-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathforallx-app-quickreference.tex
451 lines (335 loc) · 13.4 KB
/
forallx-app-quickreference.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
%!TEX root = forallx.tex
\addcontentsline{toc}{chapter}{C\ Quick Reference}
\pagestyle{plain}
{\LARGE \bf Quick Reference}
%\section*{Characteristic Truth Tables}
\label{app.CharacteristicTTs}
\hfill
\begin{tabular}{c|c}
\script{A} & \enot\script{A}\\
\hline
T & F\\
F & T
\end{tabular}
\hfill
\begin{tabular}{c|c|c|c|c|c}
\script{A} & \script{B} & \script{A}\eand\script{B} & \script{A}\eor\script{B} & \script{A}\eif\script{B} & \script{A}\eiff\script{B}\\
\hline
T & T & T & T & T & T\\
T & F & F & T & F & F\\
F & T & F & T & T & F\\
F & F & F & F & T & T
\end{tabular}
\hfill
\vfill
\hfill
\begin{tabular}{c|c}
\script{A} & \enot\script{A}\\
\hline
1 & 0\\
0 & 1
\end{tabular}
\hfill
\begin{tabular}{c|c|c|c|c|c}
\script{A} & \script{B} & \script{A}\eand\script{B} & \script{A}\eor\script{B} & \script{A}\eif\script{B} & \script{A}\eiff\script{B}\\
\hline
1 & 1 & 1 & 1 & 1 & 1\\
1 & 0 & 0 & 1 & 0 & 0\\
0 & 1 & 0 & 1 & 1 & 0\\
0 & 0 & 0 & 0 & 1 & 1
\end{tabular}
\hfill
\vfill
\section*{Symbolization}
\begin{center}
\label{app.symbolization}
\begin{tabular*}{\textwidth}{rl}
\multicolumn{2}{c}{\textsc{Sentential Connectives} (chapter \ref{ch.SL})}\\ \\
It is not the case that $P$. & $\enot P$\\
Either $P$, or $Q$. & $(P \eor Q)$\\
Neither $P$, nor $Q$. & $\enot(P \eor Q)$\ or \ $(\enot P \eand \enot Q)$\\
Both $P$, and $Q$. & $(P \eand Q)$\\
If $P$, then $Q$. & $(P \eif Q)$\\
$P$ only if $Q$. & $(P \eif Q)$\\
$P$ if and only if $Q$. & $(P \eiff Q)$\\
Unless $P$, $Q$. $P$ unless $Q$. & $(P \eor Q)$\\
\\
\multicolumn{2}{c}{\label{SymbolizingPredicates}\textsc{Predicates} (chapter \ref{ch.QL})}\\ \\
All $F$s are $G$s. & $\forall x(Fx \eif Gx)$\\
Some $F$s are $G$s. & $\exists x(Fx \eand Gx)$\\
Not all $F$s are $G$s. & $\enot\forall x(Fx \eif Gx)$\ or\ $\exists x(Fx \eand \enot Gx)$\\
No $F$s are $G$s. & $\forall x(Fx \eif\enot Gx)$\ or\ $\enot\exists x(Fx \eand Gx)$\\
\\
\multicolumn{2}{c}{\textsc{Identity} (section \ref{sec.identity})}\\ \\
Only $j$ is $G$. & $\forall x(Gx \eiff x=j)$\\
Everything besides $j$ is $G$. & $\forall x(x \neq j \eif Gx)$\\
%$j$ is more $R$ than anyone else. & $\forall x(x\neq j \eif Rjx)$\\
The $F$ is $G$. & $\exists x(Fx \eand \forall y(Fy \eif x=y) \eand Gx)$\\
\multicolumn{2}{l}{`The F is not G' can be translated two ways:} \\
It is not the case that the F is G. (wide)& $\enot\exists x(Fx \eand \forall y(Fy \eif x=y) \eand Gx)$\\
The $F$ is non-$G$. (narrow) & $\exists x(Fx \eand \forall y(Fy \eif x=y) \eand \enot Gx)$
\end{tabular*}
\end{center}
