-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmp_cr
executable file
·418 lines (345 loc) · 11.9 KB
/
cmp_cr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/python
#this program is for calculating the clusters overlapping between to PRIDE Cluster results
#usage: compare clusterresult1 clusterresult2
#author mingze
#2016.10
from __future__ import division
import re
import sys
import json
fileName1 = sys.argv[1]
fileName2 = sys.argv[2]
resultFile1 = open(fileName1, 'r')
resultFile2 = open(fileName2, 'r')
similarSpectraNoinF1 = 0;
spectraNoinF1 = 0;
similarSpectraNoinF2 = 0;
spectraNoinF2 = 0;
nodes = [];
edges = [];
def readAClusterFromLines(lineList):
specList = []
i = 0
line = lineList[i]
idMatch = re.match(r'id=(.*?)\n',line)
while(not idMatch): #to the id line
i = i +1
if i >= len(lineList):
return (None, specList)
line = lineList[i]
idMatch = re.match(r'id=(.*?)\n',line)
if idMatch:
id = idMatch.group(1)
else:
print "error or EndofFile, it is not begin with 'id=*'"
print idLine
return (None, specList)
i = i + 6
line = lineList[i] #jump to the SPEC line
SPECMatch = re.match(r'SPEC\t(.*?)\t',line)
while(SPECMatch):
specList.append(SPECMatch.group(1))
i = i + 1
if i >= len(lineList) : break
line = lineList[i]
SPECMatch = re.match(r'SPEC\t(.*?)\t',line)
return (id,specList)
def readLinesForACluster(resultFile):
lines = []
line = resultFile.readline()
if line == None or line == '':
return lines
while(line != '=Cluster=\n' ):
lines.append(line)
line = resultFile.readline()
if line == None or line == '':
break
return lines
def isClusterSame(cluster1, cluster2):
(id1, len1, specList1) = cluster1
(id2, len2, specList2) = cluster2
# print "comparing: " + id1 + "---" + id2
if len1 != len2 :
return False
for i in range(0,len1):
if cmp(specList1[i], specList2[i]) != 0:
return False
return True
def getClusterSimilarity(cluster1, cluster2):
global similarSpectraNoinF1
global similarSpectraNoinF2
(id1, len1, specList1) = cluster1
(id2, len2, specList2) = cluster2
# print "comparing: " + id1 + "---" + id2
n = 0
i = 0
j = 0
while (i < len1 and j < len2):
cmp_score = cmp(specList1[i], specList2[j])
if cmp_score == 0:
i = i + 1
j = j + 1
n = n+1
if cmp_score < 0:
i = i + 1
if cmp_score > 0:
j = j + 1
similarSpectraNoinF1 = similarSpectraNoinF1 + n;
similarSpectraNoinF2 = similarSpectraNoinF2 + n;
return (n,2*n/(len1+len2))
clusterList1 = []
clusterList2 = []
distribute1 = {}
distribute2 = {}
#read from files
print "start reading file 1: " + fileName1
i = 1
while(i>=1):
bufferLines = readLinesForACluster(resultFile1)
if len(bufferLines) < 1:
break
(id1,specList1) = readAClusterFromLines(bufferLines)
if(id1 == None):
continue
if len(specList1 ) > 1:
clusterList1.append((id1, len(specList1), sorted(specList1)))
node_data = {
"name":"Grp1_" + str(i),
"id":id1,
"groupNo":1,
"length":len(specList1)
}
node = {
"data":node_data
}
nodes.append(node)
distribute1[len(specList1)] = distribute1.get(len(specList1),0) + 1
spectraNoinF1 = spectraNoinF1 + len(specList1)
i = i + 1
print "end of file 1"
print "start reading file 2: " +fileName2
i = 1
while(i>=1):
bufferLines = readLinesForACluster(resultFile2)
if len(bufferLines) < 1:
break
(id2,specList2) = readAClusterFromLines(bufferLines)
if(id2 == None):
continue
if len(specList2 ) > 1:
clusterList2.append((id2, len(specList2), sorted(specList2)))
node_data = {
"name":"Grp2_" + str(i),
"id":id2,
"groupNo":2,
"length":len(specList2)
}
node = {
"data":node_data
}
nodes.append(node)
distribute2[len(specList2)] = distribute2.get(len(specList2),0) + 1
spectraNoinF2 = spectraNoinF2 + len(specList2)
i = i + 1
print "end of reading file 2"
#which one is bigger?#
allClusters = {}
if len(clusterList1) >= len(clusterList2):
smallList = 2
bigList = 1
NoSpectraInSmallList = spectraNoinF2
NoSpectraInBigList = spectraNoinF1
allClusters = {
"bigClusterList" : clusterList1,
"smallClusterList" : clusterList2
}
else:
smallList = 1
bigList = 2
NoSpectraInSmallList = spectraNoinF1
