forked from Zeqiang-Lai/Anything2Image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg2img.py
26 lines (22 loc) · 793 Bytes
/
img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import anything2image.imagebind as ib
import torch
from diffusers import StableUnCLIPImg2ImgPipeline
# construct models
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16
)
pipe = pipe.to(device)
# CHECK pipe function here
model = ib.imagebind_huge(pretrained=True)
model.eval()
model.to(device)
# generate image
with torch.no_grad():
paths=["assets/image/room.png"]
embeddings = model.forward({
ib.ModalityType.VISION: ib.load_and_transform_vision_data(paths, device),
}, normalize=False)
embeddings = embeddings[ib.ModalityType.VISION]
images = pipe(image_embeds=embeddings.half()).images
images[0].save("img2img.png")