-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlayer.py
46 lines (34 loc) · 1.35 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers.experimental import SyncBatchNormalization
from tensorflow.keras.initializers import Constant
BatchNorm_DICT = {
"bn": BatchNormalization,
"syncbn": SyncBatchNormalization}
def _conv2d(**custom_kwargs):
def _func(*args, **kwargs):
kwargs.update(**custom_kwargs)
return Conv2D(*args, **kwargs)
return _func
def _batchnorm(norm='bn', **custom_kwargs):
def _func(*args, **kwargs):
kwargs.update(**custom_kwargs)
return BatchNorm_DICT[norm](*args, **kwargs)
return _func
def _dense(**custom_kwargs):
def _func(*args, **kwargs):
kwargs.update(**custom_kwargs)
return Dense(*args, **kwargs)
return _func
# class Conv2D(tf.keras.layers.Conv2D):
# def build(self, input_shape):
# k = 1 / input_shape[-1]
# self.kernel_initializer = Constant(tf.random.uniform([], -tf.sqrt(k), tf.sqrt(k)))
# super(Conv2D, self).build(input_shape)
# class Dense(tf.keras.layers.Dense):
# def build(self, input_shape):
# k = 1 / input_shape[-1]
# self.kernel_initializer = Constant(tf.random.uniform([], -tf.sqrt(k), tf.sqrt(k)))
# super(Dense, self).build(input_shape)