Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: TypeError: KSamplerX0Inpaint.__init__() missing 1 required positional argument: 'sigmas' #167

Open
4 of 6 tasks
BethKothe opened this issue Nov 7, 2024 · 6 comments

Comments

@BethKothe
Copy link

Checklist

  • The issue exists after disabling all extensions
  • The issue exists on a clean installation of webui
  • The issue is caused by an extension, but I believe it is caused by a bug in the webui
  • The issue exists in the current version of the webui
  • The issue has not been reported before recently
  • The issue has been reported before but has not been fixed yet

What happened?

Receiving error when trying to use SVD within Reforge UI:

Traceback (most recent call last):
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\routes.py", line 488, in run_predict
    output = await app.get_blocks().process_api(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1431, in process_api
    result = await self.call_function(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1103, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\utils.py", line 707, in wrapper
    response = f(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\extensions-builtin\sd_forge_svd\scripts\forge_svd.py", line 50, in predict
    output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg,
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1379, in sample
    return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1349, in common_ksampler
    samples = ldm_patched.modules.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\sample.py", line 104, in sample
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 825, in sample
    return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 719, in sample
    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 637, in sample
    model_k = KSamplerX0Inpaint(model_wrap)
TypeError: KSamplerX0Inpaint.__init__() missing 1 required positional argument: 'sigmas'

Steps to reproduce the problem

  1. Go to SVD tab
  2. choose picture
  3. choose samplers etc
  4. hit the generate button
  5. Error

What should have happened?

The webui should have created a small video

What browsers do you use to access the UI ?

