-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_extractor.py
117 lines (101 loc) · 5.64 KB
/
test_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
This code allows you to evaluate performance of a single feature extractor + a classifier
on the test splits of all datasets (ilsvrc_2012, omniglot, aircraft, cu_birds, dtd, quickdraw, fungi,
vgg_flower, traffic_sign, mscoco, mnist, cifar10, cifar100).
The default classifier used in this code is the NCC with cosine similarity.
One can use other classifiers for meta-testing,
e.g. use ```--test.loss-opt``` to select nearest centroid classifier (ncc, default),
support vector machine (svm), logistic regression (lr), Mahalanobis distance from
Simple CNAPS (scm), or k-nearest neighbor (knn);
use ```--test.feature-norm``` to normalize feature (l2) or not for svm and lr;
use ```--test.distance``` to specify the feature similarity function (l2 or cos) for NCC.
To evaluate the feature extractor with NCC and cosine similarity on test splits of all datasets, run:
python test_extractor.py --test.loss-opt ncc --test.feature-norm none --test.distance cos --model.name=<model name> --model.dir <directory of url>
To test the feature extractor one the test splits of ilsrvc_2012, dtd, vgg_flower, quickdraw,
comment the line 'testsets = ALL_METADATASET_NAMES' and run:
python test_extractor.py --test.loss-opt ncc --test.feature-norm none --test.distance cos --data.test ilsrvc_2012 dtd vgg_flower quickdraw --model.name=<model name> --model.dir <directory of url>
"""
import os
import torch
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from tabulate import tabulate
from utils import check_dir
from models.losses import prototype_loss, knn_loss, lr_loss, scm_loss, svm_loss
from models.model_utils import CheckPointer
from models.model_helpers import get_model
from data.meta_dataset_reader import (MetaDatasetEpisodeReader, MetaDatasetBatchReader, TRAIN_METADATASET_NAMES,
ALL_METADATASET_NAMES)
from config import args
def main():
TEST_SIZE = 600
# Setting up datasets
trainsets, valsets, testsets = args['data.train'], args['data.val'], args['data.test']
testsets = ALL_METADATASET_NAMES # comment this line to test the model on args['data.test']
trainsets = TRAIN_METADATASET_NAMES
test_loader = MetaDatasetEpisodeReader('test', trainsets, trainsets, testsets, test_type=args['test.type'])
model = get_model(None, args)
checkpointer = CheckPointer(args, model, optimizer=None)
checkpointer.restore_model(ckpt='best', strict=False)
model.eval()
accs_names = [args['test.loss_opt']]
var_accs = dict()
config = tf.compat.v1.ConfigProto()
# config.gpu_options.allow_growth = True
config.gpu_options.allow_growth = False
with tf.compat.v1.Session(config=config) as session:
# go over each test domain
for dataset in testsets:
print(dataset)
var_accs[dataset] = {name: [] for name in accs_names}
for i in tqdm(range(TEST_SIZE)):
with torch.no_grad():
sample = test_loader.get_test_task(session, dataset)
context_features = model.embed(sample['context_images'])
target_features = model.embed(sample['target_images'])
context_labels = sample['context_labels']
target_labels = sample['target_labels']
if args['test.loss_opt'] == 'ncc':
_, stats_dict, _ = prototype_loss(
context_features, context_labels,
target_features, target_labels, distance=args['test.distance'])
elif args['test.loss_opt'] == 'knn':
_, stats_dict, _ = knn_loss(
context_features, context_labels,
target_features, target_labels)
elif args['test.loss_opt'] == 'lr':
_, stats_dict, _ = lr_loss(
context_features, context_labels,
target_features, target_labels, normalize=(args['test.feature_norm'] == 'l2'))
elif args['test.loss_opt'] == 'svm':
_, stats_dict, _ = svm_loss(
context_features, context_labels,
target_features, target_labels, normalize=(args['test.feature_norm'] == 'l2'))
elif args['test.loss_opt'] == 'scm':
_, stats_dict, _ = scm_loss(
context_features, context_labels,
target_features, target_labels, normalize=False)
var_accs[dataset][args['test.loss_opt']].append(stats_dict['acc'])
dataset_acc = np.array(var_accs[dataset][args['test.loss_opt']]) * 100
print(f"{dataset}: test_acc {dataset_acc.mean():.2f}%")
# Print nice results table
print('results of {}'.format(args['model.name']))
rows = []
for dataset_name in testsets:
row = [dataset_name]
for model_name in accs_names:
acc = np.array(var_accs[dataset_name][model_name]) * 100
mean_acc = acc.mean()
conf = (1.96 * acc.std()) / np.sqrt(len(acc))
row.append(f"{mean_acc:0.2f} +- {conf:0.2f}")
rows.append(row)
out_path = os.path.join(args['out.dir'], 'weights')
out_path = check_dir(out_path, True)
out_path = os.path.join(out_path, '{}-{}-{}-{}-{}-test-results.npy'.format(args['model.name'], args['test.type'], args['test.loss_opt'], args['test.feature_norm'], args['test.distance']))
np.save(out_path, {'rows': rows})
table = tabulate(rows, headers=['model \\ data'] + accs_names, floatfmt=".2f")
print(table)
print("\n")
if __name__ == '__main__':
main()