forked from purdue-tlt/latex2sympy
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathlatex2sympy2.py
1162 lines (1009 loc) · 39.5 KB
/
latex2sympy2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import sympy
import re
from sympy import matrix_symbols, simplify, factor, expand, apart, expand_trig
from antlr4 import InputStream, CommonTokenStream
from antlr4.error.ErrorListener import ErrorListener
try:
from gen.PSParser import PSParser
from gen.PSLexer import PSLexer
from gen.PSListener import PSListener
except Exception:
from .gen.PSParser import PSParser
from .gen.PSLexer import PSLexer
from .gen.PSListener import PSListener
from sympy.printing.str import StrPrinter
from sympy.parsing.sympy_parser import parse_expr
import hashlib
is_real = None
frac_type = r'\frac'
variances = {}
var = {}
VARIABLE_VALUES = {}
def set_real(value):
global is_real
is_real = value
def set_variances(vars):
global variances
variances = vars
global var
var = {}
for variance in vars:
var[str(variance)] = vars[variance]
def latex2sympy(sympy: str, variable_values={}):
# record frac
global frac_type
if sympy.find(r'\frac') != -1:
frac_type = r'\frac'
if sympy.find(r'\dfrac') != -1:
frac_type = r'\dfrac'
if sympy.find(r'\tfrac') != -1:
frac_type = r'\tfrac'
sympy = sympy.replace(r'\dfrac', r'\frac')
sympy = sympy.replace(r'\tfrac', r'\frac')
# Translate Transpose
sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
# Translate Derivative
sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
# Translate Matrix
sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
# Translate Permutation
sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
# Remove \displaystyle
sympy = sympy.replace(r'\displaystyle', ' ', -1)
# Remove \quad
sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
# Remove $
sympy = sympy.replace(r'$', ' ', -1)
# variable values
global VARIABLE_VALUES
if len(variable_values) > 0:
VARIABLE_VALUES = variable_values
else:
VARIABLE_VALUES = {}
# setup listener
matherror = MathErrorListener(sympy)
# stream input
stream = InputStream(sympy)
lex = PSLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = CommonTokenStream(lex)
parser = PSParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
# process the input
return_data = None
math = parser.math()
# if a list
if math.relation_list():
return_data = []
# go over list items
relation_list = math.relation_list().relation_list_content()
for list_item in relation_list.relation():
expr = convert_relation(list_item)
return_data.append(expr)
# if not, do default
else:
relation = math.relation()
return_data = convert_relation(relation)
return return_data
class MathErrorListener(ErrorListener):
def __init__(self, src):
super(ErrorListener, self).__init__()
self.src = src
def syntaxError(self, recog, symbol, line, col, msg, e):
fmt = "%s\n%s\n%s"
marker = "~" * col + "^"
if msg.startswith("missing"):
err = fmt % (msg, self.src, marker)
elif msg.startswith("no viable"):
err = fmt % ("I expected something else here", self.src, marker)
elif msg.startswith("mismatched"):
names = PSParser.literalNames
expected = [names[i] for i in e.getExpectedTokens() if i < len(names)]
if len(expected) < 10:
expected = " ".join(expected)
err = (fmt % ("I expected one of these: " + expected,
self.src, marker))
else:
err = (fmt % ("I expected something else here", self.src, marker))
else:
err = fmt % ("I don't understand this", self.src, marker)
raise Exception(err)
def convert_relation(rel):
if rel.expr():
return convert_expr(rel.expr())
lh = convert_relation(rel.relation(0))
rh = convert_relation(rel.relation(1))
if rel.LT():
return sympy.StrictLessThan(lh, rh, evaluate=False)
elif rel.LTE():
return sympy.LessThan(lh, rh, evaluate=False)
elif rel.GT():
return sympy.StrictGreaterThan(lh, rh, evaluate=False)
elif rel.GTE():
return sympy.GreaterThan(lh, rh, evaluate=False)
elif rel.EQUAL():
return sympy.Eq(lh, rh, evaluate=False)
elif rel.ASSIGNMENT():
# !Use Global variances
if lh.is_Symbol:
# set value
variances[lh] = rh
var[str(lh)] = rh
return rh
else:
# find the symbols in lh - rh
equation = lh - rh
syms = equation.atoms(sympy.Symbol)
if len(syms) > 0:
# Solve equation
result = []
for sym in syms:
values = sympy.solve(equation, sym)
for value in values:
result.append(sympy.Eq(sym, value, evaluate=False))
return result
else:
return sympy.Eq(lh, rh, evaluate=False)
elif rel.IN():
# !Use Global variances
if hasattr(rh, 'is_Pow') and rh.is_Pow and hasattr(rh.exp, 'is_Mul'):
n = rh.exp.args[0]
m = rh.exp.args[1]
if n in variances:
n = variances[n]
if m in variances:
m = variances[m]
rh = sympy.MatrixSymbol(lh, n, m)
variances[lh] = rh
var[str(lh)] = rh
else:
raise Exception("Don't support this form of definition of matrix symbol.")