Google Chrome

Sysinfo

sysinfo-2024-11-07-05-02.json

Console logs

Python 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
Version: f1.0.2-v1.10.1RC-latest-705-gdc1ba395
Commit hash: dc1ba39585eae9f4e4bff21702efbea228a29bfe
C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\extensions-builtin\forge_legacy_preprocessors\install.py:2: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
  import pkg_resources
C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\extensions-builtin\sd_forge_controlnet\install.py:2: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
  import pkg_resources
Launching Web UI with arguments: --gradio-allowed-path 'C:\Users\TheSu\OneDrive\Desktop\Data\Images'
Total VRAM 8192 MB, total RAM 16167 MB
Set vram state to: NORMAL_VRAM
Device: cuda:0 NVIDIA GeForce RTX 2070 with Max-Q Design : native
Hint: your device supports --pin-shared-memory for potential speed improvements.
Hint: your device supports --cuda-malloc for potential speed improvements.
Hint: your device supports --cuda-stream for potential speed improvements.
VAE dtype: torch.float32
CUDA Stream Activated:  False
C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\transformers\utils\hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.
  warnings.warn(
Using pytorch cross attention
C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\diffusers\models\transformers\transformer_2d.py:34: FutureWarning: `Transformer2DModelOutput` is deprecated and will be removed in version 1.0.0. Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead.
  deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
ControlNet preprocessor location: C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\models\ControlNetPreprocessor
Loading model sd\BLACK MAGIC PONY\blackMAGICPONY_v25.safetensors [ba9accece7] (1 of 1)
Loading weights [ba9accece7] from C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\models\Stable-diffusion\sd\BLACK MAGIC PONY\blackMAGICPONY_v25.safetensors
2024-11-06 22:58:01,107 - ControlNet - INFO - ControlNet UI callback registered.
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
model_type EPS
UNet ADM Dimension 2816
Startup time: 31.5s (prepare environment: 7.3s, import torch: 9.6s, import gradio: 1.9s, setup paths: 2.2s, initialize shared: 0.5s, other imports: 0.8s, list SD models: 0.1s, load scripts: 4.4s, create ui: 3.4s, gradio launch: 1.2s).
Using pytorch attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using pytorch attention in VAE
C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\transformers\tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
  warnings.warn(
extra {'cond_stage_model.clip_l.logit_scale', 'cond_stage_model.clip_l.text_projection'}
left over keys: dict_keys(['cond_stage_model.clip_l.transformer.text_model.embeddings.position_ids'])
Loading VAE weights specified in settings: C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\models\VAE\sdxl_vae.safetensors
To load target model SDXLClipModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) =  7145.65234375
[Memory Management] Model Memory (MB) =  2144.3535232543945
[Memory Management] Minimal Inference Memory (MB) =  1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) =  3977.2988204956055
Moving model(s) has taken 0.93 seconds
Model sd\BLACK MAGIC PONY\blackMAGICPONY_v25.safetensors [ba9accece7] loaded in 21.8s (load weights from disk: 0.9s, forge instantiate config: 3.2s, forge load real models: 14.7s, load VAE: 1.0s, calculate empty prompt: 1.8s).
model_type V_PREDICTION_EDM
UNet ADM Dimension 768
Using pytorch attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using pytorch attention in VAE
left over keys: dict_keys(['conditioner.embedders.0.open_clip.model.ln_final.bias', 'conditioner.embedders.0.open_clip.model.ln_final.weight', 'conditioner.embedders.0.open_clip.model.logit_scale', 'conditioner.embedders.0.open_clip.model.positional_embedding', 'conditioner.embedders.0.open_clip.model.text_projection', 'conditioner.embedders.0.open_clip.model.token_embedding.weight', 'conditioner.embedders.3.encoder.decoder.conv_in.bias', 'conditioner.embedders.3.encoder.decoder.conv_in.weight', 'conditioner.embedders.3.encoder.decoder.conv_out.bias', 'conditioner.embedders.3.encoder.decoder.conv_out.weight', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.k.bias', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.k.weight', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.norm.bias', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.norm.weight', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.proj_out.bias', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.proj_out.weight', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.q.bias', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.q.weight', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.v.bias', 'conditioner.embedders.3.encoder.decoder.mid.attn_1.v.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_1.conv1.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_1.conv1.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_1.conv2.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_1.conv2.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_1.norm1.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_1.norm1.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_1.norm2.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_1.norm2.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_2.conv1.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_2.conv1.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_2.conv2.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_2.conv2.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_2.norm1.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_2.norm1.weight', 'conditioner.embedders.3.encoder.decoder.mid.block_2.norm2.bias', 'conditioner.embedders.3.encoder.decoder.mid.block_2.norm2.weight', 'conditioner.embedders.3.encoder.decoder.norm_out.bias', 'conditioner.embedders.3.encoder.decoder.norm_out.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.nin_shortcut.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.nin_shortcut.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.0.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.1.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.0.block.2.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.nin_shortcut.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.nin_shortcut.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.0.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.1.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.1.block.2.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.1.upsample.conv.bias', 'conditioner.embedders.3.encoder.decoder.up.1.upsample.conv.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.0.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.1.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.2.block.2.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.2.upsample.conv.bias', 'conditioner.embedders.3.encoder.decoder.up.2.upsample.conv.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.0.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.1.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.conv1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.conv1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.conv2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.conv2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.norm1.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.norm1.weight', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.norm2.bias', 'conditioner.embedders.3.encoder.decoder.up.3.block.2.norm2.weight', 'conditioner.embedders.3.encoder.decoder.up.3.upsample.conv.bias', 'conditioner.embedders.3.encoder.decoder.up.3.upsample.conv.weight', 'conditioner.embedders.3.encoder.encoder.conv_in.bias', 'conditioner.embedders.3.encoder.encoder.conv_in.weight', 'conditioner.embedders.3.encoder.encoder.conv_out.bias', 'conditioner.embedders.3.encoder.encoder.conv_out.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.0.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.0.block.1.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.0.downsample.conv.bias', 'conditioner.embedders.3.encoder.encoder.down.0.downsample.conv.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.nin_shortcut.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.nin_shortcut.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.0.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.1.block.1.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.1.downsample.conv.bias', 'conditioner.embedders.3.encoder.encoder.down.1.downsample.conv.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.nin_shortcut.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.nin_shortcut.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.0.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.2.block.1.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.2.downsample.conv.bias', 'conditioner.embedders.3.encoder.encoder.down.2.downsample.conv.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.0.norm2.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.conv1.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.conv1.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.conv2.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.conv2.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.norm1.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.norm1.weight', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.norm2.bias', 'conditioner.embedders.3.encoder.encoder.down.3.block.1.norm2.weight', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.k.bias', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.k.weight', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.norm.bias', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.norm.weight', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.proj_out.bias', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.proj_out.weight', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.q.bias', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.q.weight', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.v.bias', 'conditioner.embedders.3.encoder.encoder.mid.attn_1.v.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_1.conv1.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_1.conv1.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_1.conv2.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_1.conv2.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_1.norm1.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_1.norm1.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_1.norm2.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_1.norm2.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_2.conv1.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_2.conv1.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_2.conv2.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_2.conv2.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_2.norm1.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_2.norm1.weight', 'conditioner.embedders.3.encoder.encoder.mid.block_2.norm2.bias', 'conditioner.embedders.3.encoder.encoder.mid.block_2.norm2.weight', 'conditioner.embedders.3.encoder.encoder.norm_out.bias', 'conditioner.embedders.3.encoder.encoder.norm_out.weight', 'conditioner.embedders.3.encoder.post_quant_conv.bias', 'conditioner.embedders.3.encoder.post_quant_conv.weight', 'conditioner.embedders.3.encoder.quant_conv.bias', 'conditioner.embedders.3.encoder.quant_conv.weight'])
loaded straight to GPU
To load target model SVD_img2vid
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) =  2410.50244140625
[Memory Management] Model Memory (MB) =  0.00777435302734375
[Memory Management] Minimal Inference Memory (MB) =  1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) =  1386.4946670532227
Moving model(s) has taken 0.08 seconds
To load target model CLIPVisionModelWithProjection
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) =  4175.83251953125
[Memory Management] Model Memory (MB) =  1205.5908203125
[Memory Management] Minimal Inference Memory (MB) =  1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) =  1946.24169921875
Moving model(s) has taken 1.44 seconds
To load target model AutoencodingEngine
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) =  7086.80078125
[Memory Management] Model Memory (MB) =  372.8590965270996
[Memory Management] Minimal Inference Memory (MB) =  1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) =  5689.9416847229
Moving model(s) has taken 2.05 seconds
  0%|          | 0/20 [00:00<?, ?it/s]To load target model SVD_img2vid
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) =  7086.80078125
[Memory Management] Model Memory (MB) =  2907.9954528808594
[Memory Management] Minimal Inference Memory (MB) =  1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) =  3154.8053283691406
Moving model(s) has taken 1.09 seconds
Traceback (most recent call last):
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\routes.py", line 488, in run_predict
    output = await app.get_blocks().process_api(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1431, in process_api
    result = await self.call_function(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1103, in call_function
    prediction = await anyio.to_thread.run_sync(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
    return await get_asynclib().run_sync_in_worker_thread(
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
    return await future
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
    result = context.run(func, *args)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\utils.py", line 707, in wrapper
    response = f(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\extensions-builtin\sd_forge_svd\scripts\forge_svd.py", line 50, in predict
    output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg,
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1379, in sample
    return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1349, in common_ksampler
    samples = ldm_patched.modules.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\sample.py", line 104, in sample
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 825, in sample
    return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 719, in sample
    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
  File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 637, in sample
    model_k = KSamplerX0Inpaint(model_wrap)
TypeError: KSamplerX0Inpaint.__init__() missing 1 required positional argument: 'sigmas'

