forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ade.py
119 lines (105 loc) · 4.66 KB
/
ade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
from PIL import Image
from paddleseg.datasets import Dataset
from paddleseg.utils.download import download_file_and_uncompress
from paddleseg.utils import seg_env
from paddleseg.cvlibs import manager
from paddleseg.transforms import Compose
import paddleseg.transforms.functional as F
URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"
@manager.DATASETS.add_component
class ADE20K(Dataset):
"""
ADE20K dataset `http://sceneparsing.csail.mit.edu/`.
Args:
transforms (list): A list of image transformations.
dataset_root (str, optional): The ADK20K dataset directory. Default: None.
mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'.
edge (bool, optional): Whether to compute edge while training. Default: False
"""
NUM_CLASSES = 150
def __init__(self, transforms, dataset_root=None, mode='train', edge=False):
self.dataset_root = dataset_root
self.transforms = Compose(transforms)
mode = mode.lower()
self.mode = mode
self.file_list = list()
self.num_classes = self.NUM_CLASSES
self.ignore_index = 255
self.edge = edge
if mode not in ['train', 'val']:
raise ValueError(
"`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}."
.format(mode))
if self.transforms is None:
raise ValueError("`transforms` is necessary, but it is None.")
if self.dataset_root is None:
self.dataset_root = download_file_and_uncompress(
url=URL,
savepath=seg_env.DATA_HOME,
extrapath=seg_env.DATA_HOME,
extraname='ADEChallengeData2016')
elif not os.path.exists(self.dataset_root):
self.dataset_root = os.path.normpath(self.dataset_root)
savepath, extraname = self.dataset_root.rsplit(
sep=os.path.sep, maxsplit=1)
self.dataset_root = download_file_and_uncompress(
url=URL,
savepath=savepath,
extrapath=savepath,
extraname=extraname)
if mode == 'train':
img_dir = os.path.join(self.dataset_root, 'images/training')
label_dir = os.path.join(self.dataset_root, 'annotations/training')
elif mode == 'val':
img_dir = os.path.join(self.dataset_root, 'images/validation')
label_dir = os.path.join(self.dataset_root,
'annotations/validation')
img_files = os.listdir(img_dir)
label_files = [i.replace('.jpg', '.png') for i in img_files]
for i in range(len(img_files)):
img_path = os.path.join(img_dir, img_files[i])
label_path = os.path.join(label_dir, label_files[i])
self.file_list.append([img_path, label_path])
def __getitem__(self, idx):
data = {}
data['trans_info'] = []
image_path, label_path = self.file_list[idx]
data['img'] = image_path
data['gt_fields'] = [
] # If key in gt_fields, the data[key] have transforms synchronous.
if self.mode == 'val':
data = self.transforms(data)
label = np.asarray(Image.open(label_path))
# The class 0 is ignored. And it will equal to 255 after
# subtracted 1, because the dtype of label is uint8.
label = label - 1
label = label[np.newaxis, :, :]
data['label'] = label
return data
else:
data['label'] = label_path
data['gt_fields'].append('label')
data = self.transforms(data)
data['label'] = data['label'] - 1
# Recover the ignore pixels adding by transform
data['label'][data['label'] == 254] = 255
if self.edge:
edge_mask = F.mask_to_binary_edge(
label, radius=2, num_classes=self.num_classes)
data['edge'] = edge_mask
return data