-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdatautils_e2e.py
310 lines (293 loc) · 14 KB
/
datautils_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
## code from qlora
import torch
from typing import Dict, Sequence
from datasets import load_dataset
import os
from itertools import chain
from pathlib import Path
from transformers import default_data_collator
import transformers
from dataclasses import dataclass
from torch.nn.utils.rnn import pad_sequence
import copy
import numpy as np
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
@dataclass
class DataCollatorForCausalLM(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
train_on_source: bool
predict_with_generate: bool
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Extract elements
sources = [f"{self.tokenizer.bos_token}{example['input']}" for example in instances]
targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances]
# Tokenize
tokenized_sources_with_prompt = self.tokenizer(
sources,
max_length=self.source_max_len,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = self.tokenizer(
targets,
max_length=self.target_max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
labels = []
for tokenized_source, tokenized_target in zip(
tokenized_sources_with_prompt['input_ids'],
tokenized_targets['input_ids']
):
if not self.predict_with_generate:
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
if not self.train_on_source:
labels.append(
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
)
else:
labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target)))
else:
input_ids.append(torch.tensor(tokenized_source))
# Apply padding
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None
data_dict = {
'input_ids': input_ids,
'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
}
if labels is not None:
data_dict['labels'] = labels
return data_dict
ALPACA_PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response: "
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response: "
),
}
def extract_alpaca_dataset(example):
if example.get("input", "") != "":
prompt_format = ALPACA_PROMPT_DICT["prompt_input"]
else:
prompt_format = ALPACA_PROMPT_DICT["prompt_no_input"]
return {'input': prompt_format.format(**example)}
def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict:
"""
Make dataset and collator for supervised fine-tuning or continue pre-train.
"""
def load_data(dataset_name):
if dataset_name == 'alpaca':
return load_dataset("tatsu-lab/alpaca")
elif dataset_name == 'oasst1':
return load_dataset("timdettmers/openassistant-guanaco")
elif dataset_name == 'deita-6k':
dataset = load_dataset("hkust-nlp/deita-6k-v0", split = "train")
dataset = [row for row in dataset]
return dataset
elif dataset_name == 'deita-10k':
dataset = load_dataset("hkust-nlp/deita-10k-v0", split = "train")
dataset = [row for row in dataset]
return dataset
elif dataset_name == 'c4':
try:
# load from local file, a fast manner
dataset = load_dataset("arrow",
data_files={
"train": "/cpfs01/user/chenmengzhao/huggingface/datasets/allenai___json/allenai--c4-6fbe877195f42de5/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/json-train-00000-of-00002.arrow",
"validation": "/cpfs01/user/chenmengzhao/huggingface/datasets/allenai___json/allenai--c4-efc3d4f4606f44bd/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e/json-validation.arrow",
},
)
except:
dataset = load_dataset("allenai/c4","allenai--c4",
data_files={
"train": "en/c4-train.00000-of-01024.json.gz",
"validation": "en/c4-validation.00000-of-00008.json.gz",
},
)
return dataset
elif dataset_name == 'redpajama':
try:
loacal_dataset = "/cpfs01/user/chenmengzhao/huggingface/datasets/togethercomputer___red_pajama-data-1_t-sample"
dataset = load_dataset(loacal_dataset)
except:
dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample")
if "validation" not in dataset.keys():
validation_split = args.eval_dataset_size
dataset["validation"] = load_dataset(
loacal_dataset,
split=f"train[:{validation_split}]",
)
dataset["train"] = load_dataset(
loacal_dataset,
split=f"train[{validation_split}:]",
)
return dataset
else:
raise NotImplementedError(f"Dataset {dataset_name} not implemented yet.")
def format_dataset(dataset, dataset_format):
if (
dataset_format == 'alpaca' or dataset_format == 'alpaca-clean' or
(dataset_format is None and args.dataset in ['alpaca', 'alpaca-clean'])
):
dataset = dataset.map(extract_alpaca_dataset, remove_columns=['instruction'])
elif dataset_format == 'oasst1' or (dataset_format is None and args.dataset == 'oasst1'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['text'],
})
elif dataset_format == 'pt' or (dataset_format is None and args.dataset in ['c4', 'redpajama']):
block_size = args.pt_context_len
column_names = list(dataset["train"].features)
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
output = tokenizer(examples[text_column_name])
return output
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
remove_columns=column_names,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
dataset = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
# Remove unused columns for instruction-tuning
if not dataset_format == 'pt':
dataset = dataset.remove_columns(
[col for col in dataset.column_names['train'] if col not in ['input', 'output']]
)
