MEH/OzP/iw//uM/zsOHDwF4+fIljx49Gp/38uVLfvAHf/A3fc0sy8iy7Df8vbIWMz+ShTPPCLsKuhZVC5Loqhq0whwdoaYTQi7hQ6p16LUgFKpqGALfQpERsoTmQQFakT/dQNXAvhLrwrLELUrcNKU6TekzRX4l2Rzq4amgnall/fmZIGjPW2wV7SAf5tx+3nL0Tk/xoqY5yfCJ4ugdF3nFCt0EdOOkqFFqdLyxO9EzTF44mqUeM0C8FZGU2cP0o8FdQokAy4iH+GAxp1sRVbpM4ZLoXHEHR1/d0pzkPPmvxa6hiD1YUKL38Im4xwQjAWXJWtH/hwXz9wNJ5dl+RjQiyVaKBJfJRuwTsbULFXSvuzjiVCQrTfFcj4GIg3PG0ECktwa7VaMF4LBAeCvTEoKMfSdPUvKbMHqSD0Fow82vO8ivlGQPMPC25TXrY019rIGE4iqQ3Srqqym5hu2rkF/D9Jmnm6f0k4TqROh05YVwdtuJorx05C8bQTSVoD5BKUKW0p2WrN7MKG4c2V3H/Kt30DvaV4/xmeH83zqKZxXq5TUsppAmzL92Rz/Pufzdc5JtYP5+LQvJeoc/nolNb5bipzmbLyxINo78xU4c3kIgWUcELuoYaBpB9k1E4pQSt4zhCAHdtkLJSFO627vf3o3+P/P4nVgn4D++VoSmgReXBOcIXS/nBqI410OaCge++zYbY2PQy8WBV992mBe3snakh+JAdbHhyAy67Uk7J2hT76SIQOgWqnMkL9eELCXkFrt1YgV7XQtvt+0JqcXnlm6e4tLoApMa/CTHF/eWbK0klV0DRmiiq88eka08xdMdbprSzBOCzg+cbBctcjPN7jNzTKQqlnGK0hUyhfPRZS69a0jWCl9YqpMCn8LuXN4zf5qQ3coUdfJUgI3qNNK+dgfgxQwuVu2B191PoTkWWpdyiumHMpmoH6hRl5beKXQnxhtJFdi+ogHF7ENHmCvqcyfJ5CZh+iTAE3luVyr612RqqDtpikzUfwUltDOA/NpLoGOuRkoMCFgzfepop5rqVGzRs7UnpBq3yNEucrfvYiMRAm0iU1PTiEuNCqJT2Z8alEuxdxZzcYfxgf2XHwm9Jskwjbjq+djIJi82MrXMhaIpTlmxId5Jjkh3UuKNEn2RBz2byj3v3JgZFAC6HnPTjRxuygIzWEsP7ledknT14eh7oSmnCdQN+pt3qNkM9/AI81LJfWS/s5Cy79bxSdYUrHeo1x8LJa3tZD3oenSWEULA1w3ai45LGS3ncbBHz/MxXdovJvRHD1CtR3dOhL6ReuuXUzafnZHfdKQvt8LZd57lr97J9Ov6DhYz2teOJL9sHXU9RpO/f4uf5PDGJDb8keqXRI2CD9htS9CKZKsP++5WAMh2blEhUL50FJcKvgVB+5h3NYARbmzEu0ImlspHG1ste7Hu4rTiccClMuVYfN1QPg/sH8q9byppRrq5OH92pWb6oQSzbl8PVI8d9Zda9POc8jmoytDojOVT0avWx2L5y79bYLXs4c++UaJbOPpIXMVMW1CdBXZfbLAXKdmNHh39XArZLRx9o6E5sjQLTXYNptLUp1Asa/z/rqH/1pSzfxe4+5ymeuToTh14RV8mMrVdBLJrTX4lzYBpBstdxYvfK42Y3RHNhBTTp9JwrN6U85bf+NFQyKViAd4cqdGZy1SKImrLAFafKyGU4rbVS01lK0d2247gmN07ce/cdvTThMvfvSBbB7Kb7uAymEZwrIk6sUz0uADtIqUvNXbTiA51VxGyFHc0EZF7JbUBzgmdsywhO8GsKsxVbMATi7pZyZTUe6kv8gNISpFjkiXc/tb3uP6tH/LbO/b7PfrbQkyMMfiIELz11ls8fPiQX/iFXxj/fb1e86//9b/m9/2+3/fbezNjpAlJJJBptPMdwpyCRw2PiRadAxqhenfQjRgdrTktPjV0M0s3FUFoyBIoC6FkFRk+tbhEktCF4iACVdJkfL5LVXRqCpGXJ8LPvmC0aQQp3LPbnnTjI/0p0nwSPYbmKS9iMlsFsZiLm/mYI1B6fBLINl6oW042fNMMxbeim3n6MjYqcQqifLyptg22doQkRPu+gWMenTByJePEuLHqDrGei4J61clCJ4J3BA2JXPQhqAcgRIXqYPNpGvmPeNMMo0/dSMLxMJodbHVDEvCZxxceN3M0J4H9eRTFVRL+Z7qDDaiKYjl9r65ULk5WItrczkSwlq0D+ZUkqfs0jPaHfalp5wde5mifp0E3AXu3lwJ0fAPwZSJ0l5yY4aBRdxu4vhWrXmKq+qYeaVUhkfRSs2voJtGhp5VArLDbC+c7s+M12hVaMkQyyQ4IMYhIV90BeXee0MdAvd6NIslBXK2SmLSc50If6D5ZlPMTXSfiEepGUMvBtjSEw7kx+jcmrRsjtuBx0RXbTi9iXq0lf0UpodL0/iBEdUHG4dH2dzjvQSkZf9ftaPFsaofdyXREReczVbXoqsPuepKdOK+oKFQfAul0tBgf1gwQ3YE44GgZ6RuhcfQTTTfR+LhmqSBWsu0kXkeJwtY+FtHEkMZ4zqLzmuqiiF4dGnq7ZzSYSKowcqgHS8tBsKqbgVY63JdDA8L42ZO9CGrFnhuG1OX8RpoQ5cIoKgV5LbyK1ErJPcrWflwzXDSvGGxEB8rUEPAYlFBOxDwjHJBnHdfcSigQsl4F7D4KwxMdG5sDun2/iRnW0AFcGrOiEiNNaSshdwOVa3iNoKMAuW4Iu72YVmgt19UAJDgRkodoExysFvOCwUjBWmlg8mxskEeNh/MM2RjjPjgg9EqNa5F8HrmWQ+/w2x30vaxd9w1fPsHjE10rXI8vokU3CN3bGEgSoZ0EL/TNpjkEHForQGUap6w6ZozlRjLJrD6sGzF/rJ2KwFzWCE2wBr3dozb7sbEZnRddkJyY1KL2NXpXH+xanRTGYkMdxqmLBJSK3ki3UeNQSyE8BOMlO0+6ctjqYB3b51pspgdLbC11wMBacKlYgHt7oFj7qSPM+lir+Nj8C91Lx5rAFdK4JPtAtor3aRI4PtoJQyIgQYatls8TBenaQXYTSFeQrqF8Fpg8k/sx2Xux1G0VSdExGHCI1bgI0bO1J7uqsFWkQEULYVcZ+l6zmFSgILvrx8+kc4cue9qFp116WLb0E7H9Ha2+Y03UzZ1Q2LpD3ZXsPXbnxzrH1jHENlKt70cReBv//ySaDbWBrpQYh4MBifyeuhbXLLFLj5a8rUzu+yIGVN+vI+M1MzriRTOD4XcNmsM6EbUcPrWHyVseAf62E4Dfe9mjdtG2V4uNL20noNywfrhI1Yr3zXdyfNcnIn/kj/wRfuZnfobXX3+dL3/5y/zSL/0SP/dzP8ef/JN/EgClFD/xEz/BX/2rf5XPf/7zo9Xe48eP+aN/9I/+tt5Ll4Xw13ontBNjoDAjqqmPjmThzSPy0bTjY8Yk68jtDqlF71vMfsdsIzQttdnjzpdc/YEH5Hee4rIdnQ2Ofm0lgWSPJiSrDnW3QSUWlViOf7klJIbmrKQvMrFwvet5/C8DLtfsXynJLwRN76eSqmpquUB8buimdrSMREH5wo8bn3YhFvDR73+rSbaKdO1wSewAkIts/1jhTcDsNa4I7L7cYl6m5NeKJhFnKPdfnuATyF9Kk1GdaJJtIF3D/qFs/LOnAZUK/9Pu5cbaP9AjlcNUimzVUR9b6i/UmBcZ2a2KoTyQ3EpWhmkU9Zmn/XINz3KSjRbaVq+YfSBFRTuD6jywfSOQrIke5ZBdS+jRkDp6+wcavvTWR7z7jz7P5LkXhx4jRY/L5XM3xwFXeh5/7pKqs9T/6gF2HZg+l3FqNxFhfB+Em56uByeywOotE3MEILuVhbMrI9LTQDs3+C8e4WJmi609LlVc/eCUbB04+fWabmJpF5bcGtj1ZB/dErIUP02pX1vQ/K5j0rXD1g6diWbl4b/aYfatiBNnJf6zr7B/tcSlmglg9h0P/uVzaUryJDooJeirtRQduXA2VVlI0XJzF28WBQMCWNVwdkL99kPyj1bw/AK9mMNv1K39jh2f5DoBoE+O0L0m7Pa49Ro9LJCDYPU3cfdQC7HaHLRjAGE+pT+eiDNJoim+cUGoamgTlPu4Z3p/VBKsIn3/Shy4pqUs3vOJaKPanvRyBVqz+uGH0XEvjtKVIlnV2KtmTHv3ZY4OgWQrQXV615DeJNGdSdaD6XNxS6seTUZLxurYjpulyyR8UxxXArdftLgMlt/w2CZyxFeQ3QWapWL7v5/JZt/LtDUo2eTFpWWgVkWNSxAEMhh5n2wjvHOU3Jvbx3J+snVg+kwQvnaR0E20THonorlyOVTnMatnLzo5nwpVgwDtVJPfBd76f3VUpwn1kWL3KOpX7iJwU/uRq74717SLCIDUkD510RkrUuJ2cm+3M5i8VHign0n46Nm/bw5wnZeCYPbOin6ec/PlgmQrdAmhg3ouf1CC0h78qghPF+/LRKM9KVFHEkY3TL/0phLLyzxBaUVIxSJaAW4azSX2rTQl88nYkJjGoZ00LqFI0EMicttJ4RGzj1QIwuFupcEd9GD3045VtAKmKGSvjK5ZAoAozCuPQCmSZ7eioxr44J/g8UmuFSrLBBHe14TNVlDhyVIaxL6XuKc0PawNQPf4CJcb0qu9OB8q+T2K9xvcosCVCabIZGeuG8zFHQ/2Lepug7u4Qr/1Gu5kSnMcrVRrR7LtKL7+Enc8p19mVEc5QcG8kd+4z0fON+mqJ7uVNSokms1npuKI1UJXSiORbj3pRqysJThZ3CGbIwkMNFUgjY5x7cyMQcviMin7qjewe80LkBlA11A8NygvyH+7kH0x2TC6zNmd1Aer73PY0wr1P0yklnqhyS8t7dcfMDEDbVyhQtSSuUiJUtDN1BhiWlzKBHZ/LutWN5V1wn9lSjsPVI8cTaPRTqYT3VSzfnNJ+TJQXjpWb1j6Es7+xwRvE1avTsn3sHk1kVw1D9nXC6Gzf/+GpkrI38nHWkZHzUh9JLXA4qsWuxfaWTvVo1upclC+9FG/0VOdJuweiU14ceVopwqTKPJbacKCVkyet2TvX7P5gXPqI8P+VOioi3cr+oll//kZ+U2P3XRiepQo2kWJ3Toe/39eEvIEN4l7vILqXNab8t0GvatIV9voEKspnmzJU7GADgrsrUzcfG7w8wKdWPpFHkGmmhCCWFgPAFx0klVpCkWBO12KQcvLK7lnilwsfJvqO7rvvuuNyN/6W3+Ln/qpn+LP/Jk/w8XFBY8fP+ZP/+k/zU//9E+Pj/kLf+EvsNvt+FN/6k9xd3fHH/yDf5B/8k/+yW87G2DIAQEEmbpvpUkcLw+P8R7VeWlA7tnxDps4EK05W+GNW4M/nuGKJGZ4eMy+x2WCKA05AoPg8GNHK1ZpdiuWvi4iGxLao6NPfuSBBgmz6guFMSJmbBbiyKQj2qh7CTsMKvKPG8bAHruTG1GCswShVDbuWR2YTpqHvoM2jToKAyEuJkMi8rC4BANmG5uNhzI+rE706MYzCLlC5KSavYpoZ2yQVlLg9aW4bZlO+KmjfXCrcNuEpFdj2JEKUrgMC5/viWNnaY50vLG7Qixvk10g7C039YTBBWgILwz2gN6oXlCW211B1xlGkKcLUfAljlqDrakKguIInBli6JEsfCiol3p8nPLQo0dkWoKFOARMuhAFyIJEkmUjmj0GXw5IxYhiRLvezo1Fh0+MnAslCIhqe8Jmh5oUhCKV72y0pPqGIPxOL85dIaaqqwHNHzQQEbkwnY8CbQf6N6Ep/A4en+g6EY/g/RiCppT6OK0iTQneyzBvmLAO4XF9L49NxSlPt72gVL0En6k0HYD9w/QjTiO8EfHxx2xQ74VkomOehlxigoJGao/kg0jGiExt4lp1H9mKFuWukIZEdGWC3A/IvApyTfc5oIh5APIeYyCXluZHhcNHExpkvB0UY0Bhsg8Hm9pCeOHDFHWw+Axa7lXlA10pwX/BMppOjKGrSs6ZjxxsrUOkdsl793GycT+ZPWhZwwbamu7jBFgxort6CHx1AdPEENJ9vL+HU98HvIkoZXz/warbx53R1D0ut0KP2PXozo0ceAmRlHsWEK1HEyenXooa3fnxMwetUCbSTeCQ8RHvR+UDoZSxdTD6sEfc0xeNiedBxVwa/7HrTj4Y0rxqJSh6H/dAa8WS04cY3unH6ceYqZUlsl7cbzacoPkqz1FFgavuWfl9AscnuVaEWAMI1SQ6h2kt52tEk4fzLOdSNzGTSWsYtEVBHay2TVxLXKSvKDVaoZqzB/g8OaDl0WZ6CJ8UdoShz6K5zPFE7kUXhGWRKdKN1CP9LD3sQx50G7CVIpgQYwJ8NMnhEBg4uE/1cv94q8b3OpyUA7vA7rSYzGiiEDvus/eoRX0JysfQ4SaQ7CQeAA57p+7vLWGZ6EMDoJwAjaBoF4Nj5oDey7rh0sjsGIKN+xhcqhW9O+hyh0ZmEJi7GLY4uHUNdDPTEiehCtXp0WJ8u8lQlcHUkcERqZ0ulfXdG/lMKNH2oaQ5MDGOoZtIPedyoclnt2HMFfGp/Na2koW/H80x9EiNlSlpoJslBCvsD9UHdNtjN7KPtEtZ90MujBxhosgU1dRO1vgsBVrRjuapUIVDEO2YFeMT4gTQVBKsK2tD3DuSJE7kzb39KnzsPxXtq70ThoG6v89+B4cK9+NJv0eO9XrNYrHgRx//aWwxEyT421GaqPsYF/HdnrCvUK8/xpcperUXBCFLDxfu9Zqw2eLefoP2KGP7OCHbeOb/4Qq1q/DrDeq1R7h5LggU4ItELFXXe0KW3NtUPDy/FMrW+TH14xmb1+zIWV58c4+ue7plTnOUsHnVjAnG67cU/SQw/SgGfcXJCEH4htk62uhlkF+HMcFzoAE0SykOsptDsmefa+ojybzoJ9IoBC32cz6B5txhV5ryhWL+YU921fL8D5Q0x4H+qEdvDdMPZGxqa3Ax4XiYEMw+Et55OzNcf7+if7Nm/osFxbUXukguFsPpRlx3moWIVE0ri0R1Jt89vzpcuAM9qz6RYJ/mTIKVjr7h2J8ZcQ4rpMgqXwilqjmSkWyylfMWNKPYrF1CegfLb3VyQw8NRKrYn0iTlm69jKzvWnxqBKFqHC43XP4X2eiyI+mwMP+wxux7Xv7ITBCrD/vRNzy9EwEqkc7lc3FGU02HL1P6MiHZtJGSI/7b7fkMs++wVxv8NMeXqSBsvce8uBV6UV2jj5f0j47wcaNLX24ExbtdHaYfbUdoW9E4JJZwtwKlUcs5g3OL0JVa/LLknz7526xWK+bzT1a4/jt5DGvF//Hs/4rZtZIR0PeY8zPUpCRsdnK+TpayqN6nqF3fiWVmlqHKAvfwCL1t4PpW/l1pwqMT0WPtakGUprkg1UaNVLz8/WsR9GWSxu4n95q+wV8+t1HcHRv0zlOdp3SF5uTf36D2Nd2jZSzeYwp3Lw5aPjVUZym28kx/9QWhzOlOJnQzCVBFySa8eUOTXwXOf+EZ7StHbN7IqY9FrzV95sXlLRHqhsvFaSrZ+UOjr4hIo4t+957bL+RUp4r8WigPxWWPzxTVsRntJ2++aGiXYcwHsHvGZsFbNSYTDxQqW8HsSc/+gaE6l9dOtgfHma4Ul692IVkm2UosgE0rIs1gFM3SYmtPsu4lJDBRY15Hu7RCI9l7mqWlOlZjXsqQoq47oXVMP9xTn+Y0C8PyK3fo9Z7u0RHdPGH7OKG8dJQfrunnOS43ByOBYVf1v3F7NY1n8P0faW9OaLzdMpMMgH2P2XWYl3cjddgvSlxuRQNglISd1p70Yicubr0Tila8dlWSSMDhIGqPh2o6mXrc14ZEcbY7X+Izi73eoZpWpiCxRPBvPaY+K8h+/Qn/9L2/9alaK4Z14r/S/w1pOUMfLfHL2Wj0Ee7W4/lSiUXlOSGK1EEmS/7Nx2KfDGPYoKALMPnVZ4Sqwr/5SLCp1Y72tSM2r2aUL4WG6XMzUmu18+iqpz3OaWeadqqlkQ8CEk6ed+zPE7avak6+0pE/23P9g3NcLnRG23iStRsIElKUOpnWBKslEPfYsnsse2dx7WhnAoDuH0UWQpyEDoHHaKk/hiZod65ZfV/8/kGRXYheonooHEy70xQvFMtv9lx/2VKfeR78ewEyto8N/QSaZaCfesLEoVcW00jB7YrA4rO33F7OmHwjHSmbyZYxz0v1QueUtYjRvnz/UL50+SJet7FpCUYmpqYTF7AQKZqmCSR72D2S5ie7keZEd+Lq6RN5XnHt2J0b+om8vsugOvfkl5oHv9axfs1SP1C88s8rkqs9V7/7GB+ppLOPespffcruB19h86pl84Y0co9+Ub5MNxW3K7t3rN7M6KbS0Ay5T9ldYPq0Jb2p0Os9/sUFKEX/Q5+nXabszg3Z2lNcdSTX+8P9nia0Z9OxpujOF7RHKdlVjd5Hpz2lJKOsaVGbSItQirCcEYxB1Q0kFjfLZa3q3OG+uL0T4KwsxLChqlF5JkYPIdD7ll+4+H/+lmvFd30i8kkeoWmBWtAcawlVJep9a4XzHYIgmYOg1FpU1aAHzm0I6O2eUGS4WY6OXFuzqcmCiLfSVQ+3a8kd8N82+VCCRockjtSbDuUbusdH+NSQtsKT64+KKGSUHAtbBcxKeHbhpMC0nulz2Zh1G4Su0CiyuyhEW8Rwuw5Q0E1iQ1DB5GWPboVS0RwnVNNo2duJ8FM5hXom04R2GRHSXhJFRSglHEUwJDsZpdYLQzMvxPbyTpHeJYJuhiG748D/FCQRtq9I4qsgDop2m8TuH+7eDugGll8feKixENnJ/x8MJDsRwtWnA5IpyKRpA64ANGQXhmQrUyyXi4g9XSt0IwuUS8VW1FSxETmWRSTdRPQjam0AXKHptWIIUOxmsvjaWjj2wWQHrmXUjEyf+XEiMmSX9IUdw6UUjJx6ERBqVGZxpVgN2q1kRqjOoeseoxR6LxxLEtF7qN6La1b08vZWj6FE9xHMsK+xL1disBD552MYFoJEBKMFre97KVR8AO0PVKP7GMRvlrPzaTr6XrIR4qRIaUGe0Eo0Y7f33D0iOuzbVrQzxsj5uzd9Hex/qTuUEVtkeiUFhBXdj8+EJhPyVNajupUEbKtlitp7fC6PcYUBLwFlAxJud2LNK8irx2wbQmpxRSKBg4VFtw7dOsrnDcoH/GISww59FDRKYe4ThXsu3PDu0RKfGdKtj250ghSqWORIEKaKwIinO5ZCPlvLNdIc2disS0gnHDjTfSnFTDsXAwnhhIN24jSjHDEJOE42TYiTBUEl+1IalXTVi1PXXNYslynSnYuugRpv5F5N9qIhCRZ6owkTSbo3bUA3EgYYZlZSkW/kuq8XqYhIg/yW6VYcAXUXAxE1UfsXJHhWyWTUTaL2Qt9Dd4NY7Q6Nh931YBT1cYppPendobFt54Je2n2Prj0m7kPDmgKQ3koB4aMeKMwn4/NV7zERAMNDdtOMesPBgYmoeVKRemhutuPkdWhACGGcDIprVieOkolkF2mtCdngAteMgcH6bkfRe/x3mA3wPXkET2g7Ql2j6vRjf/8bDqNRQwmlFXpXE7qEkBls57ArJAQ0idquNKU9yiUr4mZNcrVn3nrMvkX1ns6WYBDef5DXtFWP6jWmM+N9YtqAqXrSjZEcC+R9bC1U4uKyEyfMmSHZOkzV0xxnuFwdAvAYaN6yx+perneAdKVGpkEw4hpna9B1oJtIknd+LZt/MJL/43LIL+N9kottv+4j2yFXpGsJEXapgB3dVJ7jM2lYzLXEAYwW/7niNltgKo1PBzF4GANUtQuj0xRB9lxvZb8ff5449QituPrVJ0I5t5Un3UgN0SzjBNQINdtWMa8sHHRmw/d3uQC53Sy+gYJkK/QpOLBF2lkCvhQNbgfZSmIA3KNjCJCuA8WFBFCaRqirrtei+esHdy0BhFCyJqc7j6miPqzIJIzYe8yuI+896cYIs2IITDUmTluVuPP1npBYzL4lcx5XJrgyIXtvJ3WB0fc005H1s69loqE1NB22bsf1ZayFB7q3tRHc6GSimiSwmEmxefFb33bf241IXeMbP4ashNUav9mg81xEwBzQCzW4Bu0rVFVLwFAI+Otb9OkJ/aM5ZpOiqgRu15jNngmgtzXu8hKVRDHa/fdXkh0BoDIrzgPrDe2XzmmWBtUvCFZTP0gibcBHjl8LV3egFf6tI0zlKT7ajK/r0zntRFNc9QSjRpF4svd0pfAQk62I18tv3o4c8r44pS8M2Z0sLHdvB7Bi/dlPoDrzJFtFshUURMRr8j3yK8aAo/UbhvYoULyQqcrsaUc3MWxeM/SlIAHFBSQNuCiI3z+SMWdxEYuMGyPuOLni7R9+n689O+f4v+vYvTnl9gvyGU0dqWFGJhXtQtG82kKvpKjrLKGKoYYtLN6Rm90lshh0R57Z+5r8zmPqGBw2UaRbEcTVJ4L2mlbGw+m6H4uyrhRO+mB/3BxFFHQl0xt/LIXSsDibNrD4mhSrPre0i1S82GcalBnHuTLqlsVdcgNSqlMpZubrJvrDi82j8eJWQdPiHp6I41JsRNpjsaNWIaCq7iCKjxaa/m5FuLzEzOeilRr8/u+Jw5S1YON9Eq8RhREb2m8bmYZPmPf9iR99j5rPkfRy9zGePH1Pf3UN2qDTRHiviSUMglSt4nj7cKhUMoNU1RwaOufEgchadJIIfS6T3BDVGbhdiaWy1dA5SXdPU/rc0E8MpvaYi90YbpmmFtPaUWysbzaEMhe0tbD0E01x6dFVh3l6BVlK/bkzmZ7te8y+g94TMkMwmmRlcKVl82ZBuvFkNx3ZDaChOZLU9GTnMFahndhC2trRF0kMH5QiYn+mJRfgTvJLsjuZQLhUQgL7iQR+mVpQxfLC426HEyf3b7r1lC/aSF+LjYjVNEsjk4ybPXmq6Up5774E8yzIhp4mI0003XiSraNZmDHbx7Qwed5hK4fedwRTSIBbI0W4ADSge41tAtmdZ/LODWq1IfzeN+gzTXbXE7Sim0ar3DrQzRMJIWzuFaUemaJFOp0kZWvaWU66JYbSyTkOxyldqSleOPSuEWFymuDLXMAEo2Tq2XXw+JSQGbrjEuW8CFN3ohfy00Karac3QiGeFKO4XW/3IorPU3nsiwvUZAKLqQB1+0oa8ticBOfx+z3aGAn7HGhGUbSq9gmKjuAd4eUVPOkI2XdGt/iePEIgdJKsrq2VmuHbhPLDMayv47HeymRkOUNv9/jLa5JXHuKWpZzvIqd+kJBuHGnTEq5uULsdarlATSaopaz5Zie6oJAZzLrFOke6Sj5m262ajkwpVKy8u0VCtnboLpA9ucMtS3aPpjIx2zbs3y6pjxXTZ2oUt+teHDFtE2lbSkBE0wX6XFwynR3APE+6FSaG7hSLr1dkFzD9yLB/XFCdaCbPHbrzeCvBpwNlsys0+W2guA5UJ1LPdHOpPVzpyS8si2+5MfW9mUuye7oWPUe7CBQvYfY0NvVBCvi+MOweGbwCEOqpi7QyCRONTVvjWb+l8W9WhHcLkq2cp3ZuxumJ2IAHkl2cDBWK+iROU9JIEas07RLahdz/ulWUL2INQaScOaiPTazZAsnWU75zRX82Z/PWRP580WHrYV3pCYmWaW4X0J2juGpxiR7rhnTtSbaSGRRSi5tl6MRItthmj3pR0T9/gTk9JTw6kVOUWWFg+IC+2zEEe+v1Hl031D/8On2pyb7WEpp2DDcFDhSsuzUEjzpaQlXTv3h5uPazDJWm6OPlQaTetHLvONFDueMJTerga7/1bfc93YioNIUOQXnaDj0pUWWBiuFBfrcfHxv6XoqR5SKm0krAG5nw5ZJNO9IywmImj+mkAFBZhnlwgn+wEFcBH9B3W0FNIyqp6k5CEicF+fM92Y2hPs0lG2InG4lpPN3U0j0qmLSnqLYnu6jGDWdEN5/sKQHVOVyZkiyNOERcd7SLhL4URLAvNPvPHTHY9+k2cPJrDfvzhG6qOPkV+fvqTKYFulOYWjiXzVLRBPHc1wO1K1M0Sy1c6laNk4LtY1ns7F64nqaRv++msPxWtB82kua5e0Wxf+RRxw3diwK7C3zlG6+iKsPVDxfUDxTVuSdosSTOb8I4lcivFckmHalj+bU0EEGJ93f9QAS2xbVH9WYcU5s6jC4TuhPKWTfRgnDES8Bb0K3HFYZ2aqLmJqI++sCBTaI7jksOI2AQXujq7Tm29mS3UrQLF1Ru3maRyIKolIRY7txopzh7r5ViYttI8zkvcZOUbmrJjEFvK/RmD01C83A2TmCSjVC7fJHgEoPpndAlahl/6iIfuZ1ET3v/8ESanZvViIqMqaepIPOAhB3mKSpLUW1Hv7nl03z4fYV3d4c/361QGyPnyBjM0ZGgQllG2O3w2x3m/EzO6fWt2PZGQ4AA0swN7llDU5elsJxJo9nK2Ft1vXBqrcF95jHKeZKrLX6S0c+Fv25rJwLm3oMXLQCplTyhjZfCc5JLU5FEtMrLfauiBmHze98YGwmnNH6eYqoe3fT0M0Gt0mcr1OmM6u1UgJGdpovCVFMHTGxg/CwR4WWuUE4AhbQP7B/YiAJKEdOXZgxE1L1QNgHUVvQkxbUn3XTsT3O6maK48qPmxLQBs29pTkuapRmpEtltwBtN+wPLEeEc6Be7hxafWOoTRXYTOP5qTXWWsn4tIV9JoRSUTDSqB5bmyKIfZcINd4H2OAZ6xRRkW0d+dqm5+6EHwAPhRXsRsgtHW3JKklWDT2KgnJJCaPK8I9n2kCZ084R2YUXj5TzFVQwoLFMJ9+oc6V1HslXoTS2TiMUUn8uEy0TXO3e6BCOaH4hTkH2L2jeEMhNx+raRqWgRE9K7XuhbcSISmhbqWoC4yQSWM/oHMyyglB4tZilycWBbzA9hhVcVCtCpNN4hFicqSUa7arf99K4VejZFdcg0qq6F2WQMJClK6Y/T2UAmS33/Mf2d7nsR90YrU7NrxagCWP7SFapuZP2ZlNjjI0KZ45NYVzgv4ZRGi2nCMqObWOxeagNTdajGicOWC+AD7TLFFXFd9x612WGUIr8thML3aMrkRU9xrdidG3SumD7tSNeBZIvUD6lQOAegIOhYSG9kOtjOBWzI7kTnsP78bNSJ7c8lYwQMthI9WF9C/cBjPtTMnjTsz1KauSK/Dfh1oJuKFiO7kdcEaOZSQ0ioYKC48tRHYjTRHCtcltDOEXbErbAybCU5Z9WZIr2TqUZzrEZsqCsU+9M4WX6e000U21fS0Z2qL6Pr1k4E6LvHFt0IAJhsZWrTRlqaS4hWvdKADK5k1Zni6kcgfyoA7+RZi6kdq88JAOKzU1QPyVaAHdUH6qWApN2kwFaB/FoCCat5jks1LpXzqlsJVvappn40Jb1tMJuGflkQrEI3KbrMMN7Dco6bZmL7X7fi4poY3MOF7Betw08KVGJJVx220oT5VCjdVzeo2ZRwsoTotKkmJRiNO5mhuhKbJIT9Hr/dSe1hDGEn4Z+UkiuiskxcarMUc7Mj8/8LJat/ooexIgDzgdCJhdhoT+gcal8JjzsEoUE5L01KYmG7F3GqFWW33kuxiDH4MiMkBwRNZxlhWtIdF0KDah2hblCx6BysO8MkxxcJ9kKQ8/51WXySTYeppKPt5jNB449y4QDf7fE6pzvNMZXCKoV9uZJGKRsSmHNMHbCbJgrZwJciIK+ObRS4wfRpT/bkjur0FJcojj5ocalm/Rnhqup2+C/erFr0FCrINKSPonlbBfQe6mOhYTVabG7TrRTWvhdXG58ETDWkuWpaq+gmgTDvWMwruqLAVpC9EGeG/UNBQvysp98m6E6R3QlVo5sqVB0oLyQlGZTQP7aePo92u0swVfTqHwYEnuiAc2goBttiW4c4QWEs3gbxWtAcxLp6oIwQLX5FAHzfltNbRfVAiznAVmg6QuUaxKuCXigfYpEo16VyHnu1ET1GnoKOFs+5oZsakm0iYYWrLfg4RYkAg3IeVbWESYpPDbpIR9RidLtxTja9+Pf9LMNUGnODFMnGjE4ZY64ISOEyCCe1hptP90Qk9D3excRka/FVDcFjFnPQKSpPZJSdWNhXMg0pc8IkR92thKK1Okwtx7yFJBnpn8Ea0Z/5IEGVwxRKSdJ1c5KTriPvv0zF133IGbhcCbAxOGtZHQ0PvBSlSigbwYoYU8XppfIBtGbzWJby5be8NLsGlDNjto8KiPVnWwqVIovWvoUIXstK0nwHi94+BxBqxUBtrI6F7io0C7EAdpmIW7NNtA/1ct+lm0C6cajWC20q5s2q6DylnBTZMp1UNMdCEU3XAp40R9Goog1Ra+KpTixdzB8xlSK53lGdpzRHinwlUwuTizasnQ2ovRpTpbuJGdcIE193sCLdn0rC8uxDL4GlVgSpLonnel3BJJeU48yinOQ76E5+Ex+Fwy4TwXqyiU5nmZHrwUtDAYy8bJdbfGbxmcHspHl1RwUuNzGVXoAO1TlU1eCnBT6zkknhvRS3IQi1M15nkhkS9ydjULMpPpMQMpvdm+prPTpHBqVkkrLZ4tdbQj/spWJLi7WQioV1sAZ2v/mE4NNwqDQVXMH7SMuMOSw6iv1jw/Exaa1zkb4mgvSRHp5KMKqqGtzRRGx4331/bGbMYk6YT4SeGddl5cLBWtyKUL1Z6BHUUr2Xz+BE42f2Gj1LcBzowqHrUHVDsuvpS0M3M0Ld7BybV2ejMY2pe3Tj6CcJfSE1wsG4Qu6TdBfIrzrq45R2DuWFRzvYPjKjOL1dBrq5p52bcT/1FrH11Rp718B5issV9lLOn+6EmpSuwkht6iZifuGtTGZs5TGlAJV9Ift2/dARrMellnQtQKpPFO08kN4dwAUfv4NLZS1RAdJbATvamSLZxXTzTIBH04kDYHMUSFcK06r4WuoQI2CJUyRFeSnAsk8U29zw5S8+4WvrN0m+FUjWLbrpcalQ8l1myFaB4rKL67U0W66I+g8VKF94upmlXpjR0rebil5Od6IF7CaaZK2h7fDphD43GKsxWpFsS3whdQI+rgkuQAr9NBnzZnS8buW3Rxz7eofb7rCTUvavXRAAIhdLXlckqNRAmKK1kr0tSQWU2VcC8MfGRKXpuCeqXYXqvjPXrO9tsfqr/zdxPKhrQiVNhzIatZiLWKbMBUG+HdBhS6gFjZKTlqBmU0E56xqOl/hpgZskYJQkrHZeuJ+pWKX6MokCUVkc0utKBGbRfQUtbibeavrSHIKvfOTvRU5v/bDERySxnRr25zp640sAT3pb4zOLKyz782RcZLqJ+Hjnt3709R6EpKYVKpEkM8sN5zJFewTJGhbvO9ksU+FwD+Itn0gQme7F3tKljMI4Iuqhu4hWRseb/WNJPp5+oMGLEDy7geU3O26/kLB/HC8rD/mNTGGKS0+zUNQnB3Fr/UCKpnQTxgZiuBHTu4PWZVj0sjuhetx8n6F63JPeGskeqaI15zqMTkCmJdqRurFxCRp8quhzKRxMKwvX9hVBKPppIL0Till54UhXssm7wrB+I4aktUS/bhlZS4o0qD6Q3jY0JznbVyyzjzryl3vakwKfiOuOqTrM5WpM3FWNOFSo3hHShOaVhTgKDRZfyO+g+0D+ZC2mCTd3qPMHtK8dkX50C1c3hDdfwRXS1OhtA88vpFEpC6hqQu9Ax6YjTgFxniHsrLl8yT/r/rtPlQAVDmvFf13+sUNisrXSvCmFfnQuRcDFtfBdF1NYbfHrNXo+F2AjBGlk7laE2JzqSYlKE7E5TRLCF16XHJcPnqKKXMSsnVDwVMwg6s6m6KrHXm1GxyR1txGf9uBRk5Lu8fH4GzavLuhmhsm7a/S+hhBwx1M2n5lSXrQkz9f0J1NcIej/YYLgyS8a+mmCy3TkPA+bqtAwvFX4TNPnOgbnBbwRh7xD+CEyoYlw1UD51E6KA/HsF+H6/jyNjlOyBqUbTzeV1Od0K/dIs9DjZxwmEkPhItkCgepE0EvbBFwixUK6C+PzXSbTXBiE80KhTHZSILVTcQ1yKaML0eypI79uWb2Z43L53MkuMPuwpi8M/dREx7BAfiEajeY4o5tILsvkhSO7kmlmsIr6RMJsu1KR33nK53XcKxz9SSH6DqILV6HHvJT0rpUCIAZdqrYjpAm+zDCrHewr/MMTfG4PVEytUVWH3tdyzWjhbgPSiPRO/uzFAW+kEnnRgvn1RqaeRQFdN4qrCUGEpZMJ4fxEtJKbrbyGD4fHKSU5GmkiBYa1dLsVv3D9336q1or7phaWZBTzh3vTDpWmqFceSmPx4uWhWZuUUlu09ybPXSdFWpbJOlFIiKQwLXqh5Pa9NA25TLabN08ISpFeRMGwlumoT6VZVSGQXGzx05zbt6cklSddO7JnW/RmR//oSKzkb/eSXTbPRGeYHjIpxMlJxNvFjaP8cEP1eEpzZMSePsD0RY+3inppyDaic+rmkoWWroUBsT+zEYCMLlBW7jcCZBtHn2l2jwXRt5Xsjz5m7Azri8ugm0vdkN94Vp/RdLPA5Gl0yRy0GEFMKdJtYPdICvi+lCyiQc8SFGO+R7KTuiGpZMqx/gyUzxWT5wKaBq3YnWuaI+je3hNe5Czeia56XWB/KrqUIXco3GvQlu868pueu88JSDz/oKc+Nqzf1DHrJIzWxcDIuki3nuy2Z/WZlOZYMXnmRzaHTxVtXGu6GUyeicEQgKk85YdroZTnyagX9aklZIbqPJdw468/F2OkPI3uWSpqwmR98Cdzdm/NKZ9VmBe3+JM5wWrMk0v5nNNSwI67FerxOX5eyCTXe7H+tkbqlV7WFRUDVN2Li4/vo3HtUT5A09J3Ff/05f/j0y1WHw6lorXtcDgnKM4gSh9RYTUuxno2k2YlsVIEtp0IWDNBo+iD0CBA6C1Gmo0hvMxP4t95mbK4mGKJUhJkZKMXdivuF1hxtzGN8P2DmYx+04OzhTciAeinBu1kJDt04bK5KvpS7O2yO4Xy/iBE9HKzDAGEpg0ipDeMQTu6DWir8MMNdm8iIB9AtEXkgj6YGhnbZowNyfBeOqKG3SROEVz8DFomKslK0c+CaO7iew+2uraK/9U+nivweylQuomAUKYmpg8fzo/Y8UlzBaCcWPkFE1BBjYFpQ6jisODKAhkYLH7luSLs004eJxbI8hsM/uRcEu06w8GuT8Xz5BWmjwtskMmYibQMlAjbBgvVwRlIwtDkZlW9Q23rg01jKoi8qXu003groZYD5U65e8VkmhDyjG5qSY0ZPx8KdC0hhkErKbYHVH6gY0QuOV0fzR7+N3IYAzrIDab1QYQXi3Pf94IgOy8UrTSFriX4yJ0HsTmGUaczUrKAwVJXjAH8x/8NhHYRqVJ4f5iYDLxcFa8Dq6E/CKKHAnm0WCXSCKtYzJxMY56PJ1hFO9URQFAjdWJAw1wRU89XDW6S4FMd14lB6KnGRGXdyUZvWplWSgCgR0WDisH+U8dgrY81//E0eavoyjh19dGCfLDwTaAqtTQRVRAqow+oo+g66IJYocZ7crACJQg11KeCkg6WvGPBEIsc00CwATeYRwyBiJmK34sxME5C31wMWvTROjcWFH4IIJPHhkjNkg95+Hl1K/Rgbyb4RGMahwpqpHcFraRoCgGfWlQUg2L0OM0cAjNV51CNk0I0VeP7qi56nvqI0MdiYBCgyweJ9pom2nJ2naCbw14I42sE51CDkcUYbqjBDI+R5iYg07Wg3GjL+ak9ImJNiOcs2purIRB5sDn2MS4gHSaiSv6s1OHeDUHskl10rNKakFuwWu7/oemra0GVOz9a/irnZPrRiwbMzXMxMclTmaTZw142fG7VOEi05BdpWUsGC+8hNsC0Yg7RF0LtdmXMq+nCwe67DxgnhbyO+WWDhbwU5bKfqVZMJcZMi6m8n3JS0CdbATf6UvYw3UM7kXt0mGT45BAg7JNASKIg3UOTKlQHSSVNSLZ2dKWh70V/ArFOaWX/9slhaqGd5A+J/fdvXI/HGAIXKeiTyLSoGcMGbS3f2zRhdBsVSmmPcilD+Gmy80yeSRMWNLSFvFd+F+1+s0MD5jI596YVyr6tHX0whLm+N4kSXYupPbqJ07E+CMVvCDIdrlWFgJYDRVgNv7vGrvei29hsBQwb6qC+HyMCQt/He17WHl/V2GH/0shUpW4OE77Bgj6xB5r3eFKVgGu1+/je9h0c39ONSKhbQutReY45XkoxZzRqvSM0Df7lBXo2g0enQnWqaljM0UoJ8pQYmSQkFtV10nD4QPLyFpSi+twDzB7s7Rr/6im710qm767QNxvsciYUiX0jlKzMHBJJx83QYzct+v1n8OiU+nRBopWM841c4NOvvCQUGfmr83GDq08s+9OM/UOF3cHjf76RCcvE0iwz2qMAT+SG6yZSqCQ7RleuIdRg9qQXjcixxuWKqx+w0rVvgtAzUgAZbz76RUEH27mhUpKXkd0JhaKbqvE1k718r/xGGoX1W3JDn/1Sx+qNhA//G0/+oaV8HrAfSUEhNzpc/y6FbkVMOqCmPjP0hfA0XQHNA8fsm4bF+z23X7B0E5g+CaNnuUsV28dSbGXRaQMFu1dEiF9cDinPnvrI0BewnllMF5i8cGIjvNDkt57isqOb2Yh0dAQDzcKwfaxYf96R3RryS6HE+MxSnUlmyvx9Efqm1zX1o5K+1Ljc0DtDXxhcrkk2UXNzWpI/36LaHjfL8Zll/8Uz0rsGe7EmlFmkZ1hU70k+umZI6A4xK0Qu9kAwRpCLSUF/VEhDZoR6aK43aGvkOlcKdbQkrDf0l9eYxXzkbY7CS+9lA4yHSq3orT6th480rOFIEwEerm5k2lFVKOfQRqPyHH16QrhdybTiwTE4h14XDO43pJK0rKYSNBfeewJZhv7M60LPiJkkAzKtXI2tG2ha/GaLKktUntF+7hEu0+QfrYTalWoJqEwN6XVF9rzHZwmUC/ppgt12zP+nDyQTJRY4+IBtRYdWPOnolxnb13Lym57iZY3ZNKMrWihS2uMirhn9qDHZP85RHmZPhntEUdw68ouG/aMclyl0IxtfOzPiCFMHsSgtzQiqFJedNEQzEwNWYf2mGddaW8HRNzq2r1hWX/Qc/5qi+KClOU5wqRQDLlUiQo0FAVGYnt85KVhSg76FfOVH21+7l3Wvm2hMLdOObpZQPRAktzrPxknJ/k2PqRXtLKe48kxeNEKNcoHdm1OChvy6wzSeZKvHnBCfyLSofF6LeHzfyjRcQ78scPmU/XmCcrD8tbXoCSlo54I2q16e051NwQWSpiUUKf0sQ00zCAGzFw2AaruxeBroQMNkU0W9ATcrST1vGvT5Ke54Ki583WHq4ZtGkHuy6CZpCE3MsHh0Ltfq1R0hukINaeF6NiWEME5JQtNImjhA+m1N9qfoCE1NUF6mIdG6W2fRpchoWG/ldzo5hqM5fl5gnl4R1hsJcXMednthXJTF4XXTCHq2vUzBq1oefzSHZy9xtytSpYQC/soSs23Rl3fj823d4qc5V7/7iGQfOPv/PotFp2H3hRPq4yMW7+xBwcUPi9Oa3R8ydYbi3DQBlQAo6iPF/sGEk6/WTL76ktsfeRzrCTD7nuzlPmqYLPWxoZ0p0o3GJbB9XTH9EI6/9oLmc+dsX01pp5KPUT2wMaNDJhO6CqMQvZuqccI65ojFy9tWcl1NXvjYAJlxwlFcdiS3NaYuxbmrNSNro7zwTD9q2L6a0SzEvleYIF4ama2mfiC5aOmduFwtv9njnytWVSFGPg89zYlC9QqfyedevitW/sm6Y/t6zuY1Tb00BJ2z/GYjlLHSoNvA9ElLfZLQLNRo76uvPH2m2D1S+CtIdlo0uT0kuxhkXDuSzjNtPO3C0s60UMLi4TND9fqCZNNhX64g0v+7qQBJKt7q/aMjfGHpSivC9rrHX14T6kbs+72neFlLRkieoVZbARWmE9GVPb8gGCPXtROHPCBmFkVQomnhbo27uUP/rs/Tz3OSW1mDAFmztqIh8bs95mghoMZ3cHxPNyK4ntD2gvbW9+x6YycWnDuIyOJkRA081wFt6Ppx0Q+9CMKGTdtuOkEyljPwQndQLkCayKhcKxGzFgnt3MauP4xIRTBK0I1JKcF0Xig+LtPi3ND7kfIlKISXkMSZCECTKPpsjjNpanY9dp8KBWnnSTY9yUIKy8GCb+CEB010xpALn1r428oH+khPGOx3+1yJQwOMKN9gJzmiqlHMPQjL5R8PmQASqBiglc/jUkldV16akL5Q9EXAGIEu6yOFyyymAlMrypeCOvhExrlBqzHUbJgUeauizSD4Oob+DOjFTmH20gEKlzZ27lrEdsoxjqV1T0QSdBy5RupXYOS3d7eSuhyMxk0kKCrdiL1xdtdjK7lGTH1o/CTUUf5sUzWOaENE4HXrIlomwkScG21eVe8FVQXRKsQJCTA2Jm6WoXuPut1i15rcKBFFGxGpjqFDERlRaYqZToRS0vdQBSlGYkOiBooWjIL2T+2hNR+z4HROAh8H+kWkaqnBjvA+794JWk+RgxZK54iwDY2dtdLYjMWjj7/fYSUORose1EkTEnIZdZs4uQohoBsX9QFiu0silAw6h90ixeXZEWrfoKoG5YSrLAF6YUSsvSFqIjKy3qNqmaBKUKfk4nQTK3bBUfiue8nWUF7jrTQXzbGcD9MGbO1iUKF8J58cAhCHa91FkXcwcv0nO9GZhRipoLwgsd4IDzwo5LOUYleZ7oYCJQakBkEPxZFOpot9obDEKWFEcQcLc9OYaBk6pEMrghKUWzsBa7Jb2cCVHyYpgsgqNejCDm6IAC7XuEILQhn3DUIYdTyDha638h2UZTQiUL0Uf4kO+NzgFoX8xi7cm3D5Ef1WbS/F7ICs37uegvey6Q9IY5DpnZ6LuUq8YOXebkXboKdTaZgjrQqjUbaU9SemqNO1cVIoE/5x8sq4tB0mcuZeiOKn8FDWojJpIEIzxGnrOHUyQreMFPDg4+9lbWxCYq1R5OP6LmizGlkVqpbfJcyn8the2Bt6Usq6nIgdPEWCOlmid5U0oHGinW5DBBslTDWkybgfD/oxIOoXxRFroP8MJgu6hTSRYr3PY6jnpJDpZq/GSXy7lJpAKNMCBCofsI0Yy9g64B8s6KaWPjsAsKPGcWAo3KspbBWiNjWMrArlJQF+sLHePjLSuMSaw3SBbm7oJxNcGie3qXyeIQjV1D2mS9FO0U0D/SQQjlv8zpKuLMYp2QKifkUcqgLpRsfJpT7Qv2+QCICdF+e9XmhUyY5xeqJ7O1oGA/jUxOmIfF9vovumUaSb6HK67QWgycS1M2hF1jgwQpM1bSC/c+hGaphuJidSd0GmHmmCLxL6MjqoBQ7BgQHRFMY8IrwX4yYb6ZxRrD5OQmal3OOrrex/aSLrTtcSaiXrTR6DVYc1yAe5Votc9q3GCa1wWJNi06LSBKMmssf2/xsQq4eqIjQe1zTAarQUU/fSVINz6DqejCzFLSaSgPv8hlBVuOsbdFmi5zNULfaIw0g6ee8FYTFj/9kjyvdXhH/3FfjCZ3EnM/R7z0Bp/JsPaY4y9meGyQtHctuM4WQu03RTi3r1JOZBeJoji8sUR/9O3DPaNx9I+jKgG4fet2SZuE8UV0r8tL+QMn3mWPzSDeWjHJcZ4fqtKoJdHhqDeLQT4VIX1/4eZ1u8vzevpVTnUuTbfaCbiQh896omu1OUz8N4Q/qIOPjoIDUEI7bTeGEGKC5kM6+X0mhN3pOxcbuMdLBOUT+QgEY3EWFn0LBeynsc/XqgvHJMvnFDfzxh9XkRYLYTzfS5+Kmv3zRxegPFJczfb8dx8M0X5f2mHzH6fwuNY6CLKGYfNqDg5u0M04pdZ1DQzvQhLHJqYgpzYPLSkd8okq3HZYZ2Eacm7/Qk2570ya1MMsqU9KY6CMid8CLtcgK6iIudxxcyjtd3O0yXYAorFJ1GQhO7qaX8YCWJvonFT3O6k1L0Sb1H1+IfXp9n2K0j//q1XJ9aCzI/LAbBSNMcgrhmzMUFQ13eEDZbQf3TFPP4ISQWlczGa0bdHALPPo2HMppQ3/+OMa+hOdjvqjzDH83Rt2v89Q0qz+T8Vo0UI0cLMbNIrGg2YrMStILlXIq2ro+ZIk4mWkOBqBHurguo2UQcmIzC3u1RTUfY7FDWYO9ZhPdLmbRmL7bibLLZEl454/qHlkxe9ORPNqjGYbtq5AWH5JA3sD8VsetSQ7LuZOPoHPZiTf/WMZtXDelGk1SB7LaT66112J3BVpbt44TqTcXsiSddORGdWo3LRVvSF0qyAuIaE/TBoUb3QTI+dj2ohK48nPn9qdy7+RVAoDox1McCCiSVBI4VN9IUJZuedpGIh38ZbTVPA8laUVwPVCNG/VVaGHym2J8nkjA/UjUO9NT5R9JQddFi01sFZSIC9K3DJxLMKhTUQLMUq+/luy1mH0XoiaFfZiTbDnMtRhMQsxGMYvdagd170lVHeudJ76A+TfGnKYtfvkS1nRgTeNDbFr3ZEba7cdoWpqWslakd7ZxpGqEQNyIiJQTUdII7W450rqA1ykKIxgrq/MFwiuKNoMSFzXv41pMxCFgcsf7T5YCyIljnO3TC+V481KQkHB2jr+/wm2hO4T1+sz08JrFgctR2j9ruCYsZzEoJMDaacHo82veqPJO/SwzBavTVilDmtK8uSa736ItbmJTieLSciC4003RTQ/UwY/q+xTypx8n5/OsrASPmJT5P6KeSiZPsxREyaAEAh9DDZFWjV3uqz57QTwzpjbjzpStLP0mojy391LB/cz4Ccc1C084U29cgXYtDXT9RMbtHLGnn36ropwk337+IOSKRftUFXB6nKm2kOqcRxOwD+U1Au0jpSjTpRrM/NVRnhynb6r9sCLXhwb82o/3u3WcTqvNA8VKolc0y4DPop47sTjLcTCPNS/vAkR1XvHK84sOLY/T7lmQj9K79w0GjJntrfqtJtor8Wo0hyw9+tSNZtR+jISZbR/kS6iNNN9XUx6K9K65Fy9ZNFMW1OOm1C6nxqhN5zOK9nuymJXl+R7M8o5kb9ucySUlvlVj1HlvKi478+ZaQJbjciiZVwfSZwyUaPc9pjjL6iSbZOEzrxYgk2jkbH4GSJlrDnx4Lxe9uE+nAMTqgaak/d4rLDeU/eyoTkEfnEuZ9dXuoo8szaaB39wTnZSFxAXWLbjvCYiqvfT+H62gBWUp4/wlue+/v/xPH93QjotJUxDRGkJrQ91JsRDG6WS5Rixn92RyzrlGbvTQlWgs/3gfM0ZEsFsWheeFeZkDI5WJw0wz72qtSWPReRO4x4yG900y1oOM+EUckmUhI0q/qHCY64JjmQJEIeSJcb6NHj/CQmAOiHzMpIHILz+ZRzyBhPsEYdOfFrjNTh1TWXpoDu3cEo2inCpNIF+9t5D3WsiB0U9mo82uF3YUxbAwlAWQoqDNBAupWBPVjsmmkSygvn0/34q5F/NiD/z9B3K4yZyDIKDaUgWAFqelKjVsUVA9z7j6PvE4HdmfG99KdvK/LYP1mSroRlCIYQIumxMRU5Hqp2T7OaOdEe0HJHfDp4XWE9iGojo6oJUTktpMCxDQe7XxEYYhp2Qnd9HR0MUmUEterTs41ZQYukF0fil5zu5fNbFqABruW4jcczdGdJ113YyFJI1adaXOw5FRNiwLKp1oKjrIQ9KHvR1ebUFUR0Yh88a6Xe6OLo9gkgRsOgsneifVezMzgXv7Ip/JIM0F7himpMYKA22SclATn0bdr0XlMYuUcIodbG1lnXBQFD+jnvjpYfGp94M1aI79b08oEVuuPAckhJqLr1V6mWrFpCUUi4uTtHgvCKe+dvMbpMb5ISDfSSPdHRRydM07TXG7RfaB82cn0NVWkdy266kUEbRQqmYwBq+nOY/c+GmsYssvu/0/en8TatqVnoeA3qlmtcpenuHU4wnYYHviBMy1LNCCxBEJCQqJjyXqigXDLDQQIiQZIWEhINC0hWcpGugN6PWiQkiUSZ6Ybz+mkMmCwHeGIW51zz9n1Kmc5imx8Y8y5T7i6TiKCiMuUju49+6y9irnmHOP/v/8rWERIgXynEISEOXLqItsevsgwzNSYYiwMIEJyqAvIDswgaM4l5JVHceuQHVS8p7nmqMajPVXYvyvhMwEX8wwgKJZXbcDsmiCEK9UYkghwzaleigisDOjWhoBCSWvh9ozFWLb3cFmcUmScpBQPtM7kWjlNfR8fSc/F1wpQrYPqOOno1pq0ywPPdQpVC3kGETgxqm4UvIoBiZHSJTtS4HRF+i68R9AKw3lFJHfLjV4YA3+xRjAK6uHICYXLI2pOsxUBMDMoTllHm/nUTCdkMiHuISKk0eIXQjB7wAdgVo1hhZBR5xD57ShyJOcoYTRdcdK1231xQYuw20NYTpDlbAqTTOJ9WVGY/ni9FAmQiHVI0vKILMPo6Nn03Oe7DkKrkRIJYzj9NnRTDHHqL/tJWO0vTxAkg23l9oigFdw5QSRdDxiWCkMp4aPpxOIlX98bgebZDP7dObKdRXnFAMygJSedgg0M9WBMS0/XvmqB2Qve17ohqABwX/RG4PhWMdYsLqeVf3GLaOEdp7Ka96tuJt2YywW8RwwqpGkMJwnUfXghoF5ntAefxdDBlUa/AmxJd0zVcZpKcx1SOHc/tGL+SCmQ3SrYwwzfvC0he4lhHiAcH2/20bFvDERkbkq+cwhSo4dAt1LwJkd+18GVGofnvL+Fiw6CO+pCkqumzGT8nKTHmr2F6mRcd4D6QkFYA/MKKK47qNbAzkhV7dcZhplEdyKgeg1dc00XPiDfhVHzJjy49z9y8kRgzSn7aKYQw5J58jHaxz8OLg5FBuSsh1TryBBKgd/GQM5mpHLlGded9PtSjkYLGGIUBkg5HA9jEOblKJAfNZWf4/i+bkRgDIutiCJhu4MfOoShhzAZ5Fsn8Os5utMcZWuBvoeoo6Cn67horJeP+JsDC7Qy503mAR8TZu08A946pRjYRT/mECDaDrofoPYGbpHDlZqJnFIg2w7TOAyO/uxRQDR88ATBSOhNS5Sq4Ov4TI9UCacmbYbNBbqznIhHtKhDSvQOGPnYQGxEejYiLmfAmM8AaaN43dKVRlqQrmWZ50EaV4DqefXrNopYYxoqTgSRhX3a9ALyDbnVw8pAtRxDysFDuIC7P55jWGD07c92IrpuETkMmMRbwzJDfSnhf6BB32qgk1AHRSrFPRsT1QXYSqC5AOafSqjejWL71FCIANRPJQ7vpClFLIosHb8gANV7+EjLYtI9uZpBSwxLTdpatGkWnpx1l6exLtNVzT4g30eBenhEzygNU9Ovdwi5QVAKuHsAALgnS6KuV1v4qiBNo7VQ3cDHagnZ9aN7hVzM2XR0PeAc1P7Igrcq44LAiQhkLJCDnSZ6w4DQk24UlnMWxseaxYjRFKsfjhBL/l3obxmrfcEOkRng2MdxsYWIlAnaGcfmYRg4CZlVEGVJsMLaaa2IlCyRtDQpq8g5FmpSke6mFYJWREuTK05yMoqNYNCSTjgp92F5wrCqXMHUFBjKEBC6uNBrBXtKIXRCE/uVichegGqocXKFgm4czG1Lsw0tIQ8t4AN8Ga2jDScSugswewd9HHB8uwQCULwmpUQByDbkYuvaQbUWou0hMo2hZGPuExsoJIc6QB8dnNHoToHiQUB2FuagaMd5dJCdg747ADjF7n3J5zF0mwGA+ssCuuYUBkLAZTLad08gwvJTC310MDc1hvkSQ0VKGIRGe0peWsHbAADw40lEQVTaVXXlAJDy5TPSPrIPe6hmwPHd+SjMBRDpkqRvhWRugUk0yuDXgH5OC03hIqLa05gilJymqNqiTNTcUfxNSqY4tjCVgcsJNIXcoDsxtAq93ROEMAbDWQVvJMrP7t5AZINWNFcB6MCUml4pRydGACOt2C/LOG1p2Mg2zWQ1fTgiCAmxmEXa36QpgeE1HsqcluN2iI1ISVpSP3yhTS7cbg+xbyGrimBj1yEMdNAS0XlTxMZhPLpI71SKroTJICTPELoeoafrGZSk5swMY/FIEEhzYmIkvGLCtmot1KGDm+UYziroXQfRWITNFmI2gytOIDvHkDtZwhUE/kwNLP/bBiE3aN6aob5UaM8Fnvx/o8Ygz+BKg/ZEQbcB+YPl9ekCxCK5sXAyWd1M5gRyIBXSZaQp1k/IIDDHZO7C0EHdknqdEslVR1Oa8fxGfZHJCBDYkkW22bPWEAqorkTUX3C66A0wLAJCHkaRuuoBeED1rCl2H0z7V3HLtHRAYpgB7YWH6gVcL1Dce1K1ref51pGOfd8TEM0kdR6lQvYgMMwV9u8LmJ2IoYxce7IrTsv6pwuClr1gHTG4qAHm5LifSWpTDnx/+mYHfQP49QxuZnB4K0e3FOhX1MhkBw2zs3Fq5SaqnQ9sNNxExRKeVF4Z739ORRkTEKSMWXl2uk4965NgFKTzQE+qlRCRCho1j2G9gJtl0FebibItxaNGZCA45wOwnlgVITdwqxLq/ohQNwQ5Pufxfd2ICK0RdvuxUJDzGfR6xYUyeI5GN1vMrkqEpoFv2jGIZXS7EPRFFm3HYg4YHTD4c42ys+NoFdaz0zzU7BKXM8B5yP0Roh+gCgNXLsgPzCKKcf0A//QMx/fnqD5VUHd7qHpAMAouihSFD2ieFqjPFZYf9ci2PWSvIK1G8SBQ3DtUH24wnM0wLCN30yjI3sFWHPWlY/WNAcVti+6sgC0lsm2YvPN7ANvJTq+4C/AZUF+yAMi3Hsfn9NOevaBwqnxN/Ye0IEo52vsyeTgIgfpSjVOG5F6RnLcWn/poD0ptSHsuUF4R2SDiIRBkhvY0qfUlzEahuONUxkUXLxHEWPy4nFzz+Qvy4vMtXW/k4NEtJfSpwOwzalj2HwDCClz+h4ETooWCOdJOr7k0aM41ypuIKOfJvUKiuKdor7y1dEGLkyp9tERTQ2DK9cwg33cIRqF+ViLfDMh3NXyRwVcGul1CtD2yj2/55r2HDIFj00PDG3s5R3JwQp5BPLuMdIx+Qt8Rkbm2ZVGRZ8wC0QrCz0dv+ZFD3nVwTQuxP7BZvzglRzymLyfvbwAIh+N34A793jlC3TDcTRDtFIYFRXh8voxh4+cDC4jjEWGwXDNS4ZGKv3jIJFafV3HK1AAD1w86ksSizmhOvQByeRsWAH5RQpQ5aXnWQRZ6RFPDnMGXySVFtgNkR7F2UDLqqWIR0VtASqjBQ3YW8tig/dI56kuD+Wca6jhA3x0RCgN3UU25OVFbUt70CFLALnKCF3M1utkA1INAnMBnXBMseC9Wtx5m79CdaBb9SkE64OS3PIQHDu9VqF73yB4s9h/MaB/+IxWkA5YfRxthhTHTxxUMTX18lHekJvqMU5XyVf2GLiNoopg6l1h90wICGBYKuvFYf7OPYWoUrAufx/BTxAaHE5zi3kLXjtqvAOT9JIwXjohwthuo6xMUnqtmgC8M+pMc+esD5K5GeLoGgoC+OwJKwueGaHjUbACArwqIwWLxW/ekStQNUBYIVcFpqRCcSCRXpjiFC/MqUqtiMCPAa+bYjGh8uj5Hvcn9htf1fIawO7AhKXKi+qlY6LpxUigWCxban10xd0vHvWa3J+NgiC47X9BDLubQ8zXv3a5j3pBzUIsFG9aB94l4zJroB+psAITUjOQZtVydhUwo8mAhlqTO6pd3UTei+HPnITsDoWLhH0OSZXTkCkrCVxnwA28DAPShx7DKcXyHFODq2sGWBCbtKdcks7OoBBPBRQjwi4rgi/NYfNKRArZQyO89ZDtAuBxyCJi9aBGMRHuWIds4ZPcNDl9aoJ9LrH6nRjhI7N4tYRcCzRPu8eU1AcvmTKBfJT1K1DBEHakIpHA6I1BfKNhKoD0PyO9SLgdZC/v32JwsPozgnwHmLyKQGseYamA9McwIouZbj3at4HJqQoMA2lMK02cvWQMxDynalD/JYQuB41OJrpVoVypq2gK6E9r3DkvanwvLpugwE5BWQTigeXdFoCQXYzbSMNMYZpxII/A9mMZj9SEBz+7d0+g4JlhD9B7zT1pUucLwWkX3Pg916CGcg3tWIAigvO0hBo+QG4I+XbTyb3sMz9ZwuaISMTpn+ZzxE2FRTTWtZ42KTdSAxet3dM2Kj0FHQxWpJRsNpeBPlrScvrmPhoyCOSLpiPslrIVONOYYuCyETSzoP/D4vm5Eko0eQhTxrVdMi1UKoR8QDkf4ugY2Wy7qQiKIDjCG4rAkbI80F4RAy70k+I0TEuE8QlXAzTiiI12ji4v+YiwAk0uOsHOKKyPqFtoWQQgMpWTWQ5kTxRKC1IuAWOCTixy