return lh
elif rel.UNEQUAL():
return sympy.Ne(lh, rh, evaluate=False)
def convert_expr(expr):
if expr.additive():
return convert_add(expr.additive())
def convert_elementary_transform(matrix, transform):
if transform.transform_scale():
transform_scale = transform.transform_scale()
transform_atom = transform_scale.transform_atom()
k = None
num = int(transform_atom.NUMBER().getText()) - 1
if transform_scale.expr():
k = convert_expr(transform_scale.expr())
elif transform_scale.group():
k = convert_expr(transform_scale.group().expr())
elif transform_scale.SUB():
k = -1
else:
k = 1
if transform_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n->kn', row=num, k=k)
elif transform_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n->kn', col=num, k=k)
else:
raise Exception('Row and col don\'s match')
elif transform.transform_swap():
first_atom = transform.transform_swap().transform_atom()[0]
second_atom = transform.transform_swap().transform_atom()[1]
first_num = int(first_atom.NUMBER().getText()) - 1
second_num = int(second_atom.NUMBER().getText()) - 1
if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
raise Exception('Row and col don\'s match')
elif first_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n<->m', row1=first_num, row2=second_num)
elif first_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n<->m', col1=first_num, col2=second_num)
else:
raise Exception('Row and col don\'s match')
elif transform.transform_assignment():
first_atom = transform.transform_assignment().transform_atom()
second_atom = transform.transform_assignment().transform_scale().transform_atom()
transform_scale = transform.transform_assignment().transform_scale()
k = None
if transform_scale.expr():
k = convert_expr(transform_scale.expr())
elif transform_scale.group():
k = convert_expr(transform_scale.group().expr())
elif transform_scale.SUB():
k = -1
else:
k = 1
first_num = int(first_atom.NUMBER().getText()) - 1
second_num = int(second_atom.NUMBER().getText()) - 1
if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
raise Exception('Row and col don\'s match')
elif first_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n->n+km', k=k, row1=first_num, row2=second_num)
elif first_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n->n+km', k=k, col1=first_num, col2=second_num)
else:
raise Exception('Row and col don\'s match')
return matrix
def convert_matrix(matrix):
# build matrix
row = matrix.matrix_row()
tmp = []
rows = 0
mat = None
for r in row:
tmp.append([])
for expr in r.expr():
tmp[rows].append(convert_expr(expr))
rows = rows + 1
mat = sympy.Matrix(tmp)
if hasattr(matrix, 'MATRIX_XRIGHTARROW') and matrix.MATRIX_XRIGHTARROW():
transforms_list = matrix.elementary_transforms()
if len(transforms_list) == 1:
for transform in transforms_list[0].elementary_transform():
mat = convert_elementary_transform(mat, transform)
elif len(transforms_list) == 2:
# firstly transform top of xrightarrow
for transform in transforms_list[1].elementary_transform():
mat = convert_elementary_transform(mat, transform)
# firstly transform bottom of xrightarrow
for transform in transforms_list[0].elementary_transform():
mat = convert_elementary_transform(mat, transform)
return mat
def add_flat(lh, rh):
if hasattr(lh, 'is_Add') and lh.is_Add or hasattr(rh, 'is_Add') and rh.is_Add:
args = []
if hasattr(lh, 'is_Add') and lh.is_Add:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_Add') and rh.is_Add:
args = args + list(rh.args)
else:
args += [rh]
return sympy.Add(*args, evaluate=False)
else:
return sympy.Add(lh, rh, evaluate=False)
def mat_add_flat(lh, rh):
if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd or hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
args = []
if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
args = args + list(rh.args)
else:
args += [rh]
return sympy.MatAdd(*[arg.doit() for arg in args], evaluate=False)
else:
return sympy.MatAdd(lh.doit(), rh.doit(), evaluate=False)
def mul_flat(lh, rh):
if hasattr(lh, 'is_Mul') and lh.is_Mul or hasattr(rh, 'is_Mul') and rh.is_Mul:
args = []
if hasattr(lh, 'is_Mul') and lh.is_Mul:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_Mul') and rh.is_Mul:
args = args + list(rh.args)
else:
args += [rh]
return sympy.Mul(*args, evaluate=False)
else:
return sympy.Mul(lh, rh, evaluate=False)
def mat_mul_flat(lh, rh):
if hasattr(lh, 'is_MatMul') and lh.is_MatMul or hasattr(rh, 'is_MatMul') and rh.is_MatMul:
args = []
if hasattr(lh, 'is_MatMul') and lh.is_MatMul:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_MatMul') and rh.is_MatMul:
args = args + list(rh.args)
else:
args += [rh]
return sympy.MatMul(*[arg.doit() for arg in args], evaluate=False)
else:
if hasattr(lh, 'doit') and hasattr(rh, 'doit'):
return sympy.MatMul(lh.doit(), rh.doit(), evaluate=False)
elif hasattr(lh, 'doit') and not hasattr(rh, 'doit'):
return sympy.MatMul(lh.doit(), rh, evaluate=False)
elif not hasattr(lh, 'doit') and hasattr(rh, 'doit'):
return sympy.MatMul(lh, rh.doit(), evaluate=False)
else:
return sympy.MatMul(lh, rh, evaluate=False)
def convert_add(add):
if add.ADD():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if lh.is_Matrix or rh.is_Matrix:
return mat_add_flat(lh, rh)
else:
return add_flat(lh, rh)
elif add.SUB():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if lh.is_Matrix or rh.is_Matrix:
return mat_add_flat(lh, mat_mul_flat(-1, rh))
else:
# If we want to force ordering for variables this should be:
# return Sub(lh, rh, evaluate=False)
if not rh.is_Matrix and rh.func.is_Number:
rh = -rh
else:
rh = mul_flat(-1, rh)
return add_flat(lh, rh)
else:
return convert_mp(add.mp())
def convert_mp(mp):
if hasattr(mp, 'mp'):
mp_left = mp.mp(0)
mp_right = mp.mp(1)
else:
mp_left = mp.mp_nofunc(0)
mp_right = mp.mp_nofunc(1)
if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if lh.is_Matrix or rh.is_Matrix:
return mat_mul_flat(lh, rh)
else:
return mul_flat(lh, rh)
elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if lh.is_Matrix or rh.is_Matrix:
return sympy.MatMul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
else:
return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
elif mp.CMD_MOD():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if rh.is_Matrix:
raise Exception("Cannot perform modulo operation with a matrix as an operand")
else:
return sympy.Mod(lh, rh, evaluate=False)
else:
if hasattr(mp, 'unary'):
return convert_unary(mp.unary())
else:
return convert_unary(mp.unary_nofunc())
def convert_unary(unary):
if hasattr(unary, 'unary'):
nested_unary = unary.unary()
else:
nested_unary = unary.unary_nofunc()
if hasattr(unary, 'postfix_nofunc'):
first = unary.postfix()
tail = unary.postfix_nofunc()
postfix = [first] + tail
else:
postfix = unary.postfix()
if unary.ADD():
return convert_unary(nested_unary)
elif unary.SUB():
tmp_convert_nested_unary = convert_unary(nested_unary)
if tmp_convert_nested_unary.is_Matrix:
return mat_mul_flat(-1, tmp_convert_nested_unary, evaluate=False)
else:
if tmp_convert_nested_unary.func.is_Number:
return -tmp_convert_nested_unary
else:
return mul_flat(-1, tmp_convert_nested_unary)