NoSpectraInbigList = spectraNoinF2
allClusters = {
"bigClusterList" : clusterList2,
"smallClusterList" : clusterList1
}
#calculate and store the similarities
#prepare the network data
#we assume the arrow point from bigNode(small cluster List) to smallNode (big cluster List)
identical_num = 0
similarityDist = {}
for i in range(0,len(allClusters['smallClusterList'])):
for j in range(0, len(allClusters['bigClusterList'])):
(sharedSpectraNo,similarity) = getClusterSimilarity(allClusters['smallClusterList'][i], allClusters['bigClusterList'][j])
if similarity == 1.0:
identical_num = identical_num + 1
if sharedSpectraNo > 0:
edge_data = {
"source":allClusters['smallClusterList'][i][0], #get id
"target":allClusters['bigClusterList'][j][0],
"sharedSpectraNo":sharedSpectraNo,
"similarity":similarity
}
edge = {"data":edge_data}
edges.append(edge)
similarityDist[int(similarity*10)] = similarityDist.get(int(similarity*10),0) + 1
#output the statistics of the files
print "\n\n"
print "the statistics of the files"
print "----------------------------------------"
print str(len(clusterList1)) + "\t clusters in file 1: " + fileName1
print str(len(clusterList2)) + "\t clusters in file 2: " + fileName2
print str(identical_num) + "\t same clusters between them"
print str(similarSpectraNoinF1/(1.0*spectraNoinF1)) + "x" + str(spectraNoinF1) + "=" + str(similarSpectraNoinF1) + " shared spectra from " + fileName1
print str(similarSpectraNoinF2/(1.0*spectraNoinF2)) + "x" + str(spectraNoinF2) + "=" + str(similarSpectraNoinF2) + " shared spectra from file" + fileName2
print "----------------------------------------"
#output the distribution of similarities:
print "\n\n"
print "the distribution of cluster size in file 1 " + fileName1
print "----------------------------------------"
print "cluster size\tNo."
print "----------------------------------------"
for i in sorted(distribute1.keys()):
print str(i) + "\t\t" + str(distribute1[i])
print "----------------------------------------"
print "\n\n"
print "the distribution of cluster size in file 2 " + fileName2
print "----------------------------------------"
print "cluster size\tNo."
print "----------------------------------------"
for i in sorted(distribute2.keys()):
print str(i) + "\t\t" + str(distribute2[i])
print "----------------------------------------"
print "\n\n"
print "the distribution of similarity between them"
print "----------------------------------------"
print "similarity\tNo."
print "----------------------------------------"
for i in sorted(similarityDist.keys()):
print str(i) + "\t\t" + str(similarityDist[i])
print "----------------------------------------"
#calculate the stars#
starList = []
outterList = []
for i in range(0, len(nodes)):
node = nodes[i]['data']
if node['name'][3] == str(smallList) :
outterIds = []
star = {
"starId":node['id'],
"NoSpectra":node['length'],
"outterIds": outterIds,
"NoSharedSpectra": 0
}
starList.append(star)
else :
starIds = []
outter = {
"outterId":node['id'],
"NoSpectra":node['length'],
"starIds": starIds,
"NoSharedSpectra": 0
}
outterList.append(outter)
starConnectFlag = False
for i in range(0, len(edges)):
edge = edges[i]['data']
source = edge['source']
target = edge['target']
for j in range(0, len(starList)):
if starList[j]['starId'] == source :
starList[j]['outterIds'].append(target)
starList[j]['NoSharedSpectra'] += edge['sharedSpectraNo']
if starList[j]['starId'] == target:
starList[j]['outterIds'].append(source)
starList[j]['NoSharedSpectra'] += edge['sharedSpectraNo']
for k in range(0, len(outterList)):
if outterList[k]['outterId'] == source :
outterList[k]['starIds'].append(target)
outterList[k]['NoSharedSpectra'] += edge['sharedSpectraNo']
starConnectFlag = True
if outterList[k]['outterId'] == target:
outterList[k]['starIds'].append(source)
outterList[k]['NoSharedSpectra'] += edge['sharedSpectraNo']
starConnectFlag = True
#get the stand alone nodes, calculate the No of Lost Spectra and the distribution of dividing factors