0jCN1Xpi6iQ43mz1UlcEVfH/eyEjxILIw2tw6BjT6pwzU0Q0nKF5HDnbj0a/oOmFqDxuoKaF4nWmjbkm3ntBTWCY8n5eCTIyJ5CmBuF8QBSEqC7g8wOxFzPZwEeFIwjCKt/Kdx+EtxZt+TuTS9QqylUQHdgGqBVoz5YiIqAGhIIzUMNnHyYRn0jR5pRLFPX3WH76qqXF56OEqjeZUMXX9aOGyjHbIOxG/AzHa6LlMMqOkTSEkIFJ1z4Iu5AauRJyeeQAKthDQUegacrpoqSInCrolX1KYqLKL110YBhYqscANaWphI3qfLHdHu8eOVIroEjdaVANE55LFXkTywmBp05k9ASSpBMF7JMvY0cbvC3xwMjGfzlNcD8ZDxgwiYybkd7As0B6JhsffTYeOS2hmSI30DvDg/yfL1IR4phE4YijZQDAhKAVVt4BngZvQKWYIECkVPkDUXCgkgKDDI5QsOnNFhym4QCtZQ02FLRRE76H6IQoXSU2QNinNBVRtEZTAsMwYwmVEnA4kUbrAsDDR7CGMoX/m4JHfdwwzM0wEVn1A8eDRLyT6hcTsM1JYXUYqaL8UzAO6cegXU34Bv6g3vzfSo0h5GOacFove8nOqSSPCDBNSH4KWGGYZ4AG9aaHWpCIkepfXeMPoIuX2jAJQ66EOXeRqK973vYc+DpCthasMH+fCuE4I6xGODYRb8X233JCFjpOwFEbnA6AlHequ79jUaBqohFyT3x3CKE5+41qLk7QxuC5ZOyejijhpAfgZMFgWyVIRzQ+e6wkIKwdr38jLCNZClSWgJNzuAITINvB0kfL9wOv7ccbRF+wQUXgu2g4+0reDc1yPpWKhluyO08QqNWiS92nQFihzfhdSEihKdr1lAQwW/mFDx71FpH8F3stJa0SaDdkXwrEZ8UoiZHFicugIqs0EwYCDBRcA0E1p8FCthdECIvKtEutCOA/90ADrAv0q/sz7sX7Q25aPPc2Y9N700SSCNENel+UIHKhGvJEnMsxojKN6TFNHYLq3H9G2bcmsTOE5mfB2ErCraPnvB9IqzcGiX2lS0OJ0xlZ02svvOgSVY3CSbpxaoDshzVodCCTojnEHNPKQMdgVo2FNvomuo8CYNxaiyYUzbJJctDi3hRyBQwKggC/477rFZG9uA7It7fRdoWjrrwT1ej2NQ1TnYHYYM1+4prvx3Mku7vsCI1tG7I6kYz9lQxSUAKwYheWMBIgRFpGmFdo4IRks0OfRnCLQJj06YwVHOjqs579LxUiLxKDIMtKxYiYZ9zmuK+g9s4nms8gQEFOA8h9yfH83IlJAv/UMoe0Qjkfe6C0TyUWeQZ4sIY4N7MvPoM7PaZV3v2GRsZwzUfLTz8iJuzih4KZuRg5u4smi7djNDxZ+VcGvS2hBZMEn1OpkybG49yNi7o2Eqwz0egV5aLD+Lw7tW3M0T09Rvu4orvz0juK1yzkW3zxg9V867P7YKfZvLTC7dqPrShAC4WSJ7rxEe6pR3BOtvPtfDEVkj/REh2cG3fpknLRkh4DDM4XNH/c4/Y8S5x8f4Mr5yI8UwaO4l0ghQ+YgIJzB4mMPU3vUFxzjLj48wpcattTYvafRLwWOTzgJ6c64IOUPAfooAAgsP7VQnUd7otGeCmx+mI2FPiZ3Kg/hVeS4c7RbXmcjT7u6dsh2FrrLRuF8Ci/SHc9L+eII2VFj4SqD5kmBIATye960PhPQDReUzQ9VrP9LAbfjDWJqLppMb5XYvS9R3AYsPqXorLnQqK4tdGOhdj1CrtC+f4LmnDSQk6/1yK/jhEEIlDcD9JFFfXtR4PBMYe0Bs9PAasZF5tjAnc7Rn5UQbs3v6PWe6CjAAKHbB1pq+oDw1hP4IiO3+9jANS30Yg63nkHWkcp1dUNe83LJhaHrKUwvC4jFnBqDTz5DcA5hPuO0ZHeAOjuFWMxoc11/V+/e7+rhD0e4li42Is9p713HDywk1HI+BothGBC6DnK1IJWqbiD8AOQ5Qt0itC1RY8niDkoBPRNqA8ARt9acqDg/NgzyZoOwnKN/voTedZC7BqKPVNGqYKMSBedYVFxL9kxEDlLCLXNOWPftmx8ugSOS5hiyI52s/MYditcFmx0B2CcrwAdk981oy2lLmiWUr2oIR7Ag21rMfuM1ui9d4PgsowmEB9pTFjTm6FHc004zuTwtvunhC4PDOwVcRtF6ol11pxlMJjF7NaC8EdF2MkA3Dv2c64d0AbILOPlNSW68FlCtp2f/6Ayj4UqJ+x894aT2poeuHZYfB9iKTlzDik2Cbug61j6bUw/ThzEXobqJ95USI7W1O9FoY4aJbgKWd0dACKiBVqRBC/TrHMIa5K+PgJZon1STtk9LyDx7o/AKSk7aL6Ohr7fQzsOfLUnf6wfIizM0XzojraOL/v6D59QSGB3uHidvq4+vIh2wRCgyuPMV1P0O4Za0QjzibYuzEwIa+yPEegV5eU7KRnKWFJJ7ZjxcBEvgo5ax6yYnOKUAkyP0ny8t+fvx8HUDFC3dgU7XnCIlkwAdIE5WPJ8PG4KdPddZKDVNSdIUJZqPBCVZNA6RVx9RamEMQp7BLXJ4LWHu65FaJwbLuqPMx/cmnIe+aYjEzzKYTYfTTRddkuKDApBdHwiMtj3w7BS2YsByKlJlz8JU74ASvKZ8adDPJVwuoN5dwtQWi69tYNcljj94CtV7zF7Hl9AS5hBQ3ALV9YDmQqM9If1ZegHVEYA8+W0bNaACQxS7d6fc21UMIK5e8+/bDxgIqLqA5TfZHDSXnEboNjIRNl1MGFc4XrKoH+a8hqUtoDqPsrZQDSnpCIqNwD6gXwrUlxqLTx3M0WP/Lted/IGTmtT46DZg/tIBArTGDYDsaMpT3rnYhDAzhRpZj2xnkb3eo3u2hD/VUXPjoYQggLHpIFvu0/3bp9SFVBr+RGD7gUZ57XH2Ky8gzpZweYmQK6AD5h8fOT0/Tuu9rA20UZxADBbmk1u6aS1KTmQ3O6ho1e9Ol4AE95mmg68byNUS4bJireH9hPu0kVV0djKC8P6E0zv5yTVC28LXNQFNy/r6MTPgjXtoswXu7hGcgw+fLxPg+7sRcX76BHGyEYSDUC7+/BH6GY+Uqpw2b6GirWe00Rut90QcYVlH73bQRUEMOYSiQPGNwBYhRnSaXasfQxbTY2XdQnUVXCHpbjC4iIqTO51cDYJI1CYB5UPkHnpSuaJbTQrj8ukjumjhGzM6xs7ZYwwpg4t2m1JOIigLyMCblcJOjIFCKrpgqJ62cER12T2nkMRRLN4QAaGYPQrCEroTJz7C83eyLUZxa8oBSGK2IPlZSNUgR9xFoTg/Z9K28Dl9ZRgWqSlYHWZxoevjVEAKZBvEQEGMnzsoIGSS1qeORU/KQqBVMSdSwiFaGAsimQBRjJ6jVBHHsAm9ZMBbEnnxs9FukNxwKIHg8+lc+jDloiW+to3CUgcARENESl/3FJeGhFrEYDyRZQzk0wrBi5gZIPnf+Nyh57SEk7vAYiMhJJ8Tufh+PhhMBgiheW/GMT/Dyh6Npx0BhTE8Lh3x3GMY3phECUlTAcj42GTdqTWEmkIlg03PC6QAxPHa8Z7fnVXjz5JNLAZOxYR/NA4Hfz8URF1FN0QraAGfa+ii4HfdDXGqQiEskqX0o8JWpCkKwnRNCwHZcdOWw4QSpvt4fH0tef/lmpa38d9FiEFlAo+CUHnvuoKnSjiilL6W0fEmQKsQEVMZAQo5hpKmIt8WAALXQOECtHWkSMT1IplPJE1XWsvSoffDNHVIH0UaOENgBgLwRcbp4eBJs/MYEWPhXDSuiA1V7ZjxMysnlDFNM9JkLPnxJ0/+QCvtoGScUKX9gI8N6dqrW2766pHVNsDpfk6L71FLIgWned6TfhW/I17PDilwbPxZQjND4PUv1diAfOt1BoAhfl9sKRkb1LRGPt7TH9t1Cx/Xz9hQ5Pk0GU3ABDCeYxE4VZnqjngDpQbb+pFmJ9Iakeh5AIMK0/RvbCaiOUpaJxz1AuNjlKIAPurBVBsbjowsCkS9m7R+1B28eR74/lIyeLL3dqWBzxT1GUOA2Q/oTmgUwbohwM5FzDRzcEHCxb1PSsA1k5MdePnxdER6kwhslLwBuiKGCjpaaNt1shKnxfjjCQu1omx23NpEylQYbbrTRMdlAqoXUA0v91SjeCVgcwBBIju4mFvG59BtzEFxgbcJBOuVWKMgfncyGod4zWmBcFzTRGQyIPDziRCoR5Ni1L0BiGGFpOEJHeiw6BxEFw2WMlKuoASzhDLD/VvH9V3Jicbt0+uK6X6P+xbdGz3EMO1Xwbvpmkdcv9PEdehZv5YxFyexKaQcr9kQ7w3aBfN9hKZ5c836A47v60bEHw7wjZ3Ch9Li/iioLYBOF6Guya1fLTk2ihoP+ewJ0Hbwr66BZ5fwT0+grjcITUv/7jSySrSKuoXOMwzvnjO9cttw5B4Dh3xheNPFsBoAUZQ8QBxa5N+4Ru49RuHqas7O9qMr+Is1undPoYaA4oFcRgUg/3SDkBn4eYZuqdCeCmQHCd14zF+EUQA+u3aYfRRtBuMF4GYZHn64ghyA8/8oYI4e7UUxNieqp+iyuHHoznIcnqlRUyICN/Pq9QA7U7j/4RK6441ZPjgUG3Is0QOrDx1sIdEt4yLUBVp5ArQRPAroVqO8dShfHuFmBq7So+hVDrTAq58HZBsg23KKE7Qi6hHXdrMXKO5isaCAw/OStp8Hale6U1oTZ4coGhUBT3/tgKAkdh8U/FkU4TfnGapXLdSR/F4zyxBUOY5ny+s++nkb2EpFAVsP85++iWw2w3Jewc9pqyiB6RrpLfxmi/z+DDa6zfhMQXYOIVOw8znDC7c99K6lU1b09befvWbw3vNLOk/UDcR2D7EFBWCRQhWOR6jXDCwKziG8+xwhpwuT8AGoQnS9GBA2u1FMKdWblURCObAs8EU+ZJ5BiqmQl4/0MfxBLOKsHW153cMWCDEIUSmE/lFYnNacoBiNYDT8ooBsLbAFueXWQj65oHDw9W3k31PHY+7ryd0E4EJ+98Dv5/xk+nm0AQYAKAl5iE33gj7usB71u0vYSmL2oiGve0X7XuEvWNy6gGGdjxk8Xgm4Mh+BiuKqgdw1Y/NTvnBwsxzHH3mC4rrB4tdfwV2uYeeGFpxx3+2XGt3JcrTMTgGE5R3tPbPdgOYiQ50zf0M1ltaTlcTxmUK+8VgcLaqXDWYDjSJ8puCKAkMlIr9bwhxVTEcGZq/dmPQ8fm1xs6d9MOlXqgeKmxau0BjmFH9KG3B8lkFkArPf3AFCwK8nVyQWQaSAwAPHD+YwB4f89QFYFPBaweyjyDimZLtMoNwMyD66wfDOGdpnFR3KBkd3xagrEk0PPGwRLs9oZnGIE4mzNYR1KL5+NX0go6lBMAahbeHu7qHWa6DIpmvhbI2QafSnJfShh371QNDh9AT+9TV1TR+8w33r1XWcZJDqiX5AOBxI1yxyovpdB1kUkPMZ/OGIMPw+YnTvEDpH6vLn16F+fx6RtjaKffN8MvRQkvStsuCE4+KUa+9Hr1gArpcT+NkPRJv97y7IgrUQTQe1ZUjiOMlqO4TVAv2zJbKbuM6vFwi5wXBe0fDh42v4yxM0b81RXNWQxxoKQDB0Y0tTrH6t0c8l8rsBet+hfVLBZRrhcgZhCZqJZuCEpK0gAlDccOLVX84BQatdgMX+8S1OPBFNYnyuRoBi9trCHC2CLMbiWjUeZfuI1lga+ELh8DyjRmtGe+Dy3o3udv08ZpzMA+TA7JTDc4X7rypc/KcB2WbAHEA/V6gFdSCqC6RbFQIPXwUggfVvYXTDdJnAsAioLzn1ufiPR/hC4e6PFePktl+xsbv4dQd9GNBe5pCO9rnDTOLwXKO6cci2dMVKafJy0DBxGqa6gPaUznnzz4YRxPFVjrAqSfWMh649nvx/jhDWw6/msMsc/VJBDqQ+uUIz4PSjLcTJCm5Vws4zuEICFyVU71F87QohM2gvShQAbcAXM2bd3e+R9CDBe/i2hQTgcw3VW4rVoxkDv99Yv+QZHbTauF/6AFFVwOUpxPZAWmFmaG2/P44Am4jsi0QZlx+/BA7/E+SIIIRpHOocZJ4DeR71HrQeREQjxiMJSKN/OvphDGQRXQ9Za04wjIYocoiYhDyiH4sZ/LxgsRc8XZGEAAS79eSGEYSAm8fAsvsDUgoqkqNBEi96zy51vaAdb++ga/pPDzPF3I7nq+h+RfSruI/Jv60DkKFfSBxPJdpOQV9WUI0bA/KEjzd55DaqJIjqJYSK/GipoogqCcwietlPAX0QpDTZGZHJ2Ws/uWEIwObR3aai5V7vKVoXlsnoCa3wmYAvNYKJgT6bMDpXeAXoA7UhxYOHLeM0JKIOyXLY6/geo4A1SEAED2mJ/Jgj7fhswWJBPdQIZYbj0wqqB/KHaRJD664AWbcQg0M+N3GBJsdWDORqpvcLAYjTkzcQZUjALiJac+R1JS/O4BBtPC3RFH13oPvRmg5FIpByJ6QELK8HNZ9BzGcYVgV0iGh6Qm7raPOpNYuMYz3qQeT+CNRqQjojNxnRclbE8LPfJTR9hOx90Y/gPEXqKbRQCnLogSmkUClAeQp8HXU/SI9P7llzFrCh65kp4D3H384DVRWnTBGZ7gbmBKTJB8AiLk0Lm44FSVXyte3jtSpOrIqcawcQJzaCphn9gGw7cDo3kCaqOxblj5EovadJg88VpOd0EynMT0uEKoeoKZIOhq+jujgFyTNylxXXDm8EmlMmq+sm6lRiRgc8701bSgRlEKRgwBfAHKXBRzSSgtXd+wWyo4dq/KTDEoAagOLBQ/XcrKWju43LedNmhzBNPIUAFCeYOsRpiw0TnchPk1EftWb+ZI4g6NSXDtUF5M5Dps+tOdkYJ5fxuUQ871JTDC+cH+k342gz0nXTFNfPS4iSryWGqDkKguh3BAtQ5HSliVQ+f7qAqDOIzZa/5/yoG6FOREDXA2Q9ILTdWBjI05NHk1VS+hDdnlKwmXdRK+IzIv0y2ktLwT3P6Df3zKSTCJzkyHkFPPxBd9r37yFnzGQKya47HdaSKmvdaGYTBk6j5Zbruo8UN9F20eJXExkehjGxHn38HgwDUMfnjgYaSR8GxKmHUcB6gZAxm4woeUTXbXRui+J4xEBDMfjxUtR1ZGVoETWuiHlB0dSiiWYdmu54gML2B+cEG6866hKEQHdmYAs5msXohmClLRT1ZJHBQUc+xBDEyaK38oGTnceaEYnRjVLEKWKIAyfVBlQvRRS3U0tCYwkJVShSOg3dtlQXEFJN4DGa6hQP0XbcBvQL6kmyPdet9pKmHCnOIDuGcX1Q7TQl8lrA5qSXuUIwFFnR8SsIAqgA4JY5XE7drcsJkqbnsCva9gdBFy6XE0SGD3RlNYx2YEA0QRvROerLpAAuz8ba0Ox7qCb+PHCd8Lme3LVEDHFVAv4p1wLZkhLI1HQPfbsfGURQiiGeZTlNTiJFWDQxZiDPIRYz9KcVjHUQB9IV0Q/jdE9GE4ZwqCfnyP9p7Hu9h1guIOoG3sdsjzzjJMNG5CpOS9JBR62o8h8G+LaNaao5xThdD//0bBR2qX0HPAozspdLdCc5iusa0nraoUUKmDz0kJHbG4xGd1nC7D3cNz6COjtFeH6B4ayCLRUDxloLuTkiFDmGiwqqoWWfHDx8pijkLCXa05xe3TNg8YnH6sMO+cf3QD9A9qfwukJ7xhvJ5QbFA12hsq2AGBxm39zBLgvUz3LoxsMcKFp1mWTRIIB0JZvajzdksrX1BR10bAV0JwHDysHUKnqG82btVoCtBPol4CraXcqeTlwpYdVWAp2VUN1UAMxfTSJp4ciFnl05lFcthiUTzbtWQlqgvKVuoz6XAJiUmuhWI53KA8WDQ3HbYv9+RYHq3QPEyQqHL1uYjUL+LZuo8B7h/gEwGXIZw6dyBVn3QNfDJMS2NAhKon3/LBYBHFnCCnRvlZB9QPX1HUKVo33/DLJ3yO8ZcCmch//4BXUb8i2EPI5TY+EnavKKxfkp3GqG/oRNrG57en8DwJZIrsiJZPrdjuFDWsN+8gIQkpqPLDpqZQYh15AhAN2bDcjnG5h+cY7gAoLtWWjNqtHlwx95vypN3n6ySBUpZRqITloMNRNVCayXwGaHcDxCVERF/fUtnY+eXkQhugUONYLzCM/PSYO42/2u9+UfNgh9D/kD77NA2U9CnTBEgWv+KDnbA8I7hq+2PbIXlk1KZoBgkO3dKO7mk9AuGiGge/8M0gcKVeN1bmeGrm99zB4oDH9n13NqsKpgZxreCJgjxeXHtyTyeyDb+TFtPN/GANdKYCgBbxSzPh7YGLtCQQ0+8qoF6guJzQ8B2VbBHBVmr1nYB0F9R/VqoJPQ4GFndK9pLujQV10P4yafKBmqddAhYPA0/xidxmKWB7ndXKvqt0oEwYT2lCdSvR5g9j1crkYajPCAqzI2JcDoRBWODUQIMLuKaGZVjI/hAwUdjuLRX5ToFwrzj4/MjUnId21HswqsFvCLgqAVgPb5AmZfQH0WpyWDhUAUtcdJnrpj0KXf74FZBSEE3NMTeKMYxjsMXAtSsnoyw4gGFjxBAjIzI4VTzme8Nh4FfSKaXvh+AIIj4v8FbUTEbIawbaLu47EzFusGX9cQeQ65XiG0HfzxCOwe3depAa4qNnTW8XENQSQpZVyfJzpXsJagxqzid5TxHkz2ve60JCjmw0TpBsikOBBkcBEIg+fvpUN2FmanMCwz2ErF3AkPtW/p5rY/MjyzypHfdxAhx6s/o5HdK7z3DRo/BKPQnBZoz8hG0G1AtvNMGZ/L0dUyGdfYSgAeGOYK3YIumao3rCUyBZdNtHJb8ncB3puc3AL6GDB7UaNfZ9i/reFK1hXDTEI6heacSeSzV47FfxRcqx4wewk5ALNPj9SwAXD5EkEpVDc0t7n/ajZaARf3AfPP7Jijog99BKHIsmhP5cg6QSBI7HLS1RYvaRTRn2RwmYxAjBhNPYISaM9NpM7TwMOWAnIg7b5fmzfiAvL7mCtkHaffRqJ/54Suh7d7oB+gEjhV5mjeW/+uQOt4oWH/wQxBCsw/bSBLAzEvgFd3cC9eMj8vTj5Q5LCXq9EIRLQDxembHRA8xMka7mSG5kkGOVRQmxx+s+UktaogygLhdAWxO8K9fgFhMojMcL34nMf3dSMi5guE/XEcn4a2nSYcwUfeteai4twUZtYDclZNVqhlSZHOYEeOnXCBlAXvId56yqmFUlC7FtVDzcLRe8gYVpZCy5JrCYRA8epAnuD775KikWm6YIUJqeNrOagjg8RCFhHWLqC4t+RHq4g4aDpEuEzCni84fbEexU2Hi18v3rC2QwDUlp1C+za71eqaycCiGRBWGZubMm7YkSsuXIhoR0C/1BAzHTUqAWYXoA8CeKlR3ViYg4PsyTmWAycR0grIK0A4IghBAPt3mf6a7UipSpQtBAaqUSQfg8eMwP4djd27c2aNKFrw6mNAeQuYncXyKEaXLHPMxt+VNk5CKonND85gjh7lwaP50x8gSIFn/0+6+tgqLqA5kG009E5AnKzhFyX2P7iC2Tvk1w2G8wouXzDZenBAriHgoQ8O6tiTOhXFhOXrlsVRRLVk72AeGohjQwRRAvLygsXtw46NQvTqF9ZxWqFS8WSRPfSQ7SReRwjAbAaRGdgnK8hmgNrVCA8b+MORC4JStJf0pGBgvWCjIyUnJ48XhjyHfus5Hd36gdOTL/IhBdR6SRTqYcMxcp6RdpX4rABCrWJyMicfQkqECC7I1ZLPFacYv+sQ3LSFi1xvpSAAiO0Rj/n5sm65XhgN+fQSAOAWRRQqD8BiBr+esShtWnijmRnU0VnNZxqi/5bJlnWQe4dq3yKUGewqp0XwkLQuHuahJZLaWYRcA1CjDqt7Sj/4oAU3xcFPmRqRa60PA4QNmH0mR8pDc2HgMoF852CODmbPTI/mlBSI5lwh33py1EMCDQLybYD4kG47qgtQPdcBhrgBw0KP2jgKP8EgRyVgZ9RnkQbC9bFfcaqbbWiLrFoLV2hSoQaGtmX7wAyjLKYi39oxmFQMzBbSm5Y6rpOSFJhtQ/fAXJFWkmuYfT1S7Mi1tlBNxrT2hYEcAvJXBA1CpsfzJvctJ2BGcyIWp/OiquAWBYZlTmplz4RluAB5cTbyy3mNCbqoBYx6AqaiRzBs10CmYL14aYQQQ/WASTfm6ZQnlOSET9A1LvT9qHEKKXNHKYgsI/3UKfiHzX/37fi9eoTjEaJ4ZOH9OAtBCJp6eI+wP4x/98d61NakcwVrEW7vgTyHXC7ilMlzeqU1sJjFadWjKXU/ABkQKtJkRWchDa9rUgKjS573pN8IAbXv4GacWqbr0c9ptuO1hOwt5KEHohuePk6ZV+5sjv4HzpDftax1hED2ALz9ywIIDsNJGdF/WtrLAXEKChyf0sCmuCfzwJs4ARAxJDlOM/u5gitZ76hjh/5kAVtKSAeYIyCu6GjlMolsT3fNYU7L7MRCkANQvQ4obqkv6ZYK81d8rDcC3UqiPWWNlBwvRQCGVQ59lFAPNbLdMAKsDG/l6xf3PBftWjFbbQiPmi8CoOtvDHHKAPRzUrLynY82vXEaexgwLAxcKTF/6ah1iWtveTNNaMuoPRlmEt4oVK86Zo+0DJz1RgErXn9uFo03Nt0YWBuKDBA5undP4DKJ/IFmJqOd+dMziLqD3NVY/nacllnPiUymIWclZLtAMrQBAFEWaC9LZJse2d0eoczhyywasgi4GWuc+YcHqLs9AbksIwMpTVsjsCEXi9HsRSgFITM6BP4hx/d3I5IbhO0jBPGR+8f4GEMu9xhOFq33xHIeRaqC3du8gjw2QJtE6tG5JDOwF8vRRjP/8Bb+7oGiYQCj7WdRAFUJXxUcj7pAjp7RsE9W44WIGELzOKwKjj7eCSEXnYPwDmbTvSGoFM7DLsgRtIuMSe27HnrfYflbLdyiQL+eHFNSwdOeckJSvIoFtY0e+THzIz47ZAiQgaNJ1Xk0FyaOKpnRYY6Abh10E5DtGWSYRGfSAXCR4rB1MHuH5sLAlgLtGRPXZ6/JteyXExKpBgrEU0haUEC3Boalh89YuZSv5ZgtoGtL3mQ3EDVwS9i5weG5jsFIDv1Con4icPK1gGzT4+GrJWQPXPzypxjeOcPNn5qhXwX0aw9XRFrassJwUuL4VGEGoHjlMMw1uqVCfiXGkTy/v5jv0XZjoGAKJQtlRjceH9io3G8YTJcZ+JM5RNMjvL6BqEoWBsnWMeUGAMDAyZjoYrH7yPrRLyvUz0roJkdWGqi6QdjuIGM2QKibaVGYV29cP0iCSe8h8wz+ZAn5APLEfx8HjC/SIWYzhP0B/niEyjKgiO5Ww0BUOdKnZFlClCpaEEqEmzsWaatTisLr+s0C5ZFYeBSVWjdSvcIhBlEuZkTa+mEENvxJxoyATEGFKDA0Gv06R9EQmYKW0eEpilj11LSOr+9ZEPubO8gnF3DnJWSDKXXbB4gjw1OTpSNPCljIrxMdJIy0sSDYiCSffFWT81zdTK/dLwT6pUC2j1OJfY9hmaFdEXGkfTh1G8lgg042HtkeYyNA4S0gBkRUlWJPFdcJ+AB9dDHIkU57NLvg+R4qyfT06xi+2FuISFkQnjQXU6uRh676ALPpSGMZHPycjYRI9JpFTmrrvoa0OYIzGC5ndAzSMfthe5gQ8M5B5grD3CCoQPAg0qhSZoxouziRr3h+reV0s8jgCqa2Qyug6Tg9Mxp+MWNuVfNob5PRtt7G79boaLoSII4sKB9TfESauggBQI97FoYBENlEVQSYLdLHTIwQOBnJc94LIUBggNt9cTOH/LEFzhasFb61npAyBsx2cJst5GzGdbztCP4AbCoyAzQt3G4HdX4GFBXX+mGAPxwQQs6ww3TtROpfsI41SQw/Ff0A0WlIJadis+OkMuQZAY+mA2LWEAPsHMKqjFawitdw2wGY8/oe1yqJYZlh/46G7DPkDwfAaci6R/V/vIBYL3H86iWp1HHaJwdqP4ME+hWpiKrz0F2AiwY3QdDSFz6BhQreRPOadhjNdlTPoEPT8He8Ecg3NO1xeQEIwJkYwOwAs/dQbcDxmcKQAYtP2Ry0ZxrDnHkk3gCQAfmtjA6AijWSp/tepiX6paaQPZr7lLcW/ULF0GM2TymjaZiTJl6+PE5r/PvMU8k3/D5coahRO/ZsnJRAfhwgBgIrwnn+myaAJDvWEd2KzaY69JAdHc6CmCGUGk5z8utymunIfT0B15lByDSaC8Mcp49bguJth3C2Rn85Q9b0QN1A3N5zyn6yZnNRUfCeruF0nwsA/ULCHCUd36qCdK+clFOfK+hDD/XyFv5Yw9c11HrFujqEN0I85ayCj5lDsiggpP7iNyJ+twcaC1nkEFXJ3JDE+VaK9psRbRBVCSEl/N09QtMgbOOmmOeAVPRZrgqEZQXx+g6iaUlfyQx0CPGLzOBXM4hZCXx2zbHVfD5y68LDFri5A37gHQzLDGLJGyoYiaHSGOaSCGDvibK3AxGy6DmeXGF8RX41OZSKgXu3FuXXruHLM/SZRvXNDUQ3YPunnkDagPKzBvABZjtgWBne8OdExG0uIJyEXZWwMw1bSrQnpGSd/DY3rvoZw4x07UZR5rAkJYuFAG9cBgIK+CxjsR05mS5DTEwXMDV9sskTB+YviUiaA4szWwD9mg5d+YNA1nosP7WwpWTGxxYQXozOWrYkX1y1Dv06Q/2DFbK9h258tO0U4xTH5RLZwUN9jMgdlZh/Zum8cb6CHDzO/0uDfmkwzCSyfQ9fZehOcrhSQh8DVMubvnx5RPGZgNwcEDKD+lnJpqsPUP0s8myZpCrSBpFptE9K7N7RWC0zFJ+VcFUGH5O0VZPDtP1YSIbVnM1nbBAZlMnrQaSGJzUQuz3Ebo/F6ztgOYc7Y/K6Oj2hmCw59gw93O4Asdnx2j1waijOTyG8ZyNdNxCv7chdDlc3381b97t+hMFyvXCOhddocUxaijo/pxi1LJjF8sjw4o3DE9UcnYSONdHnjHx7uW9Hlyw8ziMSglQ5gMJjH5jnYhQNSHqKpMVijmAd8tfHsfh0FSmBoiNn3M4NTE/eL5oWQin0X3pCSlVm4MsMamAWhnjYkXoxz9A9n3ONOAwjzSi7tchAU4ugJCcirYM88HmDUaODXbIB1jUnuGrfwpsTACpSEhT0kcV34mPnOwrSRTfg9k9TiL/+nZYZJ5VC/YQ24OuvU+8CcM1zmabtqCnpEqipf5F9wPyTBsPCYPdeAVNzHTANgwZ9ruBzBZeXkL1Hthmg4wS7Xz/lpPreEvk0zGeARKRZAs2Xz6N7XoCrNOQyp9VyzG3wOhb51rLpLwuIWYXhpEC/1ph9fKAY3XmERYXucoZs00HdH+iqNa8m+9z5jADFrIBqSNWFlAwiAwhQHWrSsVI4WQikbqQpiVLR1cu/MfEUESAZgziTDiXPgPsH+EhXFs6PJi9IjpLAtI8aIp8iy5BcpJQB8LtZhl+IQyQa7GDhmxZqTuGv3+7571HLJYto7tG0ZF9IBf3Oc6RsstFUpG7i90ZNgMxjJMDV7RtyCVEUEFVBYHR3JJ1rvweUglKKtC2lOLnVGmI557VS5qM+yZ0tACHQXtLdSLgArZhtkt00UE2Gq/8T8z9mr0iTNIcAWyngvVN0J8zoyN9ejBlmqgWk89BHjaDJWEBgSLFXwOGtDMJx2phtaQpx+hsZIKhxNUePk/8moGsHvyyjpozBxuYIzF/0qJ9mqC8lyhtmmIiLHP1cYvduThDEAroVUK1FeUv73Nf/5wIiUCMSJOuIYc4aZP0Nj3xjYTYd3Mxg86cuI2sCI0sj3/L37n4kG2lX+SbA7C3qp4wQOPnaAAhg/wOL8XtSHemm/YJuYN1aQg4K2ROD6mpA+fKAux9dY5gLLD/mRFq4jO5lMZBVuIDq9cDw2bpjI7s7QHU91DZDiAYoya4dmx1BhapEfzlHd2qw+OaRJjspfyxGTehdR33Gcs7aISTHQ0nxe7pmjYZQCn67g391hdP/17Snie0B+vjYyGVy45LzGfUgqSbpOnjngYcN98CqhMgMpI9mMOHz6US+rxuRN1KRk50Y4hRETx8tOB+RBm4iwQf+TIg41o6ZIJrWZqJp4Q5HyFlFFLLraccWN+ZQSI6/A1OT02OCtUyuBTjeF+LNNywSvEekUqSNQwiOUa0HOodQUXSWRK0JkQjHBojUBSAihwX5hukzSAtYZyiE1iwsRKCItF8b2CJRoED6VsP3oHoTC+wkThejQ01qkBjSGAVcAMSYrAWGDOqIbkRry3FM6lLoD//oVsAOfK4xROloAa9gSjlaBWZbC2E9mqd5pG9F++ICEF5OtsQgaiI8iIBaQEfRZ5BitBL2hYYcHPSmhewcso2iCFROYWbZMZ6D9B3FMDIAY/ARhe4cG9O9SEzTjFSgKgFbStjkRqVoNyqtnDQfwBhaJ71nnomPAthHEzeA9L0Q6RRhu4OSEmLFpGVhEsmW5g0hLT7WAsdmoi5qBcTXCI+EaUIphPqLHWgIYKJdChHvf1J7hBBsQjKGVIp+iNQZB8SkY9ohej6HI+2KC3ScoCbzgkf0zsmuNdobhum5xu8ZiIGY8boxDKESbTcZWcQGAcAoegypyIyv5crYJBSGZhhDFCNG4SFiES0816XxznEBInDKF4yCjeN4SKYxi95SzyTkNNGIfGbRdNC1nwSxCmOQo7Tkkpudgzx2MXQvriUh0qE8DSpcxnPwOIMjhacO+bSOpHVP9g4iGAasDQK6BmQXYtgs6WXDXMEcALGLm3U3ubeozo9UhiAJHqjIu3dFnJi0gJeA1wqqUXF9DRAqIGg17i9CiPH78YqTERGDI8egseS8GCkfqm7HJgJakXbXxwyRZDSRrpNHlKzxmknXXFpzFE1MAnitvRGCONpRx8fLb1mnHMPT3vg3KUeUXig5/VxEGpF89PxfsEOI6V4Ujz9nstxN51E9oryCwGeIIt3RTj1OmhLyDGBaN+LeH0Jg0xiteJPNOoaoycEAIQWbwUfIs3B+vNeE8xCWVJ9kOkNOaDQ2kCIGI/qRdWALMTpgQlBY7jKG7Q1zBdXFEOWBGjCDOKGQipdK6zFUZDfoWkBGUbjsHPKtG40aZMoBcaxH5BAgTQAw1Ufp3maxHus2AQwz/r45xnVDRhthTXq1CIwNEI7ZZLQFFjBHyyw3n9LXRXTnfMTE6DhB8ZkYIxDowOfHc6gbF3W003WgG+rihhnPa5A8ny7jtEm0QwRkQaqYF2OaenLxBLgGyWRcoRTttoWIezKtyOUwRTwERUtpl0sMpSA1fLMneG64joRo5cy/Ry2Sc9z3VaxV4t4vtI77nkawFvb1FeR8TvpxCLGejftlpG0H56PmjM02QmDor2VulQSofYrAHGuMz3fffX83Il0HCEPhXdtClAXUYg7/7hME7xH+89cBAKLI4Xc7hMFCLedQ87Ppiwem8XqiMRgNOasgT9fTpgBQINrFm9/QpaR/suT4b99BGo1wLIBugH7wkNsjuZrLCuaaVn3pwhEHWmaG1Rw+WtrpF3v4j15Av/cWQpWPv589zCF3DYPUYiNy/6fPAADZwdNZphkix9wiDwE+U9APNYJSKBcGxycK939cYf4JsHjhIAInCe3TCrLzKG76WDgB3XmOYSZRXg8wOyYau4L6iuSQ4bJ07sgHnb+yI/dxmAnc/3BOXrgHtl9SMEfg9Dcd8ocBxW3A8iPemM0lOeauUFCtw/LrLZrnMxwvVWxeJr75/l2F4jbg7L+2OLyTozmVOPvNFrJ12L9fcuNoWUzYXKDYMIV68yUD6QLOfsOOC7Ose6h2gF8UFMh/c/OIYsMRa/d0jmGuUL3IIDqH+YcH+EzDVZrGAvUwFZshQFgH9foBs9cPmP0Hj+FLT9Fc5lj89gNE3UJernjdRoeTYBRgSctLArHkPCE3O+DZBfr3L2DujgynOllSsNj1gPNQr+7HhcVf37A4+sp7EMMcSshIL0g5BGq02vN1Tf5mnkPOKqDIoQoFPHIR/aIdQlLkD+co1m0a+NSYJF53LAJDWmRTARHdzbA/jE2dXMwpTq8bTlliMxh2+xFd9rf38BExFdpABk+B/OFIl5KiQLhcwlbUMQjlIQZDKk7bx0npRPWThxqhVcish6sy2PfPoDcdhGOAV3Kekd0AWXdwqxL+6QLm1Q5yc8BsF2ms3sMvZnCrAv3SIGiB/K6DzxQ2X84ge6B8yFC9bKBeP0BqiVBl6M5zCBtQfnZgevnzE2QPHbL7Ft05bbSDltBHi7PfiHSk3sLnBsgNLv7fnyFUBbY/soapPfK7DqrzcK8lmlON4xMiuaYOWHzcoH5e4PBc4vS3BxRXDYZVDm8k6rerqPNgkWOOlhq7ga/nViV27xoACmanIBYVZJ6x4Ypp8sIFqLrHcFKiOzHQtaEd5g2/czvTdPlqLIXtJxXy6yNFuM+WEHYB/TBDANFGvR8ge4/hooI4KaEfGojBovraDUKZj2g1APhZydTsuh21WeLYAtsDRKRTipjUHeYVKZ43DyxOx2JAEyVPDlkFC9VwrMfmNLQd/MMDICR1TzXfU3iM6KdrPzUemQFgIJcLahqOR1I349oEAK754lKzgnNcM4sC6mQFf7+Bv99AZgYwsUlPLCytaWEqBIu7nnQhv54Bqwp4fgZ5tfldmhqRGRrrJMe0GJg4voe6gVCPjEeMhl/N4KWEeuRwKLoe2A/QDR3X/LJEcALVJ0fYVY7DWxlUo6GKnMGemcQ7//d7QAJdpBl6zWmFai2Km2TskJDO6T07I+Ezifyee57P1ORKGfVisneQvYXPcrpe/dYVhucn2H2phDkAshmQ3QuYrUC+1RjmCvdfzZFvAk5/a8DuHQP3gxlmrxwZEAPogrkPY0hqOtZf80AEPdlQebhbisW7FY1+Up5aeedGIXx11UO1tBKHBIo7Bx+1stmOlPnZixbBSNSXGanpqY8MdBFVjcXss7h3DC7mpHHtdasSqw97go7Do+/K0YlTdhZwAf1ZATvTUAVDZZsLDXP0MAc36l9F7yG9hFwv37xIBUjzqgoMT5awM43uRCPbOuR3LeyceqAighd2VULVPbKPbrg2VCWwnJOmdbKE7Ab4qxvI9Qru6Qmn4U2H8HDN13vvba4bN3cI+z18P1BbqTXDPhPQGTXXclYBizmw3f/P0YiIPIfURbxZJ5RZDBTxjWhn6gwTZSKhnUksFm0yRbSxQ+wWkRDLzETUIXaXcRQufJw6uImvK1SMvRcCociRbNa46CRkOqKZIYxBNEEINkDzGUJBGlgKNBOd44L39lNACmR7DzcQUVAxdTRlWfA9knNuT2fRhcYhO0qYvYSuOXINUo5OF0qIKBKlMI2jVjda8PGJiXYKDyAFCgKjlW5yblB9GCcuKrlY3UWRW0RfAcTAR0A3apxIBB0ThAMXIUTxPL/UNI3BGJwmbcAw05D5NEakc8U0Qk4ZA0AsLpIQN2YsiBgaNOZDRMcS6nQiTaEw/F6VHBdvaSKv/9BNgnPn45SOzyfrAbrW4waerJ057fIQPRGUaaqX0Eq6vQkb30OakESNQMhYrIYkYn8UmDQ6PUUaENHOmKqbZxDSvhHgF9J1/Viz9EU9HhURIQVMac1zkZKmI5o9Bpilw5g4ag5T/oj3RCkTsmfdqEWDjpMNKQA8sgIVkoUfAFgLWffQ4L0lLWkyj4XtYrCjXWf6O+oOygUaRQBE9DvP8Kw68to11xWvJEKyjj3GROwofveZHOlGPiOaqhvew6oNIzAjLNE7bwQFy5km1TCLRXS0EWUYaZqoxvMsJe26pYA86niP8zXTdDFIGk2IOFnVHYWqnIoG2mlarhdBIQYcYgpN9XFNjZOioORI1QxaIuQKXgKy8/ydNA0xnCSolveVN3IMhRNRiBqi5S0cX0eE+P/x9+Fi2GiIa5uNmpdccT9pO1L20nTk8bU4antiKJiP4vOkLYq6jzRVG5H6LOP1lUI3kc41rcDT5DTZwsqiIKUoGbakaz29Zyniv/kYSMaJ4TgFeHx4Hx3lft+77Pv7kHGtDKS6CSVJ/c7zaRKkFF2xoilAMHri8HsPWfcT2p+c70xsWOL0KRjNa8YKhBh8CgBj8FxWAav5VEskQDQ5nynJKfkwEFRVcaoWH0/HRX63vorW5IHXb/BTILJwgfz/fUuLYCkhQ4ArNLrzDKoNZCsAo1Ys5RMZI5BvSIU2ez7GZ5ohgjZOYwMLeZdJyHkeJ8sBquY0WjcM9KRui8+va4qr8wdmktGkAuMEIr1vrhd0sGpXCqah0U4/l4Di9EL4aZIKgJpQGenmcS2QA6APDrrmVFKICWwVPkA1nsHPNoa0zjRU6yJ9baq0k9hc+ADVufF8w4VxfVEHB9H0cG/N4IoITOTTuiACxqBWU1vAA35Jdz70A1TnkR2i+LzMYGdcW/MHToFkZyFLuuvZRcyL6riHhCLjfhLrWE5QuMbLJXNqYD1robbj+iBEZAh41kBOTuwiIE5J4yTPB4hh4DWZ7qHPeXxfNyLq7ASymJNTlxnI2wf4Yw3x8oYnKmMUvVguAK25GQxMkg41kVCUxSgsE5ELK9crUiLuN0Q9FzNuKHUHLOfcyPuB+20IFIRFDinADcrNMvTP51C9R3ZzZGGRZ3DznG4IHuTr53q0cB1OK8jlO+jOcvplnxdQrUN+U6O9mGH3fob1NzqUv3NLhDzaNXLRKGD2FjoE9KsM/UqjiSLx81/fwex6lDcZZM/x/u49g34pILyEzANsacZR68WvN8g+vMb+x97CUElk++mCUj03eKINQLfkhKE51VB9QHZwyAIeFTQep//HNSAl7OUSrtSwcxVpWnT8ClJgWBp4o8aslPLOwhyIwqkeCJLVjc+Aw/OMoY+bgO2XNMPOXrEA6udERYJG9CO3mL+U8LlAfamh24D83rKZWebIricufigy9JczmIcW8vUd9DxHEIKoscrGhQOgM5CcacxudvC390BEGEPbcoMqC6j7Hcp9TYesWckpWExIFW0HcaipRfABeHZJykczaRNExw1CtB3pgW0HGAO/mhN9a9oRkZAFG3Kxj2LVPIuJ32IsbNzZggvv/jB6fIe65p/w+YKHvmiHrCL3OgY7haEfJxqPD6EkEegEJsTwQzoOCYT9AaHryetOzz2bTU5bIk5ktALMGtge6NDz6RVUZoCzNZKeBFLSPGN7QGgPUMtyKmL7ATgcaVHeNFA/8oOw6xL5dQ1RdwifXUGerOGenXJaOXj0ZxWkK5D99gFQCn5ewc0yDLMoUB8ChrmGtAHrrx3pO3+ctC6i6Wi4IGewpUR/ko9FsS2ZQJ499OMEJOQG/Sobwwb7lWGeQNw0U+K5rYjkDTOJ2WsLfRigDz1caVA/L5BvLC6+uRvpi65UMUsEUZtGESwA9DG0EWBxsnjRjYYcNCWQyO5aOg7F5+vXOXRtUb7coz+fwZVsrhJ6GRTfY7bpILc1wqygs9auRdKDiW4AOk5NvJbIb5k5ZU9nbCD7nn92AtJwkjFqQBCpfMd2AkKic5I7X7LYOrZTtowhQOYvT/i7n93yv/kEwiEztJOOglEAtKt+egHx6hru7n6iDHUdYDKIMk5P2hZysYihwNNkBcYQ2EgFiVbAF5TJKYQYJ53u9g7qySWzWQA2cG0H5Bn8YkYK1hC1WilFve3hX096O98whFbNKkAqoG0BIaPYPIJGyba35Vruuw76ZI0u2rbKeojUqkcT+5xFZWha4OwEblFAX20AH4hqW4/qsxau1OguCsjOQ/dAfzmDyxXaMwXdBBawVxvYTz+D+uqX4WcasrMYLkpc/ZhC9Upg9RHXCBbXBCbUtoa+lyheG8h9AzQt+i8/G93uhAuwl0sEJVDcMn29OdeYv+yh6gGq5hTTbDXaJzmOzxRW3+iR3dVsrqVEdm8IznQD66ZCw+WkQbpcQDce5YsD7v/EGvd/IuD0PwvM7wd0MR+ouKUdd3eqmaOmBbYfUAi++pDGGz6XyO866I+uuE8bDf9kFalqgO4As3Mwuw5yc8T+T1yiOZFYvLRsRh4BAbaia5bsPGRMuk/v356UaM8NsusDcPeA9uQS/UKgiiBMce84mWos7MIQFDm0CEqheWcB3TiY2xrmvoZ54NpjlwbtqUZxb5H96/8IWRaQizl0OIFYFDi+VUDagOW/fYlQFejfOYHedFDRxVF4D9w+AHkG++4lZGehtkeE23vY3Y5TU6Xgr285Uc3ZkD+G6ESRQwwSvm0B7+Bbx2sc4O9/Tg+cP7JVzq/8yq/gL//lv4znz59DCIF/+S//5Rv/HkLAP/gH/wDPnj1DWZb4yZ/8SXz9619/4zH39/f46Z/+aSyXS6zXa/z1v/7XcTgc8Ec9Ql1TrGnd9EkSupwQin5A2O4YRpYOKSnuTeGHStEFIKUnp4vL0PrXV2ZKyX002YC10HcNhY7GAFWJsIoBM0Kg/HSP/MUWcntkPkDdQNYDA2t8tKV8OELfHpDd1ZC9g9d0fNANqQu6tqjfWcBnEsuPeuh9z8KpyBAKiqCED8geegQt0Ly1oPgsBJgDE8aFC4ClcwQAuEIj3wZUVwGz1xbVjeWitPOorrkBu4s1VOOR7Sg0V41H8UD+Z7b35G/PJNRA9wvdeo4WdxbmSGctgAX77n99huMPXVAgOxC5HeYKzUUGOzfwuQJETGF9eYRqGWY4LHRMdKZjV3HnUd750XbT5gLZNqC4C+OEBqBeRHWIRVM2CtrzrWcC65KNn95HN4uqiFkAkucXQIiFoWossk0Pc7AYKgr8q89alK9bFNcNG+CLM/h3L+HfvoS8OIM4WdM8ocg5FfOeHPlIx5B3G4rSAYjFAuLsZBI2R4Q+9APCsR7peSgpZMQwQN5tELZ7hH6AKEuo9QowhlSKuplEqyqi70UO5BnktobcHChUDYE85ojuC/PtxSS+l9YJIFJOBjs2YFy0F+N0gzbfhounkOS9WktkOE1A6oZi0Qhm4JHGK72GOjmBXCwiCl3RTW+cmPB3REsOeOj5J/1MNB3/dD0nXpErLncN5KFHiPkw0JomBes1P0vvpulFbIzksYM6dFCHHmbbQh16uLfO4WIRK3uHbD8gv++Q33VESuVETw15Br+s4M+WcCczuGUxBvsBscnvYmDYwAmGzzUzLqxH9tBC9n6kjKVwVFNbijpve5hdj/zBorxz0W2Hv6v2HWYvG5hNy2mH4nOrxsEcCDjIgaLRbNNDbxs2MbWjw58LsKWGyxV8dLJJkxFXZWieVujXbJSCmXRccgjjJEfVPfS2Q/bAoNOQZxC9HUXto7OipVuZ3rUwmzZmEBkWj4Obvv9+QJjzfPoqgy8IToSqIFUzId5lgVAVRDAFc1ySRThcnNzXHTMg8owoZdNMzYp1nNbPZ7T01tyLhHOAVBGwyHi9az1O6sRqCf3sKdHgpuH6k5zhBoIeSCHASZP2bTq+p9YKKaLz4MBz1w8Mkq0bAj8DAyTl/khq3WAjdW0gOBC1XSIzkKsl14LZjOc85cdYywDapFuKUxVkhkBoBEdk63gdtdFBMb1W30PW7fT7UTsUMoMwL9Gd5nClhjqy5rGlHHN1vOGUrbx1tMsFEOYV9POnkzNfCNCNw/xTIN88dgcE9KaB3Bz5OK3g5jmGZ2sMHzxBUIJUy1zClgqu1DSPMMzs6RcCzYVBdx7vCSXgCwXVBsxeOxrcGIX+fIbm+Qzbr1Q4vl2RHeID6dA96wefNBchIN87lK+jSc3gUWwcio0bQ0xdDHIuNg6z1x7z11GvpgSE5fTHvXMJ+2QNdzqnHk+IcfoKAG5G23xde8yuHXUhOZkstjI4vlXCZ5LgKeKUt2VUghgcnKFB0HBaQayWmL/ssfpwQLZzpNZHGqjeNlDdZMcLUMficklnvzi1Ej0buepqQPbQQa2WdLYDIO/3MJ89oHrVkWqqKDY39w2bkFQjxNiAEALUvmVDWTfU4sRrkBTlYWQTiZRJ1A+8T36vMGSpYpZINk3//7Db7nM96tFxPB7xJ//kn8Q//af/9Pf893/yT/4Jfv7nfx6/8Au/gF/7tV/DbDbDX/gLfwHtIxean/7pn8Z//a//Ff/6X/9r/Kt/9a/wK7/yK/iZn/mZP+pbgdsdmXr+BwSn+K6Du7uHT7QEEPUQsxKiyGOGgoY4PSESlIKcogg4FBnczIxTCzgXufwcYYmbezYZRsPPC7iTCr6MRd3vfAT39Q/JFX/YwO8PkMfYuCQazdUtcHUDeXUP2Q7Rcs/DHC3MZ/dQuw679zR8JlD+xgsGIOYaocqJ0GUK8AH6ZgevmMExVBw9FhuH4oFTBWaVRBeeUqK4G7D8pEX54QOKFzuYo0Vx22PxcQ2vBdpnFfTRIr/voDoHU1sUty3y+w7ZpoM3Av2cFn2mjn+OvJH0nkUBBNDPJG5+VOHhh02kcDCTpFtI1JcS/YICdADQ9QB841OoxmIo+W/9QsZJi8fs1cAm4OWeTl0FUN1YzD7rJ7QILCh042FLTmqStWfipHcLjk/l5shGZJ7xJjcKckP+c/dkjuTTrm/3MJsWwwyAEDDffA390RXUixuEXGN4usLx3Tnqd2cYnqzgzhbwixJ+UcDPJ4ckxObCvnpNBycAfjWnvXOiluTkIYehh9/u4e83pIRV0Uq262FfvYZ7eCB6XxRsfFLa+uE4ZmIk15xQFSxm7jbwVze8xr0ftSMAAPXtbUS+l9YJIFLV+n4SrFcV3T+SGNfoMexQqEeNiB3GJs3v9jy/sYEIduLNA+ACfbaGXC35PFXBxkFEio21oz4lRPQzxJ+haccpR2jI0U3ccbHds3DJDAtiY9hwnK15bzdMeEYIwGLGYMbdEXLfQO5rqOst5LZG/fYM7VNm2ohmgL5rYF5tYF49kIaUBI1CIJQGdlWiu6jQnxToV9kbFAfpPFRr+achgOJyWpwL56CuNpC9o72lY2GjWgu165F/8gDzcgP1cER+fURx1Yz5IMLTKUp9/QXULa2ZfMY0YnMYYHZ9FJt6FDctzM0B8n7PRmDfE6W0DD5jwjspEV7TUctVGsentDQXNsAZiX7NzVI1bnQrlPsWanOAutqwESk0m8V9TRTUY9TkwTqI7QHqehsnNwbyyEIxlBRvBmvhVxW68xJuZuArA78s4ecFQmlGIMJXBfwsghdKoF/nCFWcYETqp9hzihsK3r/hWI/apWSmIGYVLeqzeP0NFkLTfUnEgpehffH+X8zg3r4gAtq2CEOPYIfxdX1dTxMW9UcuG/7A43tqrRASfr+frJX7Hn5/gN8feO+3Hd05b+85SY5gAV2uDgRHQfqcP11ArBbUk+XZONEKfR9/P2YXacUmIgINcjEHtII6dpDHBuJQE5zoqSdB0yIc68l+1RKICGUGPy9oaTvTI01zKOVInU4umMWrA7KH+O8nJezbZwRoo2mD3nc4+VqH8vZR4HAIwN0GuL2POhGNfm1wfJ5j+wMVG5GWejVb0RXPFZxgDJXAsBRoziWacz2CA7ZS0EeL6uMdZGfhc43m0mD/tsbmh4D9Owq2MkDMIZEdgYagQPq1YHbQ8iOH/MFCdgxDLm46BC1oIqE5PSluWsw/3GP+Te69IYrfbaWwf79C87xEd1FQlC+iuD2et2GucXyew+wHVJ8e4LWAK+lWZmcKh7fYcOmHJpoDCci6g6xbiG6Az5h10l7msOcLFN+4xuw3XiG/a+lSOgSofQdxv+W0aIgmOXF67DPJiUuhSftsB6jtEcVHd9C3e4iTFURZUi96ewf70SfIPrxG9vIhfq8W8uoe4WHLHJC2JzAaKYPiYYew3bGeVgpiMR9BSq4FKQCV9tS8L/Zv7H/jdaIUm+64znyu2y78d5DDhRD4F//iX+Cv/JW/wjccAp4/f46//bf/Nv7O3/k7AIDtdosnT57gF3/xF/FTP/VT+M3f/E38yI/8CP7tv/23+LEf+zEAwC/90i/hL/2lv4QXL17g+fPnf+jr7nY7rFYr/F+qn4KplvywmRkXClFFn/a2HXmxMs/J/++HERUVRkPMZunD8LExBDFZFYbMwK+qMXFyRB/qhovK2Zrptte3kJfncOs5HTBcgLp+4BeYxKxlwY0n06QA+DDlT+Qshm1lYHYdRGshjw2C0RieLXmBf/IKYrGgU1dM4g7zKgaYUeg5WrAFkNYzuNEi2J7O3rAFHl2fJNEFfRhg7muOQSsDW3JSMeYIdNzkhfOon9FWM1Eksh3Dx2Tvo4MMXa28kTg+oQVonqYrHQsFrwWyHcVZqrbwhUK/0tEVCGhPqGMxBzpaANSa5JsBw1zDFgKmJkKi65gxsNajCwffN0e0CAHDkgFB0jGASEXU8s2wMKKyoh9YxMcRZtAS9qSEGDzUrkMo+B3qDRFyv+T5l81AcelmC5yfIszLcXH3hSZKcrdhkGDbQbz9jI/pYjG5PXCjzyfx9MjpNhqip7BMZFm0mo2Uon4AgufoVNEBiqnNlkiJUuPGJx455ISoP3G5xL+5+79hu91iufwWcdx/5/E/ap0AprXiz6//N6iOEwOxmPNcdN3knleV4+8k1HM8Em/8cd5CosQ9vWSj+PI1UczTNbU8MS15LN7ia4TYkDw6ORgtxosc7sl6uvfjexSLxRQ4mfRmyYnpZAlfmpEXLjeHETkVc6LpIaM2Y1jldI2JvOmgBPLbBvLQMQRNiDGJOAVhiRAwnFZE+3b9CNJwHQyT7XQ/ICgJd06rS9E5+FLDFZpJxYOHm2dEWw+RQ6+n17DzDFACsrFviD+pJ5GAEtCbFkFL7H9gMQYjZlsLs2P4p7A+hsSRugCAwvyCVAd9ZGE9LDLIwUNvm9GYwi5zuExC9X708DcHC3O9n0Cj7YFajSfnpHeVhvdz3U0TzYRSG+Z1BB2b0KQvAfVA6T0mgX36Tv28ZCO0rUd0OmkYURZcA5I2TEmg6+E3W4gyAmtxaiGWi+iWRG55aCN6n/YHIUY9XOiHsTkJTTM64SA69aXCImlThsMDfrn+379Qa8W4Tpz/dWiHafKwWnKqBQDOkfqdzl3U0aQ1NL7h8fdwdoJQEMRUV5tx0jT+fgyRdG9fwM4zmPuJXikWc4Qnp5x89QOnZkbDrst4DwfouyPCi1dc75WCOFkh5AZuVXItqHt0TxdoLg2yrSO9575mWN+zGVTrkG17uErDGYnsgRPI/iLa/9oA1VrIJjrnKTnqQ2A9Qs7E9n6hMFSSzIqoUwhGvZFpNlSsB7I9awR9tJEeqaFaz/DSnrre6z9VwueAaoDq2mP1mxvWKc6j/tIJbMVAVRHCG6nkXGccfJUx9uBJPtYvZscU+qS3o9ZTws4NmxotkO0sZOvQXuZjOCpATWoKTZ5/XENtG/h5Dp9r9Osshj4KOgi2bqS/A4BsLeTtFv50gf5ihuy25uTBewSj0b1zMq5FvsrgSs1JWG+h7vYImUHzwQnp8K0bp9+i7nhd3G+4L52vIXZH+Lt7iNWSuqGUO5XcFVNAZ9JuCMnHATFTKNYbcTrr7+5ZO6d7fOi5VykJv90j2Em0DqVGiYOsqtHm2oUB/4+r/+sfulZ8W6GNDz/8EK9fv8ZP/uRPjj9brVb48R//cfzqr/4qAOBXf/VXsV6vxwUDAH7yJ38SUkr82q/92u/5vF3XYbfbvfEHQBTWKTpktd0j28zHJ5sWZYg3ayrAfF3T0SZtGMMwUh4AjJxPWmlSNBSSN3t6zjyDLw0RjY6iZQYIWcjesmEoC3JyUxNiVLRxjHZ7VQ4/L+GWOYVOgZaZouspVvQe5uWG4YjJ9tO6iJw2RMcGh35lmDR+vYfetFCHDvLhALHZj5ujKyINpU+2oUC/1uiXakQXSCHijR0UN+Q0ovTRcYrCWi4CQfLfEpVgbHCiw4SuHYqNh24C2pWMiaICuvVjEyKth2oGeCOxe1ejn1OoSjG9GF9jKGlXbCPKaurpO1Z1D10PUI0fha+q52TE3B2hNy2F9wJEVZPNXfLfj/znYIjKiv1xsliUUTz2cgP9UMNXBnaeoV9FEXDdQt0foB7obhWODdxmO+UFgEWfm2ekgcSb1LctkYneQnQxpDFSCMO8InWjjAtK17MxyqJoOid6Dx+IVg79GNYZnENoWvhjA388skF/PEZNjclgf+/R6nf4+E6tE8Dvv1YAYENhDKdLPnDNGIZRQDquETpOR4qYnxA901mMmWmSJATNK6R8g2Y1FtFNwwCzvmcBqNQobqfnOqlbI2VDKwzLnAi5oPAYWo/C84S+p0YgDMPYRPuM6wqSxfAYsCbgCzYEsid32RUSrlTM6cjpWS/3MV05HdaTErI7kn7kAtTdHupuD1n3LMAjyCEONcLDhn73AKcjM34G1ZFeItueAsto8uALus+lZkQ15I37TMHODPrTAsOC+Tv8vHgzQViDDn1LjWHNzVS0pLSJuuP73Bz5uTobbbbJ187uagI7TQ9xbFn02zAJ0wH0S4VhoZlAH0IMUI3WzGOTJEfjkZBp+CI2CfsjRutUo+BmOexJybV1dyRK2g5TgzNYgl5J6+EjBbghwBWahtTLqoBfFGxAAk0sRvpUdIObLKLjulMyZXtE0KN4OiRwTCr+/VjT3cmHkbrFTIxoJ1oQyBNavRnm+R0+vts1BT9rMU6xICOoE12zRhAnocW/h9V6sHbUj4RMw1VxDUmW3MmyNU6WfKa4N6ffH2g0IKLIGVICWsFnGt1phu48w7DMaEIhJXzXwR+OIwVYX+/osqllBBCjXXYInJI2A/qlhM8lA1qFgM9jARoNarwRkI4uT3Jf8353no3HSU4DCkVnKBlDSfnmSfNRh240NAiCOV/51iF76GF2AxuBaL9P6paCz2gR7kre39mOAKeoO9JZnSNNKRPj5LNfcOKiDz1E08fsjAAo1gq04k6i9TgdzRRka2PWGcZ6RnYOqu5HE4389R7ZfTNORYRHzFTzkNsaatexpgA4jXEBLlc8Z3UPV3BNgHOQ2yPyTzcEirp+ZCukcyD3DYKSaE8ZvSDrfryGHjc3YnCjGRPSpLJtkbI+fHSP9YvZOIXnm4/0YSV5b1vLWkPx2hoT0qNL22jRC5A9lGecyEaAjf9AswaR6uYE1KV9FPjcJjjfVj7G69evAQBPnjx54+dPnjwZ/+3169e4vLx8801ojdPT0/Ex33r843/8j/EP/+E//F0/d/sDETStJ99iYAofim5Zvusgk196zBhJHVjYbPk/PqbICjkKR8PL1yw8zk+5MVg30VyKjBaqN1tabP6pryLcH4DXN5CLeRQeU9g2vHdBe85uiBzjAFmw+BBND38yw+GdEtkuIhSLAlgUdGRICNZQQMzKGF4kgPyM71nSMq5fSLgihzrJyHMOQFEaOm4BcHMK2GUUm5stL6bmyxW8BnQWYIsMenUWnTECyldHCBfQn5L/+Pj3m1MFVwDLjwao3rM58DErpHVQzUBxtlJoz8+helpytpc59m8prD6yyG8b0t6kgF3lMUk0YJgBw0wh3wbMrjyyTQwGsh6yt5DNALsuYSvNxUsLNM9nUI1D9ckObpFjWGac4Ax+pD0VN12y8WbY27GBX80QZrGQGRzU9QYhz+CennEB3uwRlrPxRsZgoTY11F4iEwJ+lsOvSui7A68RAEJHe0ytWFTcbwHvoXHKzaVpR7tGd3UDcXsHJJpEnhNJ/8bHpFGUJakXwbMYGCxc09LITCuI5QJ6uUDY7TkubbvJqjYeYrGAyDO4q5upQR+GMdQMAEIyU/8uHN+pdQL4/deK0HaQJxf0Rn/5euS8+n4AQofQdWMg0+iDbh3gk9Oe5/qgFAs4rSGkgJ9FQZ5gM+JubsfXFHkOtVhMY21+CNqJL0r4wkDdH1jkniwRlET+eg9xbBiOqhQLVMMJbRgGiLKAfbqO/OMeuLmHaFqYxXxqjpwnpx+AaFqGb+YZrWV9QHFV8zr0fnI/MjTN6C4rqDpOAuLP1bGDbBXs+YJZRfuWE8O2m/IU3nuOoCXUroXUkp9t3xKlO1/BzUuoAw02fK5pObnWKK8FTBPXRSlh5zN691cK5uggDw79SQ5XSMiB2onidoDqHPRDje7pAu25Qfn1hkX7D7/PpuPjz4DLc7Tvn8S1I8CuiJCmyYfeKci6hzg0yF4+wGgFvywhpcDi0ANSwM1zhCU57bI74ec/dBDHFmZXR70Qv5cQQS2hNXBsaBaRGfjTGYa5ht6ZMWdGeM89SEZ0vCPvP0Sffr+aQVQFZDSeCBWDNtWhpuYRmKb5j6/zno2G3x84hSty+J73utB0/xMZqS7u9p5/L0s2zRFME4kjLiWv+XTE8LK0FH43ju92TYGelDehNWRRxEnSo8Irz9mcNW3Mfygm/enlGcRg4T9p4JsW8mED1XZQOSeBoiymIu7xe900kI2FfH3Hl/mhL7FYfX3DPR4AzCmElJj91i33mbZj8Xm6prVvlaFe0yWp+OghNrYG2dUe+deP8BdruMqge/8M3kiYo4dqUlOfAEcBdRww+9VvsO7Qmu95xom9qjvo6x1CbtC+s+JkY9NBtg55JmGuOY3t3z5BkAJmP2BYGPQnTC2XNiC3HrLleqiPA4qXA63stcT9H1+gWwmc/ycKybsTDQjAr2cEC+oW+V0P1Wo6bRk2Jd1aw+Vz0rvuamBVERTNBGQdkG3JoBiW+ajzXHzMqWS3VFAD3baCYY7c8j/Rx7577xQuY6WY7WimYWcGYXmC7I7A3uzTI1yhMSwNiuuGU4zIlhFJV1fQvrt5WsEcbQxBZgNbvthHq9wNdGZQCkB/fA2/3UGcndIBcNvFTDgJueP9LwyBHrle8bt6fYMwWMiqohnJqoC8jYyckyUQJ/8AeC0iNglCIBQZ7LM19O0B/sNPoc5OgKqEvDhHyhRBCATNYt5WAsXd7R1dAYHxPvGHA0Skh/vwOWLV8W2eiHynjr/39/4ettvt+OfTTz+d/lFQbPOY/x3sQH5rRCFlWXJRfYxoPUIfEsKTOj6OHz2R5cFGcamd9CGD/d2WqlpOXWUUJvNJI1oQqQwYLJHGFGAV34dMPtP9ZMXK4LxIodGSY95Mw2c6iiLjf6WATMMgHbmNmshkyBX/JEcZH+044x8GH3GykQRawjHUj+FcliKx1kH20e7WeqghQA5gwGCl4DMxcjLT5072yMLTZUvtOk4sBrBJiJMmAJECFWKSK9+T6gL00Y3ircTNHi1FbYgoReDoN58sCWX/qMhKKHQAuZ+5mqY/UXBKikxEugx5mCMSlr7HeF2kpnT8jqLGICTBt5wsWoVzLGhtQmW/hQrm3JuFKjAiG6MI8vEhGHY0iluFmGg7AP9NyHidJ6ROTFoIAGOg4ePjf8Bk5Dtx/IFrBQB4F8fTCcHj/zPk1MX7+pFlavBTE9pHVNza8dyOCFU8QqSzvHGI6FyW7FYTrSlgQhITtSdNPR4doTAIZTZac45HFGsmlCp03YiApawJKBWv2/icnrQp0Q1EGh2dX3xC7zzfVxrph9yMAADdpjQRMyF43cbHuVkGV5rJZnQ833F9lHGCEOlCnKA+elwU/4v4+iLeW8HwvIgoWmeyO52EYB1R24Hf1xg4m2nauetEP50sLFM2QkhIc0K4HellnP4QCRaxYBAR8Q3RwjtNpce9BJjWfMNJeWoK4eicI5MFM8DrK+0fyUbaB577tLaM3/FkDy1cXD8ilW+8Zx+F9Y5HXFfCIyoywqP7Xorp7+nfheTPHl+/QsT3G+3vh+H3ooV/3x2/7zoRv4dvtR5NVK0xqTqtr/7Ne5VsiZg34lmXhGMzTURHu/B031MQL48tv6+I5o/fZUgTTs9JfbxPkj4kxBBWnytqCZK7XqQ1wsZclJ77T7K3lwMnJEGp0QZXuDhla1oCGc0jx7a076XzEfcS2VuoYwe97SCiHsIVKupDaAkuB97LzkSdVmkoZDdyDHX2RkE47vnZtke27WEODA/kC8kpcyewCQkq7umSAY2+ogHE4/sgSFKrgqZofVxzxLcETo/rAvi564Y1iSPtW/Zvivbhk1FFtNgXoE1vy2Y+xIkWIx4iC0bHdScgmmjI0fgkxOmHjLbHY2CqD+Mekyx8Q2yCkdgRcZ2B4WSCTq6OzplFEemqcqpx0hrt4lqTYgJ8pBqmOnkMAI9xB9Gu+nG23rjOWIsx7DPtScku/HMc39aJyNOnTwEAV1dXePbs2fjzq6sr/OiP/uj4mOvr6zd+z1qL+/v78fe/9cjzHPljfnY8ZJ5BPXuKsD+MtoSPE9UBMKTl2SnUq3vYl58BNdhJltMFS05+DhH59v72nl3ecgkMPezLz6DWa4j1ksLzYw1ZFkQLLs8A62A+voE/X8H+4FvIvnnFrnW9AqyD+q2PeUHMK9p2dh070jyj/mTwWP7nWyTPeNWxiQqrOT9E19P6d5GzudASet+NBZBsLGYvJlqFz9QbNAMAEIMnn3pLK0q/JCIrY9aH6oFsa4mWHhraEJ6v4JWCeUGkJivzcTPNr2lF/OLPzxAUsPwmpyFqmPJCurfn5IXuHJNO2w7lpx75tSFVwzogFEAQkJ2DsR7zzpM2UkrkDxTDptF1e5osB4cYDhSnPYXCMBNwmQb8kqPM1sHONLzRKDoWZ/3SwBUSQyWw8EBWt8D1HelwT87hZznqH7yA6mij1z1dwBtB1KJuJwQ4M/DzEnaVk9e7bTBczMnbvd4RNSiJYIp+4HehszcWPqE1uZRFPqLk8IGCsUcopBAxN0TKkaYlz05HamBamHzTIjgHdboGrIVLkz6AegaAzVEat0bXnPGa+S7a936n1gng918rGGq6Z/bQcsGgtqQDkQpqOZ+movF8jb8bgxDdfj+FH6bjQxYwQkkIFSdrka/vHzZwdQ21WLCo73uEfoA/HJhim6ZmSrHJSYt4mZP+1bQI1qF7yvuoinxx/fJ+ev3FHGq5QDhQsOzrPT/f5VMGpSYdk/OxOf+WKtI6QAa0T8jfrT7acmqxKMZcH32zZ8GwLBAyie7pHGajofoBYTmDn+UYFoZ6jlzFzdMDqxIi5iHJxuL4wRxyCJj/xhXkooTXc6h2sgiGc1CHEqLXUJ2ELTWaJznyhwHZxnLjlgL69QZ+Pcf+j52juOmw+G93nFTPn8OV1HWprzwHApDdkzaJ/RF6VtHqPY903NS0iOrR+fAQgVoxWffAiwfIpPM7XVOj0dKJJswf2fDujgiHGv69J3RNBEjR2NaQ2xrFtuY5TMVcQhYHS7MTTbctMViIJoJfcQonnBv9/iEExHrJ6+RwjEhlXEPS/RzCNBGVghQhITj9sx1RfaMhFwtO8aJVp1otR0CPhYWHzHME50k1NdGla/gW4OQ7eHy3a4oUaBh6NvZqsYCYlfCvrqj9ePRYf2wQ7ED9qVI0nlGSKHUCffoBoW8nNHm1AKwj4r1aIqzmo2ZQrJa8Pz/+jFOqpxecjkZn0CAE3Dm/e9la+FS/dAN0T6Q9IdUAi3Y/LxnGGCf5OtdjhkgQAnadQ3YORW0hD9SdivfeYoG8i65jXT824t07J/AZKVmqtZzkHWqEukHIc4gZ2Rn9QqJba8xeeax/c4fDlxYMJs6ot+kXAvnOYOUD2osC9YXC+X/YQry6hX9+AQCY/cYr6lcNzXncqkS/zmDLOO1wGB08vQb271fA+xVmr+gCqHpmjGy+lI8p8rPXA1SbwF5qVoQjjRwu8PUWM8B7ZLdHUihv7uHff47jB3PMPq3pGhbDSP3lGiEFQGrJYNF4fah9RzpqnkEMDsV1B/PZA+vVr7zN7LfCvNHgAUD/wSVEuGTd1fV8PilYMx4O8G2HcHkCX2jor8X952SNUObwsxzykyuI7Q79j/0wfK6Q3db41twfv9vDN804+VQ3dwTtz06BfoC/37zxeKEkgswhIhDnN9vRfZM05GjZW1VjpIDIMkilgc+Rf/ptnYh88MEHePr0Kf7Nv/k34892ux1+7dd+DT/xEz8BAPiJn/gJbDYb/Pt//+/Hx/zyL/8yvPf48R//8T/6i44Ij4LMJ163SJ1i7FzTYyAVi4lI5xJlQVTCuXEUmfixIjNAnkPO5+wok4+6FGNgVBK1J5SQr8POMWg1dvFhGID9kVSv5YKPSehoRNiE8280D+i4Gfn1jEmakdpApEEiKEUUIG3+6Y/1I5VJOC4gAOhpHRE/xIwJU3tke4/8foA+2jFYMRTZSGmCVgjLGbp31nBnzFEJ8fxmWyC/B6qrAcUDHbESuqJaH8OAIrpZ5UxZ1hwbhyof0ZjxkEQM2CDxjz70yO5bzD7rUV53UewKuFLH7t/D1AG6iy4TRiJkk2UhwNcwB0u+aACnN2UOnKyA0/WI5AYFvn7LSZA+2hHJDm1HIbOmjkRFnjzi/5OL7qYxaJywiKokUuMf8YkV047FfAasFpymRMRB5jktH4XgBiVEtPXltcZrVo12nrAWwmg2x4k2FPVTKRNDpJBOGV83XftpUvhdhDn/R6wTb+hhIsobnAeEjAFtYZyA0rFITYhOQoKERAo/FHGtADAhylKO1qYhbS5xYovHyFAKUPQ0x0AqNAGEebR9Nnrkkev9ALMdxmApyHhPFvS9D0qSxxsdkaCj4UMMHfS5QYhUUEg6Yo0ugPGaSla8eFTwBkXONuL6obcN1K4fqZshNk9BCQq793ZEFtM5HgXkWnI96Py4HqmO4tRQJl6y5rTGediS2gyzsxFBVLTjzUlbCkbB7GNQV5oM54qIb9K7SdLA/HqG8OSUKO44HaDbWBKKp/OVdsSgJbVhWk0o4WMXujybMmWiZa8ocq69naVG7/jIjjlmPiRtX2joqkXr+TidbYimPkYjqfnynEQMA6k9kRYXun6ykncufh+S+5zWo21n0nio+YyW1UA0NHjEIghvTgFCErbHfVCmAD/gd00LvpPHd32tiOwKoRTkbMZ7tGm5JkcTnIT4CqMh5/MReOB3ZHm+ox4NSkZefkSSo7udnFVsKptusglPuSJRoyIa0q/EjK/LveURKyDVDh1pmmpPy27R9tQtbhu6aZmpFtLbBuahpZ6yc2NgImSkGS8q7tHR4QuRqRCKDGFWwJUUbpPaGVkPVQlxuuZndKwnsr0nu8FSO6oaj2wfxhwy3cZ8MDGFFNpVjnBxysJeS4Icqxn8gudKtgOy/TDmmnnFSYgcAsrbAfqxFkSRaiY8YGKUwFBKuIJBrgAnKzIFkGp+JtnaWP8wVDqUzKLzJc1xfKZGECEYGuMks5wgAL8oEdYLhPUCvjLRBZP1hH6oSb08WTHIdtdOodVjPEQKWiZoFKxFONachKV6NKMrn961U5hx1JqJhjpT3zOTSe+pg0tAz/gnTu7kcgE5n031RTJyUpJ6suFR4DIesYaizTQBzbS3xNoi1R8+TPvgH3L8kScih8MBv/M7vzP+/cMPP8Sv//qv4/T0FO+++y7+5t/8m/hH/+gf4Stf+Qo++OAD/P2///fx/Pnz0QXjq1/9Kv7iX/yL+Bt/42/gF37hFzAMA372Z38WP/VTP/W5nXDSEVwYUU1ZFhCLOZAZyEcp6mEYyKuzFjIVDjJOQBJy3bTwOyKJ6e8AKM7LMy4EdQMfUWaRZQwqErFLNQrBVHEM6cb8hpCTZy6KAv5Yw9/dQ335A7jTOdS2YQHSkS/8xhFT18WxQVjMcHhvhvK2R/bbnwHrAsNcQjcaQvsxOMzsJkRbxsZLdpbJxnMTEzYd3S5kFJ5rgeK6o+5iW49TF5dPDkLwAX5Ron02x+2fzDD/1GD5IelNXkmsf4dWvdmvfwPiZI32g3O6UXUDshuGsw1r2gz3529ymkUIE18SiIWPGNGMsaF5/UDB5t09ZLRddV95ju5Uo7zpoRqL6ore4j5Pbl3JNSe+1uBgXm0gT+cY5hVFcUvakkII5Ff1dP56B7mrIR/pnOE83GZDzv/FKUQ7QO+nKZS6Z5AZHrstaVJb/Iqog9wcp5C42CC4ixXsPEN2tWcDE2kdIs8Q7h/gNlvoZyUbN0Fea1hWpNXEQMQwWIjZjNdzQdcskbcjMiOKIpoycGFGnnOTzAxw/0BkI//2sjS/l9YJAPB1AxTz8e/BxvDCPEey1AzO82eGBX1oGop6tQY0IFMmDMCQuFkJcXs/jZ+FmPJKIkeWaOSA4CMAoiRkZkZrRFg2/yLaIvZnJVTroLbtKGI3n3JaGrqOFuPzis1KaSCPHWAd3BnTdyUw0gmDIg3DLbOJAqkoDDU7QEW3p6AlzLYbJ7LjOYqBgMEoiFYgfPoKsiohq+cUue73EBcnnJpcbSlmfbYeGw0xeLoArRmilt+2saihgFofB7hKo6808qYiZbXtIAqN9kShuh6Qf/KA4fkK/So58Cj0CwNzsCg+fuBkclmMa54rmcMkBrp29QsD+5TONuv/8kBdmFEQg4PcTOGTYb3g5+wJLnktIQpNAME6ItsFp8A+U5yavrpnU1JlQGwgRd1BDhZhfyBy2HaT1mu7Y/AX4kTUWiCLdJIUcJmZGDI45c+wYY2NxsAg3ZCuB5NBmjmbEudou5ma4YFe/yIZWyT72PsHTlAf6z+SmHq8P9jUyKpig5hnFLw305r37Tq+p9YK7xE6C7leQZyewN/cwd8/QL/1HEJJ2qnHaYk8O+UUI/6e3+6mkNM4ORcAwaJoRDCGJF+cQm4P8Fcx/DBas4s8gz8/gTw2dEd8/gTubA79egO0HWTPGka0jybYiTIKFooMl4s1wJML2MslVDfQpOaTVxBCQpys4BclXF6NE5J+yesm2/ZscB6dFrcsYGcG3VLRifLGxXvZwM7m8IVC9invr/LTHbJFDhFK6CPdtfKHDtlGYFhlCArIdxjpYdKS5r17t4B8K8f8ZQe4gPZiifQmyhcHyOsHZLsapirQrU9hC4FhJrDaDsh/8yXkl56iP8lGUbozbEKq1wPqpwbtuYAICiaXKK796ATqTRTnDw7i0MCvqtERS3UGWQjo1xn6ucCwMBCuhEyufFIQeNhbuFk+1TiCon/Ze+TXA9edmzuEH/kS2vMCs1//lGZDJ2sCW9GZTfQWqreThs9auLt7qCeXcM9OoIY5T8nrm8n9VSk6cHY9xP4I17RA8BAvrqCEpM5JyfE1QqSxipmGe37Gj7Gt+R53+zhhzWly4xzZQ+mIdvPyZA1hNMLDZsoYSa8hJND3kaXxaI35A44/ciPy7/7dv8Of+3N/bvz73/pbfwsA8Nf+2l/DL/7iL+Lv/t2/i+PxiJ/5mZ/BZrPBn/kzfwa/9Eu/hCJZ4AH4Z//sn+Fnf/Zn8ef//J+HlBJ/9a/+Vfz8z//8H/WtTIdUUyZIT+vNEAIXUecR7h+IfCZ7QmtJlbIOeNi+iVYiopnejcgnkmPA44U7oiJys5/QjnQkcU/dcnJxsoRYLaD8BakVn91PAYmb/Yi4hjKHLw3989uOTZFWKG97qNhomOs9aVlxwwQQk04b9M+XODzPMP+sh97E0DrnoDccVcISQUlF6XT+JNGOeY7uJGN2yK6bUFMA2UOH8/8sIHsPbxTgAg0APPmIYr0CAOQvNhieLNE+KZFthlGD8a36RpWaIiPfsPoTNsDsBuhdi/5iRtH5C0f6zJc/YGDTmtdScUunnRSCFnIFu5zG7V5FpKeIwq6ONp/lzQCv6dGPOFGRxygUDQVTlY81sJwTEWl6QBqor36FvPTNfkRExHbPadfpmvkNzo/cer6JAPVwHJuUEAKLAUudkbo/QNYZqR2PNhQcjzQ1WCy4+bcdZDXRCUPXwx+PEGUBWZYsTgHgfjOipKJgwxESsqFUmtizcDkc6Bz3HTi+19YJkVxw0j2sFNeH5C5kHzWIPuY1ZI90GSGwCUiIUjq0higwOYZYS9SqKpk70vcTZSZNqZSCqCrmQDxso76jh3QO+jijBXTbcSpSRBqYEPDFCUXqmz0F7nsxTl59roEMEE3c0JzjBinYWAtHzVcwCnaVQ7ZxQmuiE1J0S7EXi9iIN5AHASPl6P4migJCSlK9rIO8OIed57ClgipyoB+gtwz1c6V5A2ARAVDHiOB7D7+q0F4UnJK0EYyRcszMWHxC63E/L+nEp4DiuoNwHv1JzonvOJGQNOXwpJ9OrzegjEnto6tYDAsEQApcPwXUhTbSHZ2DuTmQerGoII2GnFdA20PHAjBIwYR05ylQlRNNJu0bCT1EzKqS6xUkVpPrVNR6CetIndTUtog0yUgIeQwlFXFaEqzlel4WfPy8AjY7+Kbh50nPFY+RKqE40Qv9QMR/uWS+SV0TxZxVbDasnehGUrAROtYEMmYVxNB8W5PVv9fWCgAUm98/sLnLsuiYFr/jyKaAVGMTEKydtDX9wLX8EAtMY7j2x71BaI3fd/4ca4rRhrluoRL1xbkpM22w41SULmrZ+H2NND6AjniHnmCpKglUWH6fMgTe384BHghFDL/soq29MeNe5goNV0hUVwOk41TTzhWCyqONt4c7nUOsZwz+bAbMPw50wasmG1+mswOqjXRBo6Brh9kQ0C+SzkVCCOou5BDoplcahHcuRztvc/AwR9YLqnHwT04Z7LwZoA4dQqZRX84hXHrdgGzHBHNzJOVbWFrxu0WO/jSDXWSQGaeuQSZnUJ5Hs7eYXQnYUsIVBYorQYfUYUq8l9Yj9G6kpgunuZYe6Golnl1imBvqadcLgg5pOt/1o5VuUFzvVHSpU6drApmHfpyQBXCNFyWZFqGm65bQZEaElB8U6CgrymKc1gtEzZO1UJ/dTQ5X3zK9kOsV6+cI0qX1BwDCbh+ntpyCpJw+UUSQr+u4z8kM+Bx69T9yI/Jn/+yf/QMtuYQQ+Lmf+zn83M/93O/7mNPTU/zzf/7P/6gv/fsfUgBSj5kKPrlfaQ0MPdxmS6rLfMYuzzJzASHAPTxwYUmFRLQ8oxis4waQZ1yMv0VUHJyjh3vMMUkispHe1bQQBQNsfLTszb/2GvazV9BvPSfPeMeiViwX8IWGXWRQVzEh+2SJICX0XQPRkZaFm3suitH2UyfR9XYP98EJjs8linsFMzhAkpIkmmZCOqM7ziTaoqhdKINhYdCeKOQPgshkIJIIAGrboPr0Bv5ijf58xgXFs9ERzsMvK1rQvbqGf2fN7BBPsbns3OihP35lR9IQ/HoGrwW6lYLqA/J7C31/BF5dIzz5Coa5QhEChFbo3j7BsNBo1wrzlz2yW5IPhfUQDzugyEceeRACIiP9zOX8vFIIiHaAua3RP5mhn0uYfRSkJm9+gA1S3VATVBiojvaazbsrmG0P9eoacr2ik03dwNc15NkJz63342RJdFHIfPcwuRgZDRTFSAHAbg8cFWkbkaqXbmS5WEBUJVG4oYfsuqkRiY9RsxmtoZf0jg8f7hB84PRPa1oFb3csPopiakC7Du6xte23+fieWydiWjoAFooxh+VxsCCk4gQDoBNSkYqxSKUymov440YkUrbErGKReLCcppQ5sD/weaNt75hPBCAsmBgsN/sRYYX3UPv1mLQeVnP4io473ij0Jxmy7QD9+oZTF2shT3nd+SxuJgXF5Rgs0TVgEjvuazoCzQxEOxC1j1QuYQzCvEK/WsLsB6jXDYshFwuSOKUDALE9IBQZ/GoOVxmKQQtNFHV3BHIDGcGKN76CmEQNADiZo1srlLcBaj/Rwdwsg+wdzCe3CMsZM0xMzDm6P1L8Pc/Y8DtPKqaKjeLgoPf9eI5lM9Aut8zHPIdx6uEjdzsaSYRDtGo9X5PqcL+FWMzgTkrm/wz5OJlNWVX+vSe0SU0uNkqNYJXIc65D1rLQcw7hZDXuEynfg9ca6TzJHpcZLm4U+iPP4Gfl6AIpuuGN9dzPSk5H43UsVNz74hEGOwbtpfeWGg/0PVDXkapJh77gHOkaaWoXaVxiPuPnUurb2oh8z60VYPPmum48V2Pz6D3X8FgvhGEYg0dpbCHHsNPQdVAXGUSlY91h6cr3rYYOj1/XeYTjbgJI2paGJ2n/SPfPMLARMSmWAJyaJ7F6PGTdQx5auNUMoSD1ULQD3UJ9gBJimqgUOenk6YgGLMFQo+lyifLjPYRz6J8sYEuFYS6Rbx105zCscwRJdoFse8jrB4jLE/TraRJttgNpzNsaITr5qcbC3PUIcoFhJkfjHATQmWvXYjitMMxJxUbAmDuS8jf6swpmz88q4/okh9lIdVddQCY8sk1PQCSuF2KzB+QaOM1gKwVUCakDVOtHtoaqexTW4/BuiWEmkW0Uqe7doyrbe0jLRHXS7qNovGkRFjO40xltirWAWxSQSsU6K9IBXTTYyaK5R7TR7S/n0MeBgEdu4KsCMgI6YTljPshuDwFO7pFTp0LA09O8KeQj/YsXBmlY9vUVKVqn6zeMF4QQwJwWwOF+E8G5aQrnDkcgeKizUyAwgFmoiYYcrIUsCgipvzONyPfSEZybaFTAuJjJnKP/x6i/b6LlpExCdQmEONrKc8iTNRfh7W5EQH3bQVgLCXaQ8hECAwCiLOHff85Aq1fXQFmQ+/nYTSUesncQzfDGVCVkBv4r7wCS4TrCeehdx/ed57zIJd0U/MkCxx86R3nVMB/EeQSt0F9wFKhWJYpXB7zzTfJDidKv4OcFDj+8HnmYpqYThT4OQO/QPC8h+4Dqoy20UVArhX5l4LOTUfCujgP8ssDw5RM60AwB/dJMTlwuwOw1xCyHPFsAAZi9pme4sB7deUGu5pb5A7LtGbJWGuYmSGD+SQufKQxLhWF5Cnz1FLKnzqT/8jPyOWNgourJ83SLgotK4p30A/TNDvZiie6yQPXRDnJ/RP/OGYKR6N9e0wHs/ojsroGqDSkd1o90uPJFpGu89xbQ9dA3O/JjpUR+F0fe771FBHt7QMhzSKNZZGUGbsXvQ7aW6bGFjpQcppUmJzFeH7FokRL+g7f4e/f7SUsSwu/aoMewwkit8JstxPEIuZ/FYiYbkeiwP7DYjIWZ3+1oKxitrmVRUMD6rc4vX8CDKdGPirOoi5HLBRAC7NUjsauhzSm5+XbSAoxORD2be+/5PYQQef6WItSmhag5bRN5HtcjgbA/UC+0WlA8et8jDI8oFs6RjjkrMVwsonPTAHm/hwoB6rhkUbE7kDoSjTJE2yH7bDuuW8nJSrR0xkIW3azmJYLiBgqjKUxMwZa7A9B2mLU9C5xZiZAv+Pgj186w3dMG+q1zNv9ND3NbwyhBHrLz5E/nGezMQHsP8S2T+VDm6N49AQDMPuu5UQMYLufwkdJlSwV/8YzrVD0g24RpYzYacvCkifwv6TF2dL5zJRtJ1Vr0FzP0X1lB1x6qcaReJL2gluPURrQdBaoxwBSZgP+BZ5DNgOzTO9LgCsMJyKxEWBREJKNZCNHx6MxnYkjg8UjKpMm4t6wXbOCSLbOksBU9G0KxXCAs5/z31KCUBfDkfBQlj66NWsXXaIC2hdgfILSGfuv5VBAjTkUWNNFAiG5IKVAvhLHpEOZRwrphjkFydgp9T973asnAsv2BzdLnY1x83x2iLCGFGy28fV0TFIoTf/9Aq28cG+o9o8uiKBWnDYkStVwyUDRquN5gIFgLuSV1T5QFEW6jee97Pzb8QKSA5tmoBQx5nIDk1C/YeQZztQN2B4jzE9LDD+0YbBgUpyZyX4+2v8mIQCjJiUpOO1a/5PSxX2dQrUPx6kCtVKbH+kHEnKRhrhE0s7q8FrALg/y6hugt+ss5sMqhFqyX8psW/WkBW0oUyarbaAjnkH36MIKj+V0Ls5PwuaKA/r9dIZyuUL+3xDBXsIVAdcW4gPbMQHggyyTSeKk7zRFUAV1TU5NvmDvSnhuYo0NxZ3F8u4RXJdb/dQMIAfvOBampOzvqZ/sThrtmd3UUsAPdeYnjM4Plxx3Mw5ssgpAbDMsMZtdD7Vo07yzhM4nyVY2gJfovP4PeNtAfX0N0Z7ArhiEy1DqPup6W18X+iBAqNpiG0/nsxQOnxQXNaeSh4fWkNIGfCH6KsiQ4ensPfzhCRpqmfv9dggnb3aQfjToRmUdNdZEDnSDIYgyvr2MDDD0pZDrqWWNIslqyufR7GhrIgnpTNO3/X2YW39eNCIDRQlIoNRZvSSw+WvEBI89W5HncsP1kN5as4ZyDbztywQEk67wwikQnK8Xks+3m2cinFFHMiCg+EyNX2k0pxFEgm0TgrsqiDV2ArKPHtpwSL4XjaC2IJYaZhJkZmIYbGCIHHFJABA11f4D7xkeTG1NEcWwZud6SlAIjBDUl1jOMUIIIarSZTDxyALTHtQGuVOhWCqb2kJbTlhR0KB0F4kJPrjnZfoBsYlaDiWPOKLBjHkvGxONMjs2OCMAABVtI2FygurHMKJlpCtz2PeSgxpR1bySkEpOYOwSijQEImuhRONYQ7pRBSGV8LU/uuu4Giu4fHaKz3DwKzU0/WD5GidgYSoQy5gFE9HEUwXo1BrTBekCQCiUEEQ7k2WRfmq6VePiSGhBxpJ4nyPh6fT8KV0ndSCLmNE6lVbVM1ycwZTu03aSDUIpIHQCZPrOkUPu7qD39H3sIjpKhWMjBuakAe+NhpDwh2vw+RoLSehIGy3OapiOPKFuPhfEp9RgAgu34nEry+klJtwDReIC0zlnJ0K2ehXM41pwEZKR4IMQiIupRRoRdiJGqEaSEtKRCBRORxBhYJqwnclrEfIOUED1YhPsecjEHqoLFTK4gk6DbUjDpMw0JyzUvFs0jHUSpSJ+I6+pokxxNM4yGrRRU56lLieupi/ajsmfujy0ZajraawPR0pfgSJqiFi7A7OJ5l9S9JXtNrwX6mYSwBDFEGyYDDxEdcqTk91hQWCp66upcydTzcKxjsKTiOpAJ2EXGae/GxXVcT58zTc/Sd5+B56w0UPdu1AGMVpqeNvEiGZ4kOpdSkIJOgMLFiVb8rpH2J+8m0flqyee1FrCP3BJlEuCrKZARGCevfJ9yvIbHaz+BJfFzCSnhnSPlYvEmIPeFOpLBSGQ5iEbAJzGwlGNo7Hhkccot1VRLhMD7s8xHExQBTFMO74G+Jyik9ZiajhSA+2hNCjHEViTL5vQeZbTnFdxPqB+yEFYAdcPJrawgtETwCvLISV6oI4WmLLgfacnPJQQD+DIJVwiIICchOwg2yiFMry9ALVa0xA4Coyg6PFtEe1pB4O/QQfiYch5F7qHQtBQ+1EBVclLZDVC9QJA5ZB+dxRYz2FLGIGNMNLBMxCwRGQ16Ai2DczHWG3IIgAV/z7LGcG9lsIUYrYp9qcEAUVqUC+uh+rgXtzHQuDDwRsIWYOr5w57aMEWDDG9iHRYC70dNV690rmyloHeCzcGhglYi5qfFZt9M+zki+CUSoOQD2RqZoctpGybNUQKekoQgmSOlcFMg1is5186mnbRnIq57wEgRJZCip6R072K8hfv/tfdmsZZtV3nwN+Zcze5PV/1tbdOFQBx+ApYVhUTCCkFRlE4RIn5Ij0iMRBpFKA+Jk7wQESkPiZDyEsFDojRIARSkKHIwGBEZxxjzIwJcbHPt21R7mt3v1c05/ocx5lxrV9W9vuS369YpryFZvnXOPnuvvdbsxhhfEwnoUfreivAT1huw5yjcwh1pe36Ic/h2cakTEUoT+N0O9mAGOjwAn13Ar1VyjoyarOhGqbhOX5TykHaFGDcNhyJh+MZtmMMDJM/dBK9WYg4zHEbTIt5uRe5MW9O+KGEgSjLUeNDxobTTdwX8fAF2HvbGNZHN/OIdwYZnKZg9zHgEfzABDxIkq1K4G1UdN5r6xatwowTZ2Q60ET1v88Z9HM3XqpQjmG5ixuDNJaIWfd3AnhyDb11FM8mR3pnD3jnHydkKfjZCcX0kC00uG6BZ7zD77ToeRkzjYQtRgAiymj6z2NzKYRrG8LRRqJPB8PUVaFuifu4Q3hppt9Yd509VBwERBvdVznJXy2HhcIzyRCok6cZFs7FkU2P663cRFXsOpDKQ3Sta3X1AJvZaVCE4tSJrfDRs+SpVg8nvzuVw8dINMVdkRnU4hKktkkEOc3oBdzGHeeFWlMHFeIjNNxxjcG8H+4U3UX/zS9jeyFRG2EXJZNoI5pOPZsDZXFrz164AiYWZq1YdM6hsFyMaj+EOxnKoeDCXw8ThFHSxBG+2SF4/RVStyDNgOJTvXGmHL8/BL98CPMSoKFX5X4XW+MWqhYVkmUhPe79fcQciPwFlCbdaveOF4rKHmYyRTA7lH0TRadrde9AeLh4iMgVBgQCbAiAKQuOhil20UCuaTsRp+PpV4HwB9+CByJ0aI0RfZuGnlCVwNhc8ueJ32TlpcQNCFixK5Od5a1AYKqq1bEDmfS9LQnI2j5A+MxkDgxx+MpQxtqs0+U1VMlZ9MqyFnwwUApAKN6kohf8x1iqcMZLcJEZE7BID5OoqXdVIztZSjb0yicZc8AMx6Zuv266DQheorEGUork6AzmP8e8t1MdD8NBIDNJlFZWr7FmB4Rdel2pwt1Nx7xREBmZwHUlCSLcG6aqGWe7QXJlIJbVwonh3scLwfI3Ba51ntNlF7L3p+vwMMvVnaqva6YVwVGg2lY1+vZXkzCYiTUxidmhSC2NNVLziqgYlFv7rXpDDzWIja3XVgCcjmEEun9c4YC44azObilDFaqsqbRZ04yqYGfbOqXK8GrhSJY6vnMi4KDpw0rIULxwlKgdDTn9xEbkLpGR1r8ljlKxWaGB0ZicSNUHmaL7KddN289MW8/+shV+uYAeTVhXTWpiBgQuiFMwC4RzkLcyyqgFfCt+u4zNiigLm+EgSkkJNU0cjmfdlJWpTo6FwhEIX3Ms6EdEdw0Hkk7DzMMu1PNf5AmY8FPGU6Qj+5VuwFyvpeGx3oKEIsZjaw9YJ0k0RhVTMbIrN+59DsnNIz7aojoeoZxb5RY10USL/9Vflux3Ooq/NcJ4DWYrmRCrh499bgBMDN85EnGZXAfMV2DukywpulKAeJwAnsh54hqkY9dEAdCCJtN3UsBcPPQDHkZ/VvP/rwYlBtmjQDBUCqsmXywjpljF8bQE/ylDPchRHBtUBYXRPuCU+JeQXDkefvitroTGYvp4I+uRsDmZGMkjh8wRunAIEGOOFdO8Z7kjU+XxukV9UGNx3cOMUxfuuYfDFMyBlLP/AAfKLBqPfuScJZZZi9MqpjKXDMah2GL1yXxKUwQC4WMBcLOC//nlZ907XoG0hYio3r6G+NpUu7IO1FJOzVGwcwlgLZtrBkPdwIsIbpxdAUUaOmBmNEPzEaLEGb3dyVh4OpNN6IOsaf/EN4YoMingmaZPnGWio52eFMqOs5BzsvXRPsyxumwEtEPlJZQn/DjGclzsRsQaotPsQKouA3giVPGSW1rMhBMMWqfQ4MJNU6INuurYsQ7YIoCXsGSH6tZ8tlc7Y5XBeNgwlAQFQZ20lvlLH9AUt1pOKspXs1aplqCiKiY3TSaTVibppIRDMrXpG2GzzHD4cYFRmFnVLqqKGha8cblenjUa1E/Me5yP5EoRoHBh5Jaxdnl0Ju21AWpXwiQFSA7v2oKqtnphg+BZVYLy6uRJsqa6cTef9C1ECwsEIPrWCY7Vq6JgYqc6omZDPRMoYSmLzuYXdNbFrEqWBdSEEAD/JYLZDmLLax+uyOsNXoiATjBtt6VuXezWVYoW7mDSVikCQAM0zFQZw0TeAa1WgqZr9zhqRqN84BxSFVBi0YxKMhqKUp7VSuQkE4KgX35kLSFvTob3qJ4OhVWOvHCjntDMXvvoznpA413YfoDAr1yZqlKqqjXLECNiHU2gIFCPTA5xiq4OkLxC9YiJZOJhHBsNEAKQO7UFli6DcACBWu7mq1L3dtPy1rlx4+Le1+/mTAVBrJ1VNrAIBXH5v2qp9V9JYpUZhjBhwZQIxMmXTrnFZurcGgkSdBmykkxvmmhOZXqpdvOagpBXuCYXiSeLBtQFSC7IED+l8IM+jBG2Q0o3QWGYRy6hC4UF8hdio8k2YY94LTHUovhnIdH4EQYnEgBqtqFYKwTXSYd3z/GCOazw1HnZXRzhtV+o4HPSDEhlYzMwCHj0e8rv+TqEDEdbG8DwDfKozdriWamPotkuy0eyvA3nWPiNuux7xcy21e1uITocwiGlELkJHoCGSsd1XkCDytEW4N10ly4Cg6LaO99ZehWeVJGjvcC/rJsLBY8JYV3K+INoXwmg67w1EYQE4L/xQI2sFq5IS1xXYqWeF07kWOqzDATixSHYt5JZHyhvQ8WBLldVPxexYuvqd6wioDUCvz8kBNayJjVPVy0bNmVVe1qv/DiCJCAFBrdE0opJJntXQ0MKOhrG4SgqD8mku8r2ZiTK8ScHghShsweh7NbrP1mJ6nOwYPkWUCBb5XulSUJqILHC4zWr8x4AUPS3BTyTBzneS+EORDC41sE7ORWBBgrSWCJCzhqJrOLUgZLHDZEsXE8DA8QIRTONlrSvraAsha7ueIYIwjVEZce9FmjckCUHIwotZLWtXW86huvfXFdjr3LaqgGesrGvBHFKVIEUAI9vnp4X9KiTdCvukJJV1omu2HOZNWONUFp9Azz5HhPIc2DXgQrDy8B5mOIRXcrYvCsFoHx+C1xv4zUPOKvqaEG6+ABZL2OMjIGvbzwH605X/NYcHipWtJUtcriIUBpCDCGdpXLB8qRWRQH67fQ/wHm67FUna61dF7jdNQAwkWwfcP5cq1HAAHM5Q3pohe/0CrGRpJFYGuTGtm6+1MGUNUv8RQAa7H2XwuZFEo5BFhAP51HvAVaD1Dvl6h/rGAWqVyyQHjO6WcLlFeZwg2Yk3iGzMDvZ0CZMJHrU+yrC7mmB8O0HWgdxTJXAzP0iEQLoqwC+MUU0IgFVFi0a0uq8dCC/j9BzNLEd51EKVdtcycVvfStUTZQU+HApEq3TwowSbmymSIkWyzTH64gK0WMPdOAIMIT8r4UYJNs8PkRzlSHbH0uUoHTAQ4urw86ciYweRTU0eZFLtJJLKhPNSeTCSGPnDKch78J0HoPEIu2+5BVMLBye5cwGvUplgD7PdSgtzJlr+VFTxcMqFqExgOBCi9EI8A4L4AayVqkccrOK+TsxSlZiMYZIkyk83d++1w7zbFWEXBRrieAbQbFsp02cx/HYHt3v8AYqSBPbKsXRIzs5bKwyV9t0L9VXw80W7nhgbxMiixK6ZTuHXG/iyhNVKMpcl2FgY74X4O1DJ8bDIJxY4PpDD83IVpX1ZDb7w6puymQ2yVlFpNpF5rx1IKjUBrmpASdqblydwmcHw/iAeNNLzrSisBWnWiUg00noHDDJU18fITrcwZypoQATMpm2SQgRTObiRVBiT05WM51zWvPTuQmAalfDB3DCRLoP3Yrq1KYEHMp4JELPALIWtGnCeYvcdLyPZOSTrOn6Gm1yTzm0t3dt03cCsCvB6AwvAZKlcmyW44wnMtpKOzyhHM83hsymIGcm6hk8MmnGC7KyAXaxB97ZijvzSdUlGNrt4j+M40eKAOVWBk6NZLPQgTeAHOTiXkWC2VQsp6yY14d9AlHSVcSUJIEHM1LAVyU2ejqXYZCQ54loPGMhARwegsoI/O49iAv5wCiQGdPes5Zp0RRiM0Wq+kb2FSD0wpJrJdQP2Drh7X9aV6UQq9Ot273Tzr57IxbsdZjIGykexqpTnIF1z4R180T7P5PAAGOQw2l3qnin8YgksoEWHDG6xlI714UErKKAwXwAK6Rq0ap2bLXi+gDmYifBIUXbWJxGMMGdzOd94DxoO4F+4Caoa5K/cBh9O0RyOUF4bA2aC4e868GaH/NOfA66doHpBuKDiIyTJsn/vc1rkVJi4Ud8vlb0GAM4T7fhtYyHVXTuSJOGLd2BHI+Bqa0BpnEAj01fvgb2H/4bn4AcW5UvH7WsqKRJvnh8CzBi/WQCJQT21GN0pkTxYobk6hRtY8SwrvYhzVA2SewUOtrVArRjClTkQw2Z/MAHnQuyvDlK4nOD+wFWYWmwPfG7hc4Pt1QT1hDCeHiBdOzF3NmIJwJbAqcjx2sJLcccxJr+3lHumn+GzBNv3TdEMSMR3Fg7DNyjKOfvpUIwMK4dkUyqnQrsOdQOqPOrrM8DMkCwELQMD0KYUo+0821PEM9udFNS2W+1cdvb6opC96ORYuss3roLmK+GVqsEmnRxFg80I11ptxBZAxyMdHgBFieb2HTmrHh/K/hfGOVHrsQOAklQKbMOB8K32vUYfG5c6EWGtXEpFuRR828MHB+cEFxn8ADp/G8g6sTJqrJibBZMYrUZznquiSaIPXCU5A9lLNwl5Y8XrpbIhU+Pgq0pIQUeH8fr8YimQDHVdxq4AsZBaxf+DBKPHDGrElTy9UEKoqi6hUYx7mkjVrxLTMyoqoDYxQ3cTJV/Na9hVIepWil+VJETbyYMcbirV03TdObQp5CmbAxSKYsdj0HQgpCrPsJsKmeJWfUqoro2RLgTeEOAXPjGgLAE1GbJFA2ogXA4H6XBUYgbGgwx0/QqSdQ2qpRvhE4N045FsGiQXO1GisRbJ6VqeUSrSuSNLcJlgzJujEWxiYNYlYA3cJFcXVRYYWTAwqpT7QSzPMUthrhzDH04U2y3VVT/KAJ/AaMWTrYWpK/FUsAZoGuT3tlKlqJ3Ap64cgy4W0qqfTdtDo5roBVlpADKOlOwK1/rRhAoaIO15BDnOYFKoXTxmBtZboK72x/pDuOZg2Pk1F8a2HdFOsOdoLAggVnTi753XimSmsIqyrTSbDr7XUHRhF/lCdVvXFjmg8JjpNJLb42eUlVTntevZDSoEPhnND4tKNoog1JEkQoK3RvkEjajtJLI25Bc1vDVIFqXOd5UWD1jfxLZGhrquJJtaOhyBhwJIdT9N4EdplPhtxjM0Q4sckA05FD9qqfyR1c4BAX4ohxdiCB/j6nHk4UgSJc7xfjqGT4fAFjCbUnDgKpxBnmG2lXQcwhqt2GxibrkcuvZhNJBO77wQI0fSJIFIIJsbIYmGQ7tdl21imKXiFbMVWAsfTKSLshBlOuoaWQJy71VmPRoezlcC6RoNgMVK1uigxha6MyqcQJ3/3pvfXZiOQjFF/GAjSUlQ5moaKYp4hUl0x9xwKOO2bqI/DaxtE21DArVoGp0iikVX0n0X+/0sh2Drk0c6qHuhnNSwrnJdqyRqhWgbEF6q8M7QoQ7mb7zdAZk+N4XrYbGW88NgIGNvmEe4Ntd13PNoNEQy0I6hFiJpNARmE4EHb6v2bOA8rM4Xtrq2sBcoKSDmhonwHKlq4djwDON0P9wVyu1MYHUtEo6kuNBjLL5GzUEOtoRBmso5phH+iE+M7OOeRYXU6zVZ06pc6rkHjpHs1ONjW0sRkiC/Uz6MKYFkU8dEn/MUPM7RTDO43CLZNcr7YOlidJqx2aoGrymKW9STNBofDy4c8gUhWzbCVdOOSjYXOWNTuahKFtdkhcgLfLOBQYlsnMBWVnk1Hnx8EGF3VDWwtazhce0Kcu7K5bMKAY+FhLA+6z4fxxORrE+qikdpIp2fup2r8RygUFikSaueySzF3AALrCvw0scOTVR8bPQcam08T4e1yYciW+AKhgJnnss1PKQ0+1ZxqRORwP8IRHQY2juAAbogr1aC1+5I9ApB0IIOZqBdAVdX0RWStbrot1tRPVFlAaSaiJSlHq4T+HEOyhKZZAr/ouBwHYywyhJ0fITmpWug0glE52IuA1O5Jf5iDqNtcRMhTDLAuRBssCkrUUeYimQbOouYm+awCw+sVNKWSB3QCdXhAOmqQfbmBfj8As18geQ9L4mRVlW3FY1pjs3zA4zuVkgu1LiKxJ3YNECyLOBHGZpRit31QSRkpWuP8ZtnSDY7mO0Iu+en2FxNMCsa2OAVoi7PAmMgZPfWyOoGxUtHsrlXAnkwqx3c8QTNdIrsjTnseis+LJlO0vMN+M27oKsnouzz6uvgqoJ9/hbMWiqz5YvHKI5y7K7nSKYpRr/+msAZxje0WyGLimm8VD7LShaLRtvbswnc8RjlcY5maDDWRKwZp5IgHgzav58r30iJXPS7X5RxNBiAjw/QHE+QKNSBD6dRajmEQKlarwiE9m3HSG8vmgZuudyXnA7hHNzZucDAOt0O3hUICnEgevTvvhaCSCrmQar34VAcPCBQi71EThO7oDbC60372jTpJCIWNMzAy5VIOk+n7aEv3P4sAw4m0i0oCnWuFXM6JtpvdwOy6eucZmb53O0WvNlKRWq7lY7M170sBY3gpbQWjxAkFumbc/ls3fyCaAEAhRFZ+V0gJpcV7KnXpGMAs97KgTmx8IME9SxDfroDTs+BWzPUk5aUXl6RzkqyaWCzBLSTjZ4JaEYJyAPJuoIfZ2iuDOWwU3uk95ag9VaMZYngkwNJWpYbmFzmnfDP5GeUWGA8jB4cHKCNo864zxJwlogv03IFM53E70odQicDEdtszheyRmknsj4ZI20csN6gmQ3AmUH6GgNOPVGslQNELfAUPj2XfejWdVBVo3nwAMnzz8HPhjAPzuHmcyTXr2milIB83fr8hNDxgCSJmz8A4RPouOS6hjs9jfedK/UJUshMFyIcPUJK7dj7AZBSOzaBKICxZ2roHPy8lf39Wgi/2QGj6R5s85EghUtqBZo3WzEODt4JhwfSzSxKSToVW8+VcBVR1/DhTJKloKOZdAnnSzm4pUm7p9eNCJbstEJ9fAjOM7ijEeyyAJ0vpLM2GkQ1usErd2VcqDw1rXawRuDLXBSypx/NQGUFc/csfi0+mIKHmST+zGC2wMoLb0278tgVAhMEokRxkqbggzHKoxQuIwyUEG1qL14hmUW6koKdnw7lgL7YSvGvI6tttjKnsrmIQdB6B7s1MFtN3vJEColNA3vnXFAWBxO4aYbqMEU1sfApMDyV7oqpBYrejfT+Okru+ukQu6+bgTxgK4/Rm1vY87UUaRMDnwsfLL0zV/XEGjybyGF+vZU5rBBWKmsZB9sd8jSBnyjU10hR1hQOdlOKufauiNy+OKfzTLygAJgHczUWHLSm23Euq2qmQqD80UQgW+dzPRNk0eQYwCMwTM7SeH4Mru0RtbPZteI2SSL7BBmBBrIH5eLVx8UK9vAAGI00aXHtHhnMU4cD8MVi33vvbeJyJyJpCpvnEfb0cMSJPhppBXHXVp+7YW1UFgJkUW9dK000NAqeAzHqCvbuRcsDyTM5IM8X8GUlRlPWwF69ClgLe7aWDb9pROUEiJVIM5tKUpGnLTGbvTpgjqRCkqVygNkWsXpe3zgEADE6K2uphA6HsZJpAJHRVa8PylMkx0ciAzdfwR9O4fNgQMaYvL6DTwzqY6nqkGOpXqQW1Y0Jkk2D7GyLZjwFW8LwvuiC+6OZLHSpFa+DnRiqUeORLBaAMbBTwT0yEfwoA5sc2Vy4GLQp2oNQIzK9PB6A8wx+ksHnFuVhimSSIpsNw7kO9N4XYQIeVxOq7MEGR5s6Vlr99WPBdt+fw4wGwPG4rYoHDofiKANcgkqRH06XJBLBjUPKDM4S1FNRG/FEcIcTmGEO2haqHCQVXi4K4H4De2aFiAaAtMLllyvd+I08K+20wcsmBefFxDDIyOqiYo4OBVv8OMgQIAmISleLaprcF5OlYBaxhsAh4aqW+TAUfwKbeGD+5afcZQ2yFr6qpbKeduQxVbnMb7dSBBiPxeQtVHiMtp2J9vD4gazKZal8G5LDbV3JXD862ueYWCteRonKdFZyMAl+DVxVrZBAtzsDaMWKHz04qvkdZZn8TdNJNrNMDteNA42HrT9A+IzgEWA6RQ+n3ChSX6TQhUukck5FBeM8UsVt47lrSNY1JoWLPhbZuXRtzWIbuU5p3SAJCnFGKphmUyE5reI9Iu1KUipV3unnFuLKXtcwRSXwhNJJVViTp73nOxnL98mV27JoD9BsDehgJvK/hmJSRUkia3pRRM4fnxzKWvDGXfByhcwpVytJkJxvwHkC940vRFgKa4coebATGd6xOJGz4rspFYNEs6tBkzFslirfS4og3LhYTQQg898YkVaGJEhkjDyzphG4ZlGAiJDcugkuCik+WCuJ53KNICdt8hychCppLeMizVrOx1tUK2MxDtibK+K/xTL2vzo+qE9NUNf013P87gDarqjO0bCumIkQuXmxlLV7kMs6vtm2viOFyPPb2UxQFmkKLDewqy1Yq9283gLrLezZ/hrP2okgAHZpQKutkNavXgHSBOm5PBR/OI1VeuE1OZlD+l0QvEbSRKB/odpujQo17LRDp524wwPxNMpTmNVWVDNVvMAD8OsNqKowMSKJHfipplKSeuNh5hs5vKsRsD8cC89rWwpvw0P+Ls/QjBNR4XJTOddsy6jKV08HorRZzQBS36GywfBLBfJRGk2Y2YhaFbGByUQBzxTNPkRyV2H6hRXcKEUzEYgX6gb+WDqfZl0BiUF16zB2Y+1iFwsmAGCi4pwgYWg2FWnnsoo8NFPLe1NRR+NYGg2li5YIQoJXG9BqA6sS/ObkSKT3YeFOpjALK55jYSyE/UmTKnPlGJGLVxTteThJBNZHogJGQY5e9xSuqri3mPEQSA+Un6QIAOWagPRMoTwhLsqIQiJKVcJcIGihsMK73Vsn8w/FpU5EiAgYDiR77yYiSsKVynQuCUFdwYdW08OwlG4nhR9adIK0b13LYbF7QAiu7fo6Gg2kSv/gTLog6hlB07FUuNfbmMyYwwOZ+KUcXDDIhQBtLaippLoGyO/yTH6XpQKpKAppr1mDZpqqNF3ZEuSGej3Og9HArkqBRg0SYJAAGCJ5/VSSs+uHcMMU9SxFtqhhT5fwNw7QjC3AUNlchs8J1czC7kQ1ivwETJBKR+3g1NFcoBM17KIjE7lYCVkKkMNAnsCNBvCpQXZvJRwMvQ88kEMVOQ8/kA3dD6zom08MXCaYzWQjyl7uZAh4iJa6l8WK1ltYrRRxmqC+PhNFsNfviHTuwTCSiqGQhkiy0rFBtYMNJPtSEjmqavBoABprhSYhwaQmBkY3CNnEVWVGTaygPzfaIfO7nbTosxQ0bqWjw+YfnUmVIBzcz80xtdKSIQJpUs20QvKCJGlJsVYN9TqGhlQ38IGUnSSAeca7JAqPYliYrCM6kamG/nYLpJko5TntsAJgpoivjzLeaOFt4UAihEEn8244kI5Y16PFUOucq0lIdLsPSlXhvwNxUS5AlLYCjCpct7VAKj4lSBI1wxIuFUI3tKoBJ6aqFAQSgh9HnsEPUyWiM5B4PbxohT3KvkK+J2TTI+9htgk4t+LjsyiQbgtRAWIv0Ka6AebLFsveNO2amyZwKtWJs4sWuhIiFQI2vXm/hcg1ruW+MEcSfnszpDLJuUqhNwLzCmqCPMzBQyGQErN8f2YgEcIlOycHxSxV+KXei+1OYAijoST/mx2oTrF9cSYqgstdLL6gUcjC1ZEcNuJzMpJIlsqfyVPhFXoVN+mKSkAPtdYKlMt7YLeTw2meSresaeA3WxmTs7E817PzSHpnNdGkPJeuR0gAG8X7q2s7P7xnhusNniJOuY625ZZE8nuaPvOJCGgfXSEwrFa8YC+J8yJ8Y3LhbrnVSqbOaBg7l/boSKDcTR0ViCg4lyu/lFTpiIsiKpkFU9t4Hbpm064E73bwRSH7amLEXwKi1sTey5wJ4jhhzLEHoB2PwC2lWg76kMIjyo6ADiAGvZNc9jojeyNtS72OQji6qxWSwQA0FFNDkSgXs2MqXTy802QMIpGvpUqUOwPEka0k7z4lsAWaUYrEM5KlizwaTgjNwMJMZC31uYXd1jBnc5hNLknOwUhFbAjekkrmqwxu9xHXDejeRjpSuVV1Lw+fyt/asgLbHPVMFLUAYLQstHihfm/BaBqISRbtSlAhZtgiWKSf1bjoheRDwTMIYZSlFNSrCslLL8j8V48ON0pA5UNKdbqvBOi7Hw/b99NxIj+QMyiI5BnXTeSkyJuLCAUhBdJMzsrh/gBSKCkKkAWQ5DIuvJcziXciIJKm0rUJocbevqrB71DY4lInIswssBhrRP5SNY/twUx+X1XgXSEZOxHMYKDVzkox16zyhFXEuukbt/9ZVeD5sm2PZ5mQzY4OAe/R3HsgMojXroAXK/CDMyHLA8D9M9lk1SDMH89g1jsx9NvtZJAcH8gBd74UbkKaykKkXiRwNfydrZjTqDOv0dYvGofswU4UJvI0HlT8xVw2neduqJpHBTgLw4xmmkvFwV6LuEe7CxA3jpMYDCFrNR7NVFqV2VINwfJMugVrIxjucY6zbx0hXzCmXxRXVVpt5XBiCLh1TRYZx/DDFG7YOsBSqcpSs4lWNGXimqKJih4AYAuH2e9VAEHJdaqtX+rmEFzNzxbAjSuo3nsVdieKP3ZXSzUEiNXJ+niIepJgfDaSKsmD8zgmaJADYUIyA4t1O7G3O+TbIuLlBasOkS5kJSFDKl+UCbGMAp5XoVf2+Kg9ZAV8+WAAUAW3WEZ8J9dVmxQTSaVN4X/m8AD+ygHozftw53MYIHrpMHSD0HFttBrn54v2vcOBU/XskT6mw/IshnfwXTJqpxrNdQW3cPtYeOYIe6EsVZNDhb0EzHZHYY/SRKpqlbbWNWlk7wUuFZKNupY152Iu68nVE3l25xeyIeRZdDb3q7VUFidjBL8PGo1gjg7iodfffSAH6NEInSOERKOcpFSNrFYbYLGG0fEa4AWsZPnQJfGjDG6QID3dtnwIDbMqYO/NW5zztRMt2GjiPZ1ocpCAVruW99I4gT+kiZDwS1Xc0a6hf/4ayDmYsyXctSPsnhuLieti22KlTy9A4xH8dACfTIDZCLQtYdZbcCUFm/r5Ey2IbOQAst4CY+kU19emsKWDvT8XOeSrJ3IPjBGz2MaBkwQYDECjQSvLOxqADWH02lIOTOOBvP+rb8phJ8+lW12UICJwWUWxggjt1efAhoDJSDh9uyIqhOF8LgnqfKleQ2l8Ztxx8OamAZ0vwJ6lug5IldZJdduvViLUcvUk8lC4kMMOZZnM+cBnahqRAh+PwauVvCZJ246AFj9YizZ+s/t9T7vLFkGKNMj1xzOF8my6lV5KM+k6ldWeOA2dnbdiJJUoNJqhJhVqSAsyYpqo6AVKk0hI5sD/2xVtMerwQOaqCgbYk2PwZAjOEpjlVoxSg1pjUOczJnb9aSI8Eq7q2NmISARo99A/soKIgExisf2GE5kDX5LPp2oEsqXM54nOyUwO9Xaxazku2vHlm1fQjARq6YcJ3ItHSJeVyN6nYpI4vLsTcrjywqJkLTPgRfErLHKmdHCjFO7l66gOM7iBQbZslAvq5b1fuyccug5sUx4KAyrdbUqH+uoYfG2C9GIn3YOddGIGqRWPlVyhj0kC/rZvhM8svOvcKwJAhPT2RauU1TjQTmXyvQfOd/Ksr4oEt79/CkzG4Pc8B7vcSlK6WgObHXB0AE4T2GUl3eFw2YbgX7wpwgBvPJBujXoIhXOjGQxkf2ER18EgFz6Jcn6Q53Juvn4t7jG82cAvlzCTsVhdLJaRU/bwmULWkFQKJ6HYGjroOp7swQyMIXD+5efbpU5EJJtrtKomUqgRYgPIIa/WSTCUqpaof4TKhm8NyfakefWGNo0QWXURiUQgIJpPRWNE/Uyum3YRD4tQqFImnUqe036kEoVYzfFghMDIqkoVYRqNbtha7YzX6pwYFaaK9U4T6fzUjahdGBOzbmqEBEaMWLUAN9JRKRr41MJNMoAEYxmgEKZRiVrHWlEUszWUSvIcpiJ/Z0XC1+qzgcJU5NoM0HRkgUMExZBECO2yEIb7QiAHAEL8SpaF6HoPWgOxIGfrs0S0rdmDUytt2YZhvGDQY0U5EFlJqi5IE9H9X8tCH4ncaaKkf5VKrLWiqGMmuI9iNFBjItd2IMIzDh2WJGlJ6ICSnrklQ8buG6nBoJGxER+yjseqajsiWQrOFEMejDfDe3mvFW2F7YTNqNvpC+G5rXI+y2FId1revwe8f8COSUin4s7OSUEsE/iiD2ICj3yGkcNdWYJ3pXYttcOmvDSGdmGCbHSAyajEpfDC3P77q+eIJKHCxyBrFGrU8jPk2bv4N0QkplteunnIqSV4q3EejdsKWHufut0GuXZSwj5IJM8pQBqVGxew3iaYKwJSAU6VQxFEMZRYjsTK+HVCwo+faAB4qYxybtGMhF8i6yC1a2VYW3WORagi6xplSLoVRrsgdQ1yIkxCjPaeKYxEkgMDE6TDk0Sek7UAtHPh5T7QcivqYdORbOLbrewvSnqNUJ5ATlZ55zBGGA/Ne6IonUxEMo8rEcCIJmJeydOBsAq0cs5Zqp0VnfuhYh9kebvj461ChQUefgXr/Yz7HNCOsa+BiN8/aTtL5D24aUUEomR62KujsMhDIiE6HwHsd1Sc21vDxW6Apbv9OAgutICUZaAoH+/jnI64fYXOcJK0CnBpIuO923HtXAd5HzuG1LgI96HagSrhfLCBFtIIlFgwp7JvqVs46z4WTV6bJu6BLrNRfYoNwQXjZOfhh7JemI0IRripKFMJ8d5EQRrDLJYAmphwKvxTn6mRIENFMYSAz+vNYyH53a6vqT3qQQKXG6SnStJXGCjVDhaIkuMw+nm5FQgZQz5TnwNbVZ9S1VTq8K72BDa0K0lZJv5qgUaw3gB1CWAiBahS19TgfdQ4OSsR5FmHvd87tYoQeBcFaXnaX9OZuV1vsxRoTGt4XDcR9hXNDBUtEfmVoXNuSc/QkM5y6LqHMZUkMg7eQVzqRMRvd/DU7E8qUl+KsDBYCzMcirHQbAxz30RzlxA0yEW9qvNvMKO5fbfzswFoMgLfP4XfFepAyXodW5g374EOZjBf/3K8Fiq0QlJWQFHBzAE8OEOzXMMeHUhG/OprUSYxtGqFO5LAX1xINea5mwLpObsQLonKbXJq0RwJNMnUDjxIYY4OYYcC5XCjXFqpBaJpUvKgRnJKouDinFQyiUDbEs3zh1i8J8fB75XI7yzhJznQEMxvfF425asn8LMh6sMB0vOttGd3JWzd4PqngGYqBHHTeCRFJd+DGbTcwo8GqK+MkKwrpHcXcCdiQMYrbUursoQp2gO4WcsErg9zqd7OV1LVHCRwA8Vflg4goJ5lSDYZsqKCG6j0cCMqXM1sAD9MkBYHch2HA5jaY3Bfui44nIIUAoFrJ6iORyiu5pj9v/fQvHlHMNFWjC1Ri8QrZSJigPFN8CARY8y6FnWdx2GvmaUyoTA87ARiF1TWguOtOTpSLPijsAm/2wlf4cYVsGepInmWKpsuAF55UObwADQUtR5aCSQQm+0jB+/QdXmm3ZKhqKQ8f4SsHjyGuCxFmGIyjr8LsKuYAA4H8u+Hn03g7eQZcHIoler5Yu/AxszSndKCCJwXGd/pFGQN3JdEmtdcuyIV0MVSuq7jEQxJokuDQZug6MGIlmvZ0F56Tg77989k/FQ1zGwq1zxfSnWMBKpD47FssFbMDTm1MGs1w5qvBNt+IPK3ZleLIVZdA8cHchhfbaUYcnIY1Vz8UOdcVQt0Yb2BmU1hmrEQYMcDMVyLEBAvhwRS0vQgB8oK5gtvCBTpcAazrjB+nWDnW1EK0w5R4MqYVSHFGe9FaWs2lOJJ3SD73G15n0Em3xXC6aGqRvJbX5KO08mhwC6LqpXeXSu3Y6oyulrNjc/ckDg+Z5l04a2BfeG5Fl5zcijJxp37oDyDee66wGk3W0Bx9vZiJZ16FZagNGmNSbdb6XIMRUikOTuXMdOBPhhNkASXrSep8Ujcz+89EAixjt/m9dvCPVLIX+iOMvOe+ZjfbCShStKWXxRgHgCw6xwwvgaCVChAICaVGMGZtvMZjJC5aeS8kApJGEDb9QDia8K+TcpJcquOYEmew2SZnEnUiJkCj0AFJ2xRtt3Yh9W8Ts+lIBm8kLrywZsduKlFIEH3A04MOEsAdROXP2KR02YP/9INQSTcvwOaTcHjaeROjr9wEQ/TFFSwFHLajHNwapDeX0vnoNNZ8S9eR3WUIzsvkJ5uxZw0SYT8reOqujpGM7KY/Nobss6Nr8Gsd3Bf+BKSWzfAh1MkZ5uoHChdvgJIMyRZimR9CDdKhVzuPfzBuO0k1GKzsPeMw+G/aUCbAgkBxKmso0QRLu/zBPZiI7LdRwfg6Qjp526DhgOs/vANkAOSjRgem+VOIJ7jAcrrY9jSIXvdt3NnOpbkjUjukY4j8+obwM1rqF6+iuxVhr+Yg7/4ukC6VR4aN68KOuN8DlvIeu4Db1Glemk01OKjiedgPpohKGQB2IP6yXg2AhUcDmA9g1cruPVaRJoGeXvu6YxZKc62b+HD5+e5quzVSA5mQPbO1DkvdSICAF1Jzj1Z0mBUGBbTsgJtbSScmslEMkcl2FDXcEtjj0vCvoUdqKQZACGoOScteP/QAtG42C6LLsxhU1CzsnjwcU6q0kTyO0CqbOG6QqU7ZLyGlLTWaRE3LbacnYcp6+iSCUjGHiqURgn4PtMDTVnB7hrkC5HmRPdzA4wIgklMNkJ8RJ61OPDSwWQOydbC7LT9p5KiUGy2DaZngWjqWGAoSYLmcCj+ABfrlpejf2u3jUjnqWux2YpcHyxHs0RTd0zSalHMsKsSZrODTVuzHapqcbPXKoHPE1BqYY8O5SUAbNEgv5AqptEJGqqu7G2ENrBzMNtCOzG8V72iNGkrmNoVETIgt+MoS7WKpQoaVglhtZGKV5pEuV8OOHsW6dVAbA8y1HGsd804G6ecInX0fiv5TWZxev5aiq7srucIrwidzPjsAs8gPLeHOyGduQHnFR7qZV3S5DAYH5rgxu69zPHxSMaAVqP3zDVDV7BbNdfr4kYUXCL/wHM8kKOqdRyQVP8fvmbSuaXXRrUTDHPwuujIG4cqqyQtpr0noRWvb8mmY1hYygGBQiemlAMtBSPFBO37l41UOo1pK3RhDmv3hJgj/Iwq2wp5EMl7d0O/B1U1/GYrEJfAJ8nSVmkwdH0iL0xljwtu51rorKcJUFotRAhZky8WclgJnWkWLx8kYpooj2sfehrmrQlz35i4X7XztWmlX1k6G0HuNSZgeSYVU+dkzhovB6o0l4NurpKvKg8usvRavQ4wQa3qI0nlc0LHjTkqR/rAeXpcN4UIj+L/no0gQ+1a2ylwBlPiqG4WuuueY8cyjLUo6xvg3MobpNCVDwqealQZjA3lM01rINfprgDYO6ME7g83TTv2mNXssJZuymQM2hXwJQGp8BdQVqC6RWYIp8prQcHpWqLPfSg2AWa9FZ5VauPnUMGihmmtdBWUk0oli5Jo1YDOV/GcAK8+JU67CuE8oYbNYvwJ4agEDpOVtYpURcyPUti1b7uLCi8khb9T1QgaI3AtFU5LKggia6SeBxXqRUV7FqDaw+7C35q4plItXE1cOYIfie2BaRqgKJGuHEzlkSwL0E7kx0PH15YDMY0M3W4gQtWC4SoDne64nmH0msM44NCdqvTcpapkCJ15ophcEFEL0w+KXkERsRaxC9SVmPJakoIos5wPlE/SIov0XFyLUWaUpg9d+24Y2+6DQbCncYh+D18mLnciYqxoq6uMnhmNoqEbN82+WeGDB8AD+W9KEpiXnpf/7kipxtCqQ3CdBBAl1wDpmPB6K4fiK8fSYbl3X6qqhbYAvQerVwggVQ8epDDTCWwqFUBORKXFbAv4ew9kQqmqAlLVY/aC8QsEI95uRTN6NJJkZLuTyaYYVgBCli4r0IMLmCD/puGnAzTTDImSs5qDHFR7JOsdkvtLzE5X4MkQbjYQxYrGixJElsLnGcy6AO5fwL1wDfVxClMMRMa2rGE3JYabEnTnDM3pKej/+Wa4SYZkLn4i9nQlXiUHMmlM5YCjGThLsXppiOGDGvnvnMKMR8BoCHcwBhKD9P5KjLsK0fw3ZQU6OYSb5jArUdtKgg55UcJsM6RLC7r7AM35HElzUw5fuwJYNaA7lZjyHIxRXx3D5QZ2lsMWDZL7S9iLJWi9AWZTMZocSocMF0tQqhydQMi6fyoLyWAQNwpKElkEVUKTsky0zge5VMTunUrl4mAGf+8B/GYjYzdLwbOxYNpXa6lEjIbCDXEuLgTNl16PzzNI7QWOk1EVLEC4Qo+YeL5F8Pox8+AZDjMcRIMxQPCsARPPRbm3dsgPvVQ3Hza5C3h7KFzifC5qdcGF3HvpbJKBvXKshxqBivJAEnnyLJslmXgQBgBuAkFbF/ZauAp+tYKpa6DpwKpOz4FapZ3zHGYyFq5ZqGIpTI+Caariw4MKj3TnHto01JPIH0/BqRUZXB332GwV2jUGjQZwwcjvYi58vJNj6T6tN60q1K3rMg8rIcfSRvyMorGfMa17ux4mfGrhDwcARDKbvBitUVECF4t4H8l7UOmBhXYbVitQlYsk+sFMDlL3HojU9wvPySFH8fGcJpLcN054FnUtz+VgBr56LIUG7+BPDgFLoPunMna6ponTsXJiBEZKeS4CKXfvq69UAvfmXbBzSF64BQwHMPakHV4bkYWnW9eliqmGt2Y2kTFRlDA3r8v9UqNMA0jxKkuBoxnqoyGy9QTGmii16R48iEkUpXJA4aD4MxzKuNYuLjdNFFoIviSPJbQn6TtyS76MQYltpZM7Mue+Uw2Wc4eNkt7sHFCyrNeAyGtr5zSsz+58DjIE+/wtOTcYaudS+Ow8l0RwNhUExHzRFvqCySEkIWGTy/PZFeBbV1Efj0T4Zb2TomiWydjdFrBbnWeJBe4IYN8o/4DzRJU4Wx6XWe3kd1ePQWdzNF98TQjUhxOU16Vwmt/bCCJjmsFloqI3fHMNqhqsv+EIycZh8MXboOkE/mAGsy6F55Vncog+mLRQP2vBubiQG4WlkzViNDiS7r47nqC8MsCAAdqZWETgbjG0UoU954AshZtl8E0Ka4zM7+2u7RZNrkkR8O4DmNkU/mQmCl4rJ9eYJsB6C6obWOdR3zzE9uYh0rVHsmtgjAUXBQavnoE3W7h792GmU2A0hD+fAwBShc7udYZOz2X9ViVGQJPKPAc1DnZVwI8GwGSgAhUO5t65KFBdzEWV9XAqCWVVwxclzHgkz6oQLhwPcvAwhdUipH9w1p5j9axsj47ASERxz7cJczhjAIiJUESAdM89SlaXF9KeXUAIXq3gzTsrcF7qRISCDGnACzvZuH1ZtlVATVZCNdEMBwJ/2uzi5t5VLOoGV3WUWO3KbVKeteTj0BkZi1MyB3J4eD+tfHHTwFysowOmIQIhe8vCEhutJNQN+OwiDqRIfA7ktdk0dhg44IyHQ9WUb8ANolIMD6TN6FMjkIvNDmmjlbBSnZ1tAtpVsLsqVjMxHEQiOZdSvTSbEkkw7rMW9ckIdlMjOV2BIZ0iNgbeGlQnIz3kt7uX2Yralhh0GYzvSkfGXD0BD3NxYV+rEthkKEmcZ8WWp9LJCS3ixsFsRdEHo2FU7MDJEezhDH4yBBoPWq2jzB4g3Z3s3ibiRKlsoj64OTyQH2p1A0A0EiNrwdgCVQUznQgEZLmC164c5Zlg700BVKQ40SpKnEYscS1JSmjFw9jWPK1SKeYw1rMs4jOjBKfXcevbyimHKo4aJdosg19vWnIliRxtUOaKnQHzFt2SZyTY8d5qx4qtJdPyeMDSUYC1ImyhHLBw3wNnDEBbwdz7EI6CGTFMi/P3683es8cuaeE1IfkIm8J4pDhv11ayNwK5MR0SfPx758D6bIMSFXluq4YBx25MlMLcu25AxsJoIK8pK63mq3xmqP52w3vQdAw/G4nZau1igQREsftnDg9UltzF+Rq7IustaLWJnevQ0eZa/FBsIYITaLzMb2apwmapkDn1WcRnkmVAmiJRf6awvkOJxOxZikhBWS7wM/S7mfEIwcyPjKoaepZDvHKvzGwi82i+EXXDupZuDTOIUwTp9SiPGSBxgUe42bbcIU1SQqJLFwvA2IjvjxA8QDqcRSXXkOci8evkO9Jyg7Sqwcu1zGtNmAORHbWOXUMtdyhI0IbuR5gXgTfm9k2AQ1fYNe/MG+CZCGtBHf5oCK5qOUsMB5JsF2XsYHJnDQjrc1DW4vlC5mYi3A0CIgEekA6HoVawJEYQrwFkfiW6X2QZsC2ReghksmmQPHdrTzgCaSpzrMtFrWr1CcpAu05nMXQnAJhtIcWQNJPiwaZAdi4cEKnGM+yugQ0odxIFudEbG4FIjobKsWjiveTO4dtbCz/J1B9IDuHkOHaJ09MtYCCHbM/Iz0sRkwgWCKko5UV1P4U8USnfL3v9Ip6Jwn2IvN5gmzAeqbqmqlsBcsj3eu4JiBnnpfvRsPBkrp/I+Wi1iWexIKVub1yT+6hdD/Eb0rNZnsF4RcEEI0rP2u3YScc0sdKRKZWPkSStomFRikmjjgkAIsCz1QRrJIT02M2xRn5mZL3z88UjkrqUJDDTqexvRbm/f+k5goh0bzQiQ66qjF2Kw/+fuOSJiCiThIiVxA6+ldJEqo1VDVSVVBsSCz6ft4vFW1R+JMSLBFWlZi9HctgFYrcCgKjPDLJYXeOmkZZah0zo15voykxZKu35QKx85MuRyGsSwa/XAgcLxoqDXJ3ZPcxz12WjK4RQz2kCDHOp7FzMNSEbiRnZSJxHfUKgzQ7+fA5ShRcAcl/SRFqxoQNkLXDzqpiDpbZVedrsYFWb3E8GKI9SDDwD251MyPEIjRViW3WQIN0YJPc7X29byjXcOAEsIXv9AshSNNdmIp+XEPL7C/B6A3ddlHwSSLuV8w6kRludhkg1/QcIEoPNlUms1CbbWtREDEnlymvytThTRRyRbfW7QhSpjiaiQlKULWxGiX6cpTB1A8YGPJFOhn9wKljP0Qg0yMUILkBLdFPfMxtUvC/lWYRzAIjcEa4r+I20cmk4ALLWTVXGox5a1czTDOQA6bdbsLMw1kp7dzwC6diVOWNjy94FA64sBfid6X1f1uCmBpK2whkwrqFiSVkqyZ+SQDHIZW471+lQdLglSfoonNP7vQpnDIXU7VVVA558OlXzqI408HAoBnTrtYzNyVg2ea1k7xHMg2RkqZDNIUdiKANAQ3s+IhQ2vccEWSPjuW5kDVO5WNrs9qSD977ydIjqeIjBF+6DN1uZR2E98WqeeDSBm+StMVj375cr+M2m9VXI83gfRVGqlk02XLM1wGQkENNxDtrVexAtHkg1sz4WPpo5XahQRwkfEsvVSjqWWtShINRAJJs2ED8vSn4q4ZeIWk+Pi7ZijUK9DhRSxkAkjcfDvLVy8Fxv9qFeoZDUNLJGhDAEo8lSxLkr1JOyFHwwkeu8WMAvlsBpLf43XkRGKMtgZlPZc9ZtZ5QGOQgEt14/0gXjogRsW6k3na5AUP7C/NlXzQrxsEEy0DkvzCYyT1drXU8eM/eD2TIAMMPNF8JFOz7UzkYqxcnO37qyfMSwtlsopSCAEsxw11tRVdsVkly8cA1oPOxCn3mawJ+dC5c1eCLVNWBGaEYp7PKh7xiEeLY7GUtZKsnummGdlz0wz0BhnKnynTsYA1kC8+ptOTQfSTGP6kYQAWm7hrCx8IMU5UmOdFEjKR3MaiOJf4CEnV6AD6YonztAdr4Ttb3FEj6cuUYj6ayE90w6gg91DXf3HsxoBHP9avxeFMV/XJzvEXYW8rxQpD6ctuqetUO2qKRLYw3qqyPYXQZ777RVXA2dz6Mx2BrxUSuczFtOgMy0AiY79YIbDUVlcbuNcy50vzhAWoeDCMXnshK/otFIO+WiosibrSgJTgbx3CJvJp8Rzi1UlEB3H9IxToczYLXe36PC79Wniqsqninkuwon9i0h37+PuNSJyMMh0ropTKhK1JW0keYLwWcPB7Jge6/a+iTSvnkOe3QoECvVcgZzXAj8fCHvn6vqStj4vJdDo5OHZJyTDNtoZS64Z5aleBQcHcrhoiiFBDbIYrJhjg7Bs7FAorRbYO/N5bB6MJOFZzCI+G5z4xoAhW80TiTfyES1CmaOMovGWmC5gr0H2CvHcAdDSTgOZrKxK2mVdhXowfljuzRUNUiWW9m4cqnCsiExHTQG49c28JlF8c3PI39jDtw/hT3fwGxTZBcqKzwdwWxLJK8vRerv5FB0xKtakqLBAJYPwUcjNGMh5JM6KhvnYe5fyMVYK63mNBG5TO8ijI4qOZhwUSIpprCq5kONb+FrhtqE6mAm1YZCSG2k+Esq6lZpBIjV7u77AxByMBCVKrzCAs1mKwlrnoFVktNOp1KdnqqhosL3gjQjJQno+ChWOuzJEfj4QMjPRRE9L7qHXTMatbKy3sdKvt8VQrAM86JziO6OZ3iG3xXw/PjD6TMTzHJIe2jRDIZOXJZSLAhyhGT2Ew0iUJLGTlSofvmdCA6Y0UicqHctpMtst0CplWfloTxyWUUJNtJZC50Mrmvwet3CQwImN3AaAKmGJjYm1P78opUTniQi1bhQY0b18aEOiTZwDGgykkQmcEZCZS1NRDITAC/WwG4nJPfAeYEeaO+dY3C+koQlJFRNI1ACJwpz9vYDpCoUQEkirs7MQOOkGxgSAqLIAwvdDrPZyUF9PGwrq3UDqiEmqEEOWdW6WKu92ZsX7fdQs8fQ5QzfmUc5aL0DL9YC2XBOxAL0IEPGSEIahsBi1YodaEIPVTdkhaoZ5Zr5lZA9k5deAG8LIZCr4o4kayYmalC1GkqzqGxHqfLQ1EuAQxfNUDsu37grh6ssk+pkVSO5dgVI0zgeeLVueZLa0TOhQvwY8jk3NdiZ2GH1naTVKryLshR4Z/YAlzbYuQjFfvSXLVwb0CSBKAreRHELVdl8nHhJPJOMhsITHQ5kLQgF1CTZEygI3K9oalqWHdjWUCCXZQl4FsK0NQJZLCqp8CeJFKsC56AsQdsC6VI4D3QwFSK188D5IvLMUDeyl4xGUgCdqjjO6QUi90rVkmLic9AhR4eOXXAJB7RzksDWDsPKybmjKKO/ERQ2yfMFTJLAlhMpGlY1cHIka+96JwnWoD3Cmp2+RvkN9mAWoZvQcxIAIElQvnQCYkb65lz8RnKLdFUKakGFa9w0V0j5Ur6rMVHcw15sZD7OprDNUNYPa4Gygj1Trq6uO1wUsavBq3WL2LFWhIWA/WdtrRQxVms5k1SVIhc6HKEwDnSfIjXD5izZ5xqG57BpRCbckLiia4Jt9Nzk75+ChgMkL78IXqzgt9toeyHdeTl38HrTctS45Yp0970wP3xVv+NzxaVORB5eR4XEbdvKU61+IWUpbVDKZZFwenAlo7jYoWSdTQNqGnE4hY++DL4oWjKrdyLdB0RIV6iQcJKgdaBUIrzjuMkI9yMT0nhipbpvSGQf0wSciRoUNV5kLdVAURKQZE+2l1U2lkpxT+Zd0R6uI8lOoQgKQ/G7HZIsgw1k1SyNrUfOU9CuElMuXTTY2pa03jhx/wz4SUh11adS7bVnK+Bkit31AfJ7sgAbdRsPn+GnApETY6ORqE2tNrJR73Zy3R21DU5VRldNkbgoIoSCgFauMGAaPQNOyWC7QjbNxrUcj85CCCVk8SDTxEMXhAjbatqDX7if2uVCydEgzCse2AzVKbUW/XlXlrCqCR9k8ex0KgvGMJfvWanxoSoaAVBYS9tK9qMM9hySAKcZIusthJIf4Yr4N4Ra5UOVeNw17HSuVbjIMrCr9JD7NUBWf5zsaCCVNo3CKFwnV8lamJGqG4nClkM0IAxk3yCV2sHNhrEZeWI2feTjfSQJ2naO16I8RROBcISkNWyGIpmLSHgMIhbsHMxAK4JhrAfDPu2oRgK98h5EHKMlr0epzETJuNbEqhupNKy0/OV6ebsDu7VUylTGmpumrRKSqBSyHoakayvrKjHL/OZBS0BlDxiVxi6rCCFBYgV6G8jsjZNq3HAATpSg3ThZn7yXqqEax4XnQXrI8WNRHPTDBMmuahMClTWGNS30I6x/RGJKqN+LchOlwAFoEqrJmiEZS8MBeDKSBClwtYhiB4ZrH/09ZHwYcPAhCzAulY4H2o4c5TnAHm65FJjeQO+fF3w7a6EoSNfvj3e/D714zHwAu3avqTuvDVC/t+iOPVPBDKAjFvG4l9QNgKK9n6lC/ZyTtSLNZJ8K81TfN/BHAjQrwKyErKxQaSXDByK7yE77KM4ThSOY5fzSkQOnspJDffAHColzlrVJqRr0UvDXiuR3B8wFGsZp+/qACghFPb/ZyrX5QeRABlI0z8ZSIFGOZOTWdjuPCh0zZd3Ou1HSQqRqWUOorIRLGoR/BnLYNo1I6+6hSYLIBfQMNBgo56wVHQgdxWZoQZ6R6prK6s/FCosmQM5mQDs/VVSEmkR4m56lk2BbsY09afFAJg/PPfh8BMSOF0I3WbMn7x/WYl9VUjiwFpSwdL/CeAoE+1BUDeeUsL4HKJchWcvKUtaL8VgKKCHCGXe7hQ0qm0UJKkt4Lc7aCQk3zlop1D8OPfTYvdW/427J5U5E6gZmNIkSeW61Am23j9WM9tstsCtgr54Ieez0rMVlFiX4Yi7V7KDPHTYZa6XaWTcinwrsKXP5UOnqfAbpwc9ckazbz6WijVpIqhgdwN++B7IW5sVbsnBczGHqBtmugh/l8MNUCLThABI23hB5ChjAH4xg0gSYLySBGMnmx4mBvX8hA12NfEyopt++LxM0SYCZwD7MQohZGAyA4wO4SS4LgvcCo9oWaM7OYbU1Fze4gzHIObjbd2HmS8zOD8Ar2XS5VAnf2VgWnS/eAQC5zvVWyFSjATAawBzNwIMUzcEQyWKH0d25fGfnYOZLqbZev9oSirsVjviQvRxe8gyYTeR+hWtwDu7ufSEpHx9FCBSFKtFO4SfTiSyKRRmFA0IiQ/p+brGEPZjBHB+Cl4mQEkfCy0lOjmU8bTbCCVgsZSMw7cGQ5qv2enWhsgczSQgXy1hx9mfnMLsdmLSlq7A+v9u1Y269VlleORyK1N8AVpVCArwIzLGl3XZN2vehPAeeZeg30R7UIeBe3XoDeAe3XMu8fRgO0fjWxPTkSIjQ84V0WguBtnWd2gG5l2Y4kASDvTgfv82BBt7BPTiTTYWMqu54GN24KRcIj5lNwUUJt1hGdaMo1Xh8KIlAnkXTP6/VN3t8JONHOWd+sYycEV5tgNVGSO5JAnr+ZuQ0cbEWhZU8h5lOorJa4EVBzRupaaSbHFSWiKQaOR6Dx0PwKBd1ni/egV9vYO+oh05dCVxKEykYEvU6IuFqVbVUUwE5LKw3cmC4fgWoargHp1GgJFSDCR2ohsoIRxlUHQd+koFKh/RLD+Lh3l45kYNNgOMVZeSG8CBT2JgkpjGRWG0i14SGA1gtVIFJTG7zvIV4qXN7VA8zJoqeeBVMkDd9dJxQlkplV7su3eCm0fEon+PevKMFthogI6IJ4X2GQxiiWDx5ZKx7F5W8hNtiWqUcTS7JuT152Gc1zGAAmozF6O3hg5exMIM8ngnCM3MX0mluvYiM7Jfdtbso46GN0kTG7qmQkcO5xe92Av1kBh2KXGwoEvjX3pQ15+qJwJbPL2R8dBAQtpADPIyRa69q0PEhOM9gykoKeColT0UZk3i5KJK9s6zgTs9gDg9gb16TfbWsYBbi0O3CvsRqAKykcVJzYEpTuBsnsOdLuLNz2PE4SnTDWviDkRRcVzu4qweoD3LYwsGUDezpEhzgUdst7N2LiBIw59LdZXUSt/Nt+1xCspelANL4s+5+G0z6RmUl8282Fm5d6UC7En67k27ubofkd98AmgZuuYYZjwTmvN4qnFKPzkGSfzgQwv+uAGZTWWfuP4CZjNH8gZeRnG/At+8J+mY4aMcKIAWP6UhgoLsCfDQTSXUtvJJaPUReYlULz4x9NLd2b94VNNAgl0Q3PGPT4btCEyU1NAQQjbXt8ZEIJHzhS7IWsI97pJ8vpGt38xrscg0f4HGPUc4y3Q5ynoOpAc7ecprFuNSJCIBYrQwRyHePRKj0OLffutK/iRuPtYKLNbSH2w4k5ZgYhPfU7kn3Mxi2raaHjcV7kbOcCA+Dg9a/YouZhHBKdQNTmpbopO38eAAPkqJ1o9USqSaIG6skT2yFNBY3vnC9VomKQLshKlYyEEgFtxq6ANxWYUPlT3kPsUrM3H79qgJtd628p1U5uMSAnN5za+Wz43Ma7HUdSI0X94imVQ22Fn6SC5mtdkKczwFarsCNdDvItfeLcxEk4LKU+9Jo9yppYqVG5C3rdgwZ5cCE92mcdCAS21aR2SvB2Ty+Mth53uH7wrP8jVfjoS7kyxjpdGg37XHiC5HA2zSPmGTFcR2+A+lYabgjtaev5841dasvXwvxGMJpNJBkimRSClVIY3RB1kQtFAPeppocOrKhmilhpUvlXBwTkTuma02sXrGXLm54lqFTo89UZDof+vxwPWQQpRJZeCCtWWtnvdIqHQN7ZPvwnUX2FYJr1i4RWQs2tnVof5gb0xlD0QQwJCpBM9/L6yh2ilQdR+8Dm2b/vZyXxEfnPiWJJtTUzh9r98jX4jpGe/ODVCYdtp3Xpmik+7vZtPMlhOd2/rNXI1nTJpJErVRqXUvVNHQJwnMEt2T0IsB8s70OSqzOBshdV046RKx0mljlZCe4/LayrWOks2aIY61U9LsJMAUpcR0ve2Z51oLZxyo8A/vVTCIEcZAo2PAMBrv9tZWIIsE6BGn1/NE/7pwD5M3k/w3FZxe6kPFZ102UYafhUKvubdEKTaOQvM6cU8gPIHM4+IuEuRDGZ0wY00TUpfJE9hNA9kTuSLuG8wkReDhulZ460uSSBOexQBs6BOHMEQUtwpqp54THiXpQ7USqN/zI6rx1+jeJjQUYxD1aq/ssJslwDFPu2jNKeK+A2GhcO+dCBylEgLYNc4HGB35Jnims1EliEYQnFGIWzz3qNcdl1Up9x322M4a8WgyE9Z89ABvllyPML7VA1ZExhxRsmbvd9o5Yga4BFN6mruJ1RnNi9oCDGlxyREVwVcWiV3w/hezt8avDPhj2gc7ZhnTtjYWR0J3pGLd+zRgaPhyhk9GtUjwc7vQMMBb2+BBwHu7iAvAOvnBCHB0NlW/AUl3SrM+MRqDDAxnAdXvzu7JlgYgeq2GPMx9SHCQRwTcV+N6p/Ptw1h72X78Dv9mKyUymv7MWGFohpQU1JUOS3Q4HUiXclUIWz1LpKgfsd7eTkqZicqb4b9w9lYHYkf8NevdUyKHIXT+EsQbmopUQxNGBQAC8F/f1o8P9qq8xImk5zOAHKShLQOlVqb7UTcSPkmI6+XwOshbpIJcq6sEEOL2QiT4YANMximsjZMsayb0F6heOUB0kmNw7A+qtmJnVDkaNAeEBXq+lewEgkMS5adC8eVt8ZEbDVvHi6OCRBNVfzFsTwQB7swbm5LitilZV2ykD4Dpjz145ERGDxUq6dsWjLQcaDkBTvacPbfCUSMXMzxdvI6agtzvPZQFSWUh3cSFwwuxROFB47/gsmdHs1m/7/pc9SFWCYniFBYUKcFkiwDhpNBISe1XFs4UvS/Cbq/hszWgEk+fwqxV85cSALk32ZIDjZ2cp4DTJVO4aqagBTcYytqoaXJZwp2fSfRmNBKerFT/Kc9hbN0CjAWzTcp24KIGqkmq1tcL7cq3DbjBP5LIUmEFQbQsH5YFwrUgldFnnvV+uYsfFL9fgptYCjQHvilZqPMz5VDHtx1p9C1Cp5UakhoPyVLcrpX8HY0RIIhQ4QtQV3HIpnYauR8dGMPD2uZtS1AkwNFYYbN0ABWTuzcYtln6zEy7Yb/5u7N6YwUBInsuVrGWdbjo7L/yNxRJ+txMOQKZyud7LZySJwFKaRgjqgXCaZeDtDu7+AyTXr4FPDoV/E/aOpoG/WMdOhp1NBNYFCHxSuSHiK9QIqV+rkHs7io7ZEGYyEYPMxfKR37WwshwmeWiMWgOy+d7P4t8bu0daN1kCPKNNESkEpCLfXRRyr4K3S3iNWgNQqvNUpUzNcBih3I+8b1G2giFJKt307Q7uzdtx3JuDGZCoyueugFsu4e/eAwCpWIcOaF2juX1HjJpPjsGLJdx6LZ3P4RDuxhHMcgd3+w6S69fgrxyBlUvBQTnycAZeb+FOT2GvXAFNRsB8CTYke+kwg6mOJcm9c18KF0TgGyfwxsDuDhG8KoLPD2vhgSBIDnPvXObYybHcBN3/uGlAX7wt82g2hdmUyGsnvEzv4U6mgJsIx1ETNahXSPDSaKYit8+vLeScpAIebEgg4CSqdjzIUV8ZIZ0XMMut7NPM0p0J8r3TCbyZwR2NgeMJ6JVKOHpAi4ipavjtuUIhc/hbV+RZvvomPDOw2co6PxxIgcMzzGwm9+/Xfhs++POsN8KbOz4CVAKYckXAFJokni9kvzrSM2EhEFW/XEXjUwCSPO6KWIwK0C/bhaTWNdx8HlX2eLUW5E5R6PlVxEUCfM6MRvEcuzd+yxK4c1/gYmUZeSbufC6dmeFQ4Klh7BOJoWH+zlKMS52IBPOhWPnTSt+XDe+i2pYZDFoCYoDKBDMta+X9vOC8SYnI7JwszF0OBRCdWMO1INesWb0kKM9EXaVuVMGFW/xh3pJ6JCv1Ks2b7Gfy7HXDVL+RTHHs2wLRKG0njucR+/2w8of3QvYKVRqHCKcSIq6NCg1kDahq2g00yF6mCZAYmPlade7F4RRjSVYoVF3V3VxuNlr4FNB+N8+tEpC1QJ6hmQ2QLjM1/5GOTX5RSjXTM0zlYQt92sZER2VulFBuBc5ktZoIeDn0Ow9WUQMx/wl8Hq06bncI5GDKUiH6B+NAveYwLkKFgJI0ktxtnrdOzFUtLea3qaJzVUu1XB2+Q+WX0Wmjvl0VPkhBMoPqGmjSVuXJOaBpDxyhMsVN01Zxga+drkgn9nDyHex1mBOk0JWoGBK6CSF0rQgcjoDllyqzjVWraKClh+TwWZSJg7UYiSmWv24hfFxVMg9HHRhkMCfUyjWMuL2DWTZYI1hjNjJ/4Xkfp/zYG9F2SQDpSMbqHaBQpGQvuYpdDzLCb+uOn9VWuqAdPhsCjytRRa3QnQhrrkLK2IopGhtSbpisuQDaddlQ5HWBWSAoWx8lL5GlraRvLRLlnNiYQKFpYK+cgMsK7uJC500rtR67yCGB90IQNp3vEmSUgTBHw33JEM0w9X7KBu0lCQprvipbhQ40TB47YByTtqTF9QNA129Cq7yhQx/Hlnda/HpMx4qMwCasjc93r0gWqumdzwidj4cr2ntdg6+liF2NTnW5aRSnr0UNQzBpGvcArgQa3PUToySJY5/0GcPKoRRkIoxrT7HLCJKAAYFpBr6XKlsa9Y0BkYrdNPE15Bxo49pOYpJIkXI8hMUVGYNB/chByO5AVN6jwFNNU2BXtbwWVdkE874EsF5j8AciSJLCxrSQy1CVB0Txr6jiPJU1Asqfte16UdXxM6NPXp63CAtjAFBr0qpw9vRCfsaJjZ2MsN/HgkwnEUKWxoQ+BFkrPmCdRIAaHw2Fg+kxgLjukg+dEAciOSMIz1h5PR3+mV2VsVvFTSOd2FUHedHhApLyUKUjIoUcETcYCuw9EP61OAIVVKKw3nbGc3hWpB0dduL2ToCsJXtqbWb/fP1WSKSwNjHvoz/eJi53IpLsVznDA3wn4VdS8TMnxyJlulQs/66IN5gGOaiu4Qshl7lIwCRgOpEK30PKFqjVVbyqgck46oSb4QA0m8I/ONuTSOO60sXNd34mcAh//RhMBHv3rB00TjZuHg3Aoxw+T2C2NfClN6WbMx6JSd52K3rioYIXQs2x/Pm8NYH0Hj5gxEPlK0lkQTQEsxKzIwZiFcTnKWAJ/u79mAXboyP4mSYUHuJFUFSgAmBrRPJPjZrM4YFcl5Ls+fggtoqb2QDVcYbkfCCHawAoSiRfvBcro3ZdyoKjh3fa7KLCB3TS8WwiCdPt+wA7UMCfh2fVNKBxh+hX1XD37sf7YA4PQFkKd/tuHGdcN3oo6aiWDHLQdKJeKxnMZgd//1Sw2EoofUv5U8V62uMjITPnmWwIW+yPubeIiJE/O4d3DsaY9pDtnRCru68NFTtNqL5moyurSSQbuVNolBPyMh3MQMZItfzhCpFWy0UKFdEYMXSmRPKyFVKQw6Kon5gslbb7eAiczcG7nTyTcB2Kx7dHR6DRUD5flZmCAR2NR61whELCYCiSo1Fnwq8IZOgg0PFwNOqRovOMjIlckBA0HIjARpAVHY/b5CNNIqGb6gbN67dlrbt5rX2D0KEJ1bc0Afk6GjTCOdDLz4unQdWArYUbp0iJYPQAznUrrRzx5dsSvFjBXVxIN3swAD93FUgM6AJCkp8vhEif52IqZw3cH/4GmHUFXFy0zzood41EUZCzVAoa20I61qwqNkUJP1/I3nEwA3YFfFVJtXHYKvdxWUajWd7txNjwYCZFAxUhkfuXRh4H17Vg2D0juX61lWZm3jsAhMNQ5G/Ughn3hXtsNT5wRczRoVzj6bnwITuSsUGxrfvvtypPcPOMK+y9TcQOUTBSLktZ37XbR4kUB3i1gXvwIHZWAMjfzWYyh0MnXveZaHgZuyb78r00yIUUvdnKc1JOglsuRfp6MhaJ3s1Wim/WyPsmIu0duIfhoOqzFH48AN84RHLnAv70vP2St+/J5x3MIlneXzkCD1OR5m0a4OgwepOZ1S4iCwCogIQV/mdAdk1y+Mwi/1INlKUYchqFIm13ojJ3/Sr8MAMTWpRp+IyzpXQEblwVtTt1f6fpuEVYKNKE1mrOWogSIu7cBx0fwR9NwANBi1BRgrwKWBDJPTo9h1sukTx3S2weut8pTVs3e6Nu9OqjYSaTaEIZ1tFAfO+aA9Js2o6joT7bwLM7m8vPmSWBqOpoJGhv3Wj/breD78KhQlEiz2GuHKO5fqBFWdf6jRBF+sHjFNyISIrmWjAyE+HzuNvteJQCsYiCPILOeKjzSonufw8nPm8TlzoR8VUDA/P2L6J92c0QZiyQCF6tZfNIM8kIqxo09ACZtlsRFLNCdVy5Iew9sNoI6WkiWaT4foibsFGHTTOdyutXm2ge47X1Z0YjGUxpIgOlLGE086alVt66ON88k89jBm1LJKcC24nGMsGYq6OQI1VXJYTWYsxor12R6sLFQqovCuMJsDRUtbQ8U229WiHLghm82giUwhrwdCpqUKFDU6oRlmtxrAhVky4pDjKh+eqhPAdLMIUoXiVna9htFpWsAD34KbacAJgVQFuVwtRuBA8y0K3rUlnoegsERZx1W8mU61WDI+dbiMhshqAMxE0TK8vdcRDgEuzEwC1wUITf4lQlSNSQKM204mBFPphZCGKuY6LJLERU22JHzXS6184Pn9/eDxnPflfIYVOhJuGwZrTq24WDsapwxL/vLh7WAu9szbicwV7WgSCFq0HKzQHQdqSgRY3truUDdF5PWdaq5e0ER26n09ZN2RgAaSvJqDhv+R21ZoR1I5talomkqvdxowgmqNjuZLNkftQsEVD8rxC/oXwg1u+CwIUKfIJGuinBDyI4bcdrBGRDCteYpe11IFTdZQOOhoDdIO2eMAOLNRAU4upaEpmiBEwFarJ4TQFjjgcXouanJmJmY8TxGUCQrgxmifZ8LQeUYQs9lM6gBTZyCKEkkWqufjd2HmasghJ356KAFeZzkoAmk/ZQoBLdcL7lqWk3hgY5kqNDcOPEj0QliqkoQF5NK52LVW5AKsuYjCVpce4hDhFiMsauVVjzCykMIc/B3kXjU3Y28sligqodejudRsMyoy7fQTEJkMQMZalJyMOJ9TvjfpAhmDx7ZqFZD0coJuwJ4LBvzSAffr2eCVBX+3LMD0Fho+v6II+KamY2ATzDb7eyXwzyeCbw84WcLVSC1cSxJcpWpBLhwScHAZ5TVYLCSLUDG2RbL5aS6I4G4ot15VjMMEMnxthWChdaVGRxj+e6Fo+yNINR3yEA8t7WgDWBdtMcpmhEsl87JuLzcwjbNPFaoi9LLealPMlBtZfuifrogMQ/i4pKDIw71fx478NeN5vIz62J6pdcVTBny1i44SwV88OilDleiiiHvXIi7/GwwbU1Ysqq+3yEgEKSAz6/kNeREcVAz3KgB0R0JJDDFaVCZ3PpUgSneTVMJedU4dXABAht3XSEQqbS7Yi+StLh9Nst+OwCSVHKGHRiNC33LYvjKVwjBdllryp6CgUFkRS8Ntu9NYLrRi0iSM4mdfOoh4ietQFN2J2Dp3fWGLjUiYgQv75cImL2DeCAtpXmvChtafUhYuMC0S8ojyhXA1kKlKYdpF5UHcgasJ0AiUpSOgeuKzhdjMzxoWyG261kxoMBSBOH6EQMAJDPN5OxbEAKAdgjFeZqmqhStc2de+3BKri7Ah3CEkdoEe8KqeI0Neil5+BHGUzYOAdq7JamcoDV6xAjoiS27rDdiXdKUUj14ehAnM6HmVQpFc8YpG6FPGdFdda3FeIQbjoAJ6JawaVAC7CoYZYUOSfh+8fEQNuOBAiOMjggpwncdCAOrSER0efhq1p8HcKwsBN5nuEgpy1gMRgS+dTY2mQfD1mUpXKPgqt7qEoXZQvRUQhfbMMDWq0ett0aQBZeQ4K2CxXx0Ug+ZyR4464jOoXqNxDH88NGWhEGOJuCtjv4jmzkHndKIYPxfuQGeIYLnewcaDCUZ9pNuAI5HYhEzwjVVHO3vbBa8XQbcKkd2CSJ6iV+s2kloAP/BGjJn1p0ANCaaqWJPNu62ZNWjofMoMKyKx5prUffjjCOq6rtyDSKrwYQ3dsV9oRuBZw5wnQoEFZD4cVaba/reshWxq9JH1sxj9DCleKZQzLTha0+dD9hAX9xIZ2Aa1fk86uq7Thq0sMT9UF5cC6d39lQDP+ACGHoGhAStBNV1YCr2/v44KyFRYUikCpjoSO2EW+zdrqFT5OBD6egooJ78KB9jYqdBD19Oxwq3E/gH2Qt/HojnS5VyAMQMfDBiDCE326lgt55nmAGGRehmL5rSDidgKZj0GYj63s4dHTl/XXP6RJSu2PpnUh4s4eafX7Zlz4boXLeAQID4JG1k5nbueBa/xF5Zr493AcOX8Nxf0DgDVSVIBiIQE0TJV05wMG7RnOmnUukfKWgtAdmWUOYhWsSYFBHhy0yQjlHNBgoPDmFzzPptjSIr4vVfUCKe05gSwSgeXAmnbwupC+xctBOhEzucwtTK2Raua147/Oi6LnpdFXD/axroMmkQEmaOOd5W2xI0yhJzcqFpQ63FZrQ42Aq65ful+FM49cbhUelwDCPJG3o2cjMpsBwLGeJhzsHxkihMKyTjYtFVW6aaFQZO+FAXJNMnrUFLS28+PkCvqphT47l++VZ9IqJ665CqAWu2XZWgtluFBfQ85pbLoGlKvARRR6KJCJKHs/0TKWqjqLmWrf7Tp5LUvPw9/eS7JjxWLr0j+GtBnPkcI7mpvna8BGxhzOYstVnfsfBHE3dAESjJ7JWOCNK9AzkTECzXiUaAYimUF4x/OS8LlocCU4RSw3IYBiNlPi4lmRDlQfgOVang7RqxEZnKfjkSBaCXQEe5KIeVYpeeFD96V5rkPT0mqV3daPNwVSSrrqBWXk9RA3gj2Zy8FpvxdwoTYCiEiMhlf3kxVLwgzeutvdSuwnVlTHSiwLmzgPVRdeKLGTycCIbPu0KqeIrpCW9fSHQDmtB2wLufA5zMJUK4noji0RYjA6nep99xMtTWQu23DNQ1kh25UNdFwNz9QpMo1WFRvCVfrkC5guYG9eEdO86csAK8TJayTLTKUS3fy1Viq7spRrP4egA1Dj423dB1sIeHUkbdVfABNz6a7flEHtyJN0ekgornMjHRgUNff6UJvI+Kk/ti/IRiVmjxOpQoYuVurJ1aWU9AO0dPhQiFA5AvnzMIfFZCmYhdGcZrBLBg6b7I3Xg2EGoo69D7G55FrlVlTYNBxR3MZeXBdEAIEJF/Wot4yvNpKgxnQhp8GIuGyeZWD0DIDKrhwcxGX4ch4cLqSBG5Sj1lgCkeuUXy1hxBSDXvd6AgpGp8rxChc5AoYDnF1J9n4yl8rkrQNMJMMhBKzH086uVwPzStDUKC8Ic4eCdiscIigJ+s5WOxME0brBc1eDdDmYylu87nSK62Dsv0Nksk/GrPwsGi5SLD4+9K9Aqe/Vqqxg4VFx83ch6M8iB1Rq8c+DZRKq/6lHCO+GDcVGCFmspKIWDXyWwVTo+BHTdp/FYDlkPzttCQ5bJgU7hacEgDECr3T8aSWFBx5YQ1Ou2Q6nS20jb8cRVJYUe9buK4cXDAcA+sV75L3vJnhcTzyAn/1jVvbdADDw2VNnrLY3+noUg2ueNvoMIPlGkcqnxXgfeDhCTWADS0dCOFXaFHODyHP70LPJ9TChYjoawKorBzqmkP8OtN+3BTxXyYuVbIXtiEixGzrzbiSlpJh16c3ggc/ZiIcXEUeA3eDlnBDhlEPQYiTEgrbZyyP2m90nH8uwCmE0FZmqFd0Fnc1gAdjF85F5R1QCUwl89FG7IcgMaDCQJA0DbAtmbOg67xoidAivpfUPY57SzQ1Ut55T7p22xOE3EkkA7UpRnUhgNXLbZROBIXc6Gku5RVlIAGQ8R+Wgh2VKvEXmeAW4riaUBotonUgamE1lXTs9aDgwgiWLgEpai4uc3mmAF/pcxchYMBTDtcIWiAl2Vwo0ZDORsNhoKhLQS5AtZLZY2DbwSy9m3nMKgEPZ2QXm+Vwzm8/n+GDYm7j8Pd1rfaVzKRCRUyhvyYOPBcOC3yrzYw7ABc7P/mvqh17salOQgY9uqvYwogPUBdCrPphGpMu+EfE6bhx6myrISMcA1QFY4Fb6ErzawE81SuQa7BtwU7Wd2BgYlDDYORA3IV2DUcGRgyIFYnCsZDGNcvFYiA5CFLwL8K5UkiSsYk8nkaBRHiQawhCZzsLWXzzByQDGu0GppAjQVeLeCGVj4sAF6gJoK8EBpKxBVoHINgkxI6Hcin8nCljCMr9C4AlylIMtArfJ7wxxc7OCqDazLQMjArpTqngXIevgkB5FXpS2tEjQAvC4g3ovCRHj0rlQjQJbn4BowajBXsYqQ4AjeWFBVCrnMV/KMXAFqGAQLSkeSiPhSiPK+kufG4opMzgI0BtDAlRuYPINJc/iigXeS0MAb+O0OhiaAmUll0+jB0RA8NWDvYLgSyT3ogSshkR42Dt6XABsYpjierfVAwkDjwezguQaxga/EcIqJ4X0F9vuJBhHDGwOmBswNGm2HvK3fxSWMuFagBjxgQPA2hQ9rxtt93T1gPsGkmUByApQRakYKD1cqvCLPZA52pBxdtZN1KM/gjQeoAVwJV7TtcOuleu64hjUNXOJBxoFRg7xsAp6rthXeyP8k0QiiA+EjK/h6B5N2uqnk4OotiDJYDAFiMHuAxPCLTAMmJ+PXOBjKwU0BrksY5ICxcFyDWSqXpiEYn8XvKA71XuYEtEraCFnXV0LStzQCgcG+ArsSvt7BcgqiFGyk6wInUAlf72CsB4W5TQSqVXyD6yjvTWkKpFZuhndgChK5tTxAQpyrZBx8QvK+KYMLB3ADbipQJSICXBfKFSphvAVRI6/hCgY1AC/rauDU2ASUMmTtZXjjAHYgrsC+gS/WsBmBvIHnSuZnExy5O9BIk4DglfwPsJFuGZGu6x46Xus94nqMppZb0FRxDIAZzhUAWxjr4V3zaLJBFsaQdFf57Q8RRAwyjLrS63+G1op2nXAwxj1ypjBsADaPr/CG2+Ag64QdgtmBXQcWS07HEmTt1nESHepJu2lBlc8xjM8BA1nD9XrYygc5V4BI+UO+ArsGJpXXU8KAr+GqDUzKILJArXshnCTtQ/G48eUapsngHcnez5Vck3PwVQnyCQgZDI/h2ciZgAjNYAjbMLjZwdAAPskAaEF2t5Tiqiul05ulco1cgaod2Dr4zMKYBqbeqdFzokqafu9MEA/0ITprnEjTEigZwCcG1DiQdXDrZcu1yXOYtNO1MUbue1VJsXZoQSx/F+ZZfKi+kudiMiHs1zXYZJIc+ArkSzRcg4yFN0bmKhFgHJgd0OxAJgMhB9c7uF3b1TKDHKBU3ocI8ICvtrpv5yC27ZgC5FmnA00wVCXRECwqgDy8caCEZV1LxCgRzoFggZQAruCqTfv5jRD2fdOOOWIGMck4i86qBGNaJAZXqvqY55FjShZ6BpEzZvfv3+m5gvgSriZvvPEGXnjhhXf7Mvro45mL119/Hc8///y7fRlfsejXij76+OrEs7RW9OtEH3189eLLrRWXMhHx3uOVV17BN3/zN+P111/HbDb78n/0LsdyucQLL7xwaa4XuHzXfNmuF3h6rpmZsVqtcOvWrQg7fBaiXyueTFy2a+6v9/8+nsW14jKuE8DTNS7eSVy26wUu3zU/Tdf7TteKSwnNMsbgueeeAwDMZrN3/Wb/fuKyXS9w+a75sl0v8HRc88HBwbv6+V+N6NeKJxuX7Zr76/2/i2dtrbjM6wRw+a75sl0vcPmu+Wm53neyVjwb5Yw++uijjz766KOPPvro41JFn4j00UcfffTRRx999NFHH088Lm0ikuc5PvrRjyLvSJk+zXHZrhe4fNd82a4XuJzXfNnist3jy3a9wOW75v56+3g4LuM9vmzXfNmuF7h813zZrhe4pGT1Pvroo48++uijjz766ONyx6XtiPTRRx999NFHH3300Ucflzf6RKSPPvroo48++uijjz76eOLRJyJ99NFHH3300UcfffTRxxOPPhHpo48++uijjz766KOPPp549IlIH3300UcfffTRRx999PHE41ImIj/+4z+Ol19+GYPBAB/4wAfwv//3/363LynGj/7oj+I7vuM7MJ1Oce3aNfy5P/fn8Morr+y95k/8iT8BItr73w/+4A++K9f7T//pP33kWr7pm74p/r4oCnzkIx/ByckJJpMJ/uJf/Iu4d+/eu3KtIV5++eVHrpmI8JGPfATAu39/f+mXfgl/5s/8Gdy6dQtEhJ/5mZ/Z+z0z45/8k3+CmzdvYjgc4kMf+hA+97nP7b3m/PwcH/7whzGbzXB4eIi/8Tf+Btbr9RP7Ds9KPK1rxWVbJ4DLt1Y87esE0K8VT1P0a8VXLvq14isbz/o6cekSkf/8n/8z/v7f//v46Ec/il/7tV/D+9//fnzP93wP7t+//25fGgDgE5/4BD7ykY/gV37lV/Cxj30MdV3jT/7JP4nNZrP3ur/1t/4W7ty5E//3Yz/2Y+/SFQN/8A/+wb1r+eVf/uX4u7/39/4e/tt/+2/4qZ/6KXziE5/A7du38Rf+wl94164VAD796U/vXe/HPvYxAMBf+kt/Kb7m3by/m80G73//+/HjP/7jj/39j/3Yj+Ff/+t/jX/7b/8tPvWpT2E8HuN7vud7UBRFfM2HP/xh/J//83/wsY99DD/3cz+HX/qlX8IP/MAPPKmv8EzE07xWXMZ1Arhca8XTvk4A/VrxtES/Vnzlo18rvnLxzK8TfMniO7/zO/kjH/lI/Ldzjm/dusU/+qM/+i5e1VvH/fv3GQB/4hOfiD/743/8j/MP//APv3sX1YmPfvSj/P73v/+xv5vP55ymKf/UT/1U/Nlv//ZvMwD+5Cc/+YSu8MvHD//wD/P73vc+9t4z89N1fwHwT//0T8d/e+/5xo0b/C//5b+MP5vP55znOf/H//gfmZn5t37rtxgAf/rTn46v+e///b8zEfGbb775xK79ssdlWiue9nWC+fKvFU/zOsHcrxXvZvRrxVc2+rXiqxfP4jpxqToiVVXhM5/5DD70oQ/Fnxlj8KEPfQif/OQn38Ure+tYLBYAgOPj472f/4f/8B9w5coVfMu3fAv+0T/6R9hut+/G5QEAPve5z+HWrVt473vfiw9/+MN47bXXAACf+cxnUNf13v3+pm/6Jrz44otPzf2uqgr//t//e/z1v/7XQUTx50/T/e3Gq6++irt37+7d04ODA3zgAx+I9/STn/wkDg8P8Uf+yB+Jr/nQhz4EYww+9alPPfFrvoxx2daKy7BOAJd3rbhs6wTQrxVPKvq14qsT/VrxZOJZWCeSd/sCfj9xenoK5xyuX7++9/Pr16/jd37nd96lq3rr8N7j7/7dv4s/+kf/KL7lW74l/vwv/+W/jJdeegm3bt3Cb/zGb+BHfuRH8Morr+C//tf/+sSv8QMf+AB+8id/Et/4jd+IO3fu4J/9s3+GP/bH/hh+8zd/E3fv3kWWZTg8PNz7m+vXr+Pu3btP/FofFz/zMz+D+XyOv/pX/2r82dN0fx+OcN8eN4bD7+7evYtr167t/T5JEhwfHz819/1pj8u0VlyGdQK43GvFZVsngH6teFLRrxVf+ejXiicXz8I6cakSkcsWH/nIR/Cbv/mbe9hIAHu4vG/91m/FzZs38d3f/d34whe+gPe9731P9Bq/93u/N/73H/pDfwgf+MAH8NJLL+G//Jf/guFw+ESv5f8m/t2/+3f43u/9Xty6dSv+7Gm6v3308eXiMqwTwOVeK/p1oo9nIfq14qsf/Vrx5ONSQbOuXLkCa+0j6gr37t3DjRs33qWrenz80A/9EH7u534Ov/ALv4Dnn3/+bV/7gQ98AADw+c9//klc2tvG4eEhvuEbvgGf//zncePGDVRVhfl8vveap+V+f+lLX8L//J//E3/zb/7Nt33d03R/w317uzF848aNR0iSTdPg/Pz8qbjvlyEuy1pxWdcJ4PKsFZdxnQD6teJJRb9WfPWjXyu+evEsrBOXKhHJsgzf/u3fjp//+Z+PP/Pe4+d//ufxwQ9+8F28sjaYGT/0Qz+En/7pn8bHP/5xvOc97/myf/Prv/7rAICbN29+la/uy8d6vcYXvvAF3Lx5E9/+7d+ONE337vcrr7yC11577am43z/xEz+Ba9eu4U//6T/9tq97mu7ve97zHty4cWPvni6XS3zqU5+K9/SDH/wg5vM5PvOZz8TXfPzjH4f3Pi6Afbx9PO1rxWVfJ4DLs1ZcxnUC6NeKJxX9WvHVj36t+OrFM7FOvMtk+d93/Kf/9J84z3P+yZ/8Sf6t3/ot/oEf+AE+PDzku3fvvtuXxszMf/tv/20+ODjgX/zFX+Q7d+7E/223W2Zm/vznP8///J//c/7VX/1VfvXVV/lnf/Zn+b3vfS9/13d917tyvf/gH/wD/sVf/EV+9dVX+X/9r//FH/rQh/jKlSt8//59Zmb+wR/8QX7xxRf54x//OP/qr/4qf/CDH+QPfvCD78q1dsM5xy+++CL/yI/8yN7Pn4b7u1qt+LOf/Sx/9rOfZQD8r/7Vv+LPfvaz/KUvfYmZmf/Fv/gXfHh4yD/7sz/Lv/Ebv8F/9s/+WX7Pe97Du90uvsef+lN/ir/t276NP/WpT/Ev//Iv89d//dfz93//9z+x7/AsxNO8Vly2dYL5cq4VT/M6wdyvFU9L9GvFVzb6teIrG8/6OnHpEhFm5n/zb/4Nv/jii5xlGX/nd34n/8qv/Mq7fUkxADz2fz/xEz/BzMyvvfYaf9d3fRcfHx9znuf8dV/3dfwP/+E/5MVi8a5c7/d93/fxzZs3Ocsyfu655/j7vu/7+POf/3z8/W6347/zd/4OHx0d8Wg04j//5/8837lz51251m78j//xPxgAv/LKK3s/fxru7y/8wi88dgz8lb/yV5hZ5Pb+8T/+x3z9+nXO85y/+7u/+5HvcXZ2xt///d/Pk8mEZ7MZ/7W/9td4tVo9se/wrMTTulZctnWC+XKuFU/zOsHcrxVPU/RrxVcu+rXiKxvP+jpBzMxfxYZLH3300UcfffTRRx999NHHI3GpOCJ99NFHH3300UcfffTRx7MRfSLSRx999NFHH3300UcffTzx6BORPvroo48++uijjz766OOJR5+I9NFHH3300UcfffTRRx9PPPpEpI8++uijjz766KOPPvp44tEnIn300UcfffTRRx999NHHE48+Eemjjz766KOPPvroo48+nnj0iUgfffTRRx999NFHH3308cSjT0T66KOPPvroo48++uijjycefSLSRx999NFHH3300UcffTzx6BORPvroo48++uijjz766OOJx/8HRzNghvBut4sAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -301,10 +301,10 @@ "id": "ba0416b3-b4b6-4b18-8ed3-a76ab4889892", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:24.089428Z", - "iopub.status.busy": "2024-07-08T17:09:24.089248Z", - "iopub.status.idle": "2024-07-08T17:09:24.106079Z", - "shell.execute_reply": "2024-07-08T17:09:24.105691Z" + "iopub.execute_input": "2024-07-08T21:56:14.357790Z", + "iopub.status.busy": "2024-07-08T21:56:14.357537Z", + "iopub.status.idle": "2024-07-08T21:56:14.371964Z", + "shell.execute_reply": "2024-07-08T21:56:14.371329Z" } }, "outputs": [ @@ -415,22 +415,22 @@ "id": "cbed3261-187c-498d-8ee0-0c3a3c8a8c1e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-08T17:09:24.107975Z", - "iopub.status.busy": "2024-07-08T17:09:24.107833Z", - "iopub.status.idle": "2024-07-08T17:09:24.792595Z", - "shell.execute_reply": "2024-07-08T17:09:24.791945Z" + "iopub.execute_input": "2024-07-08T21:56:14.374578Z", + "iopub.status.busy": "2024-07-08T21:56:14.374213Z", + "iopub.status.idle": "2024-07-08T21:56:15.166965Z", + "shell.execute_reply": "2024-07-08T21:56:15.166330Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ba03d9838e04889b706931effa08ed0", + "model_id": "63d07608761045ecb8879835cda9c412", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/6 [00:00" ] @@ -514,12 +514,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.6" + "version": "3.9.19" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1ae28a6b4ba449a19926fcc54b986682": { + "29853c78541442e0b54ffee6104555c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -571,7 +571,7 @@ "width": null } }, - "2ba03d9838e04889b706931effa08ed0": { + "63d07608761045ecb8879835cda9c412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -586,14 +586,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_816ae6c71fa34858b47615bcdb6ba552", - "IPY_MODEL_2e7b0cb9fa4845b28e074a12257f2da3", - "IPY_MODEL_8d2679906f464c4d8a62ec21995e6985" + "IPY_MODEL_b2e336f2a6494cb58cd09ee38e347246", + "IPY_MODEL_701249fcbac14731adee2c8baec82b02", + "IPY_MODEL_ecc1589858e04e6283e979b0867ffb6e" ], - "layout": "IPY_MODEL_355b6d5be12d480d832e865768793745" + "layout": "IPY_MODEL_8b8fb3e8b4ce47cda6a4a465f2a2dacc" } }, - "2e7b0cb9fa4845b28e074a12257f2da3": { + "701249fcbac14731adee2c8baec82b02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -609,15 +609,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a67ebd2127104917aed511743330c89d", - "max": 6.0, + "layout": "IPY_MODEL_29853c78541442e0b54ffee6104555c5", + "max": 17.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6aeb07ce82f845808734a570d23327f7", - "value": 6.0 + "style": "IPY_MODEL_72c5bb347cff4e409da48ad68b2db1cd", + "value": 17.0 } }, - "355b6d5be12d480d832e865768793745": { + "72c5bb347cff4e409da48ad68b2db1cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b8fb3e8b4ce47cda6a4a465f2a2dacc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -669,23 +685,7 @@ "width": null } }, - "6aeb07ce82f845808734a570d23327f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6f2cac48f9a640e5ad9b4c137c7f75be": { + "a957c3c0981d4372ac7b67de7db47ce6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -700,22 +700,7 @@ "description_width": "" } }, - "7d147107f1d64db093dbe611337e5bfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "816ae6c71fa34858b47615bcdb6ba552": { + "b2e336f2a6494cb58cd09ee38e347246": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -730,34 +715,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f39b23e20aa84238928e932d37e1864e", + "layout": "IPY_MODEL_e69449a036fd497ea439a7d9702fc921", "placeholder": "​", - "style": "IPY_MODEL_7d147107f1d64db093dbe611337e5bfc", + "style": "IPY_MODEL_defce0d3c4c74aa185bae8ed120b7003", "value": "100%" } }, - "8d2679906f464c4d8a62ec21995e6985": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1ae28a6b4ba449a19926fcc54b986682", - "placeholder": "​", - "style": "IPY_MODEL_6f2cac48f9a640e5ad9b4c137c7f75be", - "value": " 6/6 [00:00<00:00,  3.80it/s]" - } - }, - "a67ebd2127104917aed511743330c89d": { + "c517ecd234634541a0370f8ef7cb4bfe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -809,7 +773,22 @@ "width": null } }, - "f39b23e20aa84238928e932d37e1864e": { + "defce0d3c4c74aa185bae8ed120b7003": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e69449a036fd497ea439a7d9702fc921": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -860,6 +839,27 @@ "visibility": null, "width": null } + }, + "ecc1589858e04e6283e979b0867ffb6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c517ecd234634541a0370f8ef7cb4bfe", + "placeholder": "​", + "style": "IPY_MODEL_a957c3c0981d4372ac7b67de7db47ce6", + "value": " 17/17 [00:00<00:00, 25.17it/s]" + } } }, "version_major": 2, diff --git a/sed/latest/user_guide/config.html b/sed/latest/user_guide/config.html index ba9979b..d95dfde 100644 --- a/sed/latest/user_guide/config.html +++ b/sed/latest/user_guide/config.html @@ -8,7 +8,7 @@ - Configuration — SED 0.1.10a6 documentation + Configuration — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

