forked from Prudhvinik1/ViolenceDetection_CNNLSTM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDatasetBuilder.py
305 lines (265 loc) · 11.8 KB
/
DatasetBuilder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import scipy
import os
import cv2
import pickle
import glob
import numpy as np
from keras.preprocessing.image import load_img, img_to_array
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from collections import defaultdict
from keras.preprocessing import image
import random
corner_keys = ["Center","Left_up","Left_down","Right_up","Right_down"]
Debug_Print_AUG=True
apply_aug = True
def save_figures_from_video(dataset_video_path, video_filename, suffix,figures_path,skip_frames = 25,apply_norm = True, apply_diff = True,fix_len = None):
seq_len = 0
video_figures_path = os.path.join(figures_path ,video_filename)
if not os.path.exists(video_figures_path):
os.makedirs(video_figures_path)
video_file = os.path.join(dataset_video_path, video_filename + suffix)
label = 0
print('Extracting frames from video: ', video_file)
videoCapture = cv2.VideoCapture(video_file)
if fix_len is not None:
vid_len = int(videoCapture.get(cv2.CAP_PROP_FRAME_COUNT))
skip_frames = int(float(vid_len)/float(fix_len))
videoCapture.set(cv2.CAP_PROP_POS_MSEC, (seq_len * skip_frames))
success, figure_ = videoCapture.read()
success = True
files = []
while success:
success, figure = videoCapture.read()
if seq_len % skip_frames == 0:
if success:
figure_curr = figure
image_file = os.path.join(video_figures_path , "frame_%d.jpg" % seq_len)
files.append(image_file)
cv2.imwrite(image_file, figure_curr)
seq_len += 1
video_images = dict(images_path = video_figures_path, name = video_filename,
images_files = files, sequence_length = seq_len, label = label)
return video_images
def createDataset(datasets_video_path, figure_output_path,fix_len, force = False):
videos_seq_length = []
datasets_images = {}
videos_frames_paths = []
videos_labels = []
#Extract images for each video for each dataset
for dataset_name, dataset_video_path in datasets_video_path.items():
dataset_figures_path = os.path.join(figure_output_path,dataset_name)
if not os.path.exists(dataset_figures_path):
os.makedirs(dataset_figures_path)
dataset_images = []
for filename in os.listdir(dataset_video_path):
if filename.endswith(".avi") or filename.endswith(".mpg") or filename.endswith(".mp4"):
video_images_file = os.path.join(dataset_figures_path,filename[:-4], 'video_summary.pkl')
if os.path.isfile(video_images_file) and not force:
with open(video_images_file, 'rb') as f:
video_images = pickle.load(f)
else:
video_images = save_figures_from_video(dataset_video_path, filename[:-4],filename[-4:], dataset_figures_path, fix_len =fix_len)
if dataset_name == "hocky":
if filename.startswith("fi"):
video_images['label'] = 1
elif dataset_name == "violentflow":
if "violence" in filename:
video_images['label'] = 1
elif dataset_name == "movies":
if "fi" in filename:
video_images['label'] = 1
elif dataset_name == "crimes":
if "Normal" not in filename:
video_images['label'] = 1
elif dataset_name == "UniCrimes":
if "Norm" not in filename:
video_images['label'] = 1
with open(video_images_file, 'wb') as f:
pickle.dump(video_images, f, pickle.HIGHEST_PROTOCOL)
dataset_images.append(video_images)
videos_seq_length.append(video_images['sequence_length'])
videos_frames_paths.append(video_images['images_path'])
videos_labels.append(video_images['label'])
datasets_images[dataset_name] = dataset_images
avg_length = int(float(sum(videos_seq_length)) / max(len(videos_seq_length), 1))
# print("Printing Parameters")
# print(videos_frames_paths)
# print(videos_labels)
train_path, test_path, train_y, test_y = train_test_split(videos_frames_paths,videos_labels, test_size=0.15, random_state=42)
# print("trainpath:",train_path)
# print("testpath:",test_path)
# print("trainy:",train_y)
# print("testy:",test_y)
# print("Returning")
# return
if apply_aug:
aug_paths = []
aug_y = []
for train_path_, train_y_ in zip(train_path,train_y):
aug_path = generate_augmentations(train_path_,force = False)
aug_paths.append(aug_path)
aug_y.append(train_y_)
train_path = train_path + aug_paths
train_y = train_y + aug_y
train_path, valid_path, train_y, valid_y = train_test_split(train_path, train_y, test_size=0.20, random_state=42)
return train_path,valid_path, test_path,\
train_y, valid_y, test_y,\
avg_length
def frame_loader(frames,figure_shape,to_norm = True):
output_frames = []
for frame in frames:
image = load_img(frame, target_size=(figure_shape, figure_shape),interpolation='bilinear')
img_arr = img_to_array(image)
# Scale
figure = (img_arr / 255.).astype(np.float32)
# Normalize
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
figure = (figure - mean) / std
output_frames.append(figure)
return output_frames
def data_generator(data_paths,labels,batch_size,figure_shape,seq_length,use_aug,use_crop,crop_x_y,classes = 1):