standAloneStars = []
standAloneOutters = []
totalLostSpectraInStars = 0
totalLostSpectraInOutters = 0
dividFactorDist = {}
for i in range(0,len(starList)):
if len(starList[i]['outterIds']) == 0 :
standAloneStars.append(starList[i])
divideFactor = len(starList[i]['outterIds']) + starList[i]['NoSpectra'] - starList[i]['NoSharedSpectra']
dividFactorDist[divideFactor] = dividFactorDist.get(divideFactor,0) + 1
if starList[i]['NoSpectra'] < starList[i]['NoSharedSpectra'] :
print "!!!!!!!!!!!!Wrong here, total spectra No is less than Shared Spectra with outters"
print "with star " + str(i) + str(starList[i]['NoSpectra']) + "is less than" + str(starList[i]['NoSharedSpectra'])
if starList[i]['NoSpectra'] > starList[i]['NoSharedSpectra'] :
totalLostSpectraInStars += starList[i]['NoSpectra'] - starList[i]['NoSharedSpectra']
for i in range(0,len(outterList)):
if len(outterList[i]['starIds']) == 0 :
standAloneOutters.append(outterList[i])
if outterList[i]['NoSpectra'] < outterList[i]['NoSharedSpectra'] :
print "!!!!!!!!!!!!Wrong here, total spectra No is less than Shared Spectra with stars"
print "with star " + str(i) + str(outterList[i]['NoSpectra']) + "is less than" + str(outterList[i]['NoSharedSpectra'])
if outterList[i]['NoSpectra'] > outterList[i]['NoSharedSpectra'] :
totalLostSpectraInOutters += outterList[i]['NoSpectra'] - outterList[i]['NoSharedSpectra']
#output the No. of losted spectra
print "\n\n----------------------------------------"
print "totally lost " + str(totalLostSpectraInStars) + "(" + str(totalLostSpectraInStars/(0.01 * NoSpectraInSmallList )) +"%)" + "spectra in Stars"
print "totally lost " + str(totalLostSpectraInOutters) + "(" + str(totalLostSpectraInOutters/(0.01 * NoSpectraInBigList )) +"%)" + "spectra in Outters"
print "----------------------------------------"
#output the average dividing factor
#each of a losted spectrum will be considered as one singleton cluster, which contribute equelly to the normal clusters
aveDvdFactor = (len(edges)+totalLostSpectraInStars)/(1.0 * len(starList))
print "\n\n"
print "average dividing factor ---(each of a losted spectrum will be considered as one singleton cluster, which contribute equelly to the normal clusters)"
print "----------------------------------------"
print aveDvdFactor
print "----------------------------------------"
#output the distribution of dividing factors
print "\n\n"
print "the distribution of dividing factors"
print "----------------------------------------"
print "Divide Factors \t No."
print "----------------------------------------"
for i in dividFactorDist.keys() :
print str(i) + "\t\t" + str(dividFactorDist[i])
print "----------------------------------------"
#output stand alone nodes
print "\n\n"
print "No of stand alone clusters"
print "----------------------------------------"
print "small group\tbig group"
print "----------------------------------------"
print str(len(standAloneStars)) + "\t\t" + str(len(standAloneOutters))
#output star connecting info
if (starConnectFlag == True) :
print "\n\n"
print "some stars are connected by these outters"
print "----------------------------------------"
NoConnectOutters = 0
for i in range(0,len(outterList)):
if len(outterList[i]['starIds']) > 1 :
NoConnectOutters += 1
# print "outter " + str(i) + "has " + str(len(outterList[i]['starIds'])) + " lines out"
if len(outterList[i]['starIds']) > 2 :
print "outter " + str(i) + "has " + str(len(outterList[i]['starIds'])) + " lines out(>1), should be careful "
print "total No."
print "----------------------------------------"
print str(NoConnectOutters)
print "----------------------------------------"
#output the Network data to cytoscape JSON file
networkDataInJson = {
"elements":{
"nodes" : nodes,
"edges" : edges
}
}
networkString = json.dumps(networkDataInJson)
cytoscapeFile = open("networkData.json", 'w')
cytoscapeFile.write(networkString)
cytoscapeFile.close()
resultFile1.close()
resultFile2.close()