    @@ -524,9 +524,9 @@

    Default configuration settings adc_binning: 1 # list of columns to apply jitter to. jitter_cols: ["@x_column", "@y_column", "@tof_column"] - # Jitter amplitude or list of jitter amplitudes. Should equal half the digital step size of each jitter_column + # Jitter amplitude or list of jitter amplitudes. Should equal half the digitial step size of each jitter_column jitter_amps: 0.5 - # Time stepping in seconds of the successive events in the timed dataframe + # Time stepping in seconds of the succesive events in the timed dataframe timed_dataframe_unit_time: 0.001 energy: @@ -544,7 +544,7 @@

    Default configuration settings fastdtw_radius: 2 # Window around a peak to make sure that no other peaks are present peak_window: 7 - # Method to use for energy calibration + # Mehtod to use for energy calibration calibration_method: "lmfit" # Energy scale to use for energy calibration energy_scale: "kinetic" @@ -553,11 +553,11 @@

    Default configuration settings tof_fermi: 132250 # TOF range to visualize for the correction tool around tof_fermi tof_width: [-600, 1000] - # x-integration range for the correction tool around the center pixel + # x-intergration range for the correction tool around the center pixel x_width: [-20, 20] - # y-integration range for the correction tool around the center pixel + # y-intergration range for the correction tool around the center pixel y_width: [-20, 20] - # High intensity cutoff for the visualization tool + # High intensity cutoff for the visulaization tool color_clip: 300 @@ -592,7 +592,7 @@

    Default configuration settingsbinning: # Histogram computation mode to use. hist_mode: "numba" - # Mode for histogram recombination to use + # Mode for hostogram recombination to use mode: fast # Whether to display a progress bar pbar: True @@ -604,7 +604,7 @@

    Default configuration settingshistogram: # number of bins used for histogram visualization bins: [80, 80, 80] - # default axes to use for histogram visualization. + # default axes to use for histgram visualization. # Axes names starting with "@" refer to keys in the "dataframe" section axes: ["@x_column", "@y_column", "@tof_column"] # default ranges to use for histogram visualization (in unbinned detector coordinates) @@ -623,7 +623,7 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin copy_tool_source: "/path/to/data/" # path to the root or the local data storage copy_tool_dest: "/path/to/localDataStore/" - # optional keywords for the copy tool: + # optional keyworkds for the copy tool: copy_tool_kwds: # number of parallel copy jobs ntasks: 20 @@ -641,11 +641,11 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin Stream_4: "ADC" # dataframe column name for the time stamp column time_stamp_alias: "timeStamps" - # hdf5 group name containing eventIDs occurring at every millisecond (used to calculate timestamps) + # hdf5 group name containing eventIDs occuring at every millisecond (used to calculate timestamps) ms_markers_group: "msMarkers" # hdf5 attribute containing the timestamp of the first event in a file first_event_time_stamp_key: "FirstEventTimeStamp" - # Time stepping in seconds of the successive events in the timed dataframe + # Time stepping in seconds of the succesive events in the timed dataframe timed_dataframe_unit_time: 0.001 # list of columns to apply jitter to jitter_cols: ["X", "Y", "t", "ADC"] @@ -712,7 +712,7 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin fastdtw_radius: 2 # Window around a peak to make sure that no other peaks are present peak_window: 7 - # Method to use for energy calibration + # Mehtod to use for energy calibration calibration_method: "lmfit" # Energy scale to use for energy calibration energy_scale: "kinetic" @@ -721,11 +721,11 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin tof_fermi: 132250 # TOF range to visualize for the correction tool around tof_fermi tof_width: [-600, 1000] - # x-integration range for the correction tool around the center pixel + # x-intergration range for the correction tool around the center pixel x_width: [-20, 20] - # y-integration range for the correction tool around the center pixel + # y-intergration range for the correction tool around the center pixel y_width: [-20, 20] - # High intensity cutoff for the visualization tool + # High intensity cutoff for the visulaization tool color_clip: 300 correction: # Correction type @@ -771,9 +771,9 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin sigma_radius: 1 # default momentum calibration calibration: - # x momentum scaling factor + # x momentum scaleing factor kx_scale: 0.010729535670610963 - # y momentum scaling factor + # y momentum scaleing factor ky_scale: 0.010729535670610963 # x BZ center pixel x_center: 256.0 @@ -811,7 +811,7 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin binning: # Histogram computation mode to use. hist_mode: "numba" - # Mode for histogram recombination to use + # Mode for hostogram recombination to use mode: "fast" # Whether to display a progress bar pbar: True @@ -825,7 +825,7 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin histogram: # number of bins used for histogram visualization bins: [80, 80, 80, 80] - # default axes to use for histogram visualization. + # default axes to use for histgram visualization. # Axes names starting with "@" refer to keys in the "dataframe" section axes: ["@x_column", "@y_column", "@tof_column", "@adc_column"] # default ranges to use for histogram visualization (in unbinned detector coordinates) @@ -923,7 +923,7 @@

    Example configuration file for mpes (METIS momentum microscope at FHI-Berlin reader: "mpes" # NeXus application definition to use for saving definition: "NXmpes" - # List containing additional input files to be handed to the pynxtools converter tool, + # List conatining additional input files to be handed to the pynxtools converter tool, # e.g. containing a configuration file, and additional metadata. input_files: ["../sed/config/NXmpes_config.json"]

    @@ -938,7 +938,7 @@

    Example configuration file for flash (HEXTOF momentum microscope at FLASH, D loader: flash # the beamline where experiment took place beamline: pg2 - # the ID number of the beamtime + # the ID number of the beamtimme beamtime_id: 11013410 # the year of the beamtime year: 2023 @@ -1022,7 +1022,7 @@

    Example configuration file for flash (HEXTOF momentum microscope at FLASH, D # channelAlias: # format: per_pulse/per_electron/per_train # group_name: the hdf5 group path - # slice: if the group contains multidimensional data, where to slice + # slice: if the group contains multidim data, where to slice channels: # The timestamp @@ -1056,8 +1056,8 @@

    Example configuration file for flash (HEXTOF momentum microscope at FLASH, D group_name: "/uncategorised/FLASH.EXP/HEXTOF.DAQ/DLD1/" slice: 3 - # The auxiliary channel has a special structure where the group further contains - # a multidimensional structure so further aliases are defined below + # The auxillary channel has a special structure where the group further contains + # a multidim structure so further aliases are defined below dldAux: format: per_pulse group_name: "/uncategorised/FLASH.EXP/HEXTOF.DAQ/DLD1/" diff --git a/sed/latest/user_guide/index.html b/sed/latest/user_guide/index.html index a9f2e36..f129665 100644 --- a/sed/latest/user_guide/index.html +++ b/sed/latest/user_guide/index.html @@ -9,7 +9,7 @@ - User Guide — SED 0.1.10a6 documentation + User Guide — SED 0.1.10a5 documentation @@ -36,7 +36,7 @@ - + @@ -47,7 +47,7 @@ @@ -127,7 +127,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

    diff --git a/sed/latest/user_guide/installation.html b/sed/latest/user_guide/installation.html index 4fbfa8f..78a6d64 100644 --- a/sed/latest/user_guide/installation.html +++ b/sed/latest/user_guide/installation.html @@ -8,7 +8,7 @@ - Installation — SED 0.1.10a6 documentation + Installation — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

    diff --git a/sed/latest/workflows/index.html b/sed/latest/workflows/index.html index c84b89d..39914d0 100644 --- a/sed/latest/workflows/index.html +++ b/sed/latest/workflows/index.html @@ -8,7 +8,7 @@ - Workflows — SED 0.1.10a6 documentation + Workflows — SED 0.1.10a5 documentation @@ -35,7 +35,7 @@ - + @@ -44,7 +44,7 @@ @@ -124,7 +124,7 @@ -