while True:
indexes = np.arange(len(data_paths))
np.random.shuffle(indexes)
select_indexes = indexes[:batch_size]
data_paths_batch = [data_paths[i] for i in select_indexes]
labels_batch = [labels[i] for i in select_indexes]
X, y = get_sequences(data_paths_batch,labels_batch,figure_shape,seq_length, classes, use_augmentation = use_aug,use_crop=use_crop,crop_x_y=crop_x_y)
yield X, y
def data_generator_files(data,labels,batch_size):
while True:
indexes = np.arange(len(data))
np.random.shuffle(indexes)
select_indexes = indexes[:batch_size]
X = [data[i] for i in select_indexes]
y = [labels[i] for i in select_indexes]
yield X, y
def crop_img__remove_Dark(img,x_crop,y_crop,x,y,figure_size):
x_start = x_crop
x_end = x-x_crop
y_start = y_crop
y_end = y-y_crop
return cv2.resize(img[y_start:y_end,x_start:x_end,:],(figure_size,figure_size))
def crop_img(img,figure_shape,percentage=0.8,corner="Left_up"):
if(corner == None):
corner = random.choice(corner_keys)
if corner not in corner_keys:
raise ValueError(
'Invalid corner method {} specified. Supported '
'corners are {}'.format(
corner,
", ".join(corner_keys)))
resize = int(figure_shape*percentage)
if(corner =="Left_up"):
x_start = 0
x_end = resize
y_start = 0
y_end = resize
if (corner == "Right_down"):
x_start = figure_shape-resize
x_end = figure_shape
y_start = figure_shape-resize
y_end = figure_shape
if(corner =="Right_up"):
x_start = 0
x_end = resize
y_start = figure_shape-resize
y_end = figure_shape
if (corner == "Left_down"):
x_start = figure_shape-resize
x_end = figure_shape
y_start = 0
y_end = resize
if (corner == "Center"):
half = int(figure_shape*(1-percentage))
x_start = half
x_end = figure_shape-half
y_start = half
y_end = figure_shape-half
img = cv2.resize(img[y_start:y_end,x_start:x_end, :], (figure_shape, figure_shape)).astype(np.float32)
return img
def get_sequences(data_paths,labels,figure_shape,seq_length,classes=1, use_augmentation = False,use_crop=True,crop_x_y=None):
X, y = [], []
seq_len = 0
for data_path, label in zip(data_paths,labels):
frames = sorted(glob.glob(os.path.join(data_path, '*jpg')))
x = frame_loader(frames, figure_shape)
if(crop_x_y):
x = [crop_img__remove_Dark(x_,crop_x_y[0],crop_x_y[1],x_.shape[0],x_.shape[1],figure_shape) for x_ in x]
if use_augmentation:
rand = scipy.random.random()
corner=""
if rand > 0.5:
if(use_crop):
corner=random.choice(corner_keys)
x = [crop_img(x_,figure_shape,0.7,corner) for x_ in x]
x = [frame.transpose(1, 0, 2) for frame in x]
if(Debug_Print_AUG):
to_write = [list(a) for a in zip(frames, x)]
[cv2.imwrite(x_[0] + "_" + corner, x_[1] * 255) for x_ in to_write]
x = [x[i] - x[i+1] for i in range(len(x)-1)]
X.append(x)
y.append(label)
X = pad_sequences(X, maxlen=seq_length, padding='pre', truncating='pre')
if classes > 1:
x_ = to_categorical(x_,classes)
return np.array(X), np.array(y)
import re
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def generate_augmentations(data_path,figure_shape = 224, force = False):
seq_len = 0
crop_path = data_path + "_crop"
if not os.path.exists(crop_path) or force:
frames = natural_sort(glob.glob(os.path.join(data_path, '*jpg')))
frames_arr = frame_loader(frames, figure_shape,to_norm = False)
print("augmenting " + data_path)
os.makedirs(crop_path)
for frame in frames_arr:
#transpose
img_transpose = frame.transpose(1,0,2)
data_path_aug = os.path.join(crop_path,"frame_%d.jpg" % seq_len)
cv2.imwrite(data_path_aug, img_transpose)
seq_len += 1
return crop_path
# def load_data(data_paths,labels,figure_shape,seq_length):
# X, y = [], []
# for select_index in range(len(data_paths)):
# x = get_sequence(data_paths[select_index])
# frames = sorted(glob.glob(os.path.join(data_paths[select_index], '*jpg')))
# x = frame_loader(frames, figure_shape)
# X.append(x)
# y.append(labels[select_index])
# X = pad_sequences(X,maxlen = seq_length, padding = 'pre' , truncating = 'pre' )
# return np.array(X), np.array(y)
#
# def load_data(data_paths,labels,figure_shape,seq_length):
# X,y = [], []
# x, y = get_sequences(data_paths,labels)
# for select_index in range(len(data_paths)):
#
# frames = sorted(glob.glob(os.path.join(data_paths[select_index], '*jpg')))
# x = frame_loader(frames, figure_shape)
# X.append(x)
# y.append(labels[select_index])
# X = pad_sequences(X,maxlen = seq_length, padding = 'pre' , truncating = 'pre' )
# return np.array(X), np.array(y)
#
# def data_generator(data_paths,labels,batch_size,figure_shape,seq_length):
# while True:
# X, y = [], []
# indexes = np.arange(len(data_paths))
# np.random.shuffle(indexes)
# select_indexes = indexes[:batch_size]
# for select_index in select_indexes:
# frames = sorted(glob.glob(os.path.join(data_paths[select_index], '*jpg')))
# x = frame_loader(frames, figure_shape)
# X.append(x)
# y.append(labels[select_index])
# X = pad_sequences(X,maxlen = seq_length, padding = 'pre' , truncating = 'pre' )
# yield np.array(X), np.array(y)