elif postfix:
return convert_postfix_list(postfix)
def convert_postfix_list(arr, i=0):
if i >= len(arr):
raise Exception("Index out of bounds")
res = convert_postfix(arr[i])
if isinstance(res, sympy.Expr) or isinstance(res, sympy.Matrix) or res is sympy.S.EmptySet:
if i == len(arr) - 1:
return res # nothing to multiply by
else:
# multiply by next
rh = convert_postfix_list(arr, i + 1)
if res.is_Matrix or rh.is_Matrix:
return mat_mul_flat(res, rh)
else:
return mul_flat(res, rh)
elif isinstance(res, tuple) or isinstance(res, list) or isinstance(res, dict):
return res
else: # must be derivative
wrt = res[0]
if i == len(arr) - 1:
raise Exception("Expected expression for derivative")
else:
expr = convert_postfix_list(arr, i + 1)
return sympy.Derivative(expr, wrt)
def do_subs(expr, at):
if at.expr():
at_expr = convert_expr(at.expr())
syms = at_expr.atoms(sympy.Symbol)
if len(syms) == 0:
return expr
elif len(syms) > 0:
sym = next(iter(syms))
return expr.subs(sym, at_expr)
elif at.equality():
lh = convert_expr(at.equality().expr(0))
rh = convert_expr(at.equality().expr(1))
return expr.subs(lh, rh)
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise Exception("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b is not None and at_a is not None:
exp = add_flat(at_b, mul_flat(at_a, -1))
elif at_b is not None:
exp = at_b
elif at_a is not None:
exp = at_a
elif op.transpose():
try:
exp = exp.T
except:
try:
exp = sympy.transpose(exp)
except:
pass
pass
return exp
def convert_exp(exp):
if hasattr(exp, 'exp'):
exp_nested = exp.exp()
else:
exp_nested = exp.exp_nofunc()
if exp_nested:
base = convert_exp(exp_nested)
if isinstance(base, list):
raise Exception("Cannot raise derivative to power")
if exp.atom():
exponent = convert_atom(exp.atom())
elif exp.expr():
exponent = convert_expr(exp.expr())
return sympy.Pow(base, exponent, evaluate=False)
else:
if hasattr(exp, 'comp'):
return convert_comp(exp.comp())
else:
return convert_comp(exp.comp_nofunc())
def convert_comp(comp):
if comp.group():
return convert_expr(comp.group().expr())
elif comp.norm_group():
return convert_expr(comp.norm_group().expr()).norm()
elif comp.abs_group():
return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
elif comp.floor_group():
return handle_floor(convert_expr(comp.floor_group().expr()))
elif comp.ceil_group():
return handle_ceil(convert_expr(comp.ceil_group().expr()))
elif comp.atom():
return convert_atom(comp.atom())
elif comp.frac():
return convert_frac(comp.frac())
elif comp.binom():
return convert_binom(comp.binom())
elif comp.matrix():
return convert_matrix(comp.matrix())
elif comp.det():
# !Use Global variances
return convert_matrix(comp.det()).subs(variances).det()
elif comp.func():
return convert_func(comp.func())
def convert_atom(atom):
if atom.atom_expr():
atom_expr = atom.atom_expr()
# find the atom's text
atom_text = ''
if atom_expr.LETTER_NO_E():
atom_text = atom_expr.LETTER_NO_E().getText()
if atom_text == "I":
return sympy.I
elif atom_expr.GREEK_CMD():
atom_text = atom_expr.GREEK_CMD().getText()[1:].strip()
elif atom_expr.OTHER_SYMBOL_CMD():
atom_text = atom_expr.OTHER_SYMBOL_CMD().getText().strip()
elif atom_expr.accent():
atom_accent = atom_expr.accent()
# get name for accent
name = atom_accent.start.text
# name = atom_accent.start.text[1:]
# exception: check if bar or overline which are treated both as bar
# if name in ["bar", "overline"]:
# name = "bar"
# if name in ["vec", "overrightarrow"]:
# name = "vec"
# if name in ["tilde", "widetilde"]:
# name = "tilde"
# get the base (variable)
base = atom_accent.base.getText()