return dataset
# Load dataset.
print(f"loading {args.dataset}")
if args.dataset in ['c4', 'redpajama']:
cache_dir = './cache'
cache_dataloader = f'{cache_dir}/e2e_dataloader_{args.model_family}_{args.dataset}_{args.pt_context_len}.cache'
if os.path.exists(cache_dataloader):
dataset = torch.load(cache_dataloader)
print(f"load dataset from {cache_dataloader}")
else:
Path(cache_dir).mkdir(parents=True, exist_ok=True)
dataset = load_data(args.dataset)
dataset = format_dataset(dataset, args.dataset_format)
torch.save(dataset, cache_dataloader)
elif args.dataset in ['deita-6k', 'deita-10k']:
# Split train/eval for deita datasets
raw_data = load_data(args.dataset)
np.random.seed(0)
train_raw_data = raw_data
perm = np.random.permutation(len(raw_data))
split = int(len(perm) * 0.98)
train_indices = perm[:split]
eval_indices = perm[split:]
train_raw_data = [raw_data[i] for i in train_indices]
eval_raw_data = [raw_data[i] for i in eval_indices]
print(f"#train {len(train_raw_data)}, #eval {len(eval_raw_data)}")
from deita_dataset.train import SupervisedDataset, LazySupervisedDataset
dataset_cls = LazySupervisedDataset
train_dataset = dataset_cls(train_raw_data, tokenizer=tokenizer, conv_template = args.conv_temp, mask_user = args.mask_use)
eval_dataset = dataset_cls(eval_raw_data, tokenizer=tokenizer, conv_template = args.conv_temp, mask_user = args.mask_use)
elif args.dataset == 'mix_deita_redpajama':
cache_dir = './cache'
cache_dataloader = f'{cache_dir}/dataloader_{args.model_family}_{args.dataset}_{args.pt_context_len}.cache'
if os.path.exists(cache_dataloader):
dataset = torch.load(cache_dataloader)
print(f"load dataset from {cache_dataloader}")
else:
deita_dataset = load_data('deita-10k')
np.random.seed(0)
from datasets import concatenate_datasets, Dataset
from deita_dataset.train import SupervisedDataset
print('tokenizr deita, need a long time.')
deita_dataset = SupervisedDataset(deita_dataset, tokenizer=tokenizer, conv_template = args.conv_temp, mask_user = args.mask_use)
deita_dataset = Dataset.from_dict(
{
"input_ids":deita_dataset.input_ids,
"labels":deita_dataset.labels,
"attention_mask":deita_dataset.attention_mask,
}
)
dataset = load_data('redpajama')
redpajama_dataset = format_dataset(dataset, 'pt')
train_dataset = concatenate_datasets([deita_dataset,redpajama_dataset['train'].select(range(len(deita_dataset)))])
dataset = {
"train":train_dataset,
"validation":redpajama_dataset['validation']
}
Path(cache_dir).mkdir(parents=True, exist_ok=True)
torch.save(dataset, cache_dataloader)
else:
dataset = load_data(args.dataset)
dataset = format_dataset(dataset, args.dataset_format)
print(f"loading {args.dataset} successfully")
# Split train/eval, reduce size for other datasets
if not args.dataset in ['deita-6k', 'deita-10k']:
if args.do_eval or args.do_predict:
if 'eval' in dataset:
eval_dataset = dataset['eval']
elif 'validation' in dataset:
eval_dataset = dataset['validation']
else:
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
dataset = dataset["train"].train_test_split(
test_size=args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']
if args.max_eval_samples is not None and len(eval_dataset) > args.max_eval_samples:
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
if args.group_by_length:
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
if args.do_train:
train_dataset = dataset['train']
train_dataset = train_dataset.shuffle(seed=0)
if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples:
train_dataset = train_dataset.select(range(args.max_train_samples))
if args.group_by_length:
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
if args.dataset in ['c4', 'redpajama', 'deita-6k', 'deita-10k','mix_deita_redpajama']:
data_collator = default_data_collator
else:
data_collator = DataCollatorForCausalLM(
tokenizer=tokenizer,
source_max_len=args.source_max_len,
target_max_len=args.target_max_len,
train_on_source=args.train_on_source,
predict_with_generate=args.predict_with_generate,
)
return dict(
train_dataset=train_dataset if args.do_train else None,
eval_dataset=eval_dataset if args.do_eval else None,
predict_dataset=eval_dataset if args.do_predict else None,
data_collator=data_collator
)