% BEGIN: symbolizing cardinality
\newpage
\section*{Using identity to symbolize quantities}
\subsection*{There are at least \blank\ $F$s.}
\label{summary.atleast}
\begin{ekey}
\item[one] $\exists xFx$
\item[two] $\exists x_1\exists x_2(Fx_1 \eand Fx_2 \eand x_1 \neq x_2)$
\item[three] $\exists x_1\exists x_2\exists x_3(Fx_1 \eand Fx_2 \eand Fx_3 \eand x_1 \neq x_2 \eand x_1 \neq x_3 \eand x_2 \neq x_3)$
\item[four] $\exists x_1\exists x_2\exists x_3\exists x_4 (Fx_1 \eand Fx_2 \eand Fx_3 \eand Fx_4 \eand x_1 \neq x_2 \eand x_1 \neq x_3 \eand x_1 \neq x_4 \eand x_2 \neq x_3 \eand x_2 \neq x_4 \eand x_3 \neq x_4)$
\item[n] $\exists x_1\cdots\exists x_n(Fx_1 \eand\cdots\eand Fx_n \eand x_1 \neq x_2 \eand\cdots\eand x_{n-1}\neq x_n)$
\end{ekey}
\subsection*{There are at most \blank\ $F$s.}
\label{summary.atmost}
One way to say `at most $n$ things are $F$' is to put a negation sign in front of one of the symbolizations above and say $\enot$`at least $n+1$ things are $F$.' Equivalently:
\begin{ekey}
\item[one] $\forall x_1\forall x_2\bigl[(Fx_1 \eand Fx_2) \eif x_1=x_2\bigr]$
\item[two] $\forall x_1\forall x_2\forall x_3\bigl[(Fx_1 \eand Fx_2 \eand Fx_3) \eif (x_1=x_2 \eor x_1=x_3 \eor x_2=x_3)\bigr]$
\item[three] $\forall x_1\forall x_2\forall x_3\forall x_4\bigl[(Fx_1 \eand Fx_2 \eand Fx_3 \eand Fx_4) \eif (x_1=x_2 \eor x_1=x_3 \eor x_1=x_4 \eor x_2=x_3 \eor x_2=x_4 \eor x_3=x_4)\bigr]$
\item[n]$\forall x_1\cdots\forall x_{n+1}
\bigl[(Fx_1\eand \cdots \eand Fx_{n+1}) \eif (x_1=x_2 \eor \cdots \eor x_n=x_{n+1})\bigr]$
\end{ekey}
\subsection*{There are exactly \blank\ $F$s.}
\label{summary.exactly}
One way to say `exactly $n$ things are $F$' is to conjoin two of the symbolizations above and say `at least $n$ things are $F$' \eand\ `at most $n$ things are $F$.' The following equivalent formulae are shorter:
\begin{ekey}
\item[zero] $\forall x\enot Fx$
\item[one] $\exists x\bigl[Fx \eand \enot\exists y(Fy \eand x\neq y)\bigr]$
\item[two] $\exists x_1\exists x_2\bigl[Fx_1 \eand Fx_2 \eand x_1 \neq x_2 \eand \enot\exists y\bigl(Fy \eand y\neq x_1 \eand y \neq x_2\bigr) \bigr]$
\item[three] $\exists x_1\exists x_2\exists x_3\bigl[Fx_1 \eand Fx_2 \eand Fx_3 \eand x_1 \neq x_2 \eand x_1 \neq x_3 \eand x_2 \neq x_3 \eand\\
\enot\exists y(Fy \eand y \neq x_1 \eand y \neq x_2 \eand y\neq x_3) \bigr]$
\item[n] $\exists x_1\cdots\exists x_n\bigl[Fx_1 \eand\cdots\eand Fx_n \eand x_1 \neq x_2 \eand\cdots\eand x_{n-1}\neq x_n \eand\\
\enot\exists y(Fy \eand y\neq x_1 \eand \cdots \eand y\neq x_n)\bigr]$
%\item[one] $\exists x\forall y\bigl[Fx \eand (Fy \eif y = x)\bigr]$
%\item[two] $\exists x\exists y\forall z\Bigl(Fx \eand Fy \eand \bigl[Fz \eif (z=x \eor z=y)\bigr] \eand x \neq y\Bigr)$
