-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet50_model.py
164 lines (135 loc) · 5.62 KB
/
resnet50_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
# Paths to your dataset
train_dir = 'data/apple-leaf-disease-dataset/train_data'
test_dir = 'data/apple-leaf-disease-dataset/test_data'
# Define image transformations
transform = transforms.Compose([
transforms.Resize((256, 256)), # Resize images to a common size
transforms.RandomHorizontalFlip(), # Data augmentation
transforms.RandomVerticalFlip(), # Data augmentation
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize with ImageNet stats
])
# Create datasets
train_dataset = datasets.ImageFolder(root=train_dir, transform=transform)
test_dataset = datasets.ImageFolder(root=test_dir, transform=transform)
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# Define the Bottleneck block
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.expansion = 4
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity
out = self.relu(out)
return out
# Define the ResNet-50 model
class ResNet50(nn.Module):
def __init__(self, num_classes):
super(ResNet50, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(Bottleneck, 64, 3)
self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2)
self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2)
self.layer4 = self._make_layer(Bottleneck, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 4, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# Initialize model
num_classes = len(train_dataset.classes) # Number of classes in dataset
model = ResNet50(num_classes=num_classes)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training function
def train_model(model, train_loader, criterion, optimizer, num_epochs=25):
model.train()
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {epoch_loss:.4f}")
print("Training complete.")
# Evaluation function
def evaluate_model(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Accuracy: {accuracy:.2f}%')
# Train the model
train_model(model, train_loader, criterion, optimizer)
# Evaluate the model
evaluate_model(model, test_loader)
# Save the model
torch.save(model.state_dict(), 'resnet50_apple_leaf_disease.pth')
print("Model saved to 'resnet50_apple_leaf_disease.pth'")