    SED 0.1.10a6 documentation

    +

    SED 0.1.10a5 documentation

    KAgEmBk8P!_e?s14|NT9_a4k>1atjr{9Y8re_WjJ5q1{xyilY*oVMzowL`Y3 zq)THB>Z>EzT?Tvav{hUUozJ5&*c$OsE1b+*PJqm`0wz24f*TD*WpTTWb1rnhI6zv5 zg9ydvvJ$_d(MUVxqN2!~ttbgj2Jze?Zzi7+&Mj1wKzAR~F;0gwV71=gqr&gir;4j8 zo+;$J3Mck0A>Y4`xYUWr!y(eTDNLwJ)RnZ6<_p1R4+pYfd#~F1B+|Zl4tsPc5G&Pk z26J2p{CpwrpR4Lh*!aAcL!*<2WSo->+h}DjxM!B7coZBR%Hg6Yg#X_a;r=)w78yEIfaNS0gKxN@n&vLP`YGzR0>Ht?B6@y*X8e`5~ZKZQNtz-&`w z7b+_}9l>l%B(E<;>hI)Gbi}J#lA^%?mJh*4BQ#?n^Qa13ZNl0+tOMnYvRO++#i058_SZYL!7z zt1Of1WK|=%b_Gb&I39SlZh4a0(KDe!{21~%H#OLq*kSdZq}3|Ci?S4WXZ8S>HrTlc z#eVdcEnFMWB!MUj-b8T=RoQ%;cu72yjE2G!9S&qI2nEz6*%K%T+^=YAT9zHy)=(gq zWeIo|!n8F4Su854@F$5Bs{-esEJ51>=~6fkbTAbnwe!IFBJ#{oH?o(EMp6KssyNQ+ z1tRxK)skZ3bI>72hmKuv2?w-ulEBsu!^+9IqbQ@l5fnDb^94+jz?Ks!8df!MawKc- zdM63ipgqExoxVo-4fbFbp_|Zi5&$4cP`-2mVn+JrT>M6Ii*!{AYC(l-+%#86`BJ{C zF;U#ZUTkDO&Ze-sa@1KH(10*lM2wtqDa7 zckp`Ca@4rxigfqAFh6`%zvFYorA|a1UPpz*ZQIIIt$rb8DQ!^7Wsz`ta3!O-*r8;d zO#^BgaX5vKz6`!7S~9D5BHaf>NLQ$kaFU>Ppj0Bf)#go1!pt}tL4Jp)e3V7o##&BnDHkIq5}C1mj+)5Jp;gb3Se z+Jj%XpW5X@$>=+e-GM z4E7w70H+xu>n((mAK{AlH-uW{LzQ^kHSBb*Rk+A9u&eZt`!zsTf1K=SAeA>SKMD}rIH2g5$?s73<4@*YGSqb09Lsmw&lxYop~8>uv`wEX3IdAkFjgxBJZ~#t}pxroG zpS+i}y7V)^3)D3{5y`QN<{hX7vBF$u<3iDLo zH}FRSG%LWYgsiMkX(hu4BD=^=`zX#6g(H~d{L+yFr?QemeeeegiF1~d(arizYzMW8w%gR#Li}6?rC?Ucbce{lRDw{qL+s~zm7#+ahz6Y`v=EYmGa9qq`>IT`af*8&$>zt2fxUkr16_@LOsJ;czAqCrNr0KaKFmUh zSr`m};{&)!E(?P90;Ad%XwJ@IwKW$vxPvjsIk?+*VdhKB&JVyV*>t&73E$aR7M(BN z0RXwq^;XDKqX94)z#PrMgA~od5XoYP(cQUxXXjw%OR2VAzuFRtyA_W3ki8sU@(h?w zM2}FW!M)Z(#4JhfZAyTuKuu7!vh5BH?OP zwNz69IV`LBvgY59jJ!N2uB%I9S44rfl7z;OAq4V-d;J8gH3?r z6=mdx@E}vzm?Wk#kyvda*Mx=xSS?h6Nlb3@yoGqFb9+<|GbW0jcoj^LH+^)RP?kz% zSGz9V;HJ^>D4*lryrTuS8XzO03E_Q)Ll~l1Jb7fSdl!|wgxg|Tr5sHz$+Yx)-L<PI13Zk8Yp-h1@gX?RV9H7gcq%1NMH!QLxhRso zv#j7w&tMJ@U~gWNeYLD$7UIzD!oI|60IZ~OQgdKRQ@9%^u;)v-vvb(-I7)QGTKI#J z6kJz3xT^=K4|3ST!ITZ`=@J~^QQIx--HV74Fz3?UWpxs_^KJWFLb8{o0Mhug?tU9g z`bK3X^KUj5Ze8g>yApo8lWy*AhvawP0GbAFxrP~!1m?WnDx6Y}&OwrYI1s}Bt^j6J zS!eD)fSHWZ{DGH|oNvIl?+N;5IB3TTAO(-+RNp&r}l3G1PUSd@X&y0OE zw{~yd6*SNwmqa%_W7FZgLK7u5Gz1Whwe9hd2qb*rOR^TQk9(w_FQjXC^BU}O4Ikif zk5SGt-41e|gQ)?|-g277xYUUVfLN^z5y*FsM5y#Qx8J(bzlj@5?X z_bO>(rAFi}>vjwo<-mmZX`FN*65Cdh*(<@>Jiap6dEVjs!n6F1SL2~B*Wx-xd-H=-CLOk&*QRKs`@7k+^Cg7mcK)+hBU#fXl0>ak zYF$g!G;|5Va|E|!^di7~v%L;Vtj-3=T~|&zM67h0Smk6Vxcs)Vtz)FKW{6|0RP?(E zFa;@b9WQ%kdDep2$0|Gn`_)V$1aXik*zgPnyZyD5h$6u{1ZnmB(Le5-1LV!*{|&`w z7rKz~S=UXJVW;6xtL|;l3QePsyw03c$PXZMIQWZ%xe&%@Oc>Kd)TQ!7_7gz%MD9qt zhVuy#csOpAo;uRxk_6|mKpQ#);mi>QEy9|q=Y+?JdQj~|syF<|>b!OOH;Ih}7{onV ztNSb_$#4u)?%Fd-c&~uiXk0tzLI){CfVK^DfyM`ZNuDXJ)Jb9ygeMeY7SBEEHOFPu zN`1$DwljvjS`38spFIE@<(DJOFSS6`kuir9Y?-^=_KsMAt^pL@rmo_3Mss5JfP)%b zazsUNRmGxLd_RTk?eVL_J{b0a&e?`^?Tv+z(4FZRw|>nS8a^DMlhLhGJRI)y3@{e< z_z-X&?&1RQ4!&?g932gnZ@^Mr(yY&nMxet38NhXW^SiQTfruWfVUIH(QXC`^!8aB7 z-l_ciaMm97U%vyt*^0?broXcm7+N8v1vMo@lHCpmQYGA#LKe?b=_&{8cej(0reboY z_;1`jm4Voi{|$QgRLG&oT|b1e2Iiub5X8}eKmfcK_w}R0{i?4qB566TePviwU)%4{ z-5}j5NFyQ03?(2SA>ASpqI3zv3@P0pAkv|Lgd!!~?Vw0W4c!bw$1roo|MNa?oiFFZ znGbvK>zcLKy7Ra1z1O|gJq9PbE2IP3F{$YIt=E^F=J4POO!@WB4p)}&Za2PsdrGV_ z6JSy@&W+b`lx4V`V3#q;fSoUUK@o4aIy+~I@=+qr3XW}USuhS)N?(gBHo3+M?D(kH z6uG($PsN|I8?&P81_aj=Zmwh31DTr4-^GJJcn-5wprMKAfBfCQzeJRXg%b3%{Ug=u zqYSP7F&Lud6j~jH>LoJhVhrlR;C{j-g zo-TP;8Cu$4lm7ZBah;>ws>@g7F8JwNM^y~qjlNJZy>rLVHD~9$aG7D_Lzaq9IC=w8 zjg>6c?>s*`{|aGF#Q#{u037j|wUPss;Jljj&TAG5t4w>@(9m<^UES+0p}+o>K3m1$ zH5t)Hm}j*XzpuqsyIqaLV88ebynGrr5eE@x`ci4^%2@JX&@zO~pkm`u>D!27<0g?Z zDA99uEgpJ#)!z&Y-goof)@Tksk~lhV$u;^-A|YeS^lA}6;CMJbAo>ncPbW6(fp*_t z%I*ef<&S25ev#+?Kv5i(*iQ>-qN4ogyH@-|Nof0}?8Y}CTND)O7S!mcVMSTQbXj@n6zCSt7rICZ(9?kk(X z8H-wJM*!85GX#T;^pN*iz>IzrIp#bMaQ*(l62kN$O9moR#>m}*eihx z#0-R0`SRqmTu-i|GOjUhwzozX{d>NAamUUFzoegWQ=4>JYpgv5q$wT7nJ17=h|for zPTyYubC{e5Hr!c%Vz_-}(x-t7{*mwq$<`_d8KrIZv4cCjV16TT2o}rBSuucDJlm&> zEqaFjVU(bg7lVINWPUaIcsYv#QT*o}Gr1+ML+A*;w5Z$0Z5zBzJ9cRQ!@V&ZN&@OU z^WFxona>vOd_pjFn=*If?kFqNv!%2kK9Muw@!Wmq<9)wgo6-QvFUp}v5tF`;Nlns&7(Tu~DXqKlj4b5OfV$=j_Y4Dff*+0z?}-By zP8F$44e=x~Bw&u}2krsH>-Hl?+}A{Fp!Q7(G1aKhG?}!8*ZECP#!N&-H=8PoeN1#3 ztl2x%HnM)YmUP%KC~K)mMeMS;{4(7bRw#6(Vk?sB*PAr;3aibl(GooOJZ9hb%cjF7 zgM4D5{Z7K|TTRTC6uOZmT%TxCI4u+>%$2Ys zOW2C#ED417x&HOM4VN7jB?Rm!}NJ5tba5M(%olrGV?&2J(mdk!#g`&H?A zeyR!?h)v8(s9PQk*A=8ueK!!PjBg>LY@eqd%ECzz6|o~3+I*Nsl}Am)qrgiHGk^1t z9i3y7`NgVVk2i1Dgy_xB72LFAgEC&8C^i~7Cer!4)$jq_p55&x`NI_b@dva@m9m zpK4afxU*Wcy7=rLq>?VHjokS(Wztp|HY~pznY#jz$?XBk&!=mxegD-z9sm*WB!=EH z>EZ`pd}fz~ZU>#Vf> zt4prNxZF9wl-JvJFjur2K2R8skgRX*T z=P8*&ujp;FDbI_;!5i#L3&?^r;KrTJ*;+10Xy?;Aa_Vp|dBF()D@#<*_wu~3N4 z)zkiH$=q^YK(8l((AnIwJ7)sMe27^U^EyERWK-IG0T zut`(1@TY;YU1m-=4tt_zHFih79($p*5<};nT4Kj-t_h^4%x-G&NkT%bbqci%TTIuZ z6bAO>`E_1Bo}%1c!tuSP7uBtAszV|sib$rKWN@w?u*mc%OpLKl4EImRamp&J371NP?VmBQV6dWaHWSzg_H3m1Lb zcAM6O7~WzZQ^2Kqn!5R#1->m2l%6vs#zO}96dK8Zb_V(Dd0&q4V2mg-uzA8P zQ9Q2$ilqW>g;5fCbe0*emkIS{zWDCe3=N8Y(2qOK8s%vosH!uuuBQ>WUe)!;Fw3S$@Qh?4Yj_=EN^{nKAOWaR)OP&d&yQnfx{{(>%@9}=U z`jb>rq&(kMub4Xu%i$0EwClp>;<4z0ac_!1^c1NY^1!g$)s(bA3NuDjRh z7h<&HHZ3Kj=vGde=MMriaKFTaD~10E{B-g-_7F-XsO&+9-R}o!f`@l9ujw_Ev=_Mp4x6UwHPdaa8&n(x4 zW3A!L`4KO(t}72-*}Z2nC*@_POW);}mC|9)3192*eZ-xQ9gynIt}034H8JCloOT#< zskKSn?deyo6enFHsgp5o_@?yqb-N|^XgG7*AL5K2mLp%`mj*>@Pb+EOxp{piHc1z| zODR=!wTt~Iq$3d}WXtdDHv9Tc=4Zge%e##q0ND&6tIVF??)X$v6V-c07TZB&_!=Ml ztcEl8Od@!tJfhnC5?mBK#hs{3E5q8Zdmsc zHiYw+Jsx%luVfEW%zM-;RU)>mB1w|cNB*Khd#E?|OmPj8!kw)Y>{Mhyr70w^PXe#= z80X@IwC9r;nB91fQK>vD*}LXSj(h1Oi=))*(e%}h{5VkH=p^ccsB!pI-xvN7(^A@% zZb2fP{HG@2Jz5QTtd3UV@6xuD2v_6%Hq6H))C31+O-UIojUBy`x4z#={wfn;xXcYW zUYZWQALc*FR_>zy)lN}h^~8sGUIuAdEUqKES*A3s(vWo+d%Ydn2aJzzmZ@`hEs%d!2ohdV^ zH2ol$cOj9wFJDS8Lz$|x&yErP$2a$N`L~Q$rn>NnUoZMbs+Rvci0OFzYvpua6q~lJ zZ8*Z@>mVa~AsWAS*P54L?nSL|5GescDt(*meEa?Iy+@)vT0aE*PCiA)zy*!~H2Plq_V1XF-}#&R%M3%s#|Ymj{S_ zZ1jMrMnv8wVGLRH>g{~B<3I$C7G3nVIyoQ(CYS!@6^ImPmX~4k<@--Y4dZ#i2i?NW zt+?zxw3;q72-1pGnfu#iTi7jkbZ6y>Uhcmu_YR%fqvkE-1f1B|KEJxa-0!*9BYVU^nb0YI?WvbzjKR`==IJ9-7dm7Bpn(0md;agvlg*GG~C zUoOgOZknH4D^-?Y_MW;rx;ObNTpva4C7Ecie$W1K7=Y}^bUM9U-=LmSr z9f5?b69&E|%iCvjk;riVqt}e9z#gLxBc3w$X=<;tMEbINRRtH@@i6!< z!v&VUfQk1n%VL%0zt5$cCPj}G_IwrLaIMx{PLfEfsyrByiK``~UYut*k8~&apwNSz zyEj!^>9>4cyB9QMI#8?4X(gFF(UZBFqb4;ORjup`e1-${;?4_oGh08w-Y@_1S1;X} z${SCyyyZCqa!e@kvuze?+HZ6wQ=wJ!H<$3wQ5sP^DZixe*>8E4&5h^SW z4?ZdkNsP;l#TaEbr^Paq9=$p*3oKzLTdFSReg91TvSU%v$8VgoBF*Pi;ugnQwtxVrbqt zbv#@kqO|Mvf`Z`K+$1ih7?2(vzl}myck3gc@;seVa9QCuA}0&A>?k){djrjAQ7Kgg zP3-iIl0pm1QZwi#9jx#@QtTHUYl5{_!sYqCy}~`K4ect94%X_0}&_1 z+bui3CcU?x-3o_GLE7)-x87L2(wY>~9v_J+qikY$Ke1*nyq9&DwW7N=!y2Vo)+Le5 z_j-G7Xso=;^PY2Tv?9@fR*}T#^u%}#6ZiKn#>|QXj;`bir% z8y2T=v3oVDp9pH^{7u8>-02x7PTpIIg_Q{((P(hQ@$o$7fSu}=RVEd0S~lH0$=5MD zIl8z=+s{Ute?LuLsV4MU_e|O>zxs1T^Cen3`|Ff5WU!k}ZxNtgBKXx*p7-%7`MNHs z-j<&QC#KxMRuZ+|CT7V-@`Of*V#uB;G2^oNougVN5nRFaW5lRR`Wf~;>|;K3V5=U_mQPX|ALTSXfZ7>cjoPS zztK^ITutMJQ7g$*rsS`9+|3_&QyMdI_Z*Ksd03SXu%0VY%HJNsJwfS)onyzQ>iS4z zlCB2v#;cnrP<{+529Z2dGTAdZBPe$^DT0u zk&1j68hk`R5rWPTI93+cKZrl3iM1%{+chYP&;0(?&-KMazyZ55Jr6x4r~^F4jkF+j z;`ViB{!H5)QGUbg2cK2>R8p(9@BZdai%F&|1rdFKWL6fzPXL#y#_dbdHIebsPm+1W zu15}Htb#e_5AnF9s-lS`nIUY^(PR}|k2ZwP-T_L3HvUdI5pd14FNKDuRvfpfM*RR4 zg>Eq#g%l)|9k+;pCP^fQR750CPpUGzP`|$2Cnf7)TY=}r4HC!ULh3V<`nqM@>#V2X zir5UfRo}fC0e4SPB#bq`Zp)B%uE$Tv@}&`h!d zhd`~mAgxGK;F0+ zG%p{KQke<2@xUA@{Y%+w8q)oQVDLnuPdL^jX5S7x_sW6}o8R82uwGRe2s4amdxe`{ z)yS|kgyH*1T#UEED{>h`lJIYtDKvupdTSbd1kwb|LyS~Vv89w)n83AxMAHLxUIAuOWoe2#q_UA_izOb zNbC^ypNXPc^zbW9z!7^w2t8NQQd9T00rsS{Ee%Q_)elvUY+%*nj=K?LM4ou=!Up_2 zxYmp#48qUa2n=~^S4au(1H|`U!hg@=XGl37ya-$a_;b~Cb%cpe*D;5+g>60Fbf#l# zQJm094~1uq)Rmp@&Cctp;EPBs^W=Dt=%tE!U)Ub>b3S`ba?Fp@2sie>y;ra@y4(9&Acc6xB zMsBc_55w7qmtdLJ={`p$B*!Gg%;d={b3-|y#N+nF^AgQ--4g)iVStN@e^bV4rAXOi zZkczYbyy|)?1Rg(o@~PMrHY?E#gE@Z5W3VPn;CO!(SZT#-B#npI_jk|8~5l>ITnExmBJ>gKLHm}0S z7dAS5LNq_Z?87nuHSkKko2x|X^N`6T1qVXOVfpwUmH5vs`3TJ_ud}yOpFh46M3^e= zbb(mjX$ilitr75OLlW8su0#dgNL_EQ<;2g}LD^wI45~GR+3w5sOq}xdH2`nf%EtqYIn@W;I$B*6S;~L@bShtXT)| zZ}x6Gqdg|^>#_}zYl9h8U-<@KQ%c+{_~)(B=(vo zZA(G<`e!l^LMumk+zZRVfAG=#0n5(n*TuC_|Msqp)=hNKO`yEk+QW`l|FHS*R;7+- z{~qC=vDUl?%MSk6I9YPn>ZSil$lqpxt3L&K{)-Uo)gWE6GR@9^k&C^`4?K<4`fuch zoFeP9GNJeibuPSz|DN5u$@jCc(AJqc9 z*g6^!soihi)JMevad`gREK{N3R2?ESH~N?zV92^<$4+j?U37;KDR`ZivwL`$L?E5y zpQ`fB0f?nm?`m#a$km2sO-{^FYBCtVs}%}`?qoqopqnrh^TKyOGWE#6b(ZID9!jqj zpwgk?xpE#3@@%VWoY&OK7cH=Z_DvLujT3zoEtxy+85kJTiIhVVPVb%3-B7|FD^{B;uixR^oR=G-R^d^VTazhZ0)?bKy#qyp*J3v6$RIK!K-uyT?g|` zNJeyzUEoX&13>w9M;~E>7*sx&1a#S5>p<^zY%aES=8h90pqLxv8dfdIx3|f+v&k!V zm_2ABwkM3J@>zxcGbN6-;Et_e19}bccr+0849m|6^dAy|7e2sfyX!K$9x7B9l~P6R zk#65)o2m7HA8xa?TmNLo6Tqz{@|$|6DR`sAPNc&dIaW&t9$r=KJW;&j<-F2DHTfiY zEPn3?UY7u`#cZdn25)aJm;q2M^)bMkH7F|igbH&+)fvn<6`Kq>EkU6#Ix$~5b75N_ z%I{)+>)#rq<~%Ux9?}5xx*+f>vgT-X@b3*LH%k}F=S$KjlYUT~BYn)N{vZ@vPjDcS z6(x?@=u80q?O{s+Gl;q5%*nZGg6uUh0if5D1xdA62+VD#Gz~J>qvNWt=JxC03rmsw zbHDJbW2|;h9&|6%G9aA(Dp?k*I1Ke2RtSwE7Ap5w?SuBEfs+_wE2f*VfkB3oy}`BTmna5eD#R6POJB6L_sT>)wPI*uVk&wYHV%YO6p* z@NzsA^s+bbpkW38D7YGPHkdhEx6=6P<)hBR7g$q5NB-d)kL&1{&VubT78Ig>qzjL zn~oc;djiM`sBV7sFZ&h#%M~3~YmTcH=7MPfH@Fa>S5Oe?7F&&7XUE0K-c0RU0Awp* zsjMn!?`Uc5pK9e;HZVdR8&)0s=zqyK%QlFl$$hcM12y0Q*MzKV{`F#P4VM|rbzdzK zkMj}$ITnP{E?*`t$0!CI!V7Nep>KibgJ>qmi5!#;>$)26UdSscE!^b(9q@3mRUc)^ z$p}1=21ZFfUPalfF>SB+q3IxwpND!=?6kx0#xQTV-upHcn39{fk@IN8!}hONl8UvaWCwqnd`6(?50>uW|T^)=QlxNZl$ zyQCL~i@k}ga)0FtMom!NQbP{6Ae5a)WSyZ~1yJ;ByPGg7FaU6L1%slst^dpqtgLW% ztgv?A6kt$WUTXss#wJl$;Es#;A2%S-9UZ$K45|P_2R-pXk2i%ZVnx*(65J{YUK>c% z)JoHvgriWXie^L>x7etqm&FVT{P;6NmRBACOPsa_)?d&5`fCvK-e+irzwYQ$dbw+P=zWGXqc6fRP30oq~ZuAlj>K>mlOmEA(Wq6TJrr z#R4iMv-WUwFsOZivEztfq3sRbKb^_wT^wGB)V77s*aja|G%o{@bigpI3RnIj`)y-w z@cTnV@X`s#LbKO%M7~&-4tV!zLEOb@1Sg7X^F%@UBnQ?v14gZJMqen4g@&|+C>>zc zY==eT`hO7UuaX(CVxCHdRA27)OMiLNHtKk_9Dw?WIW3Tf`JjgjP}=C~+?2u-$ZXqEsNr ze#WacPK-Qew-zl7J&NF5#|kt8G1B1Qt1u|uamj-jN=6MW!3y5qv|3hQ))(B~gPzwH zya1qT(NmqPFvxj5s!Tj2HYW$u-+9Rh4h$Ru-qZs}JCUrN-OzIw+5!R#Ug~XK6zdo) zxPA(a>pYn6NCaY?A1RJG7C)JR-p-s{Krt7h9gsEFh>MWr3nbRX6h@^Whb>!|HywzZ%aZ~O7u=L?b=Xz#LL+ANSV1wmDEYF|&Ccm3n|1X~Z=L1}2 zY|O6ztWl#ttWssA&$iq-tTW4Qlsu~mt_`hO1? iOOgdS{$EHM#1Lsp+rK?>Z;A(Cf7%*P)N54j!~YKh5DXar literal 265466 zcmZ^~bzB@lw=Fuu;O-XOgANvCa3?_%T!Kpi!QBT2cS&$d2o{0|m%$;(kPs}mLvWqJ zAK$t6yz_qVzV}C0S4&l`s;=F=_Nv{nI$Ej(xU{$c0DwSUP3biN0Ac|EfEd`APiGhd z-&{ZKB)pW3yxzFld-+;<*a0-Hyxg2!y`0}!Gx^wgc)oLW5$2cR2lFyHdU?5dN(u;k z_`h%9clB@(5J6XKda4A+P0iR703fpZ&ju`)Eqez50s!ht@_K%G2lwhVAJlW`F{=?{ zK7nlu9m@+b!?tM|MHxlp#t{k>I>d5CDwU~G;oE=MRM(ZlRdU`l-D4BHH(7->DB!R# zDbQEg3JJ6J_AOcXE=(QH9DM5$TDVXT=(T^R?Pnk$kVlu{S849|NjHz-OP{;%h~^l@O$!*(&m2y_#dRE zjQ>Bt9|lQNAGf=&T~D?$Ek5(Uy1VawM4oCt?#bTgwq^Vmw&N4OMV|k{+dc8Wa;S&I z?o_4C?t9lq)4RRGhvyIHk9V>|vbPS8_@Q@0p$VZUL=V8_&OoG?yTpGDz{;=F7Q_GQ zTuA=^&fU{}uDn@zn0#vQQRbmD^mwH&^xooe77#{^CUbire8>4X5*q$^A$za=_;)s% z_~fv8#rlVdywU@rYwetyggzr=)XXsmS|=BJJ;O{|MMutWJ8uZ zd+#Z0Z~&7?>4)gYwNSY1jq0Q0jhGGo!+q%E%1|hB<=%JYI;VPn(tGIw>DqOT8Hzl9 zSbChQxqKSNmFClUi#xQ!kej`g3p>F7?!Gz0%Fchc(Jc1R*16tX5MyR;-V>O-gD8|m zA)nF>#KQri>s<74EA-l8y&EO)5TE>T{}}hkNmp-i?Y~Y}GQ88B$|E(tSyYG%fAkUZx|pnvu$5r*1v@-rN}i=aYuqc+jHq1*-Ptcg z?y2rho}YhL7Jnh!@#UI%zvb7OBB6p*l!H)@NFy&Ucur;OP(?J!I3yW z5y|=--h??4S$!mqf#uw6h}FVEU}egSkZNGb9`iEjgX~iD9^{Jt4_4MVZH_|+=Md%w zA_RDQ@cd##;#eLVTlQYL;|e!Tf=M9ED(p&HVM;y$-W5P-Bt!LsGRGk$BrJjTA_VJD z5@rK>j+-?e5D=WB{jg1m-Qm+<(ks;(c9b-^jXGftOrD(Z+=7Hs?i@s1TjDEBp;=p2 zTHhGwXqS0n4EE{`Tr?H$0SIcTcEY%K+;0-9qmx)w@KKNJj}g=FFY`UmU9Impka3Tu zr;p)#y%)aiZ-M?$H(xAz)rSo%BmtmEas@f%Pj|d<;haP;yF2x&8rcU$N>AX7c+43h z!d&F$4ojP5@AIde(&L49kKn;y-ue6MO9XdqN~GMUb=G`XYi_sbG|ZO?J+?w1nCyT{ zRbj+T=0y0cUeqKm$Hg0fHy?u#dk*qEq#83xb@z zrfdxQ%kwe7C&}HMC(b zq~IvPDa?0vl00behdrgJZJk`pio$IHk{JPI*|;nVHlw(ScO`l16$#+O!k)yg52TQt zWu6qWa(XyIOU_HoVcWGr;#`0j@y`qdpiF|_GW zbrz*K$McZfPtKThELkIKVnMZ&*Qa@|yO_G2_kzHZ53wF1H+S?je;keFRyq_NO$wSB zr3|0yBxi4QDwc7(wQ>)l@U}O4r8akSAqd*yLr3RP-jz$vh8C z854O$xVuqcMuGi}w%(O#h%%sQJ+RxK$T2K~;=&KMa#Z@GFPf#}ftcFiLfVVE1#6!A zv6b%Tj8q7-h_O_fC`M3a!6SL8>Z#; zL}@#4dyK^oYpyO}PCuBc%__5$L`QevrZ{fpUp;qXM zOEc=A0kO)ay1k9@bs1C%w!pfr z===a1V+axwL!_D93AtJI(40HNt3FMJ0HRWHQVd};iWx85fNX zZ3LF{z`O}08dI8f)(8L}uzm=ZpP(HC&ROGZilz*xOC-SoExA$A&3yhS%t#q&8|z<* zVaSxH7Y_LenlV4n$?6%vCX5c^;+7q80Z_qU10?{q)KlgfC#$hk*6hht05pr4vfGGc zRuKfiU9K~n658|fWYQ;W6Qj1gxM^!Jm<~tRN)PU#jhdssv*}_jA zaQ}gngo=it9XT(0m{NT!si4Ivt8s-T1|{jr5pUD^F@b-nC-+EKs;jE8L42! zw$rl;!gtp2ST7b%0yl-BW6@(+iGWu{X-BSu;?X7n3DDy&xX=CJy%JnPMvOK3Fsv+3 zVjI6XIzlN_1DzZFpTI0@;HJbM$}mPIbF4!tuZvp$f#Bx|l+3ci2b}gfIZNhzG=2_s z)uUpwX3T$d$a0MqdzBL;JEfl_Q~NXK)yqxh=memPBU6N&Dl`Ez4C6KLF%4kvGi;Nd zt!C#o+mM)K*aH{?^}^-zaLn%GRVm+ZHS{O?!Cu16tc>xU;vZ%V9}@@287PO!W(LT} z8Scn+7J#0cqHSP*P+dMBJGr){8S?-V00W$vtf3v-4+ql7pp%0v74t!9vsT2bp-xqy ztY2=jf)Xi(Y@eoaB@;Y7&@^_)9@izXrV#aXX%f3&4}=7P&^itE3c3nkQP@wj{x`b2 zM7A}kuY!@!*Dh?Z)dLJ9lR6BK*o<)iOm3p_{9hC;3k)aF$e+w$H$x0d=s?tQz8x`RQPJv2}bORY9+1o{HpWLj5_c??y?G_1*{HtKUCgMNDYz!rt9 zI>qPRW@7)rk?jWAVoxd}6vhHZj>VHErQYs@01_fh3r=q<&@}PNPuju<VZ#$%Q;3+`Q!Mxf^d1juDA!i1N$GO4i5MWR2-@{c*(HSZT#I@LCm9uSZsj) z?kmv@2H+R8Zp@;=@NR}Il~cO_ZW7<@x*~%@KBeme@l;Rz=`)uO`M{7Yu`re=VA8vz zEGThlcE0%cLwIG7KyJxU_ zhN}@WOF9xC$Xo-#<~rTY18snmkRy0|jX6!g(qQ!Zn7ybEz*zIj7h;KJQ1x)MqEPNh zO)?Bd`#=?OfC?FuOV|n@6XsxPr!TR)l&|zS0{9Uv9Wsy7-YZ9%eSD^_uQ9DzhgmDp z>yqpy4)63M?AIh<1{+JfpsuO5Dl`*fhSWY=6=T-}G=H!wd_HLli|s|is2FgM@iNpH8pj&)I=sw&tLzmJHxsuH@msiF#^l@hJ@ zlX=F}d&rDL|3I96fp)&6e&i7mKK8db#Fu@`nODR11l`5}1IsHcrtx-Ez=wtFRWhp| ztX&~Fs>;AR%C+GgtA7D6-9j^mTs>-Zj+wm)EP3_=@?`EUq1a+pT@-8hMI2KM*mVKo~63Bq(;?rG+$U7A3) z?;9bx;`b!f79n2`iJMSAqAFe%ar@JkofCz%IR8bU5{8Zg;#cNRYuXL(>VtbX3B~vF zN_)^KX1^PaI*_P}(?JE{QvSWI0nRNx+Q?aIw&(&1mWFZ(q6mi}d_naShKGM~g}VCK zw|x=Ps~3npNxhFtxA7Q=Kc#j(Yqs4&4$mC*ne-$e)GG&^7qAxuUUX|R_vj{>lkbo2 zUM?>DF?Kv+xG@Ej?_av=qeRv`=l-FDE8^qmx9YB64?-FlXF8){=m3M)660LNM3?Gf!1!9Bz+ z>xCO^#br(AHe(>s$~IL5QTzcb^vM{{&;r~k1r%bhPGneKq0GyW{2MY;L{pwwGO~zN z1rGwEo$MKQJkq*|jTKL;+)7vytHNwg^{mo9@B0{T1klM?%@soVovN-VXn?S`X(_1Y z_Mzv;`xV6j_*^TzcmumJ3zs8k5aVQ%&cid>jUF<2Wz~G&=M4;tyaR?FqP}yo_!n$E zd1sI2cj=*L+9!;6SdTye>A=H?>@_DU`tgME!KpLTe5Ojp50i3lF!C_ut=z*}pO!kV zX|5oXR}#@XI-AIE8*HF$7v=4_mk_$v?0#jsoKIMRl1w+yS>~u`fdxJ90pTni-I!5O ztZDIjvXhJF5yb`3w~hWWR>XWl7-?^Q+o1aeVt|@P*XV3JVHp^YPk!tOfjF8(o2*}1RCI38u!U`qBjM)h!2jXF9l}Zr{Z-VV&{T;;c~dc z;p)1l4l7z%!E;AhdR6li(@Q{Wf<=eIvup2Q{3PdDk$UC!R+K zZj-HLs9iV@P+W})?20m5V(t$MA91OI4aos$nQ}!zz3qWA(dnPsGuV6EqB`3+l^ht4 zLkrv^-dP9ggLp_(wtsGqFuzhu&Q6;q?~pN~GJbISK;1oln!Cu;<=Nj)u+~mS%t7-h z*BdpR!@#lZx^!3;S0c@+^yIjnUedP{6~EhA$FgS0mE^P|iP%Vh+H-#z?ikv2L7>SS zyLHp}%_)fbNI$tg)QdITs{x~}vI*|vCt=eI5K5W2yrn)OQtsPL(zdFdTfqdg?moEO zoW$2*HErnI^R!)UsJ#t!m*cXC{H3$Zr7X$|DEZg+)e`QG4*&*gP z1TSFTJmA)sTUAo;HcI#2`$!6x?i5zGLCuLIMC4@Q)w8_#i>}ulm83p(mezmApw@GT z&_0rSGq{Vjx8cWIC)hw~Z_*Pp!v^C|NlljCV@G|Q`0C}eE3R;SbiFhHuQGsn(mBP{^e1S?G1{~+O5HGkKaKUeB?j?se1^{X2JmP4S+opTSrV5*6Gc9hF zw0%)bwz#@yXRT6BkPF5q79O%(Hfj3YF{El0-5+6i$$a#-oO zT0BMu4bQOPvnpi(8@d1Zm~jOoj=uc{S|X28*y8~b7; zL&NAS=#j5R<|jeb3Uj(*lx1)$w}{8e=XF@zk1)WLnYn`7jVF>`HmAk zu}4X-j1<;^Y%^yvUvC-EzF7|T+rIP@(AxPVI60=^3qk#v7N-0RGt9$8Y&R+}pAlcV zzxL1HKEP5us4;9seMnxJdwaSTV`OUZwa@pMs_r+rR$E!Om#tL)k9~i5xt6E=m~_N1 z5knC`t*7!L^@Hi6&76GglnDlW#XU(rU`p#)n&22JUt}Kx4FXh#-^C++-#}U2mx-yv zex}8ulNKI${h{bBjY@!u|I^E$*$_1aeaAC+Y0(`ol_GT}hg)<=oTOU)1^szFrj>rL z2xxQIHgvs;pzlwomeKYe1T+80)I_zE-apLu9)ID2p(oIXXd@W!7UV@2GpaR-FG%uw z4d;;?FXR!2KjrmDcM=biEH@lSH+~6Ucf@vW}wR;_O`9 zcWn#WORr;U)7zGWlTbx|EXq(~s};&H+BLJp*{|kA^YqsBuc%WtX?A>5`<`A;Hk%Ip z_gjq%X-9kswKh%!t2Vlu7du~)-RhVJ**@LYHcVEcT@lE#Qj{hFVS#Z57;R;uKNazo zjyO;zju4}rIdf`lE61=I_wIK$*cBIYsWyul!#RZgYS~$n6iQkB$2AiQDzct_5%oMT z25tA82eOzD0PU8t@Bx0!b9~D@$qSh2CyB|r^pBEe39{oNoImz0Gx20*Q8FA3;kj`x z@2Z364#T3JXH)JNjcMEsQE%X$kR+>I&hA$|B(kwQslF)2_4`{S3h~hJi0``G(eoeW zdI2@`h++&?61jC!#fIeu8Ky7^*+rBoCKHHV4P)VGf=(GYxNLvG+Qp-f)X_PC!#!2A z8eCc{U0mB*FJ-|ayOR7`qazzDoymB~^WC?b6upP^3RAt+nNl4}Vb!WFUD-U;g`F@9 zijhad+c}e{ZmSt^=v=2 z0S54)^=A}K5%`(c=+R2#221e6R(38sFPrCk6rmg>m0&>TERE>KJH(%5cGc!h>_ zx7!rUjd{7jN}&}_bDWvj3-nKN_U%Pl;J~zK#A+J-D;%rA01(MS5e@?QsH^}Hh#qaQkZ#5e^qpet`(pIvKzOXv=BITB3t@W{la8K#)*KWNLI(w@4XN6tp_?F9c-zrjx`DBP0*wH$>5)nJ-TGUng_KqPvxKCv&?k>hE%HJuT076lbZ{zG2^!{m=1`*qZo@jg$l06B&51aMm|^3 zBo9iqTTnk8CZ)If*EH@Y2X~GyLw8WmSie2?g`$WallyqAbIIU+@0Uv$$a#Xx#P~Rv zh(T&q)RJ)&qd)eckL)yBGfb#r)tl(rDI?1iE_BGk=*9h zhNr2WXDbi$9#B(Dp+_1irIA4ZZ!o548H9d16?8SMAw=}2JwX<@3NBWpx-yP;6H@ro z)FIud>r%#+-QV7-jwE`;%27I!utf!y4*4Lz7Gta}(d0#9WeQ^XVc4-nt*KBa{~AOe zr;vwEOx~t!)g&Ijc!HUpjC!2T^18F6`HchSO#ehCa|tikijx%1Nxz&%RZ2;qA!QIk z${iL}(eSZNEzOQh&!P9PDV`A{3K`*)tIkIQq@v}h9S`&4Xq5P*(QgOp*+ z0jS3Suk5GAG+jQ2(e z+>`unWo31-Xc3<5$=S>JvTwZ?tJXmMQDCGj9O8P)A17@Jy>lqRUd!)cBy?E6WtRkif~ zH*L8vwl^VUY+pGMkj<*6_YooMEjSe%YyKWrq5t^s;9@C7a;?mh&0v6iJYI=V>m=Ri zRQc2C7`9;Qu<*ly5&_YK2jlB}oIi|Xs_OJP*wdTKl4G-}6OCjp^8)nmjx~|2cSlEL z|Dh2mw>zQ7h(FhjS8EJ6@?)o#8jJCB1e)?TF-!9oV_NNBt&Q9X3zXSe6F_W(q`D_6 zw^sl1G~5UF0)a%UW@Mq?j{WU5-6QT%kg|VmKfn{f+^rI9(cmA<6Z0Da z;w@gwfG{F(J{Gy~yd;;Uc3VU5eOmYNj%eP|lZ4sf<8$O?FX*C^qWYUihhWj7v{2bG z_{b7dyO@p)qAYkVWEWn-c%84}!@<;xR@v7f8VBRk1!wu3MPw5s|RvVwNYF zpscOK<=V+@m89gfC>O^6hChED)vrRre>I*)5oQxn%e6{H6DJ0-M`=Qu`G|%pH2G%I zu&nSWFNZ_hRIdbRcO3-4c_078P+MPa%~{@EiSmTzdcz`WZ_$o%5{+gZ3#ZE;|55tg zGMpXY^j0d}il`RQ*aAkZm}}3BGlPza{bX7EwPtwc;v3WlsgJ9f_bF}|r6WFIX0`Vz zInGprR3Osd*uIHr3)xX9g2t{TFi3qMS<`X-Kbk}mT$g)?!>!TVm-IfQcO+21 z!CG9NIG6B%Oo|i*xr)j+aEY1_S0aIkHAMyP?iLLg$}L#fl|PjJVmDAmVL@7l_~v7G zpkvVnV8qh{1n}Xp*}ByWnH|(pt9(d>nfJbZ3wCdgs!b><|Kv8|KPXz*PsxH%{Yg5< zyM~~wb+uLw)+CG!z4sZs=bSTKw7HuW-BDpnJa{Y4YSS^RnxK&JlK+AoCO*%u$-q~1X7q0G5 z7U$9MTy7t;T$C+v#YJ#=QQ={8Md`dl;l6=yjY1otev|Z>R3}p6L)7 za0G7S3!{$EF`{C)kF?K+5-MpUea5i-wcfz zwHOM_F?Y5X4hR_VsF}+bTAT>4EEE5`$&@X`ljf|ochC4d%jG3h^VNb+`A(6xgK_0P zxFT%6ub@zvN#@0y&sR)GU>Nx8319wffb(iibgdC08nh?6 zT&;SA2qo+Yh`QP$ot_O_VO(9VKd&6ZtT$mXd)s?pTJ&zD8;rSj&5l?4Rk5v(zc*hG zwzBb0#)H+w2PWem>t?+bMr@f2+^Cd$tXKJf!GTW6k{~Z``dXZo9douB-tfu;d6Z2Y zHI8N<2z$H|UF57O(kFa}r6vmxy(E~OJTFVIxB)&*kqsf$2ig0KyzDscir0n-b$};X zJJ;?2-4st^MUF@{!6H~%@wc{$qbaPWD@lPq^-+v)F*-lO>@9H*i9~0&vrM#kP*Sew z!PF}sWtmkKj?{uTj+A;h=iW(f@N@}R4A`7#GdQgP^l0lm~4E2wzO0LuCC9Kx{gf6r}l5;q|5dN1!;b9{go~W`&bw4vAY8-M{Oce-LHDAMWf# z48IA$L%?iq(}YplzI0k4^phFixMwy4 zJzjS%^|GW9&yM$D8~BuN73W*vwKvi$5z}1S{LyyoidE3k_g-z#7Vno%%p4zzGskE@+HRKYTb5R*Cb1U3 zPL&;W7~SE?<=P1dB%+3#R?I z9DGvOE6%yXPi`e9gD{p&zpUfT&r5F&5AmBDNLaDZD^{_@WYqVFvG`P7IBQ@m#g(F# z>X~>rqB>b=x$5D}+_Zivjwj!9X>QAjSS#tJ#5o8t?_uz-z4>ibwIi)1{3`q#k_?AJ zFgrCSROLiYZCU~Wt6(j7rks=lIg);HRx#+uK&>co-jhz8`$k+Y|7)^*4&#i*0B_b*04a8-EF;mO$U{A zpME45qR{%W*ux*k@< z4)b0g7vh8AjFZQ!tyh#DyT(>eE{^5@A`jHZ(6PloGhYnVdtQ+n$7mBqBjrp5DdRuF ztK{uXC{VXnxzyy4*!a^*TJwe(x=WrI^eh{>iIVcZNC|=M&50IntNb&nIHM`!$0cTV z&f|GQmlpLSfh@?KjGn?W9N@{2eSAcm^M{?G zbbOqBYvdr|hT(w^qwdY&oFQ;aw_QmYUARph{mi47~dO2F1xPz@kXl?J!;WPDVT#U<<9ZU)!ZM z7J#D|Tf*AzUuER}GNeHqRboC;(hN4BHPNgse<1n9-Z=3qq)Fbbw@7B<(0R7c2Xt@? zF*+`G;6drfwlijO9iz>JUfQSq$?%=6RR%t;(+$%@cvmRqOybu*M}1Hoo^@>j))-D6 z*oM=}jpCcw!{7I`J_GoNDvBm;rUK-02(R^n4(($fK8Mp5-DJA98W&VX8H1?dg#t{9 zVZol`69!c&j#|_)SA9x4o`##r35K&o-O-p6G{vR3TPHsyighsV(PECpIM0UDcJPbR zMp(fcQd9P)o1_46$UT8SOJNtRqf^E2@gd^6zo<8ZJuMU;FoAWvrrkzo-)bqk6*799 z6{M$CA|Gm@x{k<88foAh-C;6q9Zc`}C_V%bsWeSQAc`iK_5&Eg{Z&BUso7rYb>|R{ zP$y*RSHT$x3in2z0>nXBGdAaz$ywXO6+y0>S}cC3mGe#({cNC5 zWg7a;9xA2icJYUEX9Q5p^Pws8sVh{crlzSl~&j&QNi{tPIDm1@$ z&MGl4(`rixQc7?CGyrWu<|_9eXJSNUI`FoAcm}hJ)ERPM%wWN+NTE)o_{!_>HiL+( zCSXo6p-jl2mz@@}9`_oh>^sO-G7PT9MfDa*H4-OK&$5rD^Z-uc>57SW>!bEwm~pC< z5?-LL=ogc_`%gSTQ-jsx1U4*FRPa)j?w=|76^W9tS)T@9^=pt7krqM?0dn zEhQ ztLkYH4B03dk1Yp|aN4aG|DeYcsaQDu6*+X>2UYOzo@(VC(A-K;MLq(0WTd=AYy9`}CrN2!r(Ac=BHx>p_V++iWGV zOo0#RCY02M7#a|kz);)z4C%Z^W?%fHsLM^0+>V!%KHxs;ky6U*Y2bUl-U03#qC8^E zM7fSg9LtZsy1>_p1#iIsAob=J5ml@0yb@^!Z$#?!Wn7z2zEZ2c=uV#7FmsJ$qfXUNpXwNo1{qYeM>@*=X_nW!LUV?5FV> zjDiG$ltRAr8D#~WzA~Lk*Op`Xctr%sUJ=#%$PWh`*CA7G?=`p?St!L`DmjsNXKl74 zRb?WG#mhEiK3B3al@U5`QwPmXoB3-WTTp~$z;B(7R7a9++e+m|G;D~QAO;$&Vv2z3 zy?#$@tKQ57$i%aTm}7@A(3Fywbmc78upmQ``!ah+6A4t-6piZDZgr#x{Z~ol6m$Cd zkK?>!b@{`MCYyDAwkg4Z2un-dFF~_R3wAK61cs~k@wP&0Rte`^V^*;^vU_^kld}Wi z`!-Z5=7w)lRY+CYp2PxnNCtp?ER#aRBT0r}nYD}n-cP218HKBKsq|>cD9>vIu%u#p z8B_mds=;KzMUJ{()0^UmNaDJI>qjwNaRpYoK?WZAR{9rOOhvTXNm^H zhS8_#^PhV4mQ%k8jmS0^%084lVJeoxbq$#gJDD;4&65hSC{5zwuCOp(e`bz#du6{3 z2Eu#>!cz%Z|6HVSd8JIql2|blWJxalRe65L+p9Q~I_+s0zOJrJ^A-co9~&y~50Uf1 z@=(cV)@BJBK2I2N=8cL$rWoMl8brQzX7Yu+9j#a4qIZV9`*{Rdssi(Ss_C?_D!*&o zPwnj7p<853No4TRuHi7BsS_rqklpZ)wE-a~n0R^4)LF!AgX)!H1|y1xE&mA}rG}p_ z_7DOG+F3i_+;E-lOWQ!p-(!#r5-xx+fHwY zp(s>kJ4WZ-0#>+C`h}ag{5!TEdVqQp1xjE*$yk?vU>}<93#tr}?>kfeS!v(q5}$&D zJ;kQ~s-w})Xr+x;cz(Wz_iouM|4J08`R(u(5u-r=+r;tYe6jGVJV!cEuh;n!59==^Sf5@DX@Wu98}ot-hRu}-?M z(t`2d57T&^9XU&(Bu5U)qh@EGE$^OOMs`f5*pnRx^I!X zH1bM*!^^J5_o!2z7{m9z$a~utr8D(pp0(w;1{bNipI-c_!rujh#RYI-0v2#;VReu9 zsl}mny+)kj6>urz9z#N#54w+4k&BCc-7R-qB&Q!EYVb7-HT!S+z13$OCtf&zuy6%B z{0ePufjHT)i`v-Jk9usflMz^TJz z5oGovWcFNaghoe2k&RrU(?eFyZc>92?i2Sk2zsK=;82i2xuV ztBtYjXNdIwan0Bd?DM%b61%tj$&M_VqaQyAS;-Gn3{^}T1 zE52d&_b_$1kQ?U8rp)7o4}0EE9Ck|&%G|Q9tbZkKI9_u2d~egpuCdk)Ox9|)>=nV@a(1{^+Zy`E9DU+lWv0P<=I4-O^DWeZ^4QLf6C z#3|+$pQ5#)5ucD zFjA?aCG1u*B>B_5 z&pvfeS31iHk^tl(NS3ir%&1p7@@==r=c63dYmdP3ljqHUOeek5?2SDpjD3x|`JZY&-y{I?w zX!xFHgq?q6B-BH7lVk&9Z!Qfnh2 zmlx0w;f)2~^qwuYUvx;mb12tf#+aH&ULs~@%I+oQIHxY9&a?K@4;gVj&(5qr$Cl1l z0R*v!zWJ}bv|ouuK&!TD8tg~ipTDS@qa2aTGW4S+gN65 z(a4F8Mi$xSX+E<|gDM*Cq0t`OOieN3$9}||()MBL!M?UzA)1*>C)@P4bxc4vF-Y$E z9Q?i`pXj<0_WkAVw=(P*p}M%)pK{7jLj<;fpC`dVa9%mPX3R_mPe#qk+0Cn;Sg!^K zu$;p3F?wTCDCYxcg#Giy3jJgi&8mK1%9*o}Q(EZ@t|p;t(5y2*BQg{rSe!=_vhUCF zWw?3(1b0DY%ho^f;c>fuq_p{9g{jM*kPzOz##vv|}IhTy)0)n~DdeELh>P z)!niUygQ)#Jy2rT?!bgfM-W%WSkOz=BZt&`4S@_D0tK(VIsZk*W1If%i&@)}NHJ~c zzO+%Bl0R+|RuQrKV8d>_yaHyDl>KtO6`LF*A#0OD^JBuBnsXvmMQGR7V5Ui`Bh3iv zDU$UjA4WJi4BH7R4_}ilNG9E?Nl*gU_BKgDh88#-tiI-N|G}-{uL%NH9obhMduuB5yYq=YxGm z!-Om72VNG;WyxKjwRSL}?=4Z7_abKD(qZ>jFIc2HnP=oigM@&&+zs%}4#}bm7?@qm)?z_?4|LMV*z&`wscd5M3Ont`IZAYdaO_{&N`FKhQzuw+uDeBRMn@T z6^jmg1*^k9{*#S{B|l3N-zUX3kSQB3+7m1tG5ST$U3!E&vrYA)kE)^0p4T-{u3a4| zDRZi$W5s>apf6gHKA&2d6JLUy=S9|BbS7%VG61raF^0nfgJyeNX5=PmNIic`2#sQd z4fG*?gWZ85*=Rd7WG7ZxX}cq%KTTSw5XL7lh~dATnFqOr-B+giSOyPT+Ef==Jq|ACqiDrzxsBimjL9|fL3XJ zw#^+H60Ji8bNWPHhMnm!`P<5j3f#F9Is{c$;@#G)BP90cAnfzUDSS4^p~^)cnz@OD#%w$6I6r;)nXqa=9D>UD> z>dfJ%?+Jxf>$%CsTIGq`U;RoaZnnU0y#AQ?)3b}LKj&eeEcgo|Hn2kjhfw9b z4g&4i6hzUiHu?1l%JIin3*>3Yg$m$9o`jtHTo6hwjnykEV)(px1p&{~i>PR`N%hITO=gh4Pp z-w9AX1>>}GEWg?8Q^}sr@M2GmL-&6NVL0%|tn!aiBR`xB-!zn9KCi@fa~^pX3pO@4 zScFv5A!v_{DZC{|s092eBlfx6q07+(UMOYdda zU-RdHoYJslC}LxXUvuo*zj%&`c&C1=iCwo(Z1)I^Aftd;|ZPN8UD>|G4jU)za|U}Y(bcxs{1>_G;_6Qq)@wo^-;D1<388ySgj ztc2M9gve17dQuUJ8=p&wy)&2}*!(k*!fUg=xzHl<;!*TJvb>-^Nvto?LM)kqL9BpC zF2%*%B>DRv*4y32x*OMVXEDY5Y6@n5>MF^<6)uzg_ISB1OnEl{s$38zVm!(}mMo)) z42oS3eW1A;r`KYPaQOs|k4p!@O9mKEBiIDCQo~-}Sp=r`T>CPW1c+)t zd(u?sRp(~<5|}0Vhnh|YaMwH{Pl7-|e>BEVsjME0;=z(QxD z0}Zwg?*+}*2|>%44?)0&MEvK8#+OK96Yqb83n2Q;1twX{0Rb_&O z&vD~el+Jm&mwI`*f4*VG)N4jI^uO1Y`fgKLsZ$Y7)7-TrC55T58Sx*>0 zt*|0FYaVNMvsSk$C46W(P_~>|cb;3~E$4hFwXl2~actL{&mOk$4+5=}%C_ z0=qnv#^Ys{3waPt*%4tepTW09sunmnI8m;??FLPVQCpa&;59GFPf(udM{TTxB;8d< z+{e3yIb>2JoL0~1e10g^ZknwwiI!B8@Xvyq1BY{?l&x(nL#{9-!g^_+s9w}LZn4K? zZ*L>(AKXE2VDr9}#Y)lb9a^*@O(l}G{x)^#=kk|;*}f&;S}{{p*)tRsk8MqJ$}iR` z%9#EIoRG^^njML@OsA(P^V{uD`6(eqb(ZFzug~zC@P@m)@~5x0qD&M+Oa?k%=NG50 zUFUSy#>eU?tC9a-0RKP$zm_#{>`-(Aa6|C|bGC_vn>Nm&hR-r%w`1a)<{5l^4%+q5 zXu62ESCFd0`04_7*K&^<1|~g9g+AG=*x5?*@l6*C6qb_e;|PCu_c7!$@g-Hczg(Wf z+-+w_w}~Y87$cjafO+zSQsT!W|1JXj8tjMfbs_@bJ7FacWO|Kovyk}z$*hdhbDFZp zRKW;3|4x)bOWNC$OdY_7la!E*h1skToQahUI}wJUf%xKNbmjw2o)G*d6{{3% z1~Wt5!pV2gFwcc3)p!c)OJ;;q$Z%?qcM2=A9zeu2PqKOO;7gLlah|0L?et#BojnrH ze#nVPQYYhIblwmAToq?fs3(;;efYf0!w!>-gbSYHauxA_%IGT)`T;f>T19vBRN0r* zjZJ2OLFs}U;iAdc2deB0sxl~z$*8nZ&FjS6YN~=KsNm^MNP7}5mR-`x0M!5z=SY+* zmLUouMCnG2K`HJ%l6sXoR%?CEuB+_=G?)?~u(N0psQ3a2Z!zZ1Ev@aA6W9@i-L+TJx$xI!)HPU%l z^ivZdRiHJld+~A2$3q>~#{Kl9(i+$IH0Ms|TAm~EQ4l;kZgEYT1&ajYEOZ1b-my~- zAa=${99JLzJ_w)H1GBRa&qA56CvYz?bsc#TF?deDW6b#5;@Xzv^mwMLLF}$DrjfxT z)CDA=BxDxan7-RdEHQP4Bh1t7I<8Acvr#4wd|!%r1lS%hgU7kxlPRTUjryU&T2tb$;!?!0#V)M zw7MLQN2*bkC8QAe{hmfspT8nE;BbU7Y^UMoo>i&q8@LzG(f!dYeb72#E-gShC-9!-O!>*u!N=z;x_-^T}Js&JW|+|!432G@A{lcZ*4gfCt}je$*W)0MIy$hs;=rJ!w3N3emfhyDG)+~q0`mIZ6#JXY zi^$!faz|)eD(=LN#xEOEMZ?C(`#2q8w|ihjmag^G&~Q>#Iodhk`aKwu6N=*Z2NnzJ zn$_a?Y)spIH<>?kG&H@wfxh$XsKl<9s*)J#C{rtaNe%bDr`hP|&zLOl8U{ITglzY$ zl*hv+RhZ;{H$6{jg~3kyi?=7X}c(^osntfo2xXpZpl* z+augp?+6<^W0g>?f!)UYTIA$D3?s~e-UD*G<$md6X_Sz?-XSf1iv5W0C^I!@tN0ox40^V04&E zhLdyl-~KU!+U*h8?%;24VV^#QETaVL=$V|I!q$LEG$rv-J{lT@R$}E{77NJBr##;x zIT(5(Z=Xo0(St(NVf-QcibNH$NvbwgbtClTRK7Q%B$Bz?B#-)`oUaJvlNStp4^+M! zzxj50cJAd1dT3Nsu#~!@(d5-F?2}92Y(1$|0szW_oJTBS(wT9054?QFVEEW_4XhTx zp+UI5B`>wi5h{w}NaQ)G2*&dY{aJ>(8DO>wy}ct$=Xiu^TG(cQzgR-;8m1p%n<2WE zEA-V9$lzh`j_5u+!&q5VZ;nu#A)Gy*3Itl049ue$=J>@kjEfA-lMI`GxkdP&{x`TE zeF1D12$h2w0`i}|pYBoq^$oIj8T_W2q_=}J=r@FyOIX6*A7J0n+!JCTRWYrL;rSZ< zd5-0-0d_m!)pIC-?C0;HiweWbGi2W?y8tEQm;8VE8SnRrSvI0ed-(JzW3spJA;!R0 zD~P8`mbpIwK45%#&MtL3PDFQdbPNP57J9C4A$5iD`~v3f4gB3bjD1F=N0bE*O+#+b z#RHO3YOh@F&{ zf+d?JaJQXNLvd*L@XXY%L->6ltE-YElSbliNHlNKahwkT8?lLzzmXPwh&&B(ZgR*? zodA1z!OF;?VXHD$Jf})gbh(Bq+EX!0F3B~f%4h1HBUqP7ViPiHlum|lzt>dMw0ocF#Db=Gv^iTv1dXNs~@4tAcKJ% z9FhSOij2^<-UGcy;lqR(*Q$WA7xQz@Xa=UcJ*zL?LpKZf+QBSq23XEQnhvIE$rZ^W z4$~`O0JQ=$jL;${QE%HojBsEpe6Slu+kelEPde1=mBk5mNNEc1= zqKckW<%IDSV3J~;s!7v2<=!PxP7z58RM}}rb1zjg(X=pkW;P>>^GAJvEGnpr96De! z3{_(Y1xkV#s|63cz9(d}E@3;mEbD3kEgUP5fdNT=KXNUH0H}c|$m3epbC4W`C1ii3 zoM?ICHr@8Dyk2ae&cF=pHmMP4W}vxDa51Xn1gHp1)Zq7@JVD4U{an&_O$7a_oWvv) zfZKHtpCc58otP82k~#KVTLWcKDS^pD7}2OKDcr#t2%^bX`i|=*E2tyMrN2y>jzyqu zE=a{^ZPrW9Ie?~?`y*g1?DJ<#Vv+)5OsYPDCC7On8I5pd92u0I8j+oFp`anUL{kh! z6Dd6O+Xj4{0Qr8vw$hlE6TeHMUVUHyjxN%5njtI_=pXnjR)Noa~QL z{DCBFlgtbgA2o4KG~#3>pabJ>iGYyN&+}z>wc+ z=ERPxIzpW(z`~9Ttc5f^>_Gl#lDn3{Lvx35U2;8*o+iowV+SknXAW)`p^vE>66c|5 zM_41scLu)B;QrQ65DLOpWsF_o#CY3v%t&5Gcy(< z3j7+|#rHZ9K~Tu~dWOT?-6OP~iUP(){rK8jI zN=3MiI*Z}S5@zslKYs`R>JrBnIqEln8$8-qtj3o=yPdF#{(OO9Q^FU7V)#PfjsfO& zi}3Ue#}_#k-vr{n0g~qz8Dy}KLk`&=X^eJ8Q$uriWJUB%%ME9c`fM027Xyk38?LuEOb4qq*V!7McK?@V1<4Bc*Q2- zf8utC%g6@_tXe;i2*$&1ps8!f`3CaV&%dJ&<%e|`0qGv9Zv6myu}kM1yJh1@Qgyh1W|tE* z6LEeaLL$tX9J=vh2{(Eg;GM7FmpR;)6*Yezjo5k*(^~+B-GQ!$ZkEtYVS18S^M&Idbqw3WqI+Gg(FXr?D+mY+$XOvesT%- z%{8y1t{EVF;C}>w>Q;$}?&hQfMKP=G0Zgun0vLLXSJ$x5p8-$Kft$N|e~_7bf})6f zRgYg+lJk2xgyd|E9E;>DAbc3p_;G2!QbP4Be;n*mB2c;HpZifjq;ow8*wVcz-?1 z#zrGRIka%y0DBzJJ*%<%;t7`Dc5wIIRM5~oLs(YmpH_r^I$-g$J>(E8`vx#W!33Zm zFg!a$zjmlzJ4jIUX9cqT0CRl@+3jKa0s7-lF+^x3VVajoE<6@#aZ6rG z`18MfSadj%-?hsHfC#}F2KWyZj**{uuq>-3;%e8+}y!+J>}O@3q49fB9K3zKB``vuenKF z^PrJzJ`}WJ2jvvIJ^k$V4%ktb-2yy-b_Y1m_GKt@ZW{eCRlV(=@QQ30;V)O{zPLbk z(@;s_*is2< z@{l`7W`VF^(iH-9Q6UuBWcFllA{6TsL)o-UVA3J6T<|dIddTe-?wG@$uK=uI{_+>I zR=*fN<2WD9azTmMgw-5rv`Gm`{+?Mbc^^BH&CGg*aDRd&HkL+c!$?Qughl=UUo0-e zq$oBLra_$gFJEil_YwLL24?1YB)&}Agp$uo?TP>!_{51N32g%?1687pI{@r^X)}@2L zs7U}n^^ZtWp0RV{UcLZ~LH?KTNZ77&gjETwE7-SpobzWZXptf0mYVWW*)AEFiC5U6 zqpwNf;En^d5sXh(YQlo;)VVPoPeaE+`F~!ql~M8DcmGWjiE<~&*i~60K`sd#^q*hAXM}5p z+#-ugp_2+l}*x3kq>^Ss*#Piwb(UiFd`ily3Mih*Ah1(A-JoE$HwqtiB z^0)Ha7G}@xvBUzBHa%QBaNo%+%@)1F^bXQ_WXB%;a~7Ag?TJBf>Mpb$yGNhCB(%3K zq8g{Cf?#2h4Sx0t=?AzgkFc)L{^$a3w}L(PM7AWwDHnwi3=5wUJK|x*VwQ=V*>Jz5 z*ibVOiL5}3Q4z*IaizigjK#m$a_IuZ*GI*yE8#Y}qwfQehk1cyk0r1Gi52qXkY zg0RKnJ0)V(AU5JCo~gBI7zYZwQH?1R_eQXlb(Z= zY?gP7ZBMO>8M2ffonX5g+o{fs|oE$ z{)ZKqj{FT7MwrCE&?o^c^xbgR4cmMpKg%zosiXjE3__j3FS3X&7r;1}!cr|ORyG7D zhp{RYtU@GbW&qI%b%g({##oXh>#fDGbg)f;I}Y50t-#%LF^uaHzH(55+3_?QLc$6Z z0#rGZu5LhB6d2?6o8Gg75})JrtcQVZO2iG|EOybx5xS*ZZ205?AvehS9-$v5Cu2Rq zT2DkkU^1hdObg>7#NUZYP8KU1`&0jiXkyfMz;??(`xLU3elLq{+XUGeM@V6Q_>!Dr zc#kqiBf$ir5dND)-S){WFzUOT2%kh*K=%iP_Wt2}YoMaqv}VIZQUx%<{WNuG(?I}C zJ`>Yh0qjbw7g4s;JV=bNtkFHMQS~F_?tVH@`?CzTvv4O8-wz5WnS-9KAZ?HF=U>Ba z)-dNA3@?f6F8^Z3@B8AM#RV(ybq2{TM8T?K6kCwC2c&@HfHVW(75(!Cf)kW)V=z6k zBQlm2S-K}B@zDqwgN4rX`#A%@iV%m`bqR%o=4NtDCPd8uR+)r^fLSEN0^h!cu@?H- z3yhUTcb=gDVDDX2+UtO4OZdXVRXi}wz-tW4jHJ{gCp-k$-Ch6iTLNt0i&UZ3kIIScJ2)2u7YEEDG2|&MsJju*7*H&M_#y>8Ea$wB0NN z3w)fIq<}K$Jh!4eJ2VpOy(gR%41~1p5cYf6XHU5f?zbet0~6Qf_hD$z37#^kWo6l< zSQbt>GfApG-TwsZ9rJk)PZG0<=NQEkw8|mJj(<~cyO;{B4TK+?IEJ5$o>dDuhCpOv&U=poVZ zJXOB1SwZ>%{`v-XxnM?KMd#Y>fd|Fsub3I%Zs9N1Xg*mWKPzF6Bg|iY!^zZk^ecJ! z40hLH`Ipi7=Oob4MaB1N+6Ya`V2<4^oo1+muSxYMcMuVnT?;K7#`6lM8DVdZu*(9z z&d@wB8OR@_YDJkrogi2PUmAp5(5($@FDRd%5d+`#Y+;u<38c3q%FEzk?)NZ92fNRa zC1s4*nE^m|*-Z_5wMDqPf&QHzVO-^~4JUJO2E!^tcTV#|+`sHL;o&$o3wqzt|GCb#aEUp`4(7eFHcP|Llx1zqj`=ha(DOX3oZP!Oi(@ z3t2DYJwGx22_E6~Te_jYd`5Tb{Q>S@{G6M_qJ}M5MbM_1OblTy%#S~h_oJN?<`~dO zRk3Bd-}86RHcT+?W{K8^3&YNHzG){HdjJ0FfqbvIj69s62*dG*Ey*b~BU2wfa-B{? z`vJJyvJ#wvI92kwteuP{-6yZ0k#s60yIYe-NjdXF5?0ncdqQlot|0p(#y4+a0=Z7I zV7G;8ZS274;mBYj%clK?81MsdY*GDU%l+oXQ^@uJceg{`UT}^t>xiwkQET5|SY&_z z*-b-&`v2wMgdYQB2r%t{{7A`45rG$yE6rWc&O(*J-8Qkq6M)QNc)lUjpo>!5!-)P5 zHyCQcxLCn90mbz^nS7nYWES0%3MxQ$r2M9o8A8TtZ?@~%r925%>~VzM_ayko07FF} z-2lHV(0snc>dzJ7>({`)^@kWXC9>NVZp;4=z{>Du0WDahn5M(vAx)3)WQl(5P`;z7 z+HfALt$M-ld(tH|J@?z;vIaEr@OI?pv77B+ukZLQPrDwDA_(Lb2H^cI=SAc)N;kwR zVopBdFe02Sd6wPY&4z}{#r&RSf&Q~gxNQsh*|*a*hM3rz$S+Is)aeX?B!f;*DBUp7 z=duEt=?83RIIZDW^qG{DB4pP9lX0o`1LW4syug}X9jFOY(Iir! ziV$JN=IJGq(7*T!^7N9D{BLfd`xArXXl5JQ4%S+71^R)-v+@Lv*AFmv9{rb3(4A#i z9$I#;?(SjQ7Nz$Hs~Ubus2{vX@fUBQWsdIi3xq0zsVnHy3yhl*=E#TIJ*yBh17Dt@ zdf%h`*$u+^62r^&gs_lMvKX5Dz%oZUe`ip=jY0P9W!udixlmf>59YQSAQTqIFVCR%oP|{d!smphs{pR?u*U(W$|nws0j6XG;CHp1 zXF=5%3{RIxB0Iizu)QMNk8r!5zH-)}`FlTs8I}Jw@JvXM%Y=lHhR|tK*NhoL% zOcKdXf|f-3OBJoy$_HX+B+J+WcMc&*XePs$^&-k$8rT%9WYK6Zj}RaMf;EuLz!(dd z2p_Q)T1Sc6KDucJovZUE8iiSEf=|S<3HA}?I#q#GiOhu+fI%YhG(kZMKoH5IK*(fL z%~C-O>PaLuBNKv9W-ubr0E}6&IkpVwL>|i8DvgeyI<+UY$YX^f=jQ7@Lg6qh+$^C7 ze)d=htYJahjF`OI_=0WBl@&V*d zWFo8T5Xk!xR=iA;16em!6D0<+lE_}EH7k6MD#D6=6h%-~w#!e+X`-=p9!X`VWK}V9 zD|t~P$pDLUbL%#?VUcB+q&Ou&#_tX~elR1hO~C-DojEbl2pNpz2mfk6$ymmS*c8(5g13}@{{~!Y}d;;@(@b~b^vtr zObDVxIL$sCgZ#|Emkfq7unIXYGnk&zlxFY%lnD$knh8?dN4f9QdnnUh17Kcjfdv2w z0-p)QOO)UQVGLFf#Lf^aBhgcXf*I5wh@Yc@FtD86 z6@Fj>KI9CKv<)*Rf^}(r{lz+-D!ajZZ}=B4(RiPk$oSEP%!U zdKhE3FrFV8B5zEPB+e&E-}Fc_`@>B{GJ7IMVfj2G;U55FjL1{eae$6|M)VV*tnEX| zW3CzP`$_nPo*@SolwzPdbuLd|mqrq<5Sd`d0HXg0qI|YQM{*Vz5!ksjMULR3cM;f? z6<|6~C3aat#+W00wmM)edB#&nLg2HxL+KiikXe|zSrUdF zWr0<|b>tNx=k-t`80gp0BdyaI^O&hCn*@L0cy5Q-Ii8-KjUpRHxQ}>cLAQ(utUi-@op64Mmhuz*r9L!+xZ zVj?r6i%z<(8lYp^m*RPPI==z_&V&>a{JL`A-|Iw#*=+&S4b04z0cfV2khdJNUo-1#bUnf#vG~*|tZB)kV|MbWa8kbGw6X_Za`q=NM~;>UIaTJ+je5 ziyZ!Zf!&W5=*|Ss{`-4K(_{a4E?C77AiwS5uJ#D)3L&#tz25@HpntVNzp2n|mMFF! z?%lL80i?aK@cS{QO6PLHic^#*)TW&ev2lcU9qjozWV3=jZ$fTo?E z1%S!_M~@Amd7Bm0vl8qsc!YOX5&Bh55{j}}0~Z@6H$IT(CPE{_I5eu_$o?4Nn+@k# zSxkyp{^bQiW|4h+0~~ym$|fw+1PdJvs&DS7yt1eOuPELg;Fkr4P0szq0X`GBRNVH+#Tm@~4!-LU zo@~%x)+ql4W!|&@nbOmzbr=)RCGGkdj(2RKH+MYyyl2JITF(8L#DqxZMdn~H&iJzg z2OUSkpVPG#=GUrnejkT9+t7gS0|UEL=~F2S8b(HiLvwz{=X<|n43fy|s<5ji6)o$U z-OdQb1^|C`4RdVfM6xQGuoihN21E(%W5b_$PwD7%O(U<-Z9C+-!FXOnmIX}YuWE!Y z(#t2RZk_RG`RnZz_?xSH6t_DJpI##52IbfMjJje%7B0w{Fr#AknS&h^m;b-_(5gW9 za)q(B7%PM9;9=VU(+!YA1OM$?bpMZk3t#;Mhl~GJu>M((Y}Z4YnL7g@Dq;16#fxBA z(2s5T`j&;}%f)n-t$s0}zmJgXMzQ*{drHpU-oyXhFVQ|N(XC^wvI|_heSpg>Y?GTBWSQO0KRM~Q}c7kRAh-Aoo;%y}2r}V>I-3+Xx z3V_KFF=dLz5I?Mnd`}+=SuPk5d&MO8rZh;y5R;226DjEc3zVJIj6tNFXUqoq=t+DUGFtIvSjX++f%g^gv08wuxDK;P-O}lGM}+ zf{hgrjqr&m*&FJ7N}wP>zs}%VgKY3jDqgytOVS^E2XBBN1*Y>6}zZ zqrs6FL$8EGKmAUsMwvwRij^9%W~!iSi0>H<_DE=#IpB?55_nG!oK&d;0AuGWM67a} zW|%PSQ?))RXdF8d55r8jJ|(;TAcqDTMj>ZqIAUI>ZYttEHgWwYQ>fU+{%~K>1hW~F z=_a{jtT3O*qejd*RM|ZNxZebw%tTr746{UctU#Lsg%HRs(b*6&?L9_jZdDRkNP799UM5m{*F(IW zWz+L~f_6^#J?