%\item[three] $\exists x_1\exists x_2\exists x_3\forall y\Bigl(Fx_1 \eand Fx_2 \eand Fx_3 \eand [Fy \eif (y=x_1 \eor y=x_2 \eor y=x_3)] \eand x_1 \neq x_2 \eand x_1 \neq x_3 \eand x_2 \neq x_3\Bigr)$
%\item[n] $\exists x_1\cdots\exists x_n\forall y\Bigl(Fx_1 \eand\cdots\eand Fx_n \eand \bigl[Fy \eif (y=x_1 \eor \cdots \eor y=x_n)\bigr] \eand x_1 \neq x_2 \eand\cdots\eand x_{n-1}\neq x_n\Bigr)$
\end{ekey}
\subsection*{Specifying the size of the UD}
Removing $F$ from the symbolizations above produces sentences that talk about the size of the UD. For instance, `there are at least 2 things (in the UD)' may be symbolized as $\exists x\exists y(x \neq y)$.
% BEGIN: Rules of proof
% change margins so that all the rules will fit
\setlength{\topmargin}{0 in}
\setlength{\headheight}{0 in}
\setlength{\headsep}{0 in}
\setlength{\textheight}{9 in}
\setlength{\evensidemargin}{0.25 in}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\textwidth}{6 in}
\newpage
% This starts a new page and skips a page if necessary so as
% to start on an even numbered page.
% That way, the rules of proof will be on facing pages.
% It fills it in with a somewhat gratuitous reference table.
\ifthenelse{\isodd{\thepage}}{
% \ \vspace{2 in}\par\centerline{[ This page intentionally left blank. ]}
\begin{table}
Sometimes it is easier to show something by providing proofs than it is by providing models. Sometimes it is the other way round.
\begin{center}
\begin{tabular*}{\textwidth}{p{10em}|p{10em}|p{10em}|}
\cline{2-3}
& {\centerline{YES}} & {\centerline{NO}}\\
\cline{2-3}
Is \script{A} a tautology? & prove $\vdash\script{A}$ & give a model in which \script{A} is false\\
\cline{2-3}
Is \script{A} a contradiction? & prove $\vdash\enot\script{A}$ & give a model in which \script{A} is true\\
\cline{2-3}
Is \script{A} contingent? & give a model in which \script{A} is true and another in which \script{A} is false & prove $\vdash\script{A}$ or $\vdash\enot\script{A}$\\
\cline{2-3}
Are \script{A} and \script{B} equivalent? & prove \mbox{$\script{A}\vdash\script{B}$} and \mbox{$\script{B}\vdash\script{A}$} & give a model in which \script{A} and \script{B} have different truth values\\
\cline{2-3}
Is the set \model{A} consistent? & give a model in which all the sentences in \model{A} are true & taking the sentences in \model{A}, prove \script{B} and \enot\script{B}\\
\cline{2-3}
Is the argument \mbox{`\script{P}, \therefore\ \script{C}'} valid? & prove $\script{P}\vdash\script{C}$ & give a model in which \script{P} is true and \script{C} is false\\
\cline{2-3}
\end{tabular*}
\end{center}
\end{table}
\newpage
}{}
% eliminate page numbers
\pagestyle{empty}
\twocolumn
\label{ProofRules}
