forked from NVlabs/stylegan3
-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathfrankenstein_network.py
221 lines (189 loc) · 7.71 KB
/
frankenstein_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from torch_utils import gen_utils
import torch
import numpy as np
import moviepy.editor
import os
import scipy.ndimage
# def interpolate_models(model1, model2, alpha):
# """
# Interpolates the weights of two models based on the interpolation factor alpha, only for matching keys.
#
# Args:
# - model1 (torch.nn.Module): The first model.
# - model2 (torch.nn.Module): The second model.
# - alpha (float): Interpolation factor ranging from 0.0 (full model1) to 1.0 (full model2).
#
# Returns:
# - A new model with interpolated weights for matching keys.
# """
# alpha = min(max(alpha, 0.0), 1.0) # Clip alpha to the range [0.0, 1.0]
#
# # Initialize the interpolated model with the same configuration as model1
# interpolated_model = type(model1)(
# z_dim=model1.z_dim,
# c_dim=model1.c_dim,
# w_dim=model1.w_dim,
# img_resolution=model1.img_resolution,
# img_channels=model1.img_channels
# ).eval().to(next(model1.parameters()).device)
#
# state_dict1 = model1.state_dict()
# state_dict2 = model2.state_dict()
# interpolated_state_dict = {}
#
# mismatched_keys = [] # Store keys that do not match
#
# for key in state_dict1:
# if key in state_dict2:
# # Only interpolate if the key exists in both models
# interpolated_state_dict[key] = (1 - alpha) * state_dict1[key] + alpha * state_dict2[key]
# else:
# # Log mismatched keys for review
# mismatched_keys.append(key)
#
# if mismatched_keys:
# print("Mismatched keys, not interpolated:", mismatched_keys)
#
# # Ensure only the interpolated keys are updated in the new model
# interpolated_model.load_state_dict(interpolated_state_dict, strict=False)
# return interpolated_model
def interpolate_multiple_models(models, weights=None):
"""
Interpolates the weights of multiple models based on given weights or equally if no weights are provided.
Args:
- models (list of torch.nn.Module): The list of models to interpolate.
- weights (list of float, optional): A list of weights for each model that sum to 1. Default is None, which assigns equal weight to each model.
Returns:
- torch.nn.Module: A new model with interpolated weights.
"""
if weights is None:
# If no weights provided, distribute equally
weights = [1 / len(models)] * len(models)
else:
# Validate weights
if len(weights) != len(models):
raise ValueError("The number of weights must match the number of models.")
if not np.isclose(sum(weights), 1):
raise ValueError("The sum of weights must be 1.")
# Assume all models are of the same type and have been initialized with the same parameters
# Use the first model to determine type and reconstruction parameters
interpolated_model = type(models[0])(
z_dim=models[0].z_dim,
c_dim=models[0].c_dim,
w_dim=models[0].w_dim,
img_resolution=models[0].img_resolution,
img_channels=models[0].img_channels
).eval().to(next(models[0].parameters()).device)
# Prepare to average the state dicts
sum_dict = {}
for model, weight in zip(models, weights):
model_dict = model.state_dict()
for key, value in model_dict.items():
if key in sum_dict:
sum_dict[key] += weight * value
else:
sum_dict[key] = weight * value
# Load the weighted average state dict into the new model
interpolated_model.load_state_dict(sum_dict, strict=False)
return interpolated_model
# Set device
device = torch.device('cuda')
# Get a vanilla Generator
# G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=1024, img_channels=3).eval().to(device)
# G = gen_utils.load_network('G_ema',
# './pretrained/white_veil_5000.pkl',
# None, device).eval()
# Get the weights of two different pre-trained networks
G = gen_utils.load_network('G_ema',
'mlpony512',
'stylegan2', device).eval()
G2 = gen_utils.load_network('G_ema',
'fursona512',
'stylegan2', device).eval()
# Set the video parameters
grid_size = (1, 1) # For now
fps = 30
duration_sec = 20.0
num_frames = int(fps * duration_sec)
shape = [num_frames, np.prod(grid_size), G.z_dim]
# Get the latents with the random state
seed = 42
random_state = np.random.RandomState(seed)
z = torch.randn(1, G.z_dim, device=device)
all_latents = random_state.randn(*shape).astype(np.float32)
# Let's smooth out the random latents so that now they form a loop (and are correctly generated in a 512-dim space)
all_latents = scipy.ndimage.gaussian_filter(all_latents, sigma=[3.0 * fps, 0, 0], mode='wrap')
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Interpolation parameters
truncation_psi = 0.7
label = torch.zeros([1, G.c_dim], device=device)
def generate_sinusoidal_alphas(total_frames: int) -> np.ndarray:
"""
Generates alpha values following a sinusoidal pattern from 0.0 to 1.0 and back to 0.0.