*nGp_sf$G&~T^KnUEkfvBRzN;JHW-Br(LAEmE#T-q??om%fLaKl#LVU1MW%IQ2V$38!QS1WG=yeTWWf&_PyBgrx92B9>=`m&v z+|i?apCjMXPecZOS6}B-cSV9uVmpZp55zMy5NfT~0*i{Bg_ir685E(;04!jvg)bd~ z6J$+{TIWZFLrY_Bu%A2C*n-NgWM2-$75C~g(DC-=j2cJ3m?XQ$S%lRL1h3V>bO zxZki_jG6!050hAhrh-cs5g`$BXOf9yI+Ige3(R{&P+-9%L!kUxKmsV#4gJ$;*!jj|GM$LPDH}(Jz(+~ zqnT$AWV5^>z?;;ZR5R*|?e1g48@XCW@=Z@up^LNG9L@;DF%#AME&TP(> z{XfotP zvzWR?_Id}sy21FzKf$n$QpRnd)^;4t^Ai2ipt>5NPH_KahT_g*(~MC~L|{743T^Zy z7@pS1-yNW@-vNK{IfiusUogSS?t5-*{Ww*PIjLkKhDdm5E#nEZrJ*Sd5h42RwRfsjDB zyPvpbvRqK9=K6+#=wdN(P4sw#CJ9h6giO>G^yvm6V+SEWQi^xtsQmbINZYf+5<`dC`hp5q@8Z14Gnj1ydp$z8JD?wszkG&J7igc?aIHsnbtI9y zu#;4GUpUyF{v3AK0ykTregePFA$xn-~dbH_c_U#?=Z2bg2TLT`6KH&PvF%%PhC?!Ezj`VGwA{t|~zYZUL9Fdjc$ z!VCe`UtU8OC5H0~a=XR&_C4&6Kd184^^WRe>xxFSha=VQ0N~3{=xbD#vn1>2XUy5((fx7*P7LGlK-8B zD#%-vC+Csp)W;-vfVOuCT}L9akDSug3V8m6Nk_;1Vd~D-6?C(JG?9mNyG3@peQ>S% z>>T?~3vwn0MG4SXtch~rZ8xiTCD~cW1bp{J4cjZq_mt8V&ji8_9_#<*0IhOt|JE8I zA%I4O>jGTsA)}&sS;HL*l-mpBUtQsg|99MzQm~q5=q`)dhHK>Y=-CQkQNTohqOhsi zg}gh!UoJ7MDe3PH9>tp-!lJRDiM_r})EH6x^_PN7x-u3ecbB=vO8}Y^flq zRxo_=6!yM_xxRze1^kkRsuC3Wwt-eTx@R@=+YaU~nqi7eDt$?=ck+)KMubnEBIFh> zS_Wv_GG4p`_lGEE0D!#VG%uPKp>5$VFBtDe^V;$Co9TD#W(_TK#w{QCZc&lzBv!~X zU^KKAh%&y@XAS-DiJ_tQQ4%v+)1Meq0bsQ<-N^Vm=4``?SW>ImA7=c2POWS0IvRB) zJow2lRY~l2d~ZTBGMMu-=zfoIXr>L@G$bLS>t{@6gbS#p`h`Yb1%SwF8F(Ge0m4AY z9HWV$bHK}|7|$wXUtMwHrHYHC`b2)igD5O2n9p7T02V*pAygUqvjVnzII&>35x8wf z>|&O2u`F_GXAe=Tcag)sdJezLSw$F_fhTM<0H`$>D+8Ys>XEW0+maZoHLLtGFu34r z1mc1GZqA&|Xb>7fzsX^iv2qX;CgMJ`ZAS&I`V}?I51tj>IArj^Fw$ggw6I-(j)L+g zz;y~=IoM`|*$xwyek}QV+Xa$N&(GiutD>T;n%HABt;#I?W&vy#u&=M^g#O|Za0VvI z@}0sZCS{Zp_jMYNMJ1=)(yH04Aw$~-A!2Y z5RTP6hFfx&!Cp_-inr`iT2J7~E2U(WDDw3v)9Om+Z)i2L|!n?9RvI7GHpBZ4qZiqX2*yv1b zBj=+#CkGAye4U{?&#?IV$ihmtikvofSA3nZlQ}B!`1+s4p z4IDic^XyhwU33nzZ&AKyB~;4{W(aVH5xCnziX3BQ;a*+BE^7vt-7qO*Ni)pmsL5zI ze0+~|Q2})c9Ag(um1dIH1A~mz{Wb|QVIHXBNO9tGm5Nv=U48zab2iBYr+wjcnB-B= zvcn}V3$im?lsZ%Ox}fS*3J^&^=D*4Q zNJXeNijt%*n9C-WEqig!4p=lnM3IxzB(x$B5h`vW&KrPpv&eZ?-R&SvkNWKZ+m3`m z-chBA`vk2Gv@8(T73b)&gKU@tRPPC!&Tbn@gD-MIpobCNr!16|R|7)EPO9z0+*wd% z@o@~$x`b9a{IVe2(Fn48&Z}%cK7j4$c}yh6K)wqw85jcWI*zqLan0`pA+M}{+e1c$ z89a_JD+~)kox9nVz%aQQ7j7!XN|=Qw5+B730ok@^N9hxa+xQi^vgOT)Y&T32y&*G{ zBp1Q(ay@l|Z0nH&=+AQun+)aKSrkP}$M2}hxT+^#Cafz2$2h~64&mvF_6Pkyh*dmS zCdi&KKpqg{{-+JaE#$;gND>6Jo2>w7a%drS4I7Ic^Y7=du|oo|Sg(1;eGFhxO_fTM z(>kFqABORxWM%pt=ZGHpHFA;fbs~b`5e|p>@5wz9V7n^8wt%Q@?in!=9fbT&$=*Fi?wKvW$|EG4MEo03bq#KZJk8GQ+3WO&$>~Vnnv;PhDY=is{ zKKahuC}T9=2_!;~%N)ZxLlrlla2C5J%NU&WA<6`f4;@0C!B8253{VR|KqZFOb0XJy zOkg~0%T}=(66^A-1JsgOiX)&RIKC<|Rzj?2udvo2+x4(Fdkinn&~Gx7?^~E=#8{nh z9EK6HKO(y+VB6@DYXplo%1x=Z?EbvHL3n-vqMt=w zlVoSpu&usk zXK`F)Fm*;Q!`nN^=wS~fiKmMU?l3S&Ndgq8;0uFc?Fa#Fs)>h2SRgrAP^H0Yx{Xnm z)8__eP?SHr2J#GkSxf;z`L1EI*bI<$0U(Pc&VlBvQ8rVn0`1c|5g8X2?YY6~&syNk z6Zv+=dYoMBjnb6xPitP4`*mTF zf7Q(iZP#JEyZ>MwM{=_&VHD|~7d6i{V1nT32T2AZR50A$KJXqgr=7m41dL@DPs5~& z6AlORMB;w^Lmg7)5XphQhjyNZgt5x2qldq`;_s~%6Ev2BI57~6qA{ssPE*8w+E?_J z9M#aa+ou z4TSdx_@;pdh5P)INa)TGmIeCr0!2ek2mA^$DvH-zuD7;>JUb_+^EN=*4!citK!7Lz z^ctEwbkFLEubGBBM7YqR#JDNYooDD520j<8egU}S2zTF21=x^VjOTSsc09(CYdd6? z@d5x}7>uPs-3&0Xiy+=3|N3s0%YOL<`Zal|$pIdQ1(5E{p<4-Dr!WIxTf)y+93lM6 zy}gIt-l5FD#JJ2bt|;nJzCBLX0^zKpMDKkI%`6Tt3b-zyxaz5_)q33jK?R=!`Hh9? zBYd+U#M|!Lspy2vp?kTCFfxyE;V{-2>TZPTdg$%l+yzTMR#Ewmg&{@Q?wPzMd1xRO zehjeP&uF1oRF_4?=MPLqy2u=GzL{RHc}Cc5gs`Rge98?GYvw)Z6k2$?mYic}<_DjM zd@v?FXQ~Xw#RsqgDMf*Bb;FxDu=;Pyf>qC?K-AOVO;v&2o(aV%+5Hfml&uAfg+1Fq z&Nt|uERYA#L?#;3B#ghdEo8GsSTk5Q-3ZwoDEa9u=5T=R&c_4Py_V--85Sh3ic2LysJ^3V24zT%j0kxnS#i%oB6>Mip z0P-6qGGpzK?FYE~2IhGI6?R#q075SCWeKy%k>B^If8Jm?ub_(z`5pNp?W+}lNUrON zOU>Tz0c+5Fw#Han^h<;MCYvA$GI*^1>}JMRh7c35B^Tsy;xW+naBUA;61s*WhrK+9 zdB27DK$*s}gn9my)u)UBA!3j!$Cl3On>C+HbWNqaVU(OsSmUyUE-GGUKR`A-l&aSU znC+3o_SKRBO+V0BsOv~x%QBMG`#w7PmXq{kdUmIVhWOZ|`3E_Y6slR&kUT@!?uljo z^b@YvWExmxkg$Mc8A3}%D*NKu{6>-YA;%74%+&Eb{S23guO}^TdIFTt!vX&G4ig(J#XweExDy zDnfwUMcw^CeoErCnITMW=%Ufb$O!t+*CcQE#9(V-rz%>Ad@vcJ0#jipf@!czgxpaf zW>jRW8k!l5s~m3E!;E3t^RnA5q%BaF4(bHmWeNXD4Yfe^rkm7f5R_!`Okf5O((&XR z!#bl2dsNd27JxWdXJ&I(#02FhpCM!x_1m~tonX{u7%9p7Y(rUc@0n0pLpkGifPF?m zi|S2F2uln)P|OJdhLHz-RUi~Oc{WWy?J+D!S=j4=2Dhp+^r0&0#C>d`yFKBT-bY0) zO9y6&{Jz-Xl!5+G;eI=<&QJP12|U&!QAesx|O0$+ODKSbQsTI)PuFF_wssEa`{IB_06! zXA79i3PVjta_RW<;qwc~sK~ZG)jl^1sEM%uch`{f4Sc?&%=UeYu*?xAPoseB?LC|- zf;F%W6DfBXVcHS){s1j=3{Mx75%0#xUsKfY=p7Pr1KS!%+atg4nN(yJda*!vQNZ*8 z#XBG@D`;Vn9XwWFE83?yBzlXR0Jb!{vIx3U41Elk?cSpu3(eF;X9oGoE)cfkHgY50_! zj3ei3-?JFibqG;*Hz}=2S+bZBMN*P+uZilk?nhtDH=&IMlVr9WrSX#?qA5$5vki<5 zKYV9(lFU#3uF;%rNDjv*nOdwmOeQTwF>SEo+(h0=>#j#!A7?>C~gfCoPm`}sVaoBU;;7f!^IV^YvNh#Ddp#L!ML!{&cO5mqJal(l&eb; zrgCVAHLXh$LI*{D*TKEp^58FW$^cq{vBZ9|jY)!6$VgD1Fsg+C_Fw{*5NlB#QH2Q! z)F8j>AoqLVqDF86cRwQ38HS~S&nRbDU3=uw<(g19Kn>t?K=WCiPJ95~U9*av{5K>L z*@1~rJCXf-^nhq$vRM|?`tCY}!x1(v+>krouZ&^{CTgl{&^nZtk9eoj(Df&e1dEc%)RciHBTTDwBL|{7n0>^Y?=tL2+tis8Jk1 z>yn%A?l40y|vxts{_b;$s*X@OzEBw?fF-Fu4@}M{$mlRaEb-H70dwS9NakYz*Ds8L^kbB^b)4@#4G)^V?-$}@pjGo0K0Pe0~kT;1G*vWK^W}$fu3S;-^ zw}2Vrk|ORwaqe;|S?{uG=Iq5)?==j*qgx!^j}G@2B%mE%E3{x_2VU zpTd~aoK5n-MZtfICY%XrkYw_Is6)q*!YGdNq}ntOs>-rh&|Q6Z5?v+vUVzD4(@utn z0Jt}60D_sT)vD8TS5*d#NkC(yGrHfDQ-VuG2aBfCq5)2U{Xj0MJS@f$6*?vT}@8} zj5#XYT??PpG=X+Num+32YGCdU7@wa_aZS4azOoQ+;Ntp~{gG?A$R>!aK6!<)w#co4 zDj{Maiv{4Iuwy)fx}IlM6hskYC_8?wM#0fQz?FWg{OZJv6-2J*&P65Fnsm|FoOI(DrG1W9S9Y*AcFEet1F?*;7dWs zfZ}d|J&qWc87r7)<)kIvezt*(Yh=3~A-C9lQNlHf>RnG_eb*zrynrtqmcMAA!epd< zR$%|qqPiyJs{V@5y6zdfPPPpgmKlciImVJW@#R-7LSb?HhdFEq8FP>3i`W>M-a<*Y*>UPU2 zQw%&pT>?M)1mjtWew`7j5Z!xGk{sc`^fPR zE+7G@|HrR@vf!F&c-U!O0@h&h)t>4(_XmW{0^PG3Za2X0duV16GK2oY-ja8yJJB^H_M3}tA$1T#U^?P1eje5T-^X? zpV67U%qWoza82Gf7(RcBVUwf&b1EG5pPp0M@2eK-EVOh~I*c6>HRge`rB(%CD&Xdx zNk@?byAkp=&m$BCWVwJ zkgSKc=0TDn)uw1v&E3_;%;$K}( zK0)rbf!VjH|NI(>$Ao~WprkM%uqY;=fiHkiWf+zj`n5&2^C<4-xTF8<95MvdUu}s5 zNL-k~WAS>R66YWP1mYFt+Xn7x2fe+A4GL3a$lkKb?_Zo_Tx1xQ4(`Z=WcMXeA#1P@ zu=~tm`8ANe-($R3z*lqUwET7tzb>%*cV5DDETGzsg_3+rXm_aC#mVnF^k)UerNiMR zyQG)@Jz-1Z#RB#`{0caQV+iRBy;f!$`lSYI{WaO^)M_&TxF@&_7uq%N^{VWPe}P?8+Pl!ep&M z`{g;rEAp!&3mg0S{B`@D{zOq3)BXR+`;%DR()6wu{Jq_3zIONfoH!9DBC>Vb>4x&H z3x+B#7a@?UW_VU3B!v{gqzj=NqJxQM2TZ6D+;%tHn z3mN#oRKLVE}%`}8piu9O;w z2i;0|*&uR@X)_VaOdK(GRkE2AQL5O?rT^CoUHgNrCye zMkUP&m@c8ti7!1C$`DZp*xGKJJ7On9V|&D{4mPH{=t?&EDr@u8Jf58 zI@27Ggh2qUlxSRvOsG@?4P>y~8-fM1G*}F_u){Sp42Vu{<`H2X(9=F4)LsUc(K7ba zTfE`#ZQ^tH4_1ch-jLw5co<5Czx#1MLV$Qc-Q;{9(3-&vV5}7n+=oVidsU6w3$#XO z?)7u8^}#$Kae0YRwjqP9_pmk5I=OA-()5%o$Svwh%#G+b{+kV(8W*}#Fr ztCd(y`XF}MqJ|Zn(@?|4-+i#QJlxa7C@9va3_3CaMWmZ3PMze_ZJcZ8563fHGQto9?ag4NPpClDlFEVsfP8* zZrg{E_92j_)Dl7vM7pYoCv!q>g|<7On8W3fzHYGTjLxJ+Pg3P$pK_W)l+7!QHBKDw z5-lvfmyjnb%%L{KIG$f+v{-qkMD8ItQ)zv$?;b)?VXQ5203Qa5orw^QG!I_FIEPB0 zhAqtSnGUw3BWMy2_3L{b-)BhKkL)qj--ovU>G=@qT68so#i`bbPAgwGCXbJFwg>l} z)`zXtFl>(Z)nIojg9zRWDEV;Hrj?ju45lYa5eDmBBNQfda$7PG^*}T9C@0%P3FK4w z(n|j{1Q`e9nWU5q4v+!_)z}{m+lt_{0Ccs-B=NZ_gc%a81Q|ysK*E?)lxw0+=SM+% zQqs-M$d-@@242tK8@9Sb{pe+*5Y?eK@}=0}4=fMmrCz)iE;#&qqyvbxuW6)TQ+=`- zuRS)(YmW5u$f4G0Buvrj@m?N!L3O{ut*5w|1XKrSU@A7>s+Sxiy>EexkSlyHukY-G zo-#({gOmP7O$w>C4{I-^=X$c*PTN!ET(aX%&zkt)`n49KLc$KU0O-SW>tVp|gX>=n z*F5rU9L#OhgYy}ao%cZT$C#uWdEF88`#Ju|2a#X>)nDbG{j-0@H@@)=%Ch9o{@Fjv z-}`%ik1v1u%j4J7boqBAN+%Vz~$xT5A?J2)xB_EN!M6f ziH5{e8+`W_j2v5idQ2>H^w4;v;5&7OtdBY zigI_2!_h1i^=Z!hBSZPpvHE;QH&slZ8-j!V zrN(U{<&8Xi`%+WCA=Ikx$nihYu0ISJv_Czg>kM1n_ z+K^v2=(gwnXBQ$Kdzxd~h}#8<=X=bnyM&|~NtW(CYPA_ZTT?Y?YsLh7b+jPH$l|>X zs_9V2M})uMTc@IBAx7M@J1IIBXT++e z|Ku6w^aR~42rsWhS8{wTg6gA%eC-3VsxAw$_PxIsQTxRitT*`EJIrz+_rh+EG75cs z%oxzuG=#eS?qc*A9G_*a2z5hHLNU>0DGne5MN1pZ$&m~MP4hZs1yW-W@Y}6WI_HT> znLG4)Crw3Jh@iA6Qr3VyH2qB@MZYX$D5+{eS*?M~b8wdKsK8Vms;*JBrd0lf6ukcb+AFd!&A}fCxphuypH|`mCUzXqNxw8nxY1-sjjSN37p2 z>9-;rZ622dr@PEH6DXfmsHUaAy+gh8n0A@b&E%f3||M&$3R$uffd#f}0YFR#Z&P0eTM>ExgRR7x7f&34ROh+T)OR0@?%D6&>U`Po4APWPoJC?9YiUZcw#Ju63TQY;RGjh|*Tr#bmegT3COayJf1Av5eRGO~?l z_Wl+>$?&3ne79TWZHw~eX^HKlAW9+WO+-$M6xZQp7m(S=+ zxcpj+yKmrlN&a%rJx&p>%|ShSzxkLX4vR{DrV~KJ9cG!G7aI!e)aiOSxBoEZL_zxkW|(l7lIzx7+c#lQJC|AwyX_{)F!FSC2# zZuPhR*5Be^{>y*KKmDiwl;8Z#-{je|XZ+Q_`d5G8pA}QcAZ>TZ{`gcAf%o#@w-!C0 z%Zb`n5-v6f@S0ZE+XELi=}87*SPVhZ)4PtiujOm&=D^(^tUD8eWj77kU6Tai;UIJ_ zlh?n?Bq@B`5;Mt&P*sCU0?`re*TX-WI4Pu&I8GvGYsOE{Hi7B$o_sB+g3k?pV#m-h zKXLd{c-DPk66Gf$BAp<4?ZV>AgN3bdLp^Tildc2wuo=(_v+r^1l#c$;MJ19pDiOPn zxSjl+?jgU8lsAF$RZDr*QQUM1wFJ`%ngOzH@wt|t*+aLK;H2`Vmk_f=*$}a3LR6C; zW4LkMR=A+bM~eGEzKSDKq5^^}m+8Shpb>-BopZ#~qePd`X{%*M%2sp?d`)EAf-%y7f7&11y-r>FERN5zRsf()qEooTdD2FaKuE|A|vY!y*`AY1hmH=Q7{g{7Tqd~qyF|sVwxya(b5nsV<71;PzNI%^Fa?1jmB;o+^RvR zaK+}lz@IHJXJ<5LCH09JgI+@>TDfQxVVc9~k!+aL_Ba}aefv%H<+*&G^Ql;=rXhk< zWBfG3m+8Tt&X=x|8(I1s{4`6s24>ul3|n-wJA9qWbJTQl(4C#1qEC+{w<1QdmaW8L zEVe1gGzDeq`3yCYfmKzFPPL16H3g}^17+@^-t2gZUd%^Y7iqvyMS+=3(aAnsW%9K{ zE|8i`4%XrkVQ2V&-ZvvoHY&HXAWq(M>O5imfNxc{a(O1kqI&0{eN(Cy(F+szaqV`O9ai5<^T$PDc= zWBqPHS854rHVR)l>5+0R*&(?wN(RcL?h$9LM$VOLI$}Nmv+~-*2D-X%RF@^;{D^Qe z7wVf$EE%7AnjrOuTsB#%^JMou`F%gSi0W3DApJZShDr)bRJ}YKbQiFzS~fpg!TAa1 z@go@mqVyrE=>^!%9OihLY^4udB~*$|*r&|Aqb2(6MCjZgo1MB%^`Q}PWM4_x>j26m zJqlWlLkUCO7`7inSfnwpF_!*Y#~=Ady|8h`%J|9Muc z760fT{Ud(kH-3Y^_!s{o0Kfk0zs^^_@)dsTw|$QA;E=55Z{hF0$4B|R4hP+Fxsu6MMs_cOgao-Mvvr60oj*i9eS`fw3;IcNVQ8fDZjUqCxg?-=GedTk zkoXWWyOyYP_UDG;Ug6eYw#m&4h`FO#PQ~%64PzdFyV|4bMlNWl4+BUL3YTg+CNDdD zVeo})Yi1ub*j0tPO;fm1bnjl$&m3-lSn>Hx(HEL*D?`%m(&F}!qp!UpEGN{LCH4*x zZ2OtGY0ZQysv9rJ^7_zd&%U)H=8o;tiO{xM@$8Q2JSZR0_d8V6$>)21!v38F*=>v2 zeaebAvvl)}tm;rhJ_u$ky!wH|7QHn5{$fEi8uwBV==NfYu03Yg(40(Z=9`k9tNOkJBm|vvYH%%^@bu72REJ&4lXbc4n3Q|-FN-* z5B2y=Yeljt9dkgEm99=3PLd8M?ind`Y5+GL9?4=mtk%T7$3A%jtRdWP*queyB6=P47P|B3O+_qo$<+YRiu$}DSS6V|TG1RIgo&9;8AaDS z{4{6tPKm1m*}c#p?LJVSm*|s%{N)ba^en&Aj48p{CwI_x)L(u~yR_`j4Q>~iyy^w1 z1Ke#58t#5-f$k&I=k4f~pRHQaa@=n)O0npU>6SU0HxKV|L{$epW~Rq`Jt_s6Mt|pq z7$fGc7htk^R*pFhQ<@JaRZ27h&hIa-3Xq9^bU-F5qLz5JG<-<&K82$8H2cB0ctIXxGIEQF@(~_7-3(D z4(IL;vslRRn81YoWGb#vFGAw^m#893Va9Wz`&6|!VxG^%x_aLbj%NZ`CQ49DeZ=rS zFoyQLBv{4dJNKxaCm*iE+{p$%SqiJBr|g3mRx~Z>l8{Sasp_G8A$olU)QJX!@S5N3?2J|W2%n~vIL3A5Z+PNHdU8Aq=3GNBOIn1_2Hyw))Q-ENu=q8%G zFAY}Kj6(}R)P|6k)JKMHs>n8xY$xDFaEj&#vbE?<`-#TqB0^VbFxg*PZhj_m{B_0g z*K4|kllT4L=%YpTvXLMJ+$Lgb&{Z$z{(eROrAzKVZL==qe@yBfFC1h*VF zsKv_$-3Qz*2#p-%-a1PCM%9vk^m=ZW0{V*u%~?iq)uMMDIt3zz!l8E!@uTPHHy`0o zr|iFYg7Q%Q@73Wo)?3jlU7iuomZ;nBwyRRRN;F5u3(*N36_|aGU9Cr}>G7IRfxdb& zIrOo8FXlQALlZ-Qb@TeOGJ$R?sy`X7S*w*aohK)<+WgwrzDCz|{H4G2m&UL8iJ$lh zo<4obfBcXC@p~4HU;WizMoYAmVDfC)N$-^h8k42cGJ&$l%RO;$Dy@vGdCg)Qo}O z597*GE$8yOT@c;E*@;-~4ZoX0nhm8yv>qah4{N;Bv`0C1D=tuyCaiI%$HW*ZUe)9G zw!4iyUBN9G@U?9Pv=;!!EFwX~Y@HsH2`kTe%1{nSw0wBRGzMkaINcFXtmM+GY6 z!hg1k`6qqaWJpli?%l<>;Q;6hMfbEMzjqYQh>$LXBnb7`y}U=e>oK*U6$3|V`n*T` zNPj*jBjXCOKDj`HZ(3dIW#A@s&qPOxHsu0CCIYuVWQvjp_Ke4o#rhHkU+Me#w z60>hn$;HTLvRzTl!TBUiGD0q5IyX4r^kNaLb~QMQKPknM^mdcBRvLS^CmKV4I+JGQ zzCkw~s%n^jOEXQbCa+~!fQU}R$svCtxrf-*P99bul!`3FTwWwDcsFvwWl&GfJVpzh z$Oq#7AdFLGDMhgTD2*Jb*%;35{>CdQFzi5OFs<*_=#Dh!JzQ8|huD>!AaC z5BNBy0!O6?XG_o$JV*#*p3vl3Eumu0V6V3jXDq0+YZ$Ss<#%hfgP;J+hpVG4DFjIB5<7ue|q}LW9o?8_jEH$ zd!%u>Y!vGgg{@%v9J+<2I@P#+kGbuI_T(&nDzs2niTj?Z!R<3Jf4jYy29yKX3WpO}0zsC{U@BQbW)$zlu z6T-Jo+l_~RoTdIExof_rp?Od{l(neSV{ybxrXm1wwH6AfvjRl6t>`L1`i-U~oF5Sb z=mbs-_Yj#AL9^=VP6|xb!|lEFCqwGCQrJ!RpeJ#(CnauGqgQ+U$xLd&t!$A(W>7|< zqQmSuiWI09t)e+A6QC#?glH7AXMy5I(L7#YPNoz$ouKxuSmQ>cBqX>>!GF`7&AU_F z&XG-X+NBjY%c&UObTfm*0tj$v9?-mlm0qB@_d-#$U|Mm?Gp%f3yNN}4SbQg7IyY`e(JEb3{D{RA{dzNThy+`ofjjx8l8ZZ=3a8f`nS&021>Lx*_C`Qx{EZ& z8S2PUyb{{J45KxnZqWN0n^}2Y3{HC?!u1`|TFISBn-71s9JkP>>d>2R+*%AShuQUB zhOMR%aDAYCr+Z%<_#RNer=>W@X)W8|TwEPP)1wg4!`m%zcT*+dcEeYx84$N`{Y3& zP--*)dGPM{=;;)-n9C5d-5o3qtNJw>m&zP*KE)qRurCwkYM|ugnRt6^jhauzxkfYc z?!v63eq%!UNkU4Be4HTVA(B3f!5UI4C`+M6rEsgk&4NKRs#Ky=h~K{1b=XhV#5a$r zmy&X<`h#FJET>{|ce9bTFwoB)r4^(S1oC+`+Q9j2X!OMoJG<{C!PtA6BTIFz(XGSo zWq1KbR22o?+>O*Q-9_@3dvVs9WmM;mcA+V5gWRMMe6FZZG|^a0TVl7;FcBiE3)sqw z{obZVHx}cJ=unKJc(Dhosn3gXIH^tzePKEIhDX<(*e5GFx2DqLno;a4<=onr+_Dzw=cK8w>m{pX6fh>6-;`CN?$$Dl z3<5Ln(?eCudr7Ij$eS4$Pz=%noRxim$&%S-GbiiFByDwR{fCnb1d5U>W(r zPEoa;(77ID0Q5_-u5rJX3<7&8U_xq!RMQZTOMGr{t5!so zxskMVBM)D*ZD`&t=_iWf%E}-TWfP*R4t=+loTNAAiOysm2)BhURi8S1t}w08o{F1J zvIAO=KgnnoNw}_{n=w)ex{0DXS1dj-xDW`-i2wnmaM4W_WE;Gxg~y&-`a%NNY$Zsm zxaVoqU8FrN2)WpMn@-+`y{k~09mU5P*~E>Xm1#UIGMZzt2~|Fh^s11HSlw<~blu5@ z$r+)7EQDHT8gclso0d3nVxg)zaOcx7p!$GWHwS@ddPb=AUN#%cnTUV8dej=Jlet`< zAHNWe_Svz7l}$4P@N^--oK_nd;Mnp z{wz6v7{?F0P7F?%pFUJ30&)pA4d2tkIL3&whOnFpyJ26+=NVJ*Tnw0`MGS3sFi>b( zp?+m&a$VdZ_fU7xOX!_^7CzVLR*UxU=m_SiZ%|6M_k%%(Gjwx<+i29T!oPV;Hxpfl z3L!P3is&PH-=fzZy`11Dmi=Xp3K6$~Xca!wlC{$Y_Kz}Du*}}yj@wMt8MMSqqdL*}+@YHp zy7f%IvlZ)ctEn$a`ch%)n5>C~?%5Y&@6Bq9+a1X^7RLHu?&KNK&oi1Mp{ZsYja?0l ziYNn=Q)G7<)5=yxaywetUhXXM*-MFjm`n~^%#&l{birWYGdvq00YeW4ikM7{%KjFsE17*mY_kd?3EOI@qKZ zIqK0l>}&MCqJMfJyyG>f5Xi4;3Hy6`A+~#+M{N@FT;zo1lnXq|FGyf=%tt25Bz)v0h%+Vf8)vG-XO8MrF@2HpOptWr zn?JuKUq$90wgf9Txb{)(aXUq}f!VWwsd~(&5guvoM&7jDv_!4w7X|H6M!V4DE03wg zc9R%!o8(T@2TU#5EoLi?yLXDdRCJFNlTtASK@vJImc+TCdomHL!slzs&XeECbr5C+ zx|7uP?yK*DQWV#nINVGM_U}rNTYlFOjL^*biG!yX2Z34BK+`b!R&xDG*Gk-MiEo?} zb4T&PJy=73u@IDcwMI=!LFRXRvD>U_K_*gA5g@6jAiVCjOPZzr&>$NlbiPlEtjj{^ z0(G72JH=IH5MK|0T51?t{uqxRcCCm$V1|qsIOt{`&^ekn14Mr)<7_EC^s9v0IPZc48}8_sP)(SQMx( zU}{A-chna-#jVG@2$*dPR#V){HD0|nXaDoZbaTc0qaL>rT4cY>S-)M7uZ0V(dl^ca zg-|%XlZ}LFWnd|9J(G`isLo@Xg=~79+-K!0agYhi3H76iWREmLhjQ0@+RG`sHXnK*mREKyByc@mAMx_!usnd1_2+s!R~ zA%n{FLwTKko?!<5{l3N3J^ge}aH6x*i5lZ>_heNozzER4eE}h2U*3!UW>KQId*W&% z*UtlYJ-?7pRBeqkAWegMd3$Jzs~WZ4!E7qSMhX}M*>>7T7h{l}Jj-%viUGZtNqs0X zp%YcLT*F4oYp44o#z?%q$6TDD-g<-Z;rsB%B)G1 zsYxm4^ZHgkmr2SQs)Y`x-nbO{a-zFL?+MReidH0rC8`&V{QuDsJcxK;B1}J5L-8AUN6DE>l;&X#;Wj6MUf?zf7 zW{2KFR$4Jbh~TYca`{{uS9z`@@5eyMtkADB0aaDgiB=3a`9>q?e2irG(yZ&MPr`C> zt_+z*H<7&avQcmXKIl$SUZvcUCgRq9)T4&naPw0I!GY>6#a&?Xs%Q76FhGue?;f;f z`^FJw2g`5mXijoAUz{fmXQE?w3ZFr{(D0?x*IYbx7g@e9=d-@Z$IVTCQ)BnFq^no3 z{QYgx;bwI2l(cij?n@_RcQdjNZ{=K{%|$cP^z;`?cyxrjuW`51JBHHHTuyMCj{LH3Xf4 z)D~+nSNE@l?3&XPhynHDW^~RmEzI@4}M~{B6AL88W z|3BE18I!o+$sTvK+D#UP557+gwugg@(7rmXl@g*%@Ir-1^q<&u2U=8-R_Q54Jmg6r z6h!%>`wSp|F2>m39t};pB z^ri4ZP1Ru=xrw4ubfuzQM1tiY-j1T}h)ULr+JmcP6*}1M3I$9i{%)#LxLFdzXNvYn zEIU;kL|PHmlLY6&)i%3MED5`wm>c?;6PlROqpl+4hHj>5mP&qhWb{iPKeKSK)(yFp zROcX@7g?(+qSJ)J5oQJ5%+gN{-Bb(ZD~O0zC)(9uv4@tT(@(94!Uk%|T+_^x-EUwV z%tDz4;odU{npGvuYMjb2NZ$(@Vl`^J7kY%zV<05XNwXWpzHy*bz2;&ygckN*gkytE z?10Mo)aVXo0>k$jlk7YX{LXRBs+D|y8fw&k%dYc>e0(OgB7{Q_+_0^TLC!(?b7l1F z=OJ@rinWB2C9!%CRBH@1GlQsIgzk7x*zHkGJ2tj>$paYv8AHW}6}KHi>JV{tW?$pw z9>S>nNDqlli{sK>uBm90pyq>^Fv@)r%bYkXg*KTh`do{ZwmZ-ZN3nd93>CE8-@zym zm#$=}r%x8P3PPr6juiD7LbGVo=G18VQU(q{EH!-`?JuRV5giza&P~_yd*nAA*;=^K zDuAtH+Co@-u0@!xRiaI{1gmK0dfe99DqyNa`K&$mdMgwYC*~58{GPVR$rPiXy2FM$ z#PJ?d-eZ~+o><6x_Sr#XADmFM27TD5t5fndczN%t4`W>z)1jRiX%Znz<`)CCvg^j{ z0;NQpKG1-LyxjNW%b(@LA{^u~lz*^4=jPc%oh*(WEzEZNic87e4SKytw*t7R0DY5oeKStc8h^c+!5FVCQ= z83D}UT8oVg6{A$3D5Otl8lh|sA;;E?j%}lDcYn}J$K6i!(L;>E!}{|B9Dn2+kr*St z{L8=0KmX_doPYoC|2^-%`|fLh|MNfp^El`DxBvFv@{7Otivaw=AN&Cye)u83@C(22 z1N|&LpTYWoV1`7!(nT&O{Z2TVDo?_*xskBB-V2?;XmOyb8?@Hw#a!qy1G@PWpOXP1 zmjFWL1Dq~U%>@17OH5g?{pm-zZBO>m9d^4H#Ilm4-I%#FC1&V-OS!2DGr5=~iBc|P zl{=~nM?YI&A5Ep9KoCQp8}?_0d=n&SCv&LNWBT(2(HU`7@lgg9tLTmj$?{NOuh!_> z4a@5_{&ddnof#-7ZWV4Pn}z)wCAy6iFZP%<w`l(_2hLI4l>qvd1 z*q>zt2in8(4+GgoR-e<4Yo^arHh@;N3rk-rs#hd?jFC0*#k}FNi{_`i)Cx*>aal$zL zy$29DjX_x!aQg&1ufvmkimxX8KAJ>UHh0mAHYJ+GBPt`ff93#IV}P zjrrt)n9JrRIzgOrr7%WgUac@8NWf6zaMnmM_}m+*U`7-R)TB=dwK<{4<$)GN95@aq zT1f$#PQ(Iua821I+R?r`*hB6s5oJHVker#1UJ$EVto>$FF;lp`$8R?1#RTquz?=QQ z^Y|=l#rQM3p4fMgEWXWhA)!sTcbNGc_4J7hi&X^|r$ROQ_@y*z%Q>oU2=yUtIjlFR zNlAQi0WqRCm1uH`Ld+C;PyfaVXeD;J>9bLl3=D%^>tK_s-+v~^_OzsZa!fbBpnSF! zlr=l2P1wCLiv|);WD)$ksx$?B{|q&z|{l zVAowhMaA@GqA!$+s2Ll3faYh9Aws^ALBVHwYyi5MWCs*i?P$LntpmRxWE#^(niEGi zPr+#+3dQ0m!xu-GE-?M1roNcq3*m9wCX%flSo9*pN&VLGXiKhp(XVwgM>o|>pLe+J z!3Nkgo{(vpOF@96g8JA%gz}Yu0wFhq(<$mWiJW~P`_^;OpCJdgtO-SOemSiwu=;^O5Mn{Hz1a&u_Q*>=nwf7MULt^{M`y&)Dn1C zCv9QZ61~A*o*%AnV^EU`akWNmHV4hxXLNj)bwXKlptprUG-ed2kB1M3ZIo8%`5aXi zgp~jjdYX{rI2{K>eR+-!VoE~@;&3)8VUZm4j6$z=(l-<-XR7TaoOqG+XFf_uafono zEIN|g&0!Os=;Xyq0b0Y!oPJr-E$nE#qMu)*yKba#5h5JDO}n(@(*oTH&3U*7OcTjg zE%#r{X^s@jZ_9ALeXB$Tp-L4mE9}*p{&I;wp9+YV?kisi2nh0?s#9rZr_VcV?Q!=t z_2q>9xgCd`@=8+BRRmvZ>ZPGMc62kCyp(?7y;O*ft5olr1^W+`lp?7k6N+3|$x z+!35&_xLHcmRd4-)iV7=`l@I&_ka2c-br1_*Ph}P*iAEPX#7$_X?-a_KiC{Mlg~6iG8-}nvw#lQF$%;)owqq$rzDa(@Oa>-x+>wleJ`ITSc_qzArynn>1cH}ysi%8%_?DkapYd2HR`&Dx{(!p zq8Nx&LGTQ{fnj3yKUxA+rQ42&3{Ofu~IG#s~#Wbs|>pN=HAn<2EFuwXALd4L)Nm zLbB!*w;J829FP>I=BGxeOl_bq4eb(?*O*2&OLoU0fG9+QN{vYbQz^WQA`IUpo69`? ztYr0TkoD?-xY7p{Lm*i(7F4^J_c~bLMXN^9ZA_Mny6Uidi`_X)!{Pkq!ZdoLmD$f4JVq8$r&EPzn-i8`EH|mDp2$nmY6u9G_*a5XYkQ-!Xzt8>KN+(i{Y+ zL%^F4hXAJ`)K4jC^wa~?XF$n9IMBCJK&tWy%}n|wv{*&z^?tNQjY3t0U7&UHh<5GmGZr6|ZysHGc?B>ED7YlLOst&_Z zH`UlGQrv_Ql{KwwQ3a`$_ZHL7(w+Rire$pKln?TL6yw%G`FN-YNi(9GWCSuPQow53 zZWujM167kObsuc?)MSF16!>W&VUok94MFeGsWzq8lqN>5>FAt%w&~B6Qs|-(Ho$;t zD)o9DaaQh^y@AhAul||V3Ga!amCdM2)ZxMQ{2}#KrR}NG^0|1%`VohLaH!uQ)e)P( z&f&8t@=;4R-rI@M5lNrn@H69sj4iFk=ax#WiE+D{o@G&M*`!&yK0|I$-l6j>>4OfN zaowlH@)S;L>VUEWA_lAIkDWZzDn=%VfQ-ntaF(IE8SPOndep5S%_D|QWj7IEp*fQK zCSNC0i%RHNAp=`QbPs({qs8{%fHhd^zE*EyOqvnKjc~B?zDP_AkYR=hZXd@#i7Ft0kr>4|!)u~8Qa3UugEI2_swhB7)Z%2SI>dA(N-sK4K~(~_^;ArI zOqB*vYvtZY`W$&<4;VQ^Z!z@H!`2_?jb&iweEC6oK5g&bNs~Mv>`Sv<+rX67iixT>ze*c zPbBx^4_?Zud%Zy~=7i>jp?-`~TB9eXf{)++u3a><`zef!3IHEu!S3DfEHz>vx3H z1=U+~x}_9_;;M!&vi`yhw+l?aaV-=NXQ&?KGz(33F+=qe>Wh3#ES)}YakmvQv-pXn zSt?Yo$W}RS-J&-Y)#Wj}#|FET!cd)9Y#ms>-?Dz1v42x>^vytdodk55rcMGYNNZcC zX^wq?cv8~M6xlj5xst6*yD*%5U0kz* zQ`k0A-uTfHv$!4B)8J>BaJfq@sH>8p?(+Y;M|Ylno)Po`=}|r*meU;b;*Na1=b}Cu z-@i>B{-zCtD2cPGj~Jl4T(Ehk0Osfpj=uI1y{+kIC%C%`zWuRWZ`R6|Epx)vPferV z?1;DbhX>B%3qi(15-+B|BZSd18bD8{f>7)#;&(m~BZg8mNXkdlKo@$ze^%?{nlx+- z%TiwV_D<|4Pmbtsu72SA@4xr>ENg|zGH4D(*370N^erU)c(m$VZN_Q!Cfq5`}*Yzf>lgkc%gkBFR33*#YOL`fe6zVEkqH@SLcp)rkO>dEVc_f z{(QUhm{pCwz9Tj*=IzHKZfrWLH|K2MbeM{?(NF{j!5XqnWbr`*Sc28qt;bfL=RcQ& zf+zoOO+U|Ay_=J5BiY7F&}tfvg4VQCMRTI4E+X^yEz_4tTe1t3&pX=VjJq#8>^_oh zBAi+QK)Og@XzsrZ`JKjeNqpXlHMnYf$lYP4)k5#e?i(@MXv;+N5;4ABZ)A{jRz5o) zB-qkup~^HKdtVb~8Qs~8tZqkOBNQ3_Vurn|(68N92KgO4iexBn}LNxd5 zwDpiM-+^vC(g>Bp934rnR%$w8RikE8^y#sPViR2x5Fz_;94!QV2`#+(LGHf)zT>m3 z6GQN+HU?Fux&eptP}N|qSb-Ng$~pYq{cCo}{^nN1>duWiJOEYX^lzOBEqJxZFDJA| zIr()ZR^ch9CKe9-ArMtn2dmfkz^Ecl3;Jm$&oCzjG`b5+zVQ;J^}zrKXpbyvZpm^h zny~xb*kI~y%cSu_Gk1pk*;>v;k#YZ%bMC&PIQ_lINPCx-f5(ai+Bw3Q|+37aCq{;VIHKd7AVBc$&4R9!nqj(wt5&n6 zlx`t_i0T9RCo9m3qR7B%x<^X^Uoy?)qb+*9$9?b|b-ZNr(-#T&vDhmCJLA<2%4kek zO4#Y=-h|r?>f0ZS?lg0--Huqv7+Of`NyC^n)QEl6h*EZN%+aF4Y%B(!}l)^tg0i{F`pIbtf9HfBql?YBHG|vg&89@(x zuF*-jsRkz|E!MkH$qnt&u%Y{uW#BAs>nX2g(vJqZsUm9e%T@tQg*5&T1Z;hwAZqk+ zE}IA^n-JZ}RBf6_`H98tAio!?(}3K1r)Z8AiH8ZX6dt)C7*L(NWDh9%6QPj+1bi-C zkGS;6hG*cH`y4rcr5%S0-3Hu!M?cRblquJQtRS4f@%nY6z;2P;g-(e3cGoANV1ZrN zEdDUkEhQz|pNSAoH(r{?cb`BfqQ+Pxes>=vP-?puI+e8tO;an{8LC>)sxWLYL=df% zk_IEoggO|bT$esMcFiZ^u5x@drmjaHg!kQvMKwyJjL?(xv_u^(lN(2e$}FF8JiupK zE9g4ZWR5ZoA%?^DLn#KBP4qcI_}j+FaAGv9)}r5R673wSt`GK{F@m+2vr}1L z4_4etVK$ARjnjgDmeH3fnb+5#HXsq%Tv;ua(UVKrpm4BJxRpg&3siid2WArEJ)B@Y672Qv&n#QB3>>igK9{?Kzoewc?U za{9|7Y3^@VVu9DS-}7r@-4H^MM$K6Xj~hbA{2?4p83#+b+2ifK6pZC!d>y^1lIm5HUVdd~i3e!=g3Ptfs@yB-AW>z5wz- z4ZkMlmhIbf%IlWw51tWEmh?v@>$fLF4VVA+836s|l5UaFEafTgsvuesBdNvO2Xy0U zk8F9z9-vsy!tsot7p#x zK7(ed0F8^#&ecds!)m%o3Nq^=VWtR~qCK**dImvPKYWG0Jb}{*-NMk7n)N&KyG@_R z@%!^@QV3YU^ieqeN)hHI>g6r!G5GSob9>HBdzV%wt5CMl8Fe{cKEzCVPSWe&Am5OYU( z_A;d>i!nk!%dpd2K#A3Mq&cV}CoZNEK$s2{0{U(Z*3dpZqnpcvHss>U(=T&;u5s&b zOxYa(1>O4BgpmM#no~V4$ZtE`^`834jDBLs)`^wr^&#Rjg;2 zUB~jj?&;1Z)aM25Le~G;T|3sL?kJ}{%jl*;?Q$sx#OGQ}E6Q}=XHW;Qm0|Wt3z?>! zC7M=dP!q|e*uLRt7m9u=4|2PchcOX!0|Zh^dOCTDUeT9AVVFJdMO>O(dgQ!_2Bls) z`V#Ce(P{e#Q4yW|TX!*u+7-DHnpM7jU62d%^KBD3`!5ysMb7;fEczAXl}}j+@^!k0 zY~x2gUth{_G$5Sf2q*~lU{DZ?OsI5;%ikX5$%rI1CNb%EoWV~r%(f+d@CoXTOWG$# zWImw!p0JomO}*Q}zK6CwgdWZ(5_(vQ6PQ_vbvTn!&~$6$n)QC92Fm^6piRGA%F9qj z!)z)IO4|}wYZ=xbAjLm!hbjw{%A{_t*VuI4VxG(+a!2fg)Ph+_m^j>aFO-rY6Vj*ss?UN($5qEt{r~~Zw@b(j$M^j~^S=W0d!V+xrLiKq8B$2dAa$iR+DME&5)B!p>oCqqyU&)@ZGPIlAdl zHR5hC$rFNzAQ3@Ul+h^sJjd;YeidgWp~&c$xvXsafP1xt-qSo4;bi%$#U@eykgBVa z4kJuUl=sQ)MhZQkFg3~BE7myWwH9^-a`C=56C z{M!lL^x}pQGDUS}XpS^)FG#3&^4i6%r<+O+$n2RQHJi`P0C0OLfcp#0?0Fzt_oE|N zw1VpDCuh_b6PhETlSOqHKx`$#v;4XeN3fIG801)e{!}(9>jrgpjG0dflRQ!7#4@@& zE>V48_Q8G>{SN}QkstoXT>$BCpg9W?VR%3Qa%^@kn?fWy18e!#3H9VpJ6vbm8dTYe5T3oTG_@POZ_QU z0amgRFr733!HV9+bg;X$+<$(~?77%xFW+xy7nbXvv8V>}RTu}6d?U4B_ec{m#r`5o z;iw!mUacUd)oC^k0PR%cT_)g1uDJb5hG`*;I<+b^^*+rfnP3Lo5W||C6~kGG?c&G z6LWFV@ww<{LY|z6G@{!pa-nR3fK_oK6dI(af0~J{swUAaB!4De-=a>B>E1X-?>ltc zOIFRa#29g54Ew#_Y9=%xb=Ix}=96F4rDUNfLKdtxl{X9dNrXYwLBRHcB^kQ=H;1yRG~ zrBC{ch}}I1uInPjooHX1vy#>4GP=3q{I?s}!{(=iie-1;c9CowIQg$ywiBgff7HhZ zN3G%}jN6R95a7|YisC9J?Hm+0a<3G(foNd+M6?~+3s9l^NI!vgp(t;K61960v6aH^ zVAyTkX0bEsz1~8rIQ9x>3 zeIoSl$SW34OECElV0IndpZQ47&#znTrh)Yq zx1N)2Et6-p07<8F`Tm<$ey>G|YSMjO3RrD#cM{|9`A6fHR=0i1CrYl3c|JP&sa-|! zEWGB7C${s&$Q~j_v0+YtU7Szl&vunO-}W`(R6shtsf0@2wn-x`8CxpLz-1`?{nd&e z=|Kb_+&^d}QYOH7QU_bHvXB#FjSL}eqP{34ISfTXn3r-=Q?mvL$2NJ&hg5`((ZZ=q zXmzM6(U-s&LKJgHu*q^ZM50f^qPmwq&k~0&iQhwVmau!E^{DlZ*mg8Oa}EmfS5;cu zip6i#LLZ1x3G&q{RC3QzAvsD7Q+E`!L(oC_KJ7hSn#}#spFMb@HFHCCt|)I5ruDd; zA{b3Kmz8F4k#H-+h`ri?vzT`h=Q1@8wvJS%LjTG(aua9kKs!_H-h{~uMYbmKN};@! z6jh%kAt;eTRSVlw2*1K zr69oVA|a6;rZ4@-F?Z`0eRYq2d_q5y6C}mQU~4U(qccECQH~L_?TF4$pBK1wz+SEK zXAAn7lXZOJUg9iaQKHw#hGVel3__I{ZvHSY1z8(t3Ene^B9)VYdfehUCk_`{B`fN* zQAzX*J)4SVWM7HPlC^?XR4F8>@4xThp&!}92t{V3c_dUaR@LYjr1Bg!n-KRZx!=_S zOk7GbxN3aL^+^K0y1`FRh)!c($#59=^+80Mnh8}p=sbG8m(=c%3^247-G_!yBn#)= z{{I;hr4b73l)|w&# z6JlkJ2(eddls+P4MpBtKHFoC2Bx2tYm7~vvHfeVvL?1ZMQKh_rq|NGPn*AFQe;i;@QZcMFh7CGKgHt_NALjZStj9YfE-PqKeMaecOw1hR>5A*FkdEok$FEo(iCV-b6Q|(PyXrv=h@N{dX2qrB%wVw!~jag zF^i=?pN`v_Xk;TR{{uycXnKON=+0wqw}L!|;qy)cR-;DBn#v^9Rt-ieA(MtU*_evi zgdKwrN%r3gplR{j9rjeh?6S^7E7V`2#dH&}Eh;%_g(4SGJc*{L)hK2qPs!r{Bh(5& z<(Ui;O*iu5l}^v|f!0~oVu70Hs7XP)w32y|thr<1P&+XU7y!h6VzGc}TH?GMU5^NH z%=R#wy=-m=Tj;W+KFR6khV0c&hC@K5`?sG-U}(1LFw9tSSICbg@d=IBlU1Y1W;9hl#DM5Wk2%IHdk zFVe=cSGX#W-*$8}3#Fo;Mc9hQqc5SKD6&<=RgvPl!{?g%NUnR`iot~LBAdA(42wIf z=$8SM##Bn~W0F{1LGK`J6lU9yl{VD~owkrtd-_&3y8Sd#ooIAhNPNLA;`WJVngPim zM+D`OK1CRG$0c^9G1oPH3Efe0!EAfBPiCk9vyU6hzC~{_KiD!rrbzQ@JLVF}Zu2F;Ahz`i!?Z+T)271-7oqZU} zsnlU}2O}+9E(9f;zO?xm1`duF0tO9Vn}(23*O)AmY#gJ7=J`3_Z^YCv(iJJNoA@ zr1=Bl`6-Y-y7?4eSWIdLRNJF_JtpvuyimYYt*qCY7K)te$()cps@=NBtSZ8>So03t z?)JPS*a<#ArMPWztD3nF1fyw>bE1|YpKRSRe{Y3-Yfd{iOh4We6|BBA6)M5n<2JqA z6vs}`hr7hFUSu>UIX<6L+a zg!MbJ1@ajwZv;Rk{<@~Pk4&zkAelMB%XYASY7^%a+z#w6J%}S@J2?;gGsyvIXA_Eh z&*J@-Zs7=-!dBo5xcic&yoy}>r;g22%iWh2EWaaS*1nKct8N8V**{j8N(QIwu0^+A z9u~8V=4YOW?Pwb4O&gd#liY&(JQuee&*+#o(DH^ng?PV4%}ba$5$KX8zP3ZZ|Ki}n z zMS+eQK3iAL&-92*gMa=~fQM272vyS(5*J<%n^c5irLt^1S87`&hb@D>saW2N|9gy) z>xQjJ!Ul zdV0kD7cyqgWyQaH>jZ%ERf}$V4A37>Xph|JY}3xuX6~&S*?q_C_pb0~bGn)1?7!?m zDXNPc6(gs=C$+L$WY}GQNN~<9Jbg@eT(Wz^p)MUN%nuKKH>EE%&53ZgCrwCz#sT@X z`vU?t|HL!@L};49!PWnCB!B*X#22u6Dux)ghSledxbb=6Y)_wyK?NbwCl|or1c*5L zR!cV%Tk~icLq>HAL#D$0=PkO2{5CRs?kTQY>a&byVYvCZh+AtGAB4n1m#s)YG2DG= zfr_yBj%DU?(O-)@mn zpFd7Itu(M#4b2xXX%|)~Lrq}*k%aZ3MMD{KBX--#DJfVjbj{>yXKHb>y!&!4L;TCb z&>$2{O^>{X_1hZL!pS!}>SM$Hk!JOdLA_--{#HkE>sh=f)WvoV?UABgMiw7>CZAN? ze04@&%9bQXai^-!75zlEuDXZaBST*(%tn*lE6OXWDZwb_9}B3ldRMc*RP_Is(==G5 z8&k>PVJpS*JHoE0&J?RJMQ;Ajk;T^)ZXjji{VIfIbr|R1+(X# z<8R9L)K7DYJ1+r^ml?&4B3oB9XC?b{%l0jyvX@Vearv;EK&6}u14SRtP)*P5w?84yC-`M~7?d9zaWSQSYbhY>wxzwC5}c;|aE02}#Htbi ze^SbDT_x5~*TZ){VzBvDlM?1L)XhEmIuef;q5%Xj2CXG4hZKnF|0E=<|FDnOL~IZ3 z!qT?mb-O)vK%bQoL5|k4a`Hih#hC>34ciKpoNW9g6MBow4%?F9HIuEM@^MW4mOqbU z66ok4pp=Mr9<0R%dp++2u?GkxWQ0UHL)@k_Z zBEcs6xkP`6MvaI^RE)t}BAObu9ZEvM+CW!Ye5uCOt?r|2PNEX3Lf7NVWc68#yOg}R z{G)s1=P7yJb_T_LB)b<>FltRS@?PZkBfWk?AG$dHH!+Ux6GLO9eZVW7evkBfDxq;? z_boiNf|xpKHc;|A4z`0pvJU1Dtb}meySWkiSRKaS$J9L(Vrx8DlMdl%!$!$eA)(zW zAD?_m`w*K#z;3(y*A4hB2T;W`{dV_FL$F`HtXm0=~> z&dO_x%_D;ltt>@c_+vbX5CXC3#{k0^!r^><>gxbOBvXB$_tIM$jq3W8y6we4V7HfZ zdb*JFt~6*Z_h}zw*lFAEwo@KM^8}fb?TJu72HKGf8M0ZC+zkye75n6pqoUlCA&D>h zQscIwON&P1OCzp4okyKz$+|lsv=%|&6{$W#oQc3yLO~g~5Ja%G@WOo|_mTF2s6{s+ z;_ySzX*Urg47ceC$Cj9By17b}E}^-M_d98`QOGt!?tR&`s6L9;O&{(t-3D~8$6BGi z3?UEem`_V_6=m~cb}jlSp@^O6%7y_-cd52IMK_aL5>m=@H`U~bnMWL4xssq=ccQ}^ z?8h1OJi|7_gG%*4Cy{A<(+HyK*QzDF4enj0;i z2Y@3;t?{Kpw;f@-lTxe;x%Pd!{*55z12yn9yZaakZ7bKb4~(|KKcF?|kJOQ@{9{!M z6>YHIO@9Yc+lldDn~U@!db@uRG8=@ZQWl~CZ5kQm_6=A=m=$6!(#iFq>RwDoU<9JX z`df4$k{2cx{tEqo>MOl~?gHIhtY`aDj2sYol+={*cL3D~Z08Bi;7c=_%ealari3fY zJsq_?yG|_VI7f8o@^qAbE`YqN~+F_ zdtNqtEh)}Gp}fMha$ofmHO2@G!ttmTN(;3*8in>!W117GpQ9eFXN(;fHnFBP1RK$l zo?so(%I4M7P^^R&9xTb&NAxAiM}pD#Leb42-+-yoCQ-}ZYnANNow#KV_QEm*B6Lv= zwvyk?G!b8DJm6M(1TReEQT^aXk~Z>))<<>8Sixv?W~CM=m4xI$Y*ZfChcb+UO4 zRwZliv>kDdFe%VgO-Q{;)LMp=#4H+mlaY#bb_^!fi@^w^OUw?Xzb~T+_z@pO{M9u| ztx(p9CFz3#8T%gp>;<~WQS+IEj+Oa%L#nqWxXgd_iA-{Njvm5=j^=_Yf#h!#2EUwQ z!Xx3sg&^F|A($vc92|s1g*cz++f6Du6S3xXDZP1klOf21+Bxb|jS3mW1@)=;<1fFl zBIK6U&(9J{m=O7k$=LM!T+@|`=2%mmYvNayi8}@(TGNxu)+B!ScRub|kidQw}`7Q0c7eaejcY<<%^a3@X;Xn5TbG5=g zzaqYMNz5hbK9(8royX&~s&@@)wLiE~fVd`Q236+J79vKkYT3SJjxe7}L*Nc>7AngQ zXi1StqWnCgn;Rw{?lAXT^wCmYKZSON+k5oM5u7Yh_qVYAqrXRgB#syfbuAQ?z89go zbD}vL&aV$JSgSUzWDE?OC@-`tl)}7mNpu#wt|er$?NCo1F_>0pFV1NwMO@BM>m6ph z$1F4105mP-w{IywG<0V(`l)69ogGm@^|%DBu=moa54sNRBiSltcO>M!efx~vlR{`% zyArpmnSJAyuqau7eoArMlfT?iJ((@6&3ltG_ku!E^Qkl<&|dgLX8`dhxAWdMW)ZhRKwJ=QS1xZY?v0hg&p1a2K|OS z&=tEU`Iye`wvlWXa9g2?N#eVvI<<5&s81C6%3zv;yDvHV0xrJhX=j?NpHs{~fTQ##)xZ!lYgl&f8niu2f zX!Ou(S1sow^>1|8vv%Zv17gZDSZ{83LfObt8hFxF>LE+yfgQNNzxiR`k$-GQ?0a#* z92gdD2f9vX00{xJRs!I574iBOT!twM`P$fut`8YbB#GUKF0XCj=`pwi4Rb{vzZ43!3V!o=3l_nLck>yl+rZ?!&>{W^(PxRz1NeniI$RPgjJ>GJDT4 z{UkDbCjCHjF(F?I+n~CX46y7ra{SGf?0QdgKA~G!uD@ys`Rh&Y^hJ-`_Oda|9J|X? z+NGjCk91SmKi16OkCa!UBegZys;4hy!?gI8M!i=gBOb-(i#_(6Q0_ zI%F=P><5~GO2{bIN{~_0%EQ2Dlr_TH)>>AsMM9vfPa)ewP*f^pLs*q*0@+&Jo_t|O zv>rfp;_9FhMPWckfl-7#gyM{R>wS=*pI&&A)ths4AIWd~9)_+fhceWpEE` zj%`Aq5ZxvV zKVyi^k3aAGdmSpv1i48F4rx;oW0blAs7AeJR~Vz*_c7(ZL@$HyustD1P$^@ERRMr- z`%~5r!H?mUAoL8CY(2;K=EF#rP*FC7QIQ<_bh6Ww;hJ_nUH>alR*qu&LLR&;Yi zyL7}aT%y{5*|uUR;ysWoFUvxnL0ypSn0-wQiNa}(Bzt#Ct`VaI=&BpkY<586mBQ}* zAv_frY=Vgqy_Z3m%*nOg26;wlg=$4;9b<&PCo~N@U4P0NIRS&2#sj*?kMlw#`XGQ& z%2A1Z4}GFy#VEq_zL#x9+lswN-cWQH`yb_^sm?V(A@?*S~`B(lHE$TkAp`ApN!HPyMoRvNoM zP&nf%!|pZtozx6*ol~QIw+iBZ#hzlPBOI2?caRTcEFfFe={X}TuF>OJ* ziAHC3hP8jqiym-C}hm?q$Z8lAt)UN$|^2~`V7_TMs`L}y25JbaK| z*ID|bLh4=hFjzb3o|1ECG|~s^HjJzQW#t(*1Sjili)uPTj41%wW11A6skQXdV<76F zH~IdOPk*Eb5%uT-e{v)?hRHtEhp>p43ZZ#HU&f_;qPm&ot%n> zAT!l;gu8q6<+*sY_aX?4Iwwv`{Gu5B?d8T#p8TyJ9j^dclNK5M{j#+ z?Lt04(}_4yR~<)RdrAA|F?V0e(|dz5NP~bPIb1}tO~9?%v>sLTMM=9*JpZ$n`TKDB zufC0c>w@~CVD{}bs_v-XIl`Bk>crx6X#~1yYSvTpv3;wcohkZhq@O_p=vHBB#o6!n z_(F026>w|C{6m@U-Sai8zj#6OxX0dD+(ro+aVuQt<|G%M_eHYJ{YFPOGi=@zF`C%@ zDV$G!YVxujxsg8CBh3vUzwZToc-PTQpwA-+M_m?E_bTDkE5M+Z?xQai83aE?_yOF9gYLmSRqB9-UF#^c3&k z$o00E6RglTXgjeOURd0^N41R<0P9AtaP#U;ETfGYZB+a71);RK=j#J?qD|N1VlEAh zOM^%y`VrMS+{ah+FJ2OhLRS2Hp$=$k<$>5V_?tV_W{cl{A0B%@ZiiN~EloAzyN)4w zx~c`-cz`%Zn=Cn#Me;C&g!>h0Qqa$H39L&Q643}q5eh2-bbW=|wIkKjy<8EKk-@;; zQN7sk#*|-R_g>Kc#|5SmhbP^L6W``ddGJnOsBvh>?|LRx&+S(y_}p@~7e}}JRvt+G zJRd_ybsy1;>O`cQjMjl zDDH!#B2N|JSbp!5Z*=G;;I=wFz@;&$kA-d$jo5#y2*nkkVDqMB{z*^vaW4Y&)Fkv1 zjcGJ}39EM<#a$p@d(`tA)U;&##U*y{$?h83vne4H`(EAjR2MVq$BO+Mmh;~Z%>O^% z5fg&+c}HjQXA7~|T{q~Pd%}7n_OZ^5+-rgWVGgq)0alfSPDaZVsWL$&Kzb@5S-@ziw@I7PMR~!u0wAt`Pq4vXyvjM)qOzMJ>79Z zKU0!bq)KjoA{UF?wWC-CCeIsYAA05yc|SnZOBp2Q1-AAqK8W0ZA)`KpZXOf0NyP4M z7dijWJM7(_kN)rHY(59?{y)VOW&OoD+b4?tt2;JKQNfb0Jf@Bu{a2wrFTP!|f1I;^ zC$*x9N~t_dUIzMH=#tfi!DoizCJk5_DI-YgiD{!)^=B5J&(i=VFKKtOmB}^-diS6~ ztxpWo=Pk3ZJ>&L&eTUr}is`cyqIj3y5Q(PNrk<{kw9AxR(kUkQJ>`G>1h>AVdL++? zc4?`P6}DECFC-ydML;Y1!q6_I-RvaY?rBvAYiK z4c=+0bBF0Hi_mR%3Du<-O`=N`;bYPLu%=RVESwYZZE5U zw^NwL(9RXzobRGq2nrCXj}^-2MgjJLg(Wmg5u1xEj)=l+BM7bTB5red@QG)) zX8E0ls1(hKr9P5$R^2G<7WS8pellnB$)1o~_K&hrFCtk2&>UM?pROWq1Ldpa{ACr@ ziAf=iDe<)yhYnK(c8`Uw;kHs7v-<`@ql(AF zP(Bh>q`O>zQn*!z-L~j$Ew44RB7&<9TB7Jo${kRWV-lo5jG87N(DNB_Hjyx_&I=mf zCmlopCMEXKrJ#B~h|P2eB69T}_}tLVWkZv%1J$Y2t$rfFjcF41J>?alNGPjLA+C!0*o?tv zZZBKw`b5zjS+ct~h(^#}u^)G1xGMlr`1AQnqoPpe{M(mO3%Xu31CyNUvc$9jci*78 znOt9KyB;PP_$V$pS_$oQF~^i8aa*HzN^~SfxaSy6MAF*{5mIJ}o=yY}?|M*zS`I@? zOw>;09L%QTc4H-#nMx?H^ul?6m?iLIe}o`4)JYI$j1g8FFdBP#POKaJ-Q9P6o9aY2 z8MZsA3y;pFscRatyIO$7O-+~=)aMyyW^qR)?n6u5Y{;(n*iu3>br&gbda~OZz1q_~ zTHouWG`P(D$g8*#gG8;{wwbVr5gP+f9o zGZ0ackRARmR&8g70FJeTQ%c5_Q{ zvcym9sO23tuTe)rCOVvMs&U(7I*_*9b|*U9>dXp|yzS{`V&z>J(V1pzv1TW8k{#m| z{nW|k%S+!EPnM&tw`n{yh>j>iaSeLkqPF|PWrzI{`yuXxY-mnoum*cO}xGtEje{jpr#X9 zojRMu<7w^ctW5n)CqalqLz3thVP1%v#q}*rO2Y9BKTEWTu0VxAC>_mlF5x$|CcA1; z-oZpBV%;gSl@%^`=V_NNA#E~Hm|mz&VH8eEL$2F^YI^#!DL4O8&w;a=N*K9w(q?@YI%YO&} z3rWm9IBI2^K(^}8t!MHm>eyOiIhI@7p~P($idH8ND%nW9?= z9~}k9-;B7ePb*LHBNstfWOpeR!})tJiABch-AA-bML!K<|9c;)&K2##FndqLxlJl2 zwhH4w(kw*lF}e1b%Hy^j`!`DVXL|fS%4<3Arj>!fR6YC4oZXYi@$U=A)!gj~^MdL! zqdL*FM~cg5&)XqO5VbIN_2%n!tE%QS)V;|*%xz`mlJol%`z%By}b z&y(iD8Sz}uI_1O!5k`9nT2ao4!^I>glup9+Kv4X&rVo<>W(9h+6AD(I5xWk5dxtW@ zTUOHvVLnBL=Er*w$qW4B6ZG9y9EI|XFfTAwBSS>;Quk*I^lA^Qjxe7Jjq3T!5iwQ+ zhdxoP^mIZrjR=RW3?@{yaL2#!l>R7Bww!_dem7F~d|{!m*p+Nwo3os3-4Q=|j&*O* zmvgc!537xAWTq3k>8XgtGccV-yEMR89h3Kx15`$wAm zn}PhMCZsHj>dfNyf#PLFG$p~v_j@Os(tZNbM0^>kPX!SiQ_(H#A2T-a#Vf`1c_8G9 z4$J(5ijW&t???tgeQc;t#WCmT4?{wNQ;0D`R}lNSwU+t4qH zcq-?8W^?H(ml-GsXVR3DYiMRzj!rrDK0?$aY$4eMCYtqYPudlm~cpTJk^k zHDO*7ox!}k7g`W9JjXmE8YA2Ls*&L#Mrk%C8_+ojKwc-a+pwxVw9et~O9*W77~e8|-XKcd@{IB6&pSW;4=j z)g-4nHt2;xpIDA|3v}P3UfrR~g8p5}tFpHZ>iISP)fHU+EFo7ED=%PVln~8+X4qW{ zo%;0mBdX~~adb#w!@&xzN(BMgRDf*N<2D^?R};=knuVb+^q6@QjG~)pvQ5D5`jN_f z{LKc{1#W)26v}jgnBue@(`OyJcf9^(wAzC7yu=Kgvk3E z!UA-z%oJJGGJ-Z5jgklRF--|4B&47;%Y(@}(d%S!b zaY9sevg*CLlk{{z<=N=8DHL)sREjo}|K9H9?}|*Q;C&Fyl(VC|to)1=N06+2U)vP6 z`524w>HMz$f5(q>bunirs3C^8X$6r0qH}2HWCab$TRj}I96}J(BG1r;BNiFpZsU!6>2~CeT1}Ck{&O*_7eo>^kK&kN!YjSHii()-KyKeN!|bzKkrs4U?;$`_DV}7l!(%#8r`O? z;cU)66qFN%tZ*L(CeL)T?Iryjm_7GQ{xcgEmw!J@lL|-cQmty6YuVM;uJZM5dT!OkqhN%Oy=TUg6 zS`cIvWDx1*hW*8a*(aXm`*E~F+pMZ_eexU+Q2ybKh#%+Eam}xrPX25n)GBp$EQMvYChR5iMpp}T zksq`Tc`jR#51*lqmxN{F5^Ie=nhAeClYt~wHR1Lib+;nAA7kP-5W5cZt&hi~d2_$U z47#yNfl8rG<~q^eiX2|vp!!}YS$P~YUR0429=PWzt%=i8xUxn|rcYlGy=*H6#~U(- z>Uy$|@5EYnk;#x*wM@S*rWd^R20jT&L+Q|qnOF%=iZp;krZ0Oz?zLk7WJ1&v+}2~- zfZa%tbb0l@rZLR3IdTB1|6HRp)=}$UV?`GJ&;qIs8 zM$OiS><$+13q3=uy_0UFipkMRC}F`Vd|p!A=iM>f&Ge)Zs`3|Ke7>%x`(B(qea)wY^?5dXh zsoX*NfC82~;$niIriLIyNnx%V)NCpn()H#rl;jzdIjRvonwlp)ijihBKG046I3DI` zfwG103Jtq%LfBjMiP+yh`AKRUP@hKQ;Ka8lM{j*r0@%qnfLCnf%DLC6etB>?I2 z{YGlTzC~3nl#*pej1=F#CKeffS)$KRu+s@)BL)feWhvoTDE!F zO)aiexgFEj*KaxciDLeVG@kXTrCk`@u{i0KH$C-tC@UkI2{ zoo7OIJdt|fwnEYD=5MmQ6qd&H6WN+%o5=nVy!>B#%$>vSWU$aJOrOQ{I)LYIllm0c4)-+a6PC zW*(8anw~lPymEl4Kuyuyp6b!cE`%5u2DsHvV zLtpLii=6f-qx_^nulMr2&n@ci9$l1#i(}Nb7N9KYM;=l-!@MAzOod+P1N!!!Sk-8b zU{^s^p=LAUd?LU^<_Oof=;?&;fBhNkO$Fb2U+9WXs9MBN!$;ry_>mq&ROW;q2cx(Q zkQ3lC!g3;Zy4xyQA0nC&e@K>8U2?EViPU3ceT?8EWJ*HmI-xb_7D($)AW@0}c6V^G z0-)<9NGQ)}&!a2m3oi zw)SMJ7Q2@Mw|$a{_~6u0&0k6z%uJg1I>@Li_=zJzWX33(*i z$n;~4=_2)s#V3@(t|PNgTA{5}E%s?4L(GX5^rVdAx$(JdUIx3(sF6TAqcCki@BR4u zcXL60m6ryqpTP8mCx2B@J(<#%ie{10uImQ3DacC^>JI#M(G1BzV{7?+g@Py7o!-?l zNL2NRrm1AL%xX*6?NCQ^p=B8@7LauVlR}&+GI4T>K0wzI+76YaYkP2aGFlwt)@$sf z1jJ!0Dn&>%9bFdkUaOi|H-x@}qv;>%z4<5Zh>@_{F{Z~>^@u2A5)H2HV6&6PKX=4h z{MGf*QfMt*D`?U%gbX&}M)V>hkYU6GLo6Hvy6(mmIw43x?a@^3i6E4YczZ7c=*6kH z>kVS^Zbr=rO>sZFD>m{Q@#MT+2htF1V?o-m}4YbKqICR zKH2SdQzabmRs^m?O8RK-ki?$(>VVn}luPO6HPJ|ep_7%iAMAb;Rl&5DC?TdiU zJ>4wTqNO|-TP)d1ldS`BDYT~nMO30CP1zr^ooN>u6+{p#R><aA;z4{P{|t@K z!