{\LARGE \bf Basic Rules of Proof}
\textsc{Reiteration}
\begin{proof}
\have[m]{a}{\script{A}}
\have[\ ]{c}{\script{A}} \by{R}{a}
\end{proof}
\textsc{Conjunction Introduction}
\begin{proof}
\have[m]{a}{\script{A}}
\have[n]{b}{\script{B}}
\have[\ ]{c}{\script{A}\eand\script{B}} \ai{a, b}
\end{proof}
\textsc{Conjunction Elimination}
\begin{proof}
\have[m]{ab}{\script{A}\eand\script{B}}
\have[\ ]{a}{\script{A}} \ae{ab}
\end{proof}
\begin{proof}
\have[m]{ab}{\script{A}\eand\script{B}}
\have[\ ]{b}{\script{B}} \ae{ab}
\end{proof}
\textsc{Disjunction Introduction}
\begin{proof}
\have[m]{a}{\script{A}}
\have[\ ]{ab}{\script{A}\eor\script{B}}\oi{a}
\end{proof}
\begin{proof}
\have[m]{a}{\script{A}}
\have[\ ]{ba}{\script{B}\eor\script{A}}\oi{a}
\end{proof}
\textsc{Disjunction Elimination}
\begin{proof}
\have[m]{ab}{\script{A}\eor\script{B}}
\have[n]{nb}{\enot\script{B}}
\have[\ ]{a}{\script{A}} \oe{ab,nb}
\end{proof}
\begin{proof}
\have[m]{ab}{\script{A}\eor\script{B}}
\have[n]{na}{\enot\script{A}}
\have[\ ]{b}{\script{B}} \oe{ab,nb}
\end{proof}
\textsc{Conditional Introduction}
\nopagebreak
\begin{proof}
\open
\hypo[m]{a}{\script{A}} \by{want \script{B}}{}
\have[n]{b}{\script{B}}
\close
\have[\ ]{ab}{\script{A}\eif\script{B}}\ci{a-b}
\end{proof}
\pagebreak
\textsc{Conditional Elimination}
\begin{proof}
\have[m]{ab}{\script{A}\eif\script{B}}
\have[n]{a}{\script{A}}
\have[\ ]{b}{\script{B}} \ce{ab,a}
\end{proof}
\textsc{Biconditional Introduction}
\begin{proof}
\open
\hypo[m]{a1}{\script{A}} \by{want \script{B}}{}
\have[n]{b1}{\script{B}}
\close
\open
\hypo[p]{b2}{\script{B}} \by{want \script{A}}{}
\have[q]{a2}{\script{A}}
\close
\have[\ ]{ab}{\script{A}\eiff\script{B}}\bi{a1-b1,b2-a2}
\end{proof}
\textsc{Biconditional Elimination}
\begin{proof}
\have[m]{ab}{\script{A}\eiff\script{B}}
\have[n]{a}{\script{B}}
\have[\ ]{b}{\script{A}} \be{ab,a}
\end{proof}
\begin{proof}
\have[m]{ab}{\script{A}\eiff\script{B}}
\have[n]{a}{\script{A}}
\have[\ ]{b}{\script{B}} \be{ab,a}
\end{proof}
\textsc{Negation Introduction}
\begin{proof}
\open
\hypo[m]{a}{\script{A}} \by{for reductio}{}
\have[n][-1]{b}{\script{B}}
\have{nb}{\enot\script{B}}
\close
\have[\ ]{na}{\enot\script{A}}\ni{a-nb}
\end{proof}
\textsc{Negation Elimination}
\begin{proof}
\open
\hypo[m]{na}{\enot\script{A}} \by{for reductio}{}
\have[n][-1]{b}{\script{B}}
\have{nb}{\enot\script{B}}
\close
\have[\ ]{a}{\script{A}}\ne{na-nb}
\end{proof}
\newpage
{\LARGE \bf Quantifier Rules}
\textsc{Existential Introduction}
\begin{proof}
\have[m]{a}{\script{A}\script{c}}
\have[\ ]{c}{\exists \script{x}\script{A}\script{x}} \Ei{a}
\end{proof}
Note that \script{x} may replace some or all occurrences of \script{c} in \script{A}\script{c}.
