-
Notifications
You must be signed in to change notification settings - Fork 0
/
coop.py
325 lines (258 loc) · 11.6 KB
/
coop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os.path as osp
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.metrics import compute_accuracy
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
def load_clip_to_cpu(name):
backbone_name = name
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
model = clip.build_model(state_dict or model.state_dict())
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class PromptLearner(nn.Module):
def __init__(self, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
n_ctx = 16
ctx_init = '' #'a photo of a' # a photo of a
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = 224
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = len(ctx_init.split(" "))
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
CSC = True
if CSC:
print("Initializing class-specific contexts")
ctx_vectors = torch.empty(n_cls, n_ctx, ctx_dim, dtype=dtype)
else:
print("Initializing a generic context")
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of context words (tokens): {n_ctx}")
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts])
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
self.class_token_position = "end"
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
if self.class_token_position == "end":
prompts = torch.cat(
[
prefix, # (n_cls, 1, dim)
ctx, # (n_cls, n_ctx, dim)
suffix, # (n_cls, *, dim)
],
dim=1,
)
elif self.class_token_position == "middle":
half_n_ctx = self.n_ctx // 2
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
ctx_i_half1, # (1, n_ctx//2, dim)
class_i, # (1, name_len, dim)
ctx_i_half2, # (1, n_ctx//2, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
elif self.class_token_position == "front":
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i = ctx[i : i + 1, :, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
class_i, # (1, name_len, dim)
ctx_i, # (1, n_ctx, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
else:
raise ValueError
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = PromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
def forward(self, image):
image_features = self.image_encoder(image.type(self.dtype))
prompts = self.prompt_learner()
tokenized_prompts = self.tokenized_prompts
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logit_scale = self.logit_scale.exp()
logits = logit_scale * image_features @ text_features.t()
return logits
@TRAINER_REGISTRY.register()
class CoOp(TrainerX):
"""Context Optimization (CoOp).
Learning to Prompt for Vision-Language Models
https://arxiv.org/abs/2109.01134
"""
def check_cfg(self, cfg):
assert cfg.TRAINER.COOP.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.COOP.PREC == "fp32" or cfg.TRAINER.COOP.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
for name, param in self.model.named_parameters():
if "prompt_learner" not in name:
param.requires_grad_(False)
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
self.scaler = GradScaler() if cfg.TRAINER.COOP.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
prec = self.cfg.TRAINER.COOP.PREC
if prec == "amp":
with autocast():
output = self.model(image)
loss = F.cross_entropy(output, label)
self.optim.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optim)
self.scaler.update()
else:
output = self.model(image)
loss = F.cross_entropy(output, label)
self.model_backward_and_update(loss)
loss_summary = {
"loss": loss.item(),
"acc": compute_accuracy(output, label)[0].item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "token_prefix" in state_dict:
del state_dict["token_prefix"]
if "token_suffix" in state_dict:
del state_dict["token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)