Args:
- num_frames (int): Total frames of video duration.
Returns:
- List of alpha values for each frame in the transition.
"""
# Generate frame indices
t = np.linspace(0, 2*np.pi, total_frames, endpoint=False)
# Calculate sinusoidal alphas:
alphas = 0.5 * (1 + np.sin(t - np.pi/2)) # Shift up by 1 and right by π/2 to start from 0 and scale to fit 0 to 1
return alphas
alphas = generate_sinusoidal_alphas(num_frames)
# Generate the video frames
def make_frame(t):
frame_idx = int(np.clip(np.round(t * fps), 0, num_frames - 1))
alpha = alphas[frame_idx]
# Interpolate the generator
interpolated_generator = interpolate_multiple_models([G, G2], [1 - alpha**2, alpha**2])
# Get the latents
z = torch.from_numpy(all_latents[frame_idx]).to(device)
# Generate the image
img = gen_utils.z_to_img(interpolated_generator, z, label, truncation_psi=truncation_psi, noise_mode='const')
grid = gen_utils.create_image_grid(img, (1, 1))
return grid
desc = 'franken-video'
outdir = os.path.join(os.getcwd(), 'out', 'franken-video')
run_dir = gen_utils.make_run_dir(outdir, desc)
# Generate video using the respective make_frame function
videoclip = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
videoclip.set_duration(duration_sec)
mp4_name = 'franken-video'
# Change the video parameters (codec, bitrate) if you so desire
final_video = os.path.join(run_dir, f'{mp4_name}.mp4')
videoclip.write_videofile(final_video, fps=fps, codec='libx264', bitrate='16M')
gen_utils.compress_video(original_video=final_video, original_video_name=mp4_name, outdir=run_dir)
##########
# import numpy as np
# import matplotlib.pyplot as plt
#
# # Define the domain
# x = np.linspace(0, 1, 400)
#
# # Define the functions
# # f = (1/6) * (1 + np.cos(np.pi * x))**2
# # g = (1/6) * (1 + np.cos(2 * np.pi * (x - 0.5)))**2
# # h = (1/6) * (1 + np.cos(np.pi * (x - 1)))**2
#
# # f = 1 - (1 - 4*(x - 0.5) ** 2) - x**2
# f = -(x - 1) ** 3
# g = 1 - 4*(x - 0.5) ** 2
# h = x**2
#
# # Calculate the sum of the functions
# sum_fg_h = f + g + h
#
# # Plotting
# plt.figure(figsize=(10, 6))
# plt.plot(x, f, label='f(x) = 1/3 (1 + cos(πx))', linestyle='--')
# plt.plot(x, g, label='g(x) = 1/3 (1 + cos(2π(x - 0.5)))', linestyle='-.')
# plt.plot(x, h, label='h(x) = 1/3 (1 + cos(π(x - 1)))', linestyle=':')
# plt.plot(x, sum_fg_h, label='f(x) + g(x) + h(x)', color='black', linewidth=2)
# plt.title('Plot of Functions f(x), g(x), h(x), and Their Sum')
# plt.xlabel('x')
# plt.ylabel('Value')
# # plt.ylim(0, 1.1) # Extend y-axis slightly above 1 for clarity
# plt.grid(True)
# plt.legend()
# plt.show()