\textsc{Existential Elimination}
\begin{proof}
\have[m]{a}{\exists \script{x}\script{A}\script{x}}
\open
\hypo[n]{b}{\script{A}\script{c}^\ast}
\have[p]{c}{\script{B}}
\close
\have[\ ]{d}{\script{B}} \Ee{a,b-c}
\end{proof}
$^\ast$ \script{c} must not appear in $\exists\script{x}\script{A}\script{x}$, in \script{B}, or in any undischarged assumption.
\textsc{Universal Introduction}
\begin{proof}
\have[m]{a}{\script{A}\script{c}^\ast}
\have[\ ]{c}{\forall \script{x}\script{A}\script{x}} \Ai{a}
\end{proof}
$^\ast$ \script{c} must not occur in any undischarged assumptions.
\textsc{Universal Elimination}
\begin{proof}
\have[m]{a}{\forall \script{x}\script{A}\script{x}}
\have[\ ]{c}{\script{A}\script{c}} \Ae{a}
\end{proof}
{\LARGE \bf Identity Rules}
\begin{proof}
\have[\ \,\,\,]{x}{\script{c}=\script{c}} \by{=I}{}
\end{proof}
\begin{proof}
\have[m]{e}{\script{c}=\script{d}}
\have[n]{a}{\script{A}}
\have[\ ]{ea1}{\script{A}{c}\circlearrowleft{d}} \by{=E}{e,a}
\end{proof}
One constant may replace some or all occurrences of the other.
\newpage
{\LARGE \bf Derived Rules}
\textsc{Dilemma}
\begin{proof}
\have[m]{ab}{\script{A}\eor\script{B}}
\have[n]{ac}{\script{A}\eif\script{C}}
\have[p]{bc}{\script{B}\eif\script{C}}
\have[\ ]{a}{\script{C}} \by{DIL}{ab,ac,bc}
\end{proof}
\textsc{Modus Tollens}
\begin{proof}
\have[m]{ab}{\script{A}\eif\script{B}}
\have[n]{a}{\enot\script{B}}
\have[\ ]{b}{\enot\script{A}} \by{MT}{ab,a}
\end{proof}
\textsc{Hypothetical Syllogism}
\begin{proof}
\have[m]{ab}{\script{A}\eif\script{B}}
\have[n]{bc}{\script{B}\eif\script{C}}
\have[\ ]{ac}{\script{A}\eif\script{C}}\by{HS}{ab,bc}
\end{proof}
{\LARGE \bf Replacement Rules}
{
\center
\textsc{Commutivity} (Comm)\\
$(\script{A}\eand\script{B}) \Longleftrightarrow (\script{B}\eand\script{A})$\\
$(\script{A}\eor\script{B}) \Longleftrightarrow (\script{B}\eor\script{A})$\\
$(\script{A}\eiff\script{B}) \Longleftrightarrow (\script{B}\eiff\script{A})$
\textsc{DeMorgan} (DeM)\\
$\enot(\script{A}\eor\script{B}) \Longleftrightarrow (\enot\script{A}\eand\enot\script{B})$\\
$\enot(\script{A}\eand\script{B}) \Longleftrightarrow (\enot\script{A}\eor\enot\script{B})$
\textsc{Double Negation} (DN)\\
$\enot\enot\script{A} \Longleftrightarrow \script{A}$
\textsc{Material Conditional} (MC)\\
$(\script{A}\eif\script{B}) \Longleftrightarrow (\enot\script{A}\eor\script{B})$\\
$(\script{A}\eor\script{B}) \Longleftrightarrow (\enot\script{A}\eif\script{B})$
\textsc{Biconditional Exchange} ({\eiff}{ex})\\
$[(\script{A}\eif\script{B})\eand(\script{B}\eif\script{A})] \Longleftrightarrow (\script{A}\eiff\script{B})$
\textsc{Quantifier Negation} (QN)\\
$\enot\forall\script{x}\script{A} \Longleftrightarrow \exists\script{x}\enot\script{A}$\\
$\enot\exists\script{x}\script{A} \Longleftrightarrow \forall\script{x}\enot\script{A}$
}