Additional information

No response

@Panchovix
Copy link
Owner

Hi there, thanks for the report. Pushed a commit that may fix this issue, can you try?

@jlxsolutions
Copy link

jlxsolutions commented Nov 15, 2024

i get this line varies on sampler but error the same,but as i responded on same bug in other issues thread about same issue this fork seems to have fixed sampler.py and sd_samplers_cfg_denoiser.py

\stable-diffusion-webui-reForge-main\ldm_patched\k_diffusion\sampling.py", line 453, in sample_euler
   denoised = model(x, sigma_hat * s_in, **extra_args)
TypeError: KSamplerX0Inpaint.__call__() got an unexpected keyword argument 'cond'

@BethKothe
Copy link
Author

Hi there, thanks for the report. Pushed a commit that may fix this issue, can you try?

Tried and failed.

Traceback (most recent call last):
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\routes.py", line 488, in run_predict
output = await app.get_blocks().process_api(
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1431, in process_api
result = await self.call_function(
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\blocks.py", line 1103, in call_function
prediction = await anyio.to_thread.run_sync(
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio_backends_asyncio.py", line 877, in run_sync_in_worker_thread
return await future
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\anyio_backends_asyncio.py", line 807, in run
result = context.run(func, *args)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\gradio\utils.py", line 707, in wrapper
response = f(*args, **kwargs)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\extensions-builtin\sd_forge_svd\scripts\forge_svd.py", line 50, in predict
output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg,
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1379, in sample
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\contrib\external.py", line 1349, in common_ksampler
samples = ldm_patched.modules.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\sample.py", line 104, in sample
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 845, in sample
return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 719, in sample
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\modules\samplers.py", line 658, in sample
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\TheSu\OneDrive\Desktop\Data\Packages\Stable Diffusion WebUI reForge\ldm_patched\k_diffusion\sampling.py", line 932, in sample_dpmpp_2m_sde
denoised = model(x, sigmas[i] * s_in, **extra_args)
TypeError: KSamplerX0Inpaint.call() got an unexpected keyword argument 'cond'

@BethKothe
Copy link
Author

@Panchovix I didn't realize I could tag. I posted the above comment a while ago.

@Panchovix
Copy link
Owner

Sorry, I will take a look when I can.

@BethKothe
Copy link
Author

@Panchovix you're good, no rush!! I just wanted to make sure you saw it :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants