forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpert_paths.py
executable file
·152 lines (137 loc) · 4.95 KB
/
expert_paths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Expert paths/trajectories.
For producing or loading expert trajectories in environment.
"""
import tensorflow as tf
import random
import os
import numpy as np
import pickle
gfile = tf.gfile
def sample_expert_paths(num, env_str, env_spec,
load_trajectories_file=None):
"""Sample a number of expert paths randomly."""
if load_trajectories_file is not None:
if not gfile.Exists(load_trajectories_file):
assert False, 'trajectories file %s does not exist' % load_trajectories_file
with gfile.GFile(load_trajectories_file, 'r') as f:
episodes = pickle.load(f)
episodes = random.sample(episodes, num)
return [ep[1:] for ep in episodes]
return [sample_expert_path(env_str, env_spec)
for _ in xrange(num)]
def sample_expert_path(env_str, env_spec):
"""Algorithmic tasks have known distribution of expert paths we sample from."""
t = random.randint(2, 10) # sequence length
observations = []
actions = [env_spec.initial_act(None)]
rewards = []
if env_str in ['DuplicatedInput-v0', 'Copy-v0']:
chars = 5
random_ints = [int(random.random() * 1000) for _ in xrange(t)]
for tt in xrange(t):
char_idx = tt // 2 if env_str == 'DuplicatedInput-v0' else tt
char = random_ints[char_idx] % chars
observations.append([char])
actions.append([1, (tt + 1) % 2, char])
rewards.append((tt + 1) % 2)
elif env_str in ['RepeatCopy-v0']:
chars = 5
random_ints = [int(random.random() * 1000) for _ in xrange(t)]
for tt in xrange(3 * t + 2):
char_idx = (tt if tt < t else
2 * t - tt if tt <= 2 * t else
tt - 2 * t - 2)
if tt in [t, 2 * t + 1]:
char = chars
else:
char = random_ints[char_idx] % chars
observations.append([char])
actions.append([1 if tt < t else 0 if tt <= 2 * t else 1,
tt not in [t, 2 * t + 1], char])
rewards.append(actions[-1][-2])
elif env_str in ['Reverse-v0']:
chars = 2
random_ints = [int(random.random() * 1000) for _ in xrange(t)]
for tt in xrange(2 * t + 1):
char_idx = tt if tt < t else 2 * t - tt
if tt != t:
char = random_ints[char_idx] % chars
else:
char = chars
observations.append([char])
actions.append([tt < t, tt > t, char])
rewards.append(tt > t)
elif env_str in ['ReversedAddition-v0']:
chars = 3
random_ints = [int(random.random() * 1000) for _ in xrange(1 + 2 * t)]
carry = 0
char_history = []
move_map = {0: 3, 1: 1, 2: 2, 3: 1}
for tt in xrange(2 * t + 1):
char_idx = tt
if tt >= 2 * t:
char = chars
else:
char = random_ints[char_idx] % chars
char_history.append(char)
if tt % 2 == 1:
tot = char_history[-2] + char_history[-1] + carry
carry = tot // chars
tot = tot % chars
elif tt == 2 * t:
tot = carry
else:
tot = 0
observations.append([char])
actions.append([move_map[tt % len(move_map)],
tt % 2 or tt == 2 * t, tot])
rewards.append(tt % 2 or tt == 2 * t)
elif env_str in ['ReversedAddition3-v0']:
chars = 3
random_ints = [int(random.random() * 1000) for _ in xrange(1 + 3 * t)]
carry = 0
char_history = []
move_map = {0: 3, 1: 3, 2: 1, 3: 2, 4:2, 5: 1}
for tt in xrange(3 * t + 1):
char_idx = tt
if tt >= 3 * t:
char = chars
else:
char = random_ints[char_idx] % chars
char_history.append(char)
if tt % 3 == 2:
tot = char_history[-3] + char_history[-2] + char_history[-1] + carry
carry = tot // chars
tot = tot % chars
elif tt == 3 * t:
tot = carry
else:
tot = 0
observations.append([char])
actions.append([move_map[tt % len(move_map)],
tt % 3 == 2 or tt == 3 * t, tot])
rewards.append(tt % 3 == 2 or tt == 3 * t)
else:
assert False, 'No expert trajectories for env %s' % env_str
actions = [
env_spec.convert_env_actions_to_actions(act)
for act in actions]
observations.append([chars])
observations = [np.array(obs) for obs in zip(*observations)]
actions = [np.array(act) for act in zip(*actions)]
rewards = np.array(rewards)
return [observations, actions, rewards, True]