`CEjQB5nKmo!NU9o~s~#bAGIS`qEHCz9!;8&5w;+Yzlm#e;};5YjqBOzvK$k!w*X z97?XMWcMxt(KL)WL$EsiqX?O3$X*N1jZwB93B4ThAfl1L+-_#a-_vO=_kl@N&8ik* zD}tCl4D>}GXdGe@9=>l&&L71?5Zv^;Ix7^E7^FWiS}0o93UEQH_k)`r$naL=0!XAL zPg$FW0x=~~F=E$^&}BAzaq28G39M^9@$MeATo8{Z#M}^cfoglP1Mh`mr3PzO1XR#I z(Ya$p*D3#~^XS~+y(Jol&l!QQu2krhUzV>ux{U`wu8(4@ux|)%LA#XApzh@Rf|ciN zY?ZjRP87ii{V}-2E@&nHYxl%(_Gr!R_5|IC`GtxCCiqOzloCGNPlkMs1Vm~9DS4iy&M8j8+<9( zp!B(3z&G!ONwHdEj5*M;j3L$yu_&ldGYTKE&dL3exfH_u{nd&e=|Lo{)^K(Sbt5*q zc_ygNd@e<#O~Xl^;g6<-+~S_!qxKc%(S`ioYAZub+sTw?llz1*f(}(3o!Gp4 zPB*udFDeNgsymD|n60eMqBFFoC7hOI*AnWY8&7?avwLJHZ-n!gD{)b17fBo$%~(t( zuX^DC0os6E;Bj{IdrO-p%zt#?plY~Lza)E)YHO(@Pqtp4p6qFpEo)NCrE^F+f4 z=SMPVzPc0lp2_4jI)(B9_sOleKJ9h~8e*blga>KfKaPjWbK;jiCtUmWj=0~CHk(Q* zR1&L4AkHWB#}lm9;yTp#kZ1IdAET=dz1|Cua32Uqb8$4OA3H*RqUA-uXJ0X)dPZ*V1TCpNloMzTZKd5RAq)LZ_HKt5H7C z9p&uLEt|I$rY)JNGx~{@_5X>6AbN`WL{ptZc_kEw!M!D98oQSPx}7VU6S2@Vjo4mB z4co^iZ5aaFHw^7kz6K>+Zqq9A8wj~H8Tp+I=D~t#p}g*~wIOOvwl+jlQrrq9)9swx z&kY0{*}icIRhvEYM6K99md&y5ptupeOtuyWvHgXhy3>!Pv0A^IB|dj*f10>PSGq4yGP=N6Rb2B{Y1R}L2>*|Pj=taPpueyoQmtu^#85MS3S{cimO`mFQ70II4jP@CZp<)}fz#5SO|kn9^WMh*7^R4h&hhg+h1wx@(7ho> zGisEE>rbtBVhwycM^_!?-JUSZWe_TJLHv`WWT+~!>CJP(%d3=6lIWe!U!Z4G)bY{b z^O8_Hit8Fb zvE2RX$3oN0Mb9;P+2USozgy6Wd0~<~JJITtp51?BMh{(%BOj zGG23~^pxetf##y5pBTzpIp@VygD))I;^2&S{M+{^?+Mdf!1f16cU)pKi@DiARnu>G znDl&UFQ$Yy=VbS35UyK!zTLDKrDV`ZeQ>-y7vt3J9tD`QGYFn|dpGtEdO1fK&HQ&> zp{j-equE7VZ-`Cxecg6H(t}7GtnZW(pY(yVsSnNah*BzbNSst^rZ9CbYuhMRu(py(y)QMHGlw8QGa!pH ziK|}15KSxMr*0~=Bo))w=NePX!(gCKs34QQ-SyZ-3P3bzf-e#}+YZ)pf^cF1<^0XPr~OFz%V`K0v; zee=+Y>xxd|;uxb)ebPqjHTs~@(33*Z^k~5c(s*NZx>mbGBRtsD8rdkuCZT!XE8OqL z>=>H8A@oftB^0@b=hO%2`h&HyvmyjepH)`uXoF$A@hpP#P-^^u`Hl7>ll189*bRcT?M`hzJ&FlzkWO@q`U!)pRp-NzK< zD1WcKP`7+0IRV4wX88MIfEuho(F$K^`m`}Jb;PAK`H+c)Fvzw;HezXun!*sHHKR5~ z`@{QII@x>XPAocYdR`4+Loc?(uZP;T5~>D=W;k7=LW_v#eVandJi6|Q!!uE90VRB3 z2;r1BD7qsx$sq=@#UDa>6FT~1eJDi?QS>$`{8S}-Qj%r&YvH6RTyC)Y#+Z>8uNp7k zQ|9vd2f25Jx+(Xs3URd17O{JG;O{FXLSg6drNfsNyB3Xx?&X;pja-9+RsdsCwglMu z3_o!ah}iT39=1WkNE@BP0UvBr(j^p}&@6o!36&aS0YLsO*E5h94N_l3h~Agtb{A4O zGJxF=mbi!48CVj!2fU(71u2?HKNY=%t&)CYCfgAi-jx6YG1Ux{8e)HVEnFaKsTnE> z-v^6a0XWoX86K_l6$g8AsRi15oT;=ljx>5ujx z(lqqXo@3v5jDPnWd%cm6sHT-hdaR`t9F)@uF8mD%DY$KnY61(11Zv?d|swLW)EYk&4)6*WSB+-Oo9G z&R%PM-}mnbrRD86N}3Zzb25bhtMA0|&>c3Ab`ILB(Sau0Ky{`#JcO7Qwimf7(&vrD+C7@~krBE5pf3Iiy@m5~9Gjw+*VH=u5Jj2Blf{PdHf;mH_uQn-{9X~5n}t( zSfc;RT(Rpg-}_8NcQ$1sK#=vU&P6^o2;I+L~eW-Gkdm9vky7dP~uJ;QwE3xq}D6NE5^W`gL6oKK0| z25CY<5Tq8+RgVhNXdLh6_*}7jEV``8D=E15_bk~#o^$dh;4?+N(zrvUxQ4zI4M_D^ z4vg}R6ztiyr<){Q)=fZpINX&G)Q~}S2l}Zr{JK#iZA(Q7G%c@sF@30e5m;JHJaekvM0n`7j$D0HzVFU&%I78dC9;3iD@{LD zv~$^0MyI=dWP7e?P6K!Up-@BDUv#6}m)l3C&pY1yiJba8GJPV0iFO6q4Xl26`*}#7 zfuWtHRCtm>$6N|0?KSPfV%k9Y>>!AI+lisXB%@yyL_3kB>NZkbNv>13u*8GMG>UHa z&NS6%!sAPsTpnwJODKgiC>1c<11N>boIDSLsKne6n4%9A{tteLIbFf!x!kLDBl@Qp ziJPsYeHZzdr={jIv{J<7TndYgSp3Gik>_YzK~p~OcK?fW8F3m@lM?1r34aWMxR^=< zShbKj%-KmYhOn@fcz|#`q9+sLho|U$jsD>i;ujv$-d~WtIwblGsAEIic3?(VRy14~31;oCTr{ zWH)IoWE$PcYs@xaDob@YjC9Q4VE4e1?NZ3{wnv4?@lHlJ84%xyZ3aURMRO`=xI0J_ z6<@5FYH5meE8nAnxSJMNLKWLR%EqD0^hLnd5x;yV6HdwNX_tbi%$|x#&)|Zo8qe{) zsi4gV`QH3SkkW3EVUIoK$2aW0e#YUhW>zl9Ha*#^v_8vBnxZzKYti=*q9A+s?+Pt; zEzY9-%n0?aYVg-EK}teMt|ckp%ouDH$aX3@B&3N)VTtoe zYC0mmu&6#TdF^kfZ3%JEopj_9d?5uRsrCZRsI7N|Dc%5zsxDiSkGm=sbd!0lvQYvQaV6xprD1V-K_ zM$7$PCBJ(kBFoPqCqdw(cs!ztLhjwvWUHb;&*udH3mObCTrm=wRvN(~!N-{;27il) zS}W7c5ajQDkLomfn*SI$*Ls(74#l|HBpy}}! zOVs&-I*FT$mq#%t*dBSWPT4%*j%$ zG@F!lV~ijqgVtj}Pas+KChm9$x5ymG&n11;=MaHkuq)Q>XiKVkFAZ4VOOA+f_>-wP zX%2SXy%$GLV=!eQ^fsjg<($umAz+R@sujbEFcG&+RW+gmoQZ9>+J*EP$uMHDg4VTI z0=tP7XU!;eK|EU!jgp`3lO1duP*&3<3Xk?N*-|GRNf$>)MSBzn&+6PVdEH~LI|(sV zX?=IHru*THPGO$9O&Z99pb5cAGoS4v`IVucXsYv=^jq8pE)S14p7)8lP)nwl?liiU z@2&1g15uyJYj-;>bxbWNY&0@#2wBpqXjzA27^#Y=phlbSzLZ*{3yR>}XzZgsNyDmW z7Sd=$Bm0cL1_27udgP*qk=jcJBE#=#>Hr8zRGp_Lu913#wbW!$E2_&} z_StdkGZ{#HzUItO&N0qMyj3nSWA^IV38AJBk1)IGG3z2Y6p7IL&$cO+|azv-&5Fd>hgN z=qW$CqWZ!ahkF_MRt}YJE{Vha1XNUjrJF*u5xvz(d?nA_O~n^`5Pc5rR=$A!`;q*u z;^YrJ)tPWm7at4fbo;)hFC)7T0{OM3d>!#6bn}4fHM&01of)#%{bo6sm|o{D6ayRAnqr}4t;D#!Dz@u>^^x`6LLd8HQ1v#SzUcICs?@u zzqWv(xhQbkp2=qtDoIQkBZbAi`cY(}Kb_LeER#RjN+TV@*o=&UhP#6l4(U+*kt;_0 z)iruLCEhgzk$P#x9)x}uNWn;EfrQO%f!VhiS#%g#~hJ(tcd%=n7>xa8Gi5w+~*q55}MU6Q$^ve?E1M_cf@Mm-Ok0&FQ zie$%GpGqS=edXzZOF7ilJCv&C#3m2?ox(fuSX_pDv zYHz7qeKAm4HKx^Lu?e8|N4Y1Dl?)(OOQ8(rnG_r?qGeQySUSmMxpzmx&UOb#_dIn& zOa+Q)A#*`H>gHBxot!2^(@LZA?w;~vW&`{@UU9o6Hi4Li5^=X9G!1q!BW8~Jvcw)d z`LPkYO4AC$ z4ad6~>o0??4aEzOJM^ev=n^%meA{!p<7k(He)=qhjW&we(=ajsCT~6YRZCY&fb#B< ztmoz=U|NMeC_!M?f!)+3aksEQ-0s#ozr5;EKJx6}%IId1{UgcoC|{?2ri!V6hy6oC zn?YE1(mVm`#$oEjVhIX&2=s*}WY8%!u5FY!TB#6m2YG+Q=_-n)?<}CaLOpwDV9_ON zS2~_=z9xG@ajnKiDBDExohRG$LZ9mled*Z07szfjlNYdf(hK{dkQ!n8p24(GTx*(z z=-7ms?#BU6I}=l!=0qGpi?v53jd0A34B59kwD+hO>6bZu=}>)%s(bX!mXJGkj|*nc z8?t9>$^Gbi;=_AV3tVqxZ%FrfbcUEaF+BMGXK;SX?w9U}?ek5IS?|SlaypSf)WKnE zYo+cEfzWnD|KmZYKi7?jUd%*f4pKxEMWS99;k6!bg))+W++p8;L@YAm6RA%1=}IO< zeSbSi?nQUvrE{6zwH(x$XfDdPa^SZM zNkaFNK)X`x9?3=%4D22YS`e}b`gXz>oI*F?qNcc(1uppm3KisaO`l14lkTCqlnuna zaVQVRyNcyUfyv7b72N1*;Y-E#10{63ewqTxgbymnjeK9eiR1g)&SfK+z7kG;v()sH z9CPCEnNTqDjRX?Pv{H{QTe{0JweWoFb0<^e=GIZDxbe81XYr}WJF!~Ty%+)vT>0*D zfiDfF5?jTvnvTU5nM3872&_|x;qARYC!DRsPSXcC1X&B2ll!;rq`A%<%2{+#pfAp4 zb2+xcFKxR-x9EQ1x!(1WEQh<*3rnDioA!XaZM?vD_I>?eZ*$fOWtDsw5TC2^{I zhz~B%tGN^!d4@lkNWMt!@QYl+$=Z-0ebIhJXUH}^Gi7lH;d|HjW|;E{_H0G48oO_0 zUr5ee%10)zda>v|NO)niihl0!6Dx>ZuhFM7n$w(Sp>dUG4tEVv3Eg1OVucJkD~)_KLL1T@xI;!aQ^^erY0_Ur$_Apb z=uW~9btjH{yDva+k=1t;rjzWS>W<=gKd|}(#pHEh@mGjf7VE&Ikn=(xNSrSGB44a6bkrKGre6xO z>Av?24jt;=iC8gzaEa~$W-sq$EHcdbsc1YFlMxY7Wrn$bhxS~)X0Hwj5iHP!rl05N z%m~_2Nb|Y;xR-OL4yfP~Y7fC_+}k4>r46MENGN zK7nrKS^SPcx3GU8D8=M;;BeQl{^CT!iK|Gv5EcZ;&xFS<#0jJ{cGEJtVAdC6bYYKR z8-s2m*+yY1u?Oy^u=%Pde`Cltit1AKv(w)T*n@;Fnp&Ejp^=a`E{>WGNR)7Os|7h; zDpXX7aRL1_lC9;n?BA1`z#S!z%+`_JL&N@Y(z~>9`kjyl8X~@z&}OmhUw@d7PNJrb zJp5k*?HmbXo`?-$voiEWYCIaqZ#+J;g0foCunyM3LvD#ZNdC$3!Z3O5#csF}WHel? z=$9qUnM?W|*uOW$w2^5Ds2G{N>ac5JRWP3ki>HtPQ@xnoGJ`hzG3r9)8Qs_3CmKb5 z(}@**+e`Bs0vs!Gp^fo#QV6uh%%;TXVEZp#c0bpRh$?d8rb>ZJx#TSj$cFdgg!8UF zS>Mqo|Ni1?E%cVzL^4SBX%n$YXk)b4>CulOG`}b?+giAFPhW_*{d_*cc37R#YNhb? zxlobZw#BE65L5T)^+5_3Yw&kg&<9i_!b9Cf+POeW;ZTFpFtzKux%X^?MZnmKu15u9QD#X@o*p5KbY zn^Q+S)6AcG@R5GzMxSblD<^sgRpf*O z=bIZ5ozb)-QW$?szwe*dE3|#GGnOk>m87K)p-V-M>UzR@GomG=@WNPRQdq#)u<2eJ zi0-67PaN*Ew_rtQrnCa9@r6x7QJG-rCg}~V#_fA-?J--~@ONLD1CW&#yYFx}5?rc! zFM(1aP`pK^*o~LsqmMGQP+~`|w4$G7^b_&(ca@|f`%I9{d=nDNn`i{RN`Yl*0FrC! z(_8IYH<2mg^p)fXUHvhG&y)4 zDaN}wMgzxvurH1(j;N7J4B7Tn`0cYNYNS>US3fbRAeNfiN9<8h(%B~m>dTULmaK!5 z*xhGhaFOj5Zs$egVI#+LO+S$)PIsd9=?jC;HIpA~QHKhB_e7fAeMKyC!o;EXvLE=9 zi8OpopX{NfFoN#Mb4%a+lU9lgWNrW~i4P1IIG1kXg9BPe^1okVE5-hxaXUrvR>F(n&$3Im=#9$1@FXdE9CM#)7OE?KllOJ z*WaT$p9t-()M7ha3}!n*%`zvVgdgG<`XXhV6e{V5h1%9mpu9>oNC-r&@$-V_)KQ(9 zakx~U%05}X$iyP}xbdv?ZNDm1B90>3%+sA<^wZwFx!=) zFYb`-1JmanZ@-z-oI<|V*gA^1(j^{cFMR32Cwuq6Bxq5n1-6dt=1PQ{PX*CfpD02R zIoy?IWb#tPuffURRZ!TYljq2xFU8sqz#KHo?+Ksu@IV$>KNSszX(Iav(o9WW%4Xqn zXig;*X!0tdJ)cIJrDFTF9@S{vR?$u1_-Mw>S1dk<{95Q`y49$ds2s_)qn(K!q`VH8 zDo7CGpPI1y&~x%_2|wJtF9+`6hB5HyRg}UCh2#hXr0DCVX=@iIO*e%*o9&}y_{3X& zscJmNOQ6x{&M|0>hNh+s=(Zmn$$(KzX0jw6%N$G!!s@P2HX4uK*HWz9Ig_8c*~;W{ zG7-w+dOK$9sAq3P57GBRzp!=;GSjyBg{EfNyBBCvNaJ-piXOyT$zt&VQ#axu^zPNP zLP;rpG#yq|9d4_!SF(R}?_Ho|5m6r#na z9(M>7S3S*%rCGSq4Q}!}j0O_j)X>eKJ?Ip?C(XXFt6z>xpJ^`t zag8q|F*&~$WU?lXc9hE%?;r3qM!?P3m%bA=B+YU7qe!hP48Z#*|cNU`kDpO{WQJAJ9W|sZK zf^6rRe6o=Nhz36|gsL+yiN;XA5hD!U^g`p(B2(OgVY;HRcuDcYrC`U>2x#h=Yl zooDr%FA0kY&7BGM(4(84`l1|dse_gKnF+;g^+witpNsAx+e=vS$@jxZkKVp-Xcw{ugN61~vNz(lmy`#E zt)c$mlwe@{o@lT8hrER64NEi^@K7Hxl1SC^CKb!aQu}o(yTsDmmUV77yqOa zJL9hxmmGCLDXz7+D;^p_ zG~MT4gNjiCHro!id(o1Ww}S_>Sb()Ge*F`0Zp_k&Wd=7J!e%GK_%T;Y1n}|y1iRwr zx)H&9u{{hCVwdPuMx1bB94&og;ZO%FAI4E8jZB0mABPE$)}uHtI>~sDLL{dzjTC($ z2;yNBdQys`j!Q^FM4+yTOfaIp6<@}tMRh&}*xcIRsvt#kw3?8MfL!||VD=;|kyIEY zakjY)6%s37DFTESswg_4Ur0cgAPGLZrAO$rU#fVk@fdQxq8>QPf`ph(ri{8Ws7_!+ zs#~E|%x8`JKm0o5v6;<_obnjYYuJnr!E(SAt}jI=xTb@WZ!{F$iK! zE!MiyRG9P`#bhBEZ*$Y4K;1fufYc-ry>30am&Vn!VRXY07ZYTf6{66F2KN*YK6vKv zxsj<-o2CDsgs*w%NbVs?v=;!)K*oV~$nw`oOtQJpgzrI0PgE=PZZ_}a93W*eO^0T@l+5M-N=jGp2l;K^okb&W-?Sj-$ zM@%8Li#;l)&y&8R6Y+dBQfJs0u~knuv-n(#gI^hOUJ-31%zM<{l3yju?kMNH=*{GN zV;1o?ibi8AsE#>GLl9D8d$bWsk1IREl^v~vN3)3J;31%123Bt(GeI(n&aS!V! z3Lg@^(0;U!^X2>-4sTlc4nBXm~S4VKW9+Vi5m^zL&!(uHS#lfx@bjBX~ zvDExh&8)+Oa1yQkkKL%G-=feG+ zyzQ|^Pje!{SF`OMnPR+7p=U#Jn`yRRn2N>krw7@XtfsgYv1oN}g(5LiV+|#fgr01# zX=j=@e@Ygc?i5w8ft-`?wb}@tW<; zU1l!={Y>FkJ>7$dT03T+qzS5593DnO7Fqp)y#Ccc$wrTJl;jG845AS$Qqx7IFT^VF za4%VVb})Y`i(>cK$P{H^C||?n-!m+~w@23<&0g^y=L@_R4r<6Py6MS2eLM0wNkuCkKanPSJ{QX3Vk)jnR%4!Di6$b?M$xI7PVi?5 zpNVA67NxwW zA6*j{GgMKKy*@~hHw-}LmiE0fx~XOI=@xoVSd{ohM)hzy`u2BI=^o3M4JgI_8+Y-A zqAT@C4H^)=`DeF9V!JSO6V2>di#_%P>j=(JJznBVO}#XjE;4%|0`p)M`HdOHmb(X* z>P~WJ>S6W$2D@+RXBjtN$=Uu}73TXBmOo75_*~Inbois(KiN! z5~Y#xIUMdQ4);q`gz{CQmLmIs?q#sjO`&`(Lz?4-6>ZDxokk?p{?ljjv(?^_Z=hRd z^b?)J;|j6UEOl}Mk|}6k820xK^_fgZZAGHk8a5vqR^Ru`zjH-@HWj4(^&STlZzVBX zRW0rPCC!PWJ)5Ar0-tMa7@g*#P|3oZCu*1zgJp^yPb@%>jqPwa&5<*OR4C-O7v4SusF z6u-ExSpf0DC3=4(Ua!Fz^lXMcT@fb*?cKTPJP)_})AsQ>zBCm7^fQ?XpPs<}i229Q zG57BhmQx1X?e6ip42-%!bDC418YZuM+^(Zv7N|b3`qmo1EZBZ+$@F=HeY2yVI=Z=7 zM-RgQxAT~)BRE4pwcLDJ*2>BEJBqh0?!}tJ*DhFp!4Wb=b5>BD%fQV(cuyLJ%7e*K zog>=RRJ6Clv~H?KqnL74lmG3x=tJv(X*9OhqXqcx5ugp_Ye6$rqcD{?*bVt%t_o7O z{JECs74CIGccpB8D@X>HC2<*)Q+21C3a_+e>xz+w~l({n+~^WC|(;vVYvBnfvqEF zzt;#|yh!F4KC<|@7K;4Bi48o^o@Vr=X7Nwo2xFqWPt=NbmE-mulQ)Oa74O|_tA1Iq z`Qn7>%Z&V`8TCYzDNpatf^Oz$PAs-wpxeOY+b=|0`Gv=_my`}ub%N+mCz#C1&@<0O zVvuxF>P1U99x+8e%-{Zn*Uxn$0*vsevI+6f8eK@|7WW5Y*Nxn4U6u^q*+Yn%GGbpC ztx2129EE1&8PS^YCV+%qSS4Re)SVDDJ}u%w#5p**M5XALg?PeeTBe>s7J4x6d`d>) zCzfuKJ`ybg%E6x3XClUybWS@41li+&1juuWK+$849qma*mo_d)6Ukwil@O7`-NBn) zgis+lV~9J=dhtlBJOa|wG( zoXUuxn=$%m>wZ8m6tRuiL!_SyEvui%1R`6LCWnI3NXU@9wmy^3BA8^=C&nfCR*gYN z-71HWal9k$8j$oawICll@$iX46EjVkl1G`W_|h`iE=R41){OM8kPGiS8Yy6g`z00` zs_P`tI9WxvEBV}A(hP*$%FpN*+T=rmoAqT#_=Ip7jEImU?UTA8pl4n@*7WNt(U zm9@l_?5--IsG!u3(vp4wuNb0m-<3=!M;lTjVNa^}?`BR4WkqXwk5eWK&O$DGjVf}~ zY?=ZI6K!QW5k$ipd~OJt@buL?QzDtPsc|Bw`-rK!WC8B*PP9-_-v)t6B6vs>PL&Xd zi0Nc1Dh_bsf)|X~(5i&cf!ufbO&r5NM`5*t;GsEj_`=Z5v``IeOV%(pOr`_(+KuAQ z;f)dtP7#Zm8rq~=^O*=h&9WoD$}v?65lhe6m!gmAW(r>fu>(%GpbF`6`_E6_LlzUl zz&q1L`Fpz%es(nAxg8{km{g56ePatz;jx zwYXlnLqdrys2)k6&g4A_R-ErbCg^FHB`TB=Es?U~&?ruTay|^7DzZDSg(B4idFYq^hyoUGD{>sE{j%{QV)3}O$e`=l{>H-vL=%?bhK1Zj~;s7`-= zfe{h!(Z_nU{#U$%Rs*{B!jm^<42&bD!hN+6L^IJ|b)Jtu7iWo@^)8jF3%G-zp~{QH zqDleCG3iYE(x8{=XGcp{M*Zoa2@6inG=0JP?=+-G7z$A)8t%ddBlpuQcRu3|)Wfj334EyT|c@nXQt6XZ4 z6l`b`SzyQkBS3Yp$E^*M*Suq6OtSwU>V$x)4clWuQ#nFqakav~|AYnBANMV{Wv4wQq3v!mMz=v95L~wlycutZCRhGhH`7y4a>qaDY9pTu? zMp+hVfkQZ1pxTaby+&`gXr;h8^xZo`w;CJ)j3(-QgrwB|2u(AF7n+pyp_+GWfae*( zX^Q6?5d|(wC@mh1J9r7fIf#hR?FDK*-Y;Y#;KWJE9z`sT7U47j`gz9TZbo%3-uPlc z*^?)VP<6+#T`KAigpx3QYOu%1?8zX&PB$HZmz!$yp2L^o^BtVxcvq$T4WSW*9GX8X zfjI5c=~!HtCOKK`8Bq_nHeCF6vgm^mNEDeG_)I32ZYP06$_tv~ zcAB?0bNsm{WSYqfDaxw5j(!rUzR(h$WY_~_Ygzcsi4;5Y&x9M^&m#R)p8xJY@|eo= z>d)lD^}J!U=xfhB(FK~TmN1*3);q`?-GdeOrh<>3iC?~RgzyVa%`zHY7D6-0^B?{9w>Lk+ zZT061{M4bV9)0ZK(`Sh*?nGmDvY=ZEoxyHvVwU0W%tqRk&xC^IXSoQA>mF4MsG_Eu zC>EdfWa}35YE3M2%xOVak|;UC2hMil++w#iev%PR9lDDYhafH}Rf}na7k;=SV#V@p zKV}9AeKd0N-6OuR9Pf&=iakPe9_h=-+ix0_H=~Qo@^><9LKcR`{Ndl}>E@Q}uZod_ zXv)C6R^-<*0N8#(3Uzyg?zH18_g?eaAH2uxv&jDOZ8K2aQ5+r^`chEO=G2SU>@c9G zx1U447A?&Bi$WL6)(NF_ipiTm@wVgoYk8t;yrV7vyr&(w=U(igSM<%a(wvVld_g_kK^zn`+zlqpGVD;T2rs~*zIH#R!HXjs8@zJe`3n?wZ|R<$4i-bh;Uxa0ss-LZd-KQkD!G5_o}{=qr@BIo#U zitZ!jlO04cLy681Gc98EPSDgaarj*0l#)D*X-Sx5m{e%nO@*pk!ka5}<}l8Q&@|7* zCLAPZV4z%Bi!KXdu76?mWZ_uRfAk4@Iz=z$^1cn0-%W@6?2QaO%N(^k5RVmhCurv3 zOQ)DNP<(PDnPF!OX&jWIdb~h|NcmeIql$v=y$kZ!73Ie@F>}(8RxKD!zbXm2NkVW- zeeRe(t+Bh7ZZ;L?%9#WN4w)e!&X1;zslG7OUtVF4f#nY?x`m)3?kEj!wr*+8GjE~eKN^``KL9}toGaKhv$1#@xZ(=fwwyr+qGDoz(iRz=14;zR5% zH8zbQztTeEa>5GnxoBpUmmy_vvKN%E73N7sbs6cFk;nfZu_1r`C&k`-_AGF`&@^Xa zmZO5zF3+B}@tOSUOITD#Y?*-+a zXnbiv%lQ+Gd>+kGvH8;NP}=TAWWIl(v9&}RL@g+^>4a|e?9Ud2EOPl9p5ms#efmbs znx+MzurkD|+-=6lv1R&HvwN>#{YA^-Q!lwlkm%;3QOvgBb{*!}iSd)O(01sf7nV`i ziKTZ@NU-696#(w#PK*?4(W98t6a3|h&U*OxU%c*qOyK1I{Pkb|*Z(z2DgM*{^gkWH zR@XIu@h|>G&d$!5&1U@Cul*XYUcLImKe#bM%W7K*DXd#bG`-ov%@&p1f+!1dzHzC8 zD+}>LcTNIav_=gAz8Eprd)(V&LNUx}y9lD;(47PlsY8W6cEZW4f(Xs~h%XJ@+>L^< z-9tmOP~&vHIkEUcoG|)Q^dUYIVR?BKn7-a$4mYC`j3a*Kj^K^MBIG(2c1URc~l(JZAg z82Q!)bfr;gDltqWh6%|4d3K9HyNuK;p;)O;N>osEt3WrC@6pMhoL1A%0{h45`MIS| z_+-;-_X=Cd>s^1ra{aYjrbGoC?~7%q>cQ?bc5S8UvWn`=P@QS&Gc^V|+G8YN1D}=H zw~lrp)U$r>s2(jiet1eZHF&4!XGUBmj^fwe&JD#TFnQ%i$ae9hC);`a>5Ql)1a9`+ zGkfM?;QlH_oEF#z_rDW(cQq2{BAy$-7~LgPyCO=VQ=caAG0do=rpypF+M&6A1>YGePRy-lt$c z!}bd$hkI@e^s_ZgpD32!)l6PSifcJUqY_t{ZZ4XKW+4LB*MB8?q!wJ##7$KSRfOQg z)uuj^_1jGp^_hrCv)%3V(dST~!OfQq&FLUWm-n%FoeVFg@;;LEY(&Wk(0vq}%_!ET zQ6ZETWbbQdLNh7f2wHTwYdJnBI6j(DpNQxG5E$DmrBKYbVVpvb)6|1c_QOVUVG2XP z%IQu@p#Ux?R1fF0k52FpFXW!uwb=2j5yzZgn$+=-#`aJ1Ovm!PZ_}8I#yt z^^^qZT(9d!~&^nLXb=aeqki$vAI}a|!V&{p4 zxN+&KNB7d~noe@DLT>2i*@((b-gt^@Pqqsb*FBTholvSwa$;Orx>D1uEY)RBJ2!Nt zH1ge4v-x7l@l3Ra?aWYLPR7iUSAS;4&6f?TRTOVE%kRrzVTcN_DIt9SQ1kYihV6Tf z=FHKo6zx*1{JTYD`<|v<#k9WFEyYO-y4kKGn=fkmNyM!U{WMZtCViTdK;vwq@GmF4 zxt{Z4yAURag6!HP3OEU7fcD%|z1MPh7r!rqubeb;k%?Ad)Gh|6fL*nGjU{?O1~ zc=~C&ht4C_do9gbz?XsFeD;{*t0^%x4CSk2gi}V2_Y{YFLWvWr@xbw3w!#f_&g6o*Sg@fPNv zioI~i4DA;#39Bip^Z3Hjt}@z-lIG5o=J5&L*+lA$wP*G;P`+x(t}5KR!BjoLX>r!t zw72e#FfuP=zH3(XmIrOo`Z2uL=5&4bZ_znL1|Ng({ zmwxG&KKJ$i>_7X@_*;MLZ}C6>&;K*a<&yv8KlxAi5B`JyfWQCu|NbB9@s-xZPSQxn z%UZ(KHPL$sD=Z4aw0x)Kvc!NSSSuw+NYl!6qiaRf`{K1Ykeoagv3oFp&>vJEF$BpQ z=vuV1#1ODX5mInfw~)dW}C)5g}eQ(I9+#O4hiPd&|G*}bWFcppnAmbKTQ_I{VJea z>B#4wrlix;TL^U!ecGd>uJ$vZ3WcPtXk`-7Pa>>3`rOc*I@}H>e*jm19MnZiw=0BS z-jXO*8o%&xuY-?E>^=$CfTiG&hE3B{UVcA41g(x``4jrcY_-iq-d9?4e`(-dtQS ze*c;~OC(LJ#OV(KHR> z>Xh0$*vUp~P+3NIHX~*ln_2YcK)ksj96)uw7%L1eI6k2FtpxJ{v6JLp@}K%l;{Wja zY3~yN7(;h|iEboNkefAOzn7_Jkr7r?f%d!hHZSD$6#(kqov{&-1nV+sd|Egh(OE|O z-nmfuUf-b3R)VM=rJztvC&+4|ySP4(C2QXH(FuKN>CPs%0`^2-de<8?YDKrWby@54 z!T!;qJNax?5Z-b>Q5??{*+Jp99f!M)b}6A<_6W-#dTdG^oIaCeW@1 zYuiMx%)tC>H`KKw|Lqxm7HRMFsHYBhkRgH3p`Z7tUZFZo`ASi~QM~@wBH{fC^TSf8 z8PiCd_pHwLtY6PDHx{>*qN2JCLa)jd(MyxlroD97U;Nz$b>ql(QuKFIBMIvVIR^$I zyPpPFbl7J(`IYRMD!}ZsC?Tv5g@$31EJ(%MJdx^5+`Xnxdk%Lk)kWF|S}DTZA+q?i z<#5ljeP7d5qQB{8@>s={JWhS0$=8A6$`kTLtMh_*XPXvZTAGvFfWU656E!2^CzkyK zhiNRX%9wt3K(7zjJgw!ngNcMj7FPj%>^OY5pqt9H+E#)5N(Aac_@_3oS>}pig6FxYh%QVeGk4?X%pKEj*N5h-GRO~*GfnNDK z(#{m^%+gPU_S}56B6J4#$}xEnIscsvFaM2|WNqx_erQfK?O9;{V9WLoRuIKKub)Ta zM6?_A3Sw>0M=h58*WyCu3kYQ-<~{1Y7XM;hK7O-2x^o6E5QRs&Ud~fJl!~8QR zG^i<~QGjWLYWe1uCsZG_l%Hf|8%6PhE)9Sg_xmAeb^5Bu9eUi0tynf^mffQz$NQ1X z-}Dr3gxS;09sB#1+4G)qeMs(u^2A~`ATDLoXEnv^n(~=PulLeempO5g)8Cm&FzwY| zkdSxo(ZNuKWcM4L!F}2h4_kQp61*oIk79*?vXa;8ENXW|ceh%qf8O;|Yee?@J^$f< z_#g5={15*F|K)%AUyfhjY&QIl|KtD2-}oDUgFpA@{u}^*{jdLZzV@}R@elvuKjc?_ z_3rbK+Xzlq~ut(HcC2A81THh@R!ou55ftbZHbHHyh!Xk)J-vxA|F^wK!QAo}g zM&8%i({%7}vgB$Z;xoxUNqqZm(C?_k6^G_jgtU_v5x0v>KND&k$i@kY8=eZlc4>%z z<~>x1%%1iFVX9jQ`1xPBLvbCLKWXSoOS`c2ljX?EC2_%(mpq92-h^&uD6Tqm8!)v@ zC#o-;;r5+04X>^sc)G8@H%{G$t3RK^#T>h-g#z&29JeUQQlpL5_~n$C8_e4qDI{`3 z&?Q=3q&G4W>iv(s?tYTj&tjhdplNZ>MT8qGaSc*gCdEVFqqXqj&0>K%Sqi87^))mp zK{*8Bd}}RVTP`TP}Oe;@;y9G$I*Hl=8L;dHm>Q?w7bXSb8&FfG7pvL`oWA<%qq zKH5#|UhHpYFM9H;hIW;Yu1va%-s8ZAZNTh?(#@zhbiiX0wDb6}4O)!#N`(aAJcchU^m zsL)R`ifhI4qmKQ35#0;@Oi`Z;f85jx(`e#4mucxTCdV#$Z=#aNMv4BVK9xboAmGoo z@;it8HWS2ZMl`7}6mNbxA9I|Ft4O{LW>(^-;*8d;L~NdIdh)A)X#@$;wS*Lg#bg{_ z=(ZEB$o)%sGujSYHCXS7ha=GkCLgbb?)Bb%s5|VlD?w5Q1o75@?`L-X%=QW(E@t?X z3HH?n_D5k>ga}m)*K6j#(+LOvT{`DL`P}R=K9B`4>%C+xtS<41>aE*kG>|#Maw0iU zF;ZO?M6D>SxZ=$}sl@1{^P(>TCa)`qeeF=W|rhg0upY7oZ!%*3HOLCWwl% z?uyr$G(Gh#E25vlW@>~soi24W@Menja&|^5^v-6fXcvm(-6U3skgYZ5WzOLnHQD`! z?R<)EG&&`zM+MDiGrs$DMzj&#D2i)w;@iHSp$d<6o@^rt=*LHZjvS97s6Jk5%4eD% zUcHCu6t$mC5=wu>x2Qlq~WF z_w}!S^{YI7{Fq<=^5qQ7b}`NjI5n_JR|nV}RaGE7q*`7?`{XWcx5C zoJOStV&61rp-Q9C&4vC{pC-#UcN@glm(pNFlLTFj@V4C{P3vcYkju^PbBLuMEql$& z8{EE^$5=+%bC2>0x7XOC*y@FR5V}jDuKHWScsGx<%ZNK^@Ds7fbgP6Ej-)MUzCzkp!b^37m?gskuxn+m)r8 zIb!LcYl&4&H?wq8dwc(eNGObiAXW|fSWEW9!b%}s7Gk)No6#aTChOYh3}I5ppJ~aD z*xCM!uAk&S0sox6qW6M&?xZjv1mV7W32{<&BYQ(Bp{SvB0zVHT^ALr$k}No5<_O7g zBsLA<`UZ{_p^(o2nnuJ&Uf;&5n~ zss}9tg?=W7ylnn)oP=r*?HsC05>-GfH{CJbhI_R`#)Sl)1}6uYNn+4wWS!YMWdO8> z*y&r_*r-qwPdsZW&MWk)#U91NSGef%+%D<8Bwb!Cw(UWo4u)(C#ad_-e&*4Q8ZB)H zn%Y2Rk~IR^R*DI?lfA;{vOo4yXzuiMtAJ?`I>?RKnh$%%FbIlPea^zu=kk8GD>2L% z(uu=hfBMecO84^K)aQ|Y0t9*A^0m+>iW`sHdF2cr;iZ;seqD;Xm|)Y61RjZDply(bf7$R0Y})d6$0!=$O_Ko!DjvEEG-&oIly z+TI7bcdyrivUm?~*XZq0=ta&F4~JVT@WJHaXMFuEYKp-wJ?3fuEizOJmX$_K5f4ZD zPoLo5yd@+<96-z~GAH)P#|phWO5@UYgj7GEMF_2qH7bY=Yt&)@&=;Z`8<0k^0rY|D1 zXP(K^Blc=fY=sVJYN0K+GhuXOTQFOL3TmWLt6sDj#T$8y@{N3-P$gxZM=fhvcM7*v zN!yX?un4{s^9kvJpam*!d$q^B-bjOB87WeS`-JkBzwGC0E#}q~X9QIUk!& zZ0voM1|vk#R9Y+4@hp?NqEEr7ea|1p!uO|wi2TjJ`8WCP-~MfW<2QceNB-^Q%a>$X z#%i_t+}AHJFM0X$hl&SEoAWCjZkS5~U|Ko8AG-S-faJxa2C4X0~BHJpa&jZa;<4cu1xRYDW z#B=9l$BS1blNXVjvkA{C$MW|ChOEwIqM-n`j%=fO@zF#1oR(6!6fX_+g-5@?=VV%O z?6R>a%APs;nI)Wb=*r-B8uwCMwcJq>-H-Po&3V9GRP@g$mdGXv~ntbH?XPXxD@O6z0fvQINIpl~AqU+I{qljADP6Te56T#%q`1(oj z6Yzh$S5Vi)`{&|{({vK%*7d{>9>_X=k{;7qRMVn2k#IPQ1}&wm$J6;O#R|~78Xnw5 z#|T$zvHt$_C2BS$%qC;;m)*3&jm{i?n$cVoxJ`%MHPnCnu~0C!9Y!gt3rG33WAVFd zV&Mpj61#4&M$s)~0^cn%R^M+p{kCWKen~r1Gz-ygm@bkXMEJaYY{i1Rm14vmJi%$2 zl^%uC^@*XIDylnDAT2(Xyqn2qR%~b+*nB}8<=hhq;Jf*z$E^*Ef0|L#r2Joe0~zY04m2HFO6@`8w(7a>eAO>;s!GNBYyi)e3a2$<~r^zWJgQC)qBU zd9+c&+_=pW7;+3$5IfKEZD93Lq&hVmFIA$ZnX$R)=C{ey68ahmMib^)vL^@Kh+wup zE6BDUd+0G$2TD=houG5c3JST!7Y4VEsJbD4CV5$5lHoQr+3N#7>4(gl4RI%S)074M zorN?wuhxRt8J!%O0{XMps3OPTS)wKdYB7_0U4!0B0d0Qwhv@TD+CTmU?7Bv8kDt>| z{H(5@RZS5WGw6gqm#rHKi>)d-*Nj1}mf{+;*^UFDu-l{aobA8+KDvv{{@3q{X0>W$ zAauG!x4rzSI!VI5cPjgM-AP7JR4l%?!%rPIUn$9FhFKr5ueZd_miX{Q^rFdtqR(Xj z>a&b|BVzHxrA*$JKRD7YGL9FCvKhtHA=`N_e$(JHp<$U}z)&ixGcjdQJ{j9wXtwXq zal0A$_JSAx1{4o=bU&Qq_6iW1)Z~RuMY;r@Vj|m#=snAqW)yWdrxA1SNV6_bjm8`` zz6dnmJmPl_vp3{#4XRf(CqmEUIwLw^NgUqqIX+a-8a{r0j(MJww=&cSIrt)uxjp?P z5?!F1ODJKScnG3D9q65^)6hxdGP+qM8dFGao8`5qIyGGXQXm!{U3l^zmgLt^+(a2P z*MWLvP`$zJQoYtg=#`l4w8FL+@pyUXWC`lWa1T9N41K6xWuhAiwFc`xdi466OVdlA${{_VdWg)|e!l62kz3EVShPgO{)1@$wU_?L!97u&-_)+H3KkNF5 zk3pY2dBR`*%YT{w>3{m4D2n1=`~yG6^;iDNUtzP^jDMayc_RN{%IiYOuZjnv&PA?*2FyJF%&tmkqi=PhTnuhQVpBK-Qx3m}1RDy1G1wuyW00V?CXOhHPtBk5f;vUT=+mw{ z*)UY+la(H_kca1LB};_97s}v#Cf{54sHW%LRNtWqQP!fX4pk>%P>g~EG#$Dc#6n41 zk{WCY!0S`3}U`>H}K2Hc}%Xn{(=tZ(2AJ)9?LCt!iO%5@& zLf4YLV`@dr10lPmq4uQ|3c-Oc#KlemTjOW}9`cClrFgleoTlHQmGAN8Elp#{Lg|-Y zo@>}I0`#qcPTrp(>%-JSbu+a>HR4uCqFD`1lJ2GHdN=fNKtUt}A)zP(I--(YYWn#; zS9CLZ>}aGh>?VR>=@dwYlE<*ep*fM);ZxeQ45w@gD^v8Pra8^&r#6ML>e~TYKNuj0 z34-o}p!;cBi7_KmE5F1$REZd6|7c_iDuIYv1`@e&(FsB57gZ%gw?D$`XIfK$yg!|| z+{yc+Z-WZ8PIZUae=8+crDSeIG$p{$jQsmB%?X+8HF)`)g4MFeG=7{utB|by2h=Xb z3ZR7!9?UI8SSQ2|l~@zm?ch^b8uH(MqJ(x>q&g+7Z+nP>d=ApXH2kv3%x0i+wF|}m zp5%FiAeOYgh_p*t)7eJ8KV;H`$UQFq)t=F|9tFm{L)A%$DgZW)dxi=Svq;QjprJY$ zkdS+rcf{5Z4>mov8p8>PGk&xtcM(7L#4MtY27NTbval)DJP%;xJs8$;a494;8HJ2! zC_t|XjY%;Cas0i+iZ^8k4M%L7YOk~>jph_h3VF@rxHmT|OEXjEjH zAOXlA19qeFg{3d81Vkz&w5~+$8Z4kC={{nT>!Ui>sK(2`_hDpUsO}wlp;p9U@8~*W z(~7>-rFe|td`#NZvEI%zK}J%|9gV&X>ijXTpEx4&Tfg;Nyng+fKlvyBo- zNr7sTjqhqnT+UG2gPP*p3 zrKk|AHbFs}6UF|0&-rg^PQSC`?Jv#fr;6RfeB@o4T3of-r4+!^XR?`WzA6dg_F570 zNO@YJe;_brH<3cb9^`uu_chgJz%RW_hI)lLYV5}HwmHRB;#iYyz-x{X2%?Z!+SmCfyM7;gbXe}e9QHAO8j_A@mc~F>kBms0L67H;5M4_ zwNBY7F{MLC&c4$ToT6SC$~T_;$qm_hA`{Ep&`%79yF$Uzos%NW!O8b~+`gwe&v1Ls z?U5>C+>GK*%i02Prb!9?F9D!3n-JWN#|;p@x@lP^T;UJ4=i;sItH> zr(l!>3iUx~6jd#uo}WC&XeAuxA}5^9Z_j|&8{+FLLiq9AEq+qhPh+2ef6iVpnV_0( zOf3iGeXhE(=|CwNM5K+^fAIlPDcsX5IM$dvgQg{Hcc^=J2+N5K2ZprjVOTLOX)Y&Z z*EPE7@rwz;Dr|00ZJ>O*hZK~l+m!e5Nn zX#-bZcl0x`&eIn`US|v0jmEU;`_p(W-vrtfR3Eg&PcqqG=TdM6r^lhs@vh={-*EB=fKpt41Kdt? z`ujqwGmXb*LcuxtZk3uxJx;e}(Bav=H=!>EhedJbnY@b3KkMlhIl6S{Mx5C6n>BG- z(p@f+K2a0qQ?xPouBSTM3%Je^qc;^J4TbAFxK^<%Q z-41(x%KmE?DNihl>so}9oiu;C?$L)Db*ShcozpF{M4eH$11}&fN>nLE62ZwiG?*O> zS3l9T3&Zq9i;8f(U*Me-%=^dSzPMw{g7U3m{bhOVlkX%)sfU{BGtoPCGfgmx@=7R= zv*&RARmb+5Evw(jn7*9w=9iVwyB@dLPYUk*c1<@csU8TTsXNH8HQ5@@e!r$&T8?K1 zyI0g#CE1mr9{ns}D~0>kg!)cEU)D4xL)V&E2!f$I(R~H42=gA3dw7{+8fZ@f(L_{K zBh5;AgQ1;0|-8^#t{kQDuoc7JhIE-wULjTThS1 z=nHSYHo+%5b=yST!Ht&e?OY}8icrdmH>q(=d38}M79SnuKD*jVgHe25gieg8x|615 z-{4Os)c@vJr0(egPAM=NznXwn=(;DC4)1cT)-up1U;XM=`7i#9|AI%49^sth@BE#=!>|3?uL1Dg?|zrhKKqPc z{ncOn!#!Dygn21KnGnDSBDd4v!KH=}q)T%~^dlg=x6I)e#W)?-trsElBm?g-wFt%H zY(gv@ePM8iFj^ogBN+lA({!`j4lrtkGLjpjA~JnXw!gYHBmZ}p#`#=Ruf*A)conF6 zNdRx>GVSQ6vQSpv(d65JFRVC9kb(|#g-^w}M>=wQOuT3XSM+-xl+`F zC2l43q~8woh7FCy8EP(G?lIk>Y;5_J|aIaz3dYPB5H(TWpKHy89J zzmkP{yr+_AOD3+}R*Dtf$z~M|D6fb*jv{-TUe{2#L@RuF-QT7y`&{T3Atp+if|nnk zi4#~7(q;QVKQXA}Fs1^STH}({pwH!Z&l1uhVQNwIK3376&k4CuFtisAZE-D7uUHVK z_pOVlHjHjKLlY9MOgB}CVhij=@E1x;b5@K_8__7y38Y}M!E#!+UL03KUI4s+5t#LUU>(FOEAS^H*As9Hb6>u0)8fJ|+g7S*bEkWeMl-VlgQi^?S+RCxibq{ft`HX=ow8mIB!4q%gX)HU~<9jYMVT{x5`jVUmkhG!kBF8qrb>4qK*; zpcU=XqI*L>P%;%@AZR&|gEQzqTT>_YrsO zh1N99h)$=^UOr>pCvmZpbYwweAxnlCZm&`t|h4sOdyd z%~mKV(TSEUdXJi=Aj7&AbV?gk+oK0geVJoUPl(ox`7nb==>%+PZ1ylD;lZ#lNr-0u`^QtB6%K(T4uo) zVzlF(&_f5Lq?;i$Zzb!YxK^0fP$dfA_Ps)An;U5YhM-_y!upH3#0yNIp9FA$_A)>a zWKwl1A(4vyXu(LLxoQk5QKwZ*{~j%Ur^!<&a?Ip$>{?LBU=mcKD!B4qE2N@%FwN$oc@8~HW` zS6gW&gr+I`zKT*CMKz$px7v>3Ga70V-AfIjTd@Og7g9U9y;zpJV?vn|;@OQ`Le>X(%jYIF%2{!{87WnUP*`-@nAQGBoK0v>m-1n^f$ZvtI@C0ePl+1J z@4gbx@XICLBBP&b=HJ`MBzSS(3BR*M@1gwin!Y#W|I31YCYqG$e&A>$s?|c>=%FhiJg%8eYwpbV z{NRUovDcRDOB;M|F#p>OwE?h#js$2f1A5vK_l1bJ&KtsYhJ9;3zhUQ4KkP7D!|dsh zK97VQ8BJe^X#LUOhI*ygy(jvc;;I+;x)7rPI>@gS)8~=Z_YZ77oY1T^<;w^sz_FeKbz}kxlaHhE`Pm|e3h=nEEZ4}vYGate!Z3urg?!mv?Bh` z9WkUt>P$%@c9Eech4`kwy++-=xJ{s4%s6~_img0$FMCmR2K#0QTGQQ~3qt$)tq9-q z40oNOPD)<<>r?Vg|Pi*+`{EDwFUh?a& zKcM~_cL6~Vno~u$kmuAb6t6|dTHK_ttSA<{AyYJ`LffkDdSV&K77bj@DBlD&A8Puk z99*V`$%|x{+eO@7iuQgM>8#k3*JqK%-5uMjDJnR+Wh4}V|I0UjKp!-}^XVhPbxD5R zQQgVtW{UmeK(vwKcQm?-k_7DpF{;nS5aZ52mgeE+ONQnwU>+Um_Zez$nLU@xhRp|# zUI|Ji4n(OyX~oqn+xDFQ?k&yIy*&~?d5XKdAk0ge%PGMOdqZUMvZcCk9M8?jPtVpp znO3+;vK~OFB3MPcFsJ~fR=Dd5e()J~K7+C#ym~|Ideohh6msZf-`E{c(}I|3;Y@FKmks~i>u0)GC`GtD6$|vY z*RY%s^Q1BDdU@X}k6&+O@KEHaw`+8f(|mYGnvUF|+n)T%4Pj9d3P)Lc`qFUqjU3&= z?1jg)5=>g1ORDz#GuboDR2E=2Plh#veYHw~ofQ;~r=J+AQ_aZ_THMPW)dwd8r^v56 zd}#<)aq_)@{U@IK%+k)3P^zP7s$v=v`dm?^(A|EbIQ|=Z%0dMA&9ep5PsADOa8I-P zNY2b_Z|UZd*T3p1URkD3)u@r!KM>@h`coCY)5N1iO?&d9<4-?)f>we5?b}}_Ho|{& z2Zf4GtoMr^^GPAd1~Pnx(Kg_>8BxRGp`v=f z<^F?fUjF_aOr!Xf)ki#QPI#gojUT-|0>?C<(4qyaPZh^6H<-5>vL*lMjoh=V+4y_x?;4KxA}TmcYiZ`1^4c@|PA#r&b&uX3!3X?TsZu!>DiNM0qFw(dN_pf{{;bCGI2jO=oBUI^2p-}V}l5!R|7Mwh& z?nG>Lbu~qqNIXxxZe)U?jHS(T9Xg8lB>q6!OPAjIgM!7=Q1m;p*!)s2bU-XabrRY-i=C{1OM$FRGO`4dGy)nh_-%moQ+3rn+F zlHc@XZx17-OT9Ba$geuie>aX(UIK(!hAM1A`aFJC(#;m+Z!6TkLWMx=Ax?7eQFJ6h zewMBmnAC^#{sMJ_p3g;Na(#1)B>pRO{iOB@0M&L<{AU^Hnf%unDXhFl&t{+v=H`%u zz{U7pk5ggN-(E=8%S5~n#q`N2VcBd%KQQjkiw6CJ{UmP7;Pb1MOS z_Z8h*3Y^2Grd`S)1C_*|F20ksqc}dD^Q}$EC#NUuZYG>3_o;r8tiD|!DxJihP!)>f zr4t+9nvuSgZ6v%*zjwfxfYy=TihZ~*MC_WaWuVi}g`d8&5_A@FK{)`94`gH6f3n0? zQe1)jKEM0oJ^*3o2wCLj%R=Qa4TO`9V%D;MJ0H2>J{SFotrhB^*gcZ{qFW@?oOko~ziF^RSZ>fxNc{D9qq3Efmg^ty*^>r+;X8K=|v zdT=omTk&kukNd#kUPeEG`4h<(7={ySJ|mo;(60)zwj=KLs9i4f9OPcNRw&Hg6GIS}IUk6@CuH>}E-n3+zJ6kRh1RIHCpwEhJCWaa zUlWXxW2NgsYZ>6oXW}^c>WaAAVfQPc=}sMf>Of7fn+m(F=R#W71zF-Z-^Bpm>93M`omxldA8LG_> zo@^ViwK(L3`Nj=e2d>}Fp)r`f zzRfM$i(6Ik`x5?oxG&;#KMO<`z(!WfBhGsIS;eu=sHO$^yb<}%yeB%tU;qBE(tAz2 z8qV`xVwp>K5_I##{5~2tpfF_xN_|u8uE={_FRvFjHpOo81#cvp=xd`$pe|^WcvuO z6xmKp4DuT=$IqYdu@r=J|5(t!$xAV@P<_Bp9l>eJw;Q2$XAbf#nJanJuD;c%0$78e z7w9|_nsVET3t!(8{Ez4J{WEDq{_fxXyPx}eQ55{OzxLPoYk%#p{YyP=Ogv4W8{+w# z;H22I>jvF)sGF_$uFt1Jr8w3CL0bnwrjspu7WiCTX7Y8wu3ND^ zofVkmrs1!y(VH1X+tEHeA)GtRp+g@V+%AW?VSmri7m;8sb|>(5$h4%aFGVwAYq6l* zJ<3Pxy~*2Lq0w>PG4Raz_}V$%z)6mu7h|Hf z>H@a&^b^P7UMAF!K1lO{*g>i;NP(iIIaR$E_lvHRDMwwSj7CjL;%-kk9*KX1fri8N z)7mEh*&LJo?l`T95%zn@6e$X!YHjzhS`g-L^ix;i))rUwK_!-?{Y{O}>) zB3j5dqS*F@z(W?%KUHF!xV4_@LQT1+7gq5ho3e zsfWp|P`6mMGFS)-Zp0PHTvl|OoY@a%@`lWJ!NArCa3`Z>|aZgS@v& z(JnL5>*NY|b$~Zlghzr_lviHpI=Mo78G_n_mtk9>Q)r>k65YB+%`$Ohda;ENP>(NB zA)=4sq?ctH(jZK|yb@&Q>vO6L$@+2!OMEUadMIdTI#HJuwu(%j*7z@!G%K-{)g9Qi z!5$UozvsFBs)6^9bVrA(4DG^6$&_?9Vl(b%r>msl4seH+{wLcCq2D_<9AnLY;)Ghntg{wWO7gR zin=L8yOrVxluwrF^N2gIaL&`VhF(Y7VQ3gZx0=|9j>FV~N(U=vf4huytHAW>JDF%v z405VFisn3!?M0h1yhr}5qkrwNN1Y6M5=}K%)OT{+)>6E@ky>G5#Wbf?*n`I&JIwXr zM`%(qq_7+>#Ew1N8ceHDTG1{nKG&2^_6_BnxMo?6+Bc~6PPAe+@lv&>pJy`EXeRLX z27e>;iV!<~oa>JS5&217>Sjx3WSXP8o-i%N{mN=$v@*eHJM?Bh^6~-MkoQNKdX$#v zH0{L{mpfFokYca$)Mo;n&OfQ~g`qji$*&t!TIpJc(=1X(Q_1Jm*EF+W_ zdz3@PC6RhJQS`Gc6{f<0EN(C2GlA7U+c^{;#Mjm91o(FomZq67Q7 zVDiKww@e|^kyDMne?SB7ThmdmF<4kO7oL~})SFTS?*|ctwPyn7+6w9iJ*x1;qo6in z>S>n>l`N)Iujos0sMvn{3}Zy7)-G=~A~HFY#zzEh@-cTaAc`p6v=Bdb_#8g|zfZ6S z+3btA5z|I-*Rrxn4-+4qoW&+}q%TD1S6@V~e>taoW|%&cASm4n$J>YH+MX8&wpMx(csLNc zBPw&F%Z<`hf@lAB^s5QJw6seJOYLTsqV7?R$L(x#y)(?7b*Sxu@|h-EXW}QX6yE8Prr}Eo z;1l{%O5-&{;j5@mL?2vl4fa_s8AnD$@o1=LPWFYVpcy`o%sjE=hn%j5G~YH zbWq%EQC*ANnr2)}zo=K7#%iX_M{qz9Kj7XZ8AAueCBa``CPJRH^gH_^T!_1EzH=+9KLjl z@==*?|wKYjjIURwG_1N!m#;5MmLL0pUG1-C!$Rawv_y!eWYG#LJs|+2gESO z)KI@FB?8HlGBaTQB;Yd{Ru0Zm{hN}TtCH0Zgq5-Vnut7hFXu4#>}P@5M{>?rAGEkh z%W_t8)rtnCz7RLezxlmCh3_@-$%KCHnO+_^R1S5p_+^iuDYnNH2KvfS7l!v%H~j9m z-lu$S`1o`QQ89fcV($9=mXq@x59e#1eR_twma;cmFj>G?2D7oKz4g6Bijl^t3Fe7vv^DGY}3&Ey$hj%t{eKY6n)!?#h02g(XQyk zQd%7nt3@g9{;w@qO~_=A=oSuB2i)Eh^9*&e6qGPT+{?`v;2HNvh(Qda+K&85FFNcz zg9n$G`*-AQY!2}JU%c*qt{aiqN``{!dik$4sOZEUB-xS15TI>Q&Vf@>P$b%xLZDHv z6`@f0!b)sNh^Q_Qj7+@jz9rg%E)@YPM*69h@Sr@yPaN$`qx*n8#ANemFm(@2#2h;~ z$?2v8bt9$c8kxe|Dv-aefKuRDg&gov7DP7}-lA@Ad5}>@bgL=Wo~X>2NRF3+d^r4q zg?1GrX*lsibuUTjl*v0kAqV{w-hcR(Pt6(qbtXcpEYS9r&=?5^>KOUeeF-k>={h4# zj}nd~CN(5eak@~~CAN}99u1HSRf_<)fU!ZuY5=)xMgvtr0ny1sHD4 z8r5m~UVg73Jzd2?JSGn!#eoD1^>U<&27Pqt>30urU#Ah=3GOg&7bS?KVT@OWupE}IWh<$ILx+0w> z^2zqs)bd|?;q9tKC5o9Pls4Hv3Q`u0LYrh$J2d1bnKw8K`tt?JFWfaC7v4*rkQIJH zOka;Nir_R+tyE;pTR;thKA}H#GlQwL{oJ?c1oe#`N;brk0%ogA?eVqqFEL`mUI(@@om zxY6f|z7!-jwoqOPJ>>8}VQWRUj&ut}mq92bFw7n`_K>VA6=Mjh@@ljo51D)~y~bn# zU3PTj#7+}S(K4AEmqh3ae-^}+b1Th-p9samN3$}oH0fmSqgoy5-}WlBg+*$~VJi6Wh}q3u%ge&S1^5Dkgv?NVwS zubrf$zwYTLn)OkH^|})} zdA60IB}%0L>WJSRT5nNB4wt8d(h@R-+XV^DwT4*a#M}xscwaFZ z;lyq{PYFS?b&8z0ko>G*G^Y1*xcnH`&vhe$7AwwZ3`%R6^z4tQ?M{k|`AiCrriI+2 zytsu#Ylw>}#E4!WFg}oZpTga&xQD37^jQr`(Jym!>zRHgn@1?DP`VmVyxHKop0h5D z*&sTF%ILb6bmgWc(}_FY%7m;wF{8b!JsP5((k={5a(0PYQ=Q2H*3RY7?@MvR%CFMm zkFa|n4bka8a`Y2v4kRQI4v!-JNzbo-{RjN+tNVn1xEv`aAe+VZ1Nnc2qFZ>LUoQdS zQo2cp_nPk83o@X(8_|t)`Sm?dEIsyz3+zD(mv$x26sD1;U~zI}UNqeN-bAJ#cV%I! zy%o0!1KD#Cl<7j;E@G61DZhr}y<6RhN)scuSGcXAn@dAx5At5r_j=4;Gyf>LXjo|H zA|%~AdCk-3k@+6xpJoZQiODKd)0d2gM6`mYxILg0`v)4IiA7%V+M>Rf2cTVInv=n#qXC3*ggB^9h7W+Au)Zp6<>J z|6sw8XJZe&@Hi(K#7Ob-h+me(lgGH{H`0vPEitpQG1VSjd(5tp!g$CMs2k#ZO8?#k z`q-iCmiXkepYme;qrLQMiJq^dsq=Y1`mDOA{VyClFAENqz+E>^& z9kZL`xS6*PPw|E1gGexylVY*$P+d$t_C`R^7qkNl!c19PgM^Y$)oLP407m zV%%2-ZHZ|j`v(RToPImftYG`aNVb-+z~(Zd3Qx8X_r04hTB^GN_uhg2`IO?NAz!D& z_GKprN-K!EyDhks+4ykyjM%svG$6xUH4$`azWzi-6FYp@aT6|Gy?}fZBzk zxQP@uAyMiSFMoALJD0@f>U_cc$&~VCO}6d0`liF~;qo7CqzLE(_5C^B+)C3Dp}RB3 zPb~GR70uaAgSpz~=u{iDB(fn-h-bC;ZsG^XmvUu*^SP>O6T>)SlMM_5krg+VV%v@_^q zOLlBIzo}4l2XC*54=<_iPRQ0R*`dJ~cC_+$8r&MB;Y(8)@OsFF5TvMHE zj(04&6XY`((G>VhYKCE;clzx_olLaD#m7S5ZdM5UAW8#aYjD>V-Adho611~_ujcWc z8=5Z}+TQSTJB8;3=l@jfwVMl1e&>j_p6j?ExX83@siHJ!behmBkq?x1#M5LAd0LG>t3)S@_3S>d^ye+w zd0u`UVvynN{^g8sf3iTGwQyDwdqeb!uyf!d;Xw^g3t?@nq!Gy0vc5weDP9}QXJQ}{ zGWhi02i3v(Z-^cF?u!x@+szc&R)pyw!{+*2w7$z9BF#b@*xwa>DhgeQg3g_vWTh^@smLpL(~35BCSpJI=l zAo+Ew2Tqp+tML;jqV-|eF=QGo3a)->f;&W(KRC+I9vkAtN?agctpyOMYUq1(?}g^s z_r${y-&H@>68rgXM0}ruo%+!|C??xIVvvm&gx_h5a6Chh06v@S$R-xr9#!3TVi^CNr;?n{h z5;0>?qcv}}lu>~SNNACcBgM%VjDcz>2sTnTjtHZjUDPstFqQm#pNZ2<1PK`gRAq!- z=3ub5)19;--8`ZjnOyiX($77nwzpH$DB)=Xtx82eiJ%=K-AuG6wgNv%VQa}DW0+_T z)CrKlHn;O|o~B=6aPf$+R4H#Ej!mI_zC$j;?X*0U4rL{@PBkKSj(SErl_1AqsuZ2@ zgq4@3Lv$q?JxoD!@nAPqC!0kG;3Z@zCNwY_nSSUlp!%57Ry$PN30h;c6dl&cV_Pka zy!+WFtN%=|gl~kEB!Rk833UpxhlC)gl`-P6KC$>rG((V3 z!D;sYC+|OEZOhX9PVBeLcE?}${0ko$>B?7;EEd^pHc3%ni$V*O0BNF$2AXIp5YV8h zi2%(7fdU9LHENJ(pdmHDCM7l5BFnK1t1`1PD>EX)y@==TyYAR+m(k!`=iJC5(3J$5 zY({7U4}o~^-gD30XRo!s@BjS`YLugQo$M)IEX_hLez5 z8-2(E8m7{;cXf8ycU&pRtI0hf>?cZ!&>30NP94@b5%AFU7T+3FrwL6gFT83Oczg_pLHMFaO zDy@H2C!Y2s-K+h6iiqfAnzF(kd6WW04WPSQdWSF6q4<&mp5%nYtu1=Lf3J#RmK{RU zOxi<~3*zGDCtr9j({m6a**3_2vk&Y-O!q=`b=WW5D59;-#5DMp>>kN9k~&2Ii*N{q&30+s=Rx+R zL8hE|mGab}N4{S|kHHS2zb#h&Fr@&J$<3|x_ywqzMUKM+`rm3C@?g5eeHGRc?rNgI}*Pi#Zg9jGBf4zg(h=0yUqZ#v{V0 zL~nMIln#X1i0#`mY#qq2TjAs{H)y6}%?s#g38{Gqc_C8|tLSH%tkz`ecEm7DGujg| zmsbJuwPknTu>LDM_;}3O9|qi!!Dlde;jp#Gt~$EABQAd?`w3)of9Po^BC=p^ZTwV} zgDq-Uy#sy{P>UY(v}F3R6w2BQ2h{E|z8hXgx0*bI;Ze_P53acQZy(4Q^P4r+26nH; za!B?X8iVdN139YKj9&)YBTYT_!u$$a0JT6$zw#KIC10lL%R?!Ys+WrHIBjrG#x#IG zldjyR&A_x!KMv@lj-iwLYzmKG<%~YFgk17T_Q*)S5=xeSZ%en!(N`I>cW?Oi*$aOC z55G=+V<;{R!A5qE0{OM3x{%Bfoy%0k6|g=In60L~Qq=bYoVA3VMYV>>XF^-i-JZ)G znSIibeSSr^ctp1lEskj;)ukt^HN#ShlwmCV^pHv6V(ZB0!plf}W@t{u=6C-4FT~>? z=;xO8J79WEwv~XgP#AXiBw4kzDg~hhvULYBQa>J}yGVAvmcy~I=yikkUR*886wnnT z#j7s{3nhW-sFZZ@vJhL}G_eEVXb#u^wpQx@@K@Mw(TzjTro@G~g()A1_fF*tx`A*s zVfD_K(fL6BYA1R#rO=lvX*$m4;3K+s_^B8XbaTm(sV;^C-@bWJvAu6NdOxRlxgq=P z67r1t-O~dgv3+Q1PZhII0{Pan`qttn3J`$iR5OgBSR+B0&n5hH`_?RZ{!5UaE5!*e zYQ@#J4cQh(FK_8Hw%Jq41O;u+WZF?(MCyCOIo2*>8kG*a$l^ze)w_}U&7Q^Y7gU#l zVI)O(ch`~K7)Jl9q&tFPk}`L)$ZT5E_8Co{qk4s|Gs;V$Aa33grx`HhHwJw%r4rzf zHWsvngrcb^hreAKHqXy!9}Q&Fp5~5FvHo{I`_K6=pZ)^7|MDKgSPH7qODWXsPN!7i z!0v%&_oid=v88$yx%w+D)wrksy}1M$9y#1hp$5(PsU}}%bVophqaTQ+_xdflSNU2R z4WC2(*rPke$cjU#-n$(KFa73h)d!P#n%>1$Pp zW+VGTVG6iufiDfCS3PP7GWk{tznIXUlr-@cKpHBI86qd&+tMEuEZ@yV$M8TgdMPFe z+C`c(&71%6$G9Mk{`vU=buD3~p@_WpwR5iPiqrNVXFv z(QIw7TTR!=d(piVlYvv8ye0RbWOA zMvib*5VOcT@4g_@@~r-7RpB=p@<1^fcyzpE)s|d*euTQo8D11*X)hUigBvvVDkDod zCHpHs&xj@yX2O(#u9{n#_yYnc8{MR}d}@-t2ImZMxWJe;ri^tT=}c?$MC7jQJ$ zAQx8>x;o4P?%fux1NQq9s#lS-KisB0Wq+Mw8txQ4s+3jZ?tr#z5>mKDJZZx8u zYp#B#z_j9Os=Ou|i%WnvQ6B(}J$T`BiH_JkkVdq;vY1vrFWm*~X8-kpczJ_9n$vuJ zPF4qs>pta^1wttSsFRnTeC04Nu8Es1ZoQT!+GfOWze~(C<|Y%SQEpLnOKAVi1gBr> zMnuokr&tu2(-T2z4*YL*%ZGI`F;PYnMiluR!pI^FpL??2nbgHY;# zV3JU^Tu_p|4Xrq{2wLG5(sAmS!hPO7R7{_MT?bqxJZiJk2N8E{4cB!=$ORegwgtTr zk!Cc2(wLoSK87G@qbucSnx#$mB%+Rc^1`ueCNh~h8PFSxa-ti-}q`AAp@HOjX8KrMycB_VpIP-BDXB!IJMx_9k~OdYZtnQZt1;!VzOmoae=3b4}wx6H{` zl38LKu?4*-u9gm)2q(o#=zZOwyO_PLlzqDpBJR{$z^kC7^e& z3yF)V=*?0(aVQ@p_IA@q{#a&}gc6bvavu+} z9DgDpX+O^ou9sp|p;D-w03kz_oEcZimcEg5s+)<6-5>qv@nMp0Z!FnPG!4qZlMnBR z?n{H}6>gPdy&~lC77Psn0CWp0&Xoi3yrk77`C1d&$orq%2VncPo^FwmuMN$;KwJzo zKBFFT2_AKtSm)^b4Q16+KdYdRyjabclpUv|9VYjcxjqVuKU{l7z~mdV_bCYA5^N_Vp32P=`sh=_5l*kTAX6bC8LPt292B+_dcjq1YAI zX>#kuRHvVsgXV1XNM`5&4?P0FhwE2hBdI-9Rk5g&owbUyG4Q47V1BJ-F>;MkE0oEd(>nk z3G1(J2%9ZxG!ifLB*=*gg;vhtUb};vWhq53{D;bd%8GfAKQYLcEFxHf> z96WhO`)7~XyatO8q;S9a#`N%ZinS+SI!r6v@Z~!t+QGfw_G}**Hg5{gxLgLY`0X5_ z%FtfyHuJS7U-b;L{IKAMv0?qXx(yk#(mA_v#8-jxq@lejng3X^eGLBHn&EOpc_Rm? zuL8xj5z2s*B4TqrCaa_XGuQT@jX-K~vW;}#x|4%_NTSU0m6mk$h3Bn%SG+N~<~!vB zLeQK}c6@eu#L$d!GcQ6lEk*UwV#m!eW%{{?Jsu}xugAjDif7jQN6U-#?T(CpRgphvmRz5nm0clQ7jXE%`2+&TLiPX zR%9DPb0?s@V*dV`m>HVWNwO1#)f)!w3_5W*M;D&@%y9knCWHsyyp}ZYX+ZzA)4sMd6J1rp<+%{;!vcwE$)*iC}U7XLF_uB_mt*chO;r(UoWw>rnrFo zs-=A4B#Xg0hBxj4kbQcNKAJI1=S)6cqtCAicO*nHnp}#4+7pd{4CPWj$bKq$G^R83 zQ$u^AC@-P7@f0_XU==TaRdi4D592NU3gkdq1#BJCNZ(*vgDXX>K7Hn}b>PLH%kh<@ zp6}Dli={ZZbVt&Ngj~2A`HiMK4cOOf!Y5;jrA%mrXKr!h@BvR z&*<-Y(2?vsCs?rz_b*4xek|78{ZvuCNYmF=Xr6bD*SxqnqdHgQ>manWUJn1gX3R8- z=Cy&@-7TBth*%rOpINevaJt>d&>uy4jpa{rxA#{+Q3RU{rAx!n`&*(?+B{gdt-&+)_C8cwjPZ*{mu;XL$4Uid=jCsLAlV4DAeV8ermxolFu=AFOEljD9u4 zO#=3`VKM3$>~*!nO@Un-iW~Ww z>#vKGpIdmQA6Q1`f$bxCACsrI;&PwMM7p0y)3SLpU>e2U-wVR77%SQ{ML&yx#1vFl z3e$)M^e{CH)xJ)E`KQByA|9+z^@fqAn;EiAhH3}G@f4Jze7VDqGO_ed0flH#E$ExX zz$o(rpxG}