Source code for paper "2D-Ptr: 2D Array Pointer Network for Solving the Heterogeneous Capacitated Vehicle Routing Problem"
- Python>=3.8
- NumPy
- SciPy
- PyTorch>=1.12.1
- tqdm
- tensorboard_logger
The implementation of the 2D-Ptr model is mainly in the file ./nets/attention_model.py
For testing HCVRP instances with 60 customers and 5 vehicles (V5-U60) and using pre-trained model:
# greedy
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy greedy --eval_batch_size 1
# sample1280
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy sample --width 1280 --eval_batch_size 1
# sample12800
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy sample --width 12800 --eval_batch_size 1
Since AAMAS limits the submission file size within 25Mb, we can only provide the pre-trained model on V5-U60 to avoid exceeding the limit.
We have provided all the well-generated test datasets in ./data
, and you can also generate each test set by:
python generate_data.py --dataset_size 1280 --veh_num 3 --graph_size 40
-
The
--graph_size
and--veh_num
represent the number of customers , vehicles and generated instances, respectively. -
The default random seed is 24610, and you can change it in
./generate_data.py
. -
The test set will be stored in
./data/hcvrp/
For training HCVRP instances with 40 customers and 3 vehicles (V3-U40):
python run.py --graph_size 40 --veh_num 3 --baseline rollout --run_name hcvrp_v3_40_rollout --obj min-max
--run_name
will be automatically appended with a timestamp, as the unique subpath for logs and checkpoints.- The log based on Tensorboard will be stored in
./log/
, and the checkpoint (or the well-trained model) will be stored in./outputs/
--obj
represents the objective function, supportingmin-max
andmin-sum
By default, training will happen on all available GPUs. Change the code in ./run.py
to only use specific GPUs:
if __name__ == "__main__":
warnings.filterwarnings('ignore')
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
run(get_options())
you can test a well-trained model on HCVRP instances with any problem size:
# greedy
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy greedy --eval_batch_size 1
# sample1280
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy sample --width 1280 --eval_batch_size 1
# sample12800
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy sample --width 12800 --eval_batch_size 1
- The
--model
represents the directory where the used model is located. - The
$filename$.pkl
represents the test set. - The
--width
represents sampling number, which is only available when--decode_strategy
issample
. - The
--eval_batch_size
is set to 1 for serial evaluation.