-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbreg_next.py
147 lines (107 loc) · 6.17 KB
/
breg_next.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2021 Regents of the University of California
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Code taken from https://github.com/behzadhsni/BReG-NeXt
import torch
class BRegNextShortcutModifier(torch.nn.Module):
def __init__(self,):
super(BRegNextShortcutModifier, self).__init__()
self._a = torch.nn.Parameter(torch.FloatTensor([1.0]), requires_grad=True)
self._c = torch.nn.Parameter(torch.FloatTensor([1.0]), requires_grad=True)
def forward(self, inputs):
numl = torch.atan((self._a * inputs) / torch.sqrt(self._c ** 2 + 1))
denom = self._a * torch.sqrt(self._c ** 2 + 1)
return (numl / denom)
class BReGNeXtResidualLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, downsample_stride = 1):
super(BReGNeXtResidualLayer, self).__init__()
self._out_channels = out_channels
self._in_channels = in_channels
self._downsample_stride = downsample_stride
self._conv0 = torch.nn.Conv2d(in_channels, out_channels, 3, downsample_stride)
torch.nn.init.kaiming_uniform_(self._conv0.weight)
self._conv1 = torch.nn.Conv2d(out_channels, out_channels, 3, 1)
torch.nn.init.kaiming_uniform_(self._conv1.weight)
self._shortcut = BRegNextShortcutModifier()
self._batchnorm_conv0 = torch.nn.BatchNorm2d(self._in_channels)
self._batchnorm_conv1 = torch.nn.BatchNorm2d(self._out_channels)
def forward(self, inputs):
# First convolution
normed_inputs = inputs if self._batchnorm_conv0 is None else self._batchnorm_conv0(inputs)
normed_inputs = torch.nn.functional.elu(normed_inputs)
normed_inputs = torch.nn.functional.pad(normed_inputs, (1,1,1,1,0,0))
conv0_outputs = self._conv0(normed_inputs)
# Second convolution
normed_conv0_outputs = conv0_outputs if self._batchnorm_conv1 is None else self._batchnorm_conv1(conv0_outputs)
normed_conv0_outputs = torch.nn.functional.elu(normed_conv0_outputs)
normed_conv0_outputs = torch.nn.functional.pad(normed_conv0_outputs, (1,1,1,1,0,0))
conv1_outputs = self._conv1(normed_conv0_outputs)
shortcut_modifier = self._shortcut(inputs)
if self._downsample_stride > 1:
shortcut_modifier = torch.nn.functional.avg_pool2d(shortcut_modifier, self._downsample_stride, self._downsample_stride)
# Upsample the shortcut in the channel dimension if necessary
if self._out_channels > self._in_channels:
pad_dimension = (self._out_channels - self._in_channels) // 2
shortcut_modifier = torch.nn.functional.pad(shortcut_modifier, [0,0,0,0,pad_dimension, pad_dimension])
# NOTE: This code doesn't handle the case if _out_channels < _in_channels
return conv1_outputs + shortcut_modifier
class BRegNextResidualBlock(torch.nn.Module):
def __init__(self, n_blocks, in_channels, out_channels, downsample_stride=1):
super(BRegNextResidualBlock, self).__init__()
layers = [BReGNeXtResidualLayer(in_channels, out_channels, downsample_stride)] + [
BReGNeXtResidualLayer(out_channels, out_channels, downsample_stride) for _ in range(n_blocks - 1)
]
self._layer_stack = torch.nn.Sequential(*layers)
def forward(self, inputs):
return self._layer_stack(inputs)
class BReGNeXt(torch.nn.Module):
def __init__(self, n_classes: int = 8) -> None:
super(BReGNeXt, self).__init__()
self._conv0 = torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
self._model = torch.nn.Sequential(
# NOTE: The original BReGNeXt code uses a truncated normal initialization for this convolution, however
# that is not implemented in PyTorch 1.7 - This defaults to a uniform initializer in PyTorch.
BRegNextResidualBlock(n_blocks=7, in_channels=32, out_channels=32),
BRegNextResidualBlock(n_blocks=1, in_channels=32, out_channels=64, downsample_stride=2),
BRegNextResidualBlock(n_blocks=8, in_channels=64, out_channels=64),
BRegNextResidualBlock(n_blocks=1, in_channels=64, out_channels=128, downsample_stride=2),
BRegNextResidualBlock(n_blocks=7, in_channels=128, out_channels=128),
torch.nn.BatchNorm2d(128),
torch.nn.ELU(),
torch.nn.AdaptiveAvgPool2d((1,1)),
)
self._fc0 = torch.nn.Linear(128, n_classes)
def forward(self, x):
# These two blocks simulate "SAME" padding from TensorFlow
net = torch.nn.functional.pad(x, (1,1,1,1,0,0))
net = self._conv0(net)
# Handle the rest of the net
return self._fc0(self._model(net).reshape(-1, 128))
class multi_BReGNeXt(torch.nn.Module):
def __init__(self) -> None:
super(multi_BReGNeXt, self).__init__()
self._conv0 = torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
self._model = torch.nn.Sequential(
# NOTE: The original BReGNeXt code uses a truncated normal initialization for this convolution, however
# that is not implemented in PyTorch 1.7 - This defaults to a uniform initializer in PyTorch.
BRegNextResidualBlock(n_blocks=7, in_channels=32, out_channels=32),
BRegNextResidualBlock(n_blocks=1, in_channels=32, out_channels=64, downsample_stride=2),
BRegNextResidualBlock(n_blocks=8, in_channels=64, out_channels=64),
BRegNextResidualBlock(n_blocks=1, in_channels=64, out_channels=128, downsample_stride=2),
BRegNextResidualBlock(n_blocks=7, in_channels=128, out_channels=128),
torch.nn.BatchNorm2d(128),
torch.nn.ELU(),
torch.nn.AdaptiveAvgPool2d((1,1)),
)
self.fc_cont = torch.nn.Linear(128, 2)
self.fc_cat = torch.nn.Linear(128, 7)
def forward(self, x):
# These two blocks simulate "SAME" padding from TensorFlow
net = torch.nn.functional.pad(x, (1,1,1,1,0,0))
net = self._conv0(net)
# Handle the rest of the net
feat = self._model(net).reshape(-1, 128)
x_cat = self.fc_cat(feat)
x_cont = self.fc_cont(feat)
return x_cat, x_cont