# set string to base+name
atom_text = name + '{' + base + '}'
# find atom's subscript, if any
subscript_text = ''
if atom_expr.subexpr():
subexpr = atom_expr.subexpr()
subscript = None
if subexpr.expr(): # subscript is expr
subscript = subexpr.expr().getText().strip()
elif subexpr.atom(): # subscript is atom
subscript = subexpr.atom().getText().strip()
elif subexpr.args(): # subscript is args
subscript = subexpr.args().getText().strip()
subscript_inner_text = StrPrinter().doprint(subscript)
if len(subscript_inner_text) > 1:
subscript_text = '_{' + subscript_inner_text + '}'
else:
subscript_text = '_' + subscript_inner_text
# construct the symbol using the text and optional subscript
atom_symbol = sympy.Symbol(atom_text + subscript_text, real=is_real)
# for matrix symbol
matrix_symbol = None
global var
if atom_text + subscript_text in var:
try:
rh = var[atom_text + subscript_text]
shape = sympy.shape(rh)
matrix_symbol = sympy.MatrixSymbol(atom_text + subscript_text, shape[0], shape[1])
variances[matrix_symbol] = variances[atom_symbol]
except:
pass
# find the atom's superscript, and return as a Pow if found
if atom_expr.supexpr():
supexpr = atom_expr.supexpr()
func_pow = None
if supexpr.expr():
func_pow = convert_expr(supexpr.expr())
else:
func_pow = convert_atom(supexpr.atom())
return sympy.Pow(atom_symbol, func_pow, evaluate=False)
return atom_symbol if not matrix_symbol else matrix_symbol
elif atom.SYMBOL():
s = atom.SYMBOL().getText().replace("\\$", "").replace("\\%", "")
if s == "\\infty":
return sympy.oo
elif s == '\\pi':
return sympy.pi
elif s == '\\emptyset':
return sympy.S.EmptySet
else:
raise Exception("Unrecognized symbol")
elif atom.NUMBER():
s = atom.NUMBER().getText().replace(",", "")
try:
sr = sympy.Rational(s)
return sr
except (TypeError, ValueError):
return sympy.Number(s)
elif atom.E_NOTATION():
s = atom.E_NOTATION().getText().replace(",", "")
try:
sr = sympy.Rational(s)
return sr
except (TypeError, ValueError):
return sympy.Number(s)
elif atom.DIFFERENTIAL():
var = get_differential_var(atom.DIFFERENTIAL())
return sympy.Symbol('d' + var.name, real=is_real)
elif atom.mathit():
text = rule2text(atom.mathit().mathit_text())
return sympy.Symbol(text, real=is_real)
elif atom.VARIABLE():
text = atom.VARIABLE().getText()
is_percent = text.endswith("\\%")
trim_amount = 3 if is_percent else 1
name = text[10:]
name = name[0:len(name) - trim_amount]
# add hash to distinguish from regular symbols
hash = hashlib.md5(name.encode()).hexdigest()
symbol_name = name + hash
# replace the variable for already known variable values
if name in VARIABLE_VALUES:
# if a sympy class
if isinstance(VARIABLE_VALUES[name], tuple(sympy.core.all_classes)):
symbol = VARIABLE_VALUES[name]
# if NOT a sympy class
else:
symbol = parse_expr(str(VARIABLE_VALUES[name]))
else:
symbol = sympy.Symbol(symbol_name, real=is_real)
if is_percent:
return sympy.Mul(symbol, sympy.Pow(100, -1, evaluate=False), evaluate=False)
# return the symbol
return symbol
elif atom.PERCENT_NUMBER():
text = atom.PERCENT_NUMBER().getText().replace("\\%", "").replace(",", "")
try:
number = sympy.Rational(text)
except (TypeError, ValueError):
number = sympy.Number(text)
percent = sympy.Rational(number, 100)
return percent
def rule2text(ctx):
stream = ctx.start.getInputStream()
# starting index of starting token
startIdx = ctx.start.start
# stopping index of stopping token
stopIdx = ctx.stop.stop
return stream.getText(startIdx, stopIdx)
def convert_frac(frac):
diff_op = False
