generated from OxfordIHTM/ihtm-targets-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_targets.R
220 lines (203 loc) · 5.71 KB
/
_targets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
################################################################################
#
# General Targets Workflow
#
################################################################################
# Load libraries and custom functions -----------------------------------------
suppressPackageStartupMessages(source("packages.R"))
for (f in list.files(here::here("R"), full.names = TRUE)) source (f)
# Create targets and list targets objects -------------------------------------
## DAG targets ----
dag_targets <- tar_plan(
### Study DAG ----
tar_target(
name = anc_study_dag,
command = create_study_dag()
)
)
## Data targets
data_targets <- tar_plan(
### Path to raw data ----
tar_target(
name = anc_data_raw_file,
command = "data-raw/Copy of ANC_anon.xlsx",
format = "file"
),
### Read raw data ----
tar_target(
name = anc_data_raw,
command = openxlsx::read.xlsx(
xlsxFile = anc_data_raw_file,
sheet = 1,
detectDates = TRUE
)
),
### Create raw data metadata ----
tar_target(
name = anc_data_raw_metadata,
command = create_metadata_raw(anc_data_raw)
),
### Create raw data metdata CSV ----
tar_target(
name = anc_data_raw_metadata_csv,
command = create_metadata_raw_csv(anc_data_raw_metadata),
format = "file"
)
)
## Processing targets
processing_targets <- tar_plan(
### Process raw ANC data ----
tar_target(
name = anc_data_processed,
command = process_anc_data_raw(anc_data_raw)
),
### Create processed ANC data CSV ----
tar_target(
name = anc_data_processed_csv,
command = create_anc_data_processed_csv(anc_data_processed),
format = "file"
),
### Create processed ANC data metadata ----
tar_target(
name = anc_data_processed_metadata,
command = create_metadata_processed(anc_data_processed)
),
### Create processed ANC data metadata CSV ----
tar_target(
name = anc_data_processed_metadata_csv,
command = create_metadata_processed_csv(anc_data_processed_metadata),
format = "file"
)
)
## Analysis targets
analysis_targets <- tar_plan(
### Recode new ANC data variables ----
tar_target(
name = anc_data_recode,
command = recode_anc_variables(anc_data_processed)
),
### Create univariate summary tables ----
tar_target(
name = anc_data_summary_univariate_table,
command = summarise_anc_data_univariate(anc_data_recode)
),
### Create bivariate summary tables ----
tar_target(
name = anc_data_summary_bivariate_table,
command = summarise_anc_data_bivariate(anc_data_recode)
),
### Recode model variables ----
tar_target(
name = anc_data_model_recode,
command = recode_anc_model_variables(anc_data_recode)
),
### Create model data ----
tar_target(
name = anc_data_model,
command = create_anc_model_data(anc_data_model_recode)
),
### Bivariate analysis - odds ratio ----
tar_target(
name = anc_bivariate_fisher_test,
command = test_anc_bivariate_fisher(anc_data_model_recode)
),
### Summary odds ratio table ----
tar_target(
name = anc_odds_ratio_table,
command = summarise_fisher_test_table(
anc_bivariate_fisher_test, tidy = TRUE
)
),
### Bivariate analysis - t-test ----
tar_target(
name = anc_bivariate_t_test,
command = test_anc_bivariate_t(anc_data_model_recode)
),
### Summary t-test table ----
tar_target(
name = anc_t_test_table,
command = summarise_t_test_table(anc_bivariate_t_test, tidy = TRUE)
),
### GLM - logit model ----
tar_target(
name = anc_logit_model,
command = glm(
formula = anaemia_status ~ early_childbearing + livelihoods +
secondary_education + marital_status + location,
family = binomial(), data = anc_data_model
)
),
### GLM - logit model summary table ----
tar_target(
name = anc_logit_model_summary,
command = summarise_glm_output(
anc_logit_model, exponentiate = TRUE, tidy = TRUE,
col_names = c("Exposure", "Odds Ratio", "95% CI", "p-value")
)
),
### GLM - gaussian model ----
tar_target(
name = anc_gaussian_model,
command = glm(
formula = haemoglobin ~ early_childbearing + livelihoods +
secondary_education + marital_status + location,
family = gaussian(), data = anc_data_model
)
),
### GLM - logit model summary table ----
tar_target(
name = anc_gaussian_model_summary,
command = summarise_glm_output(anc_gaussian_model, tidy = TRUE)
)
)
## Output targets
output_targets <- tar_plan(
### Output recoded ANC data model as CSV ----
tar_target(
name = anc_data_model_recode_csv,
command = create_csv_output(
df = anc_data_model_recode, path = "data/anc_data_model_recode.csv"
),
format = "file"
),
### Output ANC data model for GLM ----
tar_target(
name = anc_data_model_csv,
command = create_csv_output(
df = anc_data_model, path = "data/anc_data_model"
),
format = "file"
),
### Create XLSX file with all the testing and model results output ----
tar_target(
name = anc_model_outputs,
command = create_xlsx_output(
anc_odds_ratio_table,
anc_t_test_table,
anc_logit_model_summary,
anc_gaussian_model_summary,
path = "outputs/anc_model_outputs.xlsx"
),
format = "file"
)
)
## Reporting targets
report_targets <- tar_plan(
### Render data review report ----
tar_render(
name = anc_data_raw_review_report,
path = "reports/gh_anc_data_report.Rmd",
knit_root_dir = here::here()
),
### Render example bivariate data analysis report ----
tar_render(
name = anc_data_analysis_report,
path = "reports/gh_anc_bivariate.Rmd",
knit_root_dir = here::here()
)
)
## Deploy targets
deploy_targets <- tar_plan(
)
## List targets
all_targets()