partial_op = False
lower_itv = frac.lower.getSourceInterval()
lower_itv_len = lower_itv[1] - lower_itv[0] + 1
if (frac.lower.start == frac.lower.stop and
frac.lower.start.type == PSLexer.DIFFERENTIAL):
wrt = get_differential_var_str(frac.lower.start.text)
diff_op = True
elif (lower_itv_len == 2 and
frac.lower.start.type == PSLexer.SYMBOL and
frac.lower.start.text == '\\partial' and
(frac.lower.stop.type == PSLexer.LETTER_NO_E or frac.lower.stop.type == PSLexer.SYMBOL)):
partial_op = True
wrt = frac.lower.stop.text
if frac.lower.stop.type == PSLexer.SYMBOL:
wrt = wrt[1:]
if diff_op or partial_op:
wrt = sympy.Symbol(wrt, real=is_real)
if (diff_op and frac.upper.start == frac.upper.stop and
frac.upper.start.type == PSLexer.LETTER_NO_E and
frac.upper.start.text == 'd'):
return [wrt]
elif (partial_op and frac.upper.start == frac.upper.stop and
frac.upper.start.type == PSLexer.SYMBOL and
frac.upper.start.text == '\\partial'):
return [wrt]
upper_text = rule2text(frac.upper)
expr_top = None
if diff_op and upper_text.startswith('d'):
expr_top = latex2sympy(upper_text[1:])
elif partial_op and frac.upper.start.text == '\\partial':
expr_top = latex2sympy(upper_text[len('\\partial'):])
if expr_top:
return sympy.Derivative(expr_top, wrt)
expr_top = convert_expr(frac.upper)
expr_bot = convert_expr(frac.lower)
if expr_top.is_Matrix or expr_bot.is_Matrix:
return sympy.MatMul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
else:
return sympy.Mul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
def convert_binom(binom):
expr_top = convert_expr(binom.upper)
expr_bot = convert_expr(binom.lower)
return sympy.binomial(expr_top, expr_bot)
def convert_func(func):
if func.func_normal_single_arg():
if func.L_PAREN(): # function called with parenthesis
arg = convert_func_arg(func.func_single_arg())
else:
arg = convert_func_arg(func.func_single_arg_noparens())
name = func.func_normal_single_arg().start.text[1:]
# change arc<trig> -> a<trig>
if name in ["arcsin", "arccos", "arctan", "arccsc", "arcsec",
"arccot"]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name in ["arsinh", "arcosh", "artanh"]:
name = "a" + name[2:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name in ["arcsinh", "arccosh", "arctanh"]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name == "operatorname":
operatorname = func.func_normal_single_arg().func_operator_name.getText()
if operatorname in ["arsinh", "arcosh", "artanh"]:
operatorname = "a" + operatorname[2:]
expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
elif operatorname in ["arcsinh", "arccosh", "arctanh"]:
operatorname = "a" + operatorname[3:]
expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
elif operatorname == "floor":
expr = handle_floor(arg)
elif operatorname == "ceil":
expr = handle_ceil(arg)
elif operatorname == 'eye':
expr = sympy.eye(arg)
elif operatorname == 'rank':
expr = sympy.Integer(arg.rank())
elif operatorname in ['trace', 'tr']:
expr = arg.trace()
elif operatorname == 'rref':
expr = arg.rref()[0]
elif operatorname == 'nullspace':
expr = arg.nullspace()
elif operatorname == 'norm':
expr = arg.norm()
elif operatorname == 'cols':
expr = [arg.col(i) for i in range(arg.cols)]
elif operatorname == 'rows':
expr = [arg.row(i) for i in range(arg.rows)]
elif operatorname in ['eig', 'eigen', 'diagonalize']:
expr = arg.diagonalize()
elif operatorname in ['eigenvals', 'eigenvalues']:
expr = arg.eigenvals()
elif operatorname in ['eigenvects', 'eigenvectors']:
expr = arg.eigenvects()
elif operatorname in ['svd', 'SVD']:
expr = arg.singular_value_decomposition()
elif name in ["log", "ln"]:
if func.subexpr():
if func.subexpr().atom():
base = convert_atom(func.subexpr().atom())
else:
base = convert_expr(func.subexpr().expr())
elif name == "log":
base = 10
elif name == "ln":
base = sympy.E
expr = sympy.log(arg, base, evaluate=False)
elif name in ["exp", "exponentialE"]:
expr = sympy.exp(arg)
elif name == "floor":
expr = handle_floor(arg)
elif name == "ceil":
expr = handle_ceil(arg)
elif name == 'det':
expr = arg.det()
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if name in ["sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh", "tanh"]:
if func_pow == -1:
name = "a" + name
should_pow = False
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.func_normal_multi_arg():
if func.L_PAREN(): # function called with parenthesis
args = func.func_multi_arg().getText().split(",")
else:
args = func.func_multi_arg_noparens().split(",")
args = list(map(lambda arg: latex2sympy(arg, VARIABLE_VALUES), args))
name = func.func_normal_multi_arg().start.text[1:]
if name == "operatorname":
operatorname = func.func_normal_multi_arg().func_operator_name.getText()
if operatorname in ["gcd", "lcm"]:
expr = handle_gcd_lcm(operatorname, args)
elif operatorname == 'zeros':
expr = sympy.zeros(*args)
elif operatorname == 'ones':
expr = sympy.ones(*args)
elif operatorname == 'diag':
expr = sympy.diag(*args)
elif operatorname == 'hstack':
expr = sympy.Matrix.hstack(*args)
elif operatorname == 'vstack':
expr = sympy.Matrix.vstack(*args)
elif operatorname in ['orth', 'ortho', 'orthogonal', 'orthogonalize']:
if len(args) == 1:
arg = args[0]
expr = sympy.matrices.GramSchmidt([arg.col(i) for i in range(arg.cols)], True)
else:
expr = sympy.matrices.GramSchmidt(args, True)
elif name in ["gcd", "lcm"]:
expr = handle_gcd_lcm(name, args)
elif name in ["max", "min"]:
name = name[0].upper() + name[1:]
expr = getattr(sympy.functions, name)(*args, evaluate=False)
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.atom_expr_no_supexpr():
# define a function
f = sympy.Function(func.atom_expr_no_supexpr().getText())
# args
args = func.func_common_args().getText().split(",")
if args[-1] == '':
args = args[:-1]
args = [latex2sympy(arg, VARIABLE_VALUES) for arg in args]
# supexpr
if func.supexpr():
if func.supexpr().expr():
expr = convert_expr(func.supexpr().expr())
else:
expr = convert_atom(func.supexpr().atom())
return sympy.Pow(f(*args), expr, evaluate=False)
else:
return f(*args)
elif func.FUNC_INT():
return handle_integral(func)
elif func.FUNC_SQRT():
expr = convert_expr(func.base)
if func.root:
r = convert_expr(func.root)
return sympy.Pow(expr, 1 / r, evaluate=False)
else:
return sympy.Pow(expr, sympy.S.Half, evaluate=False)
elif func.FUNC_SUM():
return handle_sum_or_prod(func, "summation")
elif func.FUNC_PROD():
return handle_sum_or_prod(func, "product")
elif func.FUNC_LIM():
return handle_limit(func)
elif func.EXP_E():
return handle_exp(func)
def convert_func_arg(arg):
if hasattr(arg, 'expr'):
return convert_expr(arg.expr())
else:
return convert_mp(arg.mp_nofunc())
def handle_integral(func):
if func.additive():
integrand = convert_add(func.additive())
elif func.frac():
integrand = convert_frac(func.frac())
else:
integrand = 1
int_var = None
if func.DIFFERENTIAL():
int_var = get_differential_var(func.DIFFERENTIAL())
else:
for sym in integrand.atoms(sympy.Symbol):
s = str(sym)
if len(s) > 1 and s[0] == 'd':
if s[1] == '\\':
int_var = sympy.Symbol(s[2:], real=is_real)
else:
int_var = sympy.Symbol(s[1:], real=is_real)
